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0. Introduction

Finitely generated modules over principal ideal domains satisfy a known structure 
theorem, and finitely generated modules over a Dedekind domain were characterized by 
Steinitz over a century ago [14]. In this paper we study modules of finite length over the 
polynomial ring

A = k[x, y],

where k is an algebraically closed field of characteristic zero. These naturally correspond 
to coherent sheaves supported on finitely many points of the affine plane A2. We only 
consider modules entirely supported at the origin, as every other module is isomorphic 
to a direct sum of modules of this type.

Among all such modules are artinian ring quotients of A, corresponding to points of 
the punctual Hilbert scheme

Hilbn(A2)0 ⊂ Hilbn(A2).

It is known that there are infinitely many isomorphism types of artinian k-algebras of 
length 8. Those of length at most 6 have been completely described by Briançon [3]. 
Moreover, Poonen has classified isomorphism types of k-algebras of dimension up to 6
and proves there are infinitely many types in dimension n ≥ 7 [13].

The problem of classifying A-modules of finite length up to A-linear isomorphism, 
that we study here, is equivalent to the one of classifying pairs of commuting linear 
transformations on a finite dimensional vector space; the latter is known to contain the 
problem of classifying arbitrary tuples of commuting linear transformations, by work of 
Gelfand and Ponomarev [11].

We could not find a reference in the literature for the classification of isomorphism 
classes of A-modules of length n > 2. We deal with length n = 3 and n = 4 in this work.

Main result. For simplicity, we state our classification in terms of (isomorphism classes of) 
indecomposable modules only, but see Tables 1 and 2 for complete lists including the 
decomposable ones. All modules are supported entirely on m = (x, y), the ideal of the 
origin. Our main result is the following.

Theorem 1. The indecomposable modules of length 3 are either structure sheaves or the 
distinguished module Homk(A/m2, k). In the length 4 case, besides structure sheaves, 
there are two families F1 and F2 of indecomposable modules, both isomorphic to P1.

The stack of A-modules of length n will be denoted C(n) throughout. We let

C(n)0 ⊂ C(n)
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be the closed substack parametrizing modules entirely supported at the origin. Even 
though these stacks are not well understood in general, remarkably their motivic classes 
in the Grothendieck ring of stacks can be computed for arbitrary n, by means of the 
Feit–Fine formula [8,1,2]. The knowledge of the motivic aspect of the theory is for us 
both a motivation to tackle the classification problem, and a way to check our results. 
More precisely, our strategy goes as follows. We stratify C(n)0 by locally closed substacks

Xr(n) ⊂ C(n)0,

each parametrizing modules M such that dimk M/m ·M = r. In other words, we study 
modules M by means of their discrete invariant

rM = minimal number of generators of M.

We then analyze each stratum separately, and we compute its motivic class. Since we are 
inside a quotient stack, this requires us to compute all possible automorphism groups. 
To confirm our calculation we verify that the sum

n∑
r=1

[
Xr(n)

]
∈ K0(Stk)

reconstructs the class [C(n)0] predicted by the Feit–Fine formula.
In Section 5 we study the natural action of the torus T = G

2
m on the moduli stack C(n)

and we prove that it has finitely many fixed points, corresponding to certain types of 
skew Ferrers diagrams. We will also observe that the generating function for the numbers 
of indecomposable torus-fixed modules has a well-known combinatorial interpretation in 
terms of parallelogram polyominoes.

1. Main strategy and conventions

Let k be an algebraically closed field of characteristic zero. We let

m ⊂ A = k[x, y]

be the maximal ideal of the origin in A2. All A-modules M are assumed to be of finite 
length and entirely supported at m. Note that since the function

r : M �→ dimk M/m ·M

is upper semi-continuous, there are well-defined locally closed substacks

Xr(n) ⊂ C(n)0
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parametrizing modules with r as minimal number of generators. The motivic class of 
Xr(n) makes sense, and we have a decomposition

[
C(n)0

]
=

n∑
r=1

[
Xr(n)

]
∈ K0(Stk).

See [6] for an introduction to the Grothendieck group of algebraic stacks.
If M lies in Xr(n), we will find useful to fix a k-linear basis

{ v1, v2, . . . , vn } ⊂ M

such that the first r vectors generate the module, and vr+1, . . . , vn generate the submod-
ule

m ·M ⊂ M

as a k-vector space.

Lemma 1.1. With the above choice of basis, x · vi and y · vi belong to m ·M .

Proof. Let π : M � M/m · M be the canonical projection. By our choice of basis, 
vr+1, . . . , vn form a k-basis of m ·M and M/m ·M is generated over k by the images of 
v1, . . . , vr. Writing x · vi =

∑n
j=1 ajvj for some aj ∈ k, from the relation

0 = x · π(vi) = π(x · vi) =
n∑

j=1
ajπ(vj) =

r∑
j=1

ajπ(vj)

one deduces that aj = 0 for j = 1, . . . , r. Therefore x · vi =
∑n

j=r+1 ajvj belongs to 
m ·M , and similarly for y · vi. �

The lemma says that after fixing a suitable basis for M one can see multiplication by 
x and y as k-linear maps

〈v1, . . . , vr〉k m ·M.

←→x←→y (1.1)

If the additional condition x · (y · vi) = y · (x · vi) is fulfilled for i = 1, . . . , r then the two 
k-linear maps above characterize M . Such point of view will be essential when dealing 
with length 4 modules satisfying rM = 2. Then our strategy will be to classify all pairs 
of linear maps as above, for each choice of length two submodule m ·M ⊂ M .

We anticipate here that we will sometimes describe modules by means of their “mul-
tiplication table”. This is just a way to represent the action of x and y on a chosen basis 
v1, . . . , vn. The first r entries of the table are to be filled in according to Lemma 1.1, 
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whereas the last n − r are describing the submodule m ·M ⊂ M . Occasionally, we will 
encounter modules that can be visually represented as certain types of skew Ferrers di-
agrams, see Example 1.2 below. In Section 5 we will see that these special modules are 
the finitely many fixed points of the natural torus action on the moduli stack C(n). For 
instance, as is well-known, classical Ferrers diagrams correspond to the fixed points of 
the torus action on Hilbn(A2), studied in [7]. Recall that Ferrers diagrams (also called 
Young diagrams) correspond to ordinary partitions of integers, whereas a skew Ferrers 
diagram is a difference of two Ferrers diagrams.

Our convention for (skew) Ferrers diagrams is to use the French notation; when a 
module can be represented by a skew Ferrers diagram, we understand multiplication 
by x (resp. y) in the module as shifting position to the right (resp. to the top) in the 
diagram. The following example illustrates our conventions.

Example 1.2. Consider the module M = A/m2 = k[x, y]/(x2, xy, y2). This is the unique 
non-curvilinear structure sheaf of length 3, with natural k-basis 1, x, y. The multiplication 
tables

1 x y

x· x 0 0
y· y 0 0

1∗ x∗ y∗

x· 0 1∗ 0
y· 0 0 1∗

describe, respectively, the A-linear structure of M and of its k-linear dual M∗ =
Homk(M, k). These tables can be represented as diagrams

y

1 x

x∗ 1∗

y∗

where the first one is a classical Ferrers diagram and the second one is the skew Ferrers 
diagram corresponding to M∗. We will see as a part of Theorem 1 that M∗ is the unique 
indecomposable module of length 3 that is not a structure sheaf. In the following we will 
avoid writing the name of the generators inside the diagrams.

As a warm-up to illustrate our classification technique, we now describe all isomor-
phism types of A-modules belonging to the stratum Xn−1(n) ⊂ C(n)0. Recall that by 
r = rM we mean the minimal number of generators of M .

Proposition 1.3. Any module M of length n ≥ 3 with rM = n − 1 is isomorphic to 
kn−3 ⊕N , where N has length 3 and rN = 2.

Proof. Any A-module N of length 3 with rN = 2 gives rise to M = kn−3 ⊕ N , with 
rM = n − 1. Conversely, if M is generated over A by v1, . . . , vn−1 and vn generates 
m ·M = k, then the multiplication table for M looks like
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v1 v2 · · · vn−1 vn

x· a1vn a2vn · · · an−1vn 0
y· b1vn b2vn · · · bn−1vn 0

where ai and bi are scalars in k. Up to relabeling the generators we can assume either 
a1 or b1 to be nonzero. We deal with the former case, since the latter is completely 
symmetric.

If a1 �= 0 we can assume it is equal to 1. Replacing vi by vi − aiv1 for i = 2, . . . , n − 1
we get the multiplication table

v1 v2 · · · vn−1 vn

x· vn 0 · · · 0 0
y· b1vn b′2vn · · · b′n−1vn 0

If b′2 = 0 then M = 〈v2〉k⊕F for F a module of length n −1, and the result follows by 
induction. If b′2 �= 0, we can assume b′2 = 1 and replace vi by vi−b′iv2 for i = 3, . . . , n −1. 
This yields

v1 v2 v3 · · · vn−1 vn

x· vn 0 0 · · · 0 0
y· b1vn vn 0 · · · 0 0

so that M = kn−3 ⊕ F where F is a length 3 module generated by v1 and v2. �
2. Motivic interpretation

The Grothendieck ring of algebraic stacks K0(Stk) carries a power structure naturally 
extending the one present on the classical Grothendieck ring of varieties, which is due to 
Gusein-Zade, Luengo and Melle-Hernández [9]. We refer to [2] for more details. Define 
the generating functions

C(t) =
∞∑

n=0

[
C(n)

]
tn, C0(t) =

∞∑
n=0

[
C(n)0

]
tn.

As observed in [2], these power series are related, via the power structure on K0(Stk), 
by C(t) = C0(t)L

2 . We now recall a formula for C(t) originally proved by Feit and Fine 
[8] in the context of point counting over Fq.

Theorem 2.1. ([1,2]) In K0(StC)�t�, one has the formula

C(t) =
∞∏
k=1

∞∏
m=1

(1 − L
2−ktm)−1.
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Remark 2.2. The above relation, proved over C in the references given, holds in the 
Grothendieck ring of stacks over any algebraically closed field k. The main technical 
result needed for the proof in [2], besides the existence of the Jordan normal form, is 
that K0(Stk) is isomorphic to the localization of K0(Vark) at the classes L and Ln − 1
for n > 0. This is true over any field by [6, Theorem 1.2].

The properties of the power structure [2] allow one to deduce

C0(t) = C(t)L
−2

=
∞∏
k=1

∞∏
m=1

(1 − L
−ktm)−1. (2.1)

Expanding the above series, one finds

C0(t) = 1 + 1
L− 1 t +

(
1

[GL2]
+ L + 1

L(L− 1)

)
t2 + · · ·

The geometric interpretation of the first coefficients is clear:

(0) the motivic class of C(0)0 = Spec k is just 1;
(1) 1/(L − 1) is the motivic class of the stack C(1)0 = BGm, which has only one point 

(corresponding to the module k = A/m), weighted by its automorphism group Gm;
(2) the stack C(2)0 decomposes as X2(2) = B GL2 (corresponding to k⊕k) union X1(2) =

P
1/Ga�Gm, where the projective line P1 = P(m/m2) represents the punctual Hilbert 

scheme Hilb2(A2)0, which parametrizes structure sheaves of length 2 supported at 
the origin (each having automorphism group Ga �Gm).

We aim at giving a similar interpretation of the next two coefficients of C0(t), using 
our stratification.

When we present a (substack of a) stratum Xr(n) as a quotient stack Y/G, we will 
say that any module belonging to this stratum has motivic contribution the motive of 
the scheme Y .

2.1. Automorphism groups

The following general result on automorphism groups of quiver representations is going 
to help us compute all automorphism groups of A-modules of finite length.

Theorem 2.3. ([4, Prop. 2.2.1]) Let M be a finite dimensional representation of a 
quiver Q. Then Aut(M) is a connected linear algebraic group, with a decomposition

Aut(M) = U �

s∏
GLmi

,

i=1
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where U is a closed normal unipotent subgroup and m1, . . . , ms are the multiplicities of 
the indecomposable summands of M .

We apply this result to the quiver Q consisting of one node and two loops. The 
category Rep(Q) of representations of Q is equivalent to the category of left modules 
over the path algebra of Q, which is the non-commutative algebra kQ = k 〈x, y〉. We 
need to consider the quiver with relations (Q, I), where I ⊂ kQ is the two-sided ideal 
generated by the single commutator xy − yx. Then the category of representations of 
(Q, I) is a full subcategory of Rep(Q), naturally equivalent to the category of modules 
over kQ/I = k[x, y] = A.

Theorem 2.3 implies in particular that, if M is an A-module of finite length, its 
automorphism group is a special algebraic group. Indeed, the GL factors are themselves 
special, every unipotent group in characteristic zero is an iterated extension of copies of 
Ga (which is special), and any (semidirect) product of special groups is special. This fact 
is crucial for us: the Grothendieck ring K0(Stk) can be characterized as the localization of 
K0(Vark) at the classes of special algebraic groups, and the upshot is that when a variety 
Y is acted on by a special group G, the motivic class of the quotient stack Y = Y/G

can be computed as [
Y

]
=

[
Y
] / [

G
]
∈ K0(Stk).

In Tables 1 and 2, the column indicating the motive of the automorphism groups is 
obtained directly from Theorem 2.3. Note that in order to compute this class, one only 
needs the indecomposable factors of the module, and the dimension of the automorphism 
group AutA(M). The latter is an elementary calculation and easily gives the number of 
copies of Ga appearing in the unipotent factor U .

As an example, consider the stack of coherent sheaves of length n on affine space A
d, 

supported at the origin. By Theorem 2.3, its locally closed substack parametrizing struc-
ture sheaves has motivic class [

Hilbn(Ad)0
]

Ln−1(L− 1) .

Indeed, OZ is indecomposable and Aut(OZ) has dimension n for all fat points Z ⊂ A
d, 

since an automorphism is determined by the image of 1 ∈ OZ . If d = 2, this computes 
the class

[
X1(n)

]
=

[
Hilbn(A2)0

]
Ln−1(L− 1) . (2.2)

To obtain the motive of the punctual Hilbert scheme, one can use the expansion

∞∑[
Hilbn(A2)0

]
tn =

∏
(1 − L

m−1tm)−1. (2.3)

n=0 m≥1
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This follows directly from the motivic version of Göttsche’s formula [10], as it is also 
explained in [9].

Example 2.4. The curvilinear locus inside the punctual Hilbert scheme is known to 
be a dense open subset, fibered over P1 with fiber A

n−2 [3]. Hence the motivic class 
[Hilbn(A2)0] always decomposes as Ln−2(L + 1) plus the class of the non-curvilinear 
locus. If n = 3, the latter is just a single point corresponding to A/m2, hence we get[

Hilb3(A2)0
]

= L(L + 1) + 1.

For higher n, one has to expand (2.3) in order to extract the motive of the punctual 
Hilbert scheme.

3. Modules of length three

We have three strata Xr(3) ⊂ C(3)0. Structure sheaves correspond to r = 1 and 
contribute

[
X1(3)

]
= L(L + 1) + 1

L2(L− 1)

by formula (2.2). We have X3(3) = B GL3, and we compute X2(3) in the next proposition.

Proposition 3.1. The modules of length 3 having r = 2 are (A/m2)∗ and those of the form 
k ⊕ OZ , where Z ⊂ A

2 is a subscheme of length 2. The latter form a family isomorphic 
to P1.

Proof. This can be extracted from the proof of Proposition 1.3. Indeed, the decomposable 
modules (necessarily of the form k ⊕ OZ) occur when b′2 = 0, and the only new module 
corresponds to the final table, which represents (independently upon the choice of b1) 
the indecomposable module (A/m2)∗. �

This proves the part of Theorem 1 concerning n = 3. The skew Ferrers diagrams 
representing a length 3 module are precisely

where the first 4 are indecomposable. The automorphism groups of all modules are 
computed through Theorem 2.3. See Table 1 for the complete list.

Remark 3.2. The coefficient of t3 in (2.1) can be computed to be

[
C(3)0

]
= 1 (

L
8 + L

7 + L
6 − L

5 − L
4) .
[GL3]
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The sum of the motives in the rightmost column of Table 1, each divided by the motive 
of the corresponding automorphism group, recovers precisely this class, confirming our 
calculation.

Table 1
All k[x, y]-modules of length 3 supported at the origin, along with 
the class of their automorphism group and their motivic contribu-
tion. The first two rows describe indecomposable modules.

r C(3)0 [AutA(M)] Motivic contribution
1 OZ L

2(L − 1) L(L + 1) + 1
2 (A/m2)∗ L

2(L − 1) 1
2 k ⊕ OZ L

3(L − 1)2 L + 1
3 k⊕3 [GL3] 1

4. Modules of length four

We need to analyze the strata Xr(4) ⊂ C(4)0 for r = 1, 2, 3, 4. Expanding (2.3) we 
find [

Hilb4(A2)0
]

= L
3 + 2L2 + L + 1,

and this determines the class of X1(4) through (2.2). On the other hand, X4(4) = B GL4, 
and combining Propositions 1.3 and 3.1 with one another completely describes the stra-
tum X3(4) as follows.

Proposition 4.1. Let M be a module of length 4 with rM = 3. Then either M ∼= k ⊕
(A/m2)∗, or M ∼= k2 ⊕ OZ , where OZ is a structure sheaf of length 2.

The three skew Ferrers diagrams determined by Proposition 4.1 are depicted in Fig. 1.

Fig. 1. The decomposable modules of Proposition 4.1. The P1 represents the family k2 ⊕ OZ , whereas the 
isolated diagram represents k ⊕ (A/m2)∗.

It remains to identify the stratum

X2(4) ⊂ C(4)0

corresponding to modules with dimk M/m ·M = 2. These come in two types: either

(a) m ·M = OZ , a structure sheaf of length 2, or
(b) m ·M = k ⊕ k.
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The families F1 and F2 of indecomposable modules mentioned in Theorem 1 will arise 
from case (a) and (b), treated in Proposition 4.2 and Proposition 4.5 respectively.

According to (1.1), we need to understand the space of pairs of k-linear maps

〈v1, v2〉k m ·M

←→Ax←→
Ay

satisfying x · (Ayvi) = y · (Axvi) for i = 1, 2.

Here Ax and Ay are two by two matrices corresponding to multiplication by x and y
restricted to the A-linear generators v1 and v2. We need to consider the above data up 
to the equivalence relation that identifies pairs of matrices that give rise to isomorphic 
modules. This equivalence relation is determined in Lemma 4.4 below in the case where 
m ·M = k ⊕ k.

Case (a) above is completely solved by the following result.

Proposition 4.2. The decomposable modules with r = 2 and such that m ·M is a structure 
sheaf of length 2 form an A1-fibration over P1, hence with motivic class L(L + 1). The 
indecomposable ones form a family F1 isomorphic to P1.

Proof. If M is generated as a k-vector space by {v1, v2, v3, v4}, we can assume the k-linear 
generators of m · M = A/(x2, y − tx) to be v3 = 1 and v4 = x. Here we have fixed 
t ∈ A

1 = P
1 \ {∞}; then, after imposing the relations x · (y · vi) = y · (x · vi) for i = 1, 2, 

the multiplication table for M is

v1 v2 v3 v4

x· a1v3 + b1v4 a2v3 + b2v4 v4 0
y· a1tv3 + c1v4 a2tv3 + c2v4 tv4 0

and since M is generated as an A-module by v1 and v2, we can assume a1 = 1. Then, we 
may assume a2 = 0 by replacing v2 with = v2 − a2v1. Since x · v3 = v4, we can assume 
b1 = b2 = 0 by replacing v1 and v2 with v1 − b1v3 and v2 − b2v3 respectively. This yields 
the multiplication table

v1 v2 v3 v4

x· v3 0 v4 0
y· tv3 + zv4 c′2v4 tv4 0

where z and c′2 arise from the above changes of basis. Here we distinguish between two 
cases: either c′2 = 0 or c′2 �= 0. In the former case we obtain, for each t ∈ A

1, a family of 
decomposable modules parametrized by z ∈ A

1. This family extends to the whole P1 of 
double points, so that the full family is an A1-fibration over P1.

On the other hand, if c′2 �= 0, we may assume c′2 = 1. Replacing v1 by v1 − zv2, we 
may also assume z = 0, so for each t ∈ A

1 we have exactly one indecomposable module: 
its multiplication table is
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v1 v2 v3 v4

x· v3 0 v4 0
y· tv3 v4 tv4 0

(4.1)

and this family again extends to t = ∞ giving a family F1 ∼= P
1 (Fig. 2). �

Fig. 2. The left picture represents the z = 0 slice of the family of decomposable modules of Proposition 4.2. 
The right picture is the family of indecomposable modules given by (4.1).

Remark 4.3. The decomposable modules of Proposition 4.2 are those of the form k⊕OZ , 
where Z ⊂ A

2 is a curvilinear subscheme of length 3. The motive L(L + 1) is indeed 
the class of the curvilinear locus inside Hilb3(A2)0. The family F1 parametrizes the 
k-linear duals (A/I)∗, where I ⊂ k[x, y] is a non-complete-intersection ideal. This family 
of subschemes of the plane, parametrized by the P1 of linear forms on k2, was studied 
by Briançon [3].

It remains to treat case (b), so from now on we assume our modules M satisfy

m ·M = k ⊕ k.

This assumption makes the relations x · (y · vi) = y · (x · vi) vacuous. We thus want to 
describe the quasi-affine variety

U = { k-linear maps Ax, Ay : 〈v1, v2〉k ⇒ k ⊕ k | rk(Ax Ay) = 2 } (4.2)

up to a suitable group action. Here (AxAy) is the 2 × 4 matrix obtained by juxtaposing 
the two given square matrices. The rank condition comes from the requirement r = 2. 
The next result characterizes pairs of matrices producing isomorphic modules.

Lemma 4.4. Two pairs of matrices (Ax, Ay) and (Bx, By) as above give rise to isomorphic 
A-modules if and only if

HAxK = Bx, HAyK = By

for some H, K ∈ GL2.

Proof. An isomorphism of modules can be identified with a matrix in GL4, which we 
write in block form as
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(
W X
Y Z

)
.

The matrix X describes a mapping 〈v3, v4〉k → 〈v1, v2〉k. Since the submodule generated 
by v3 and v4 is k2, then x · v3 = y · v3 = x · v4 = y · v4 = 0. Then, the matrix X
contributes trivially to the isomorphism, so we can assume X is the zero matrix. On the 
other hand, the matrix Y describes a component mapping 〈v1, v2〉k → 〈v3, v4〉k. Since 
we are assuming v1 and v2 to be generators, Y must be the zero matrix. It follows that
W and Z belong to GL2. A direct computation shows that K = W and H = Z−1. �

In what follows, we study the quotient stack

U/GL2 ×GL2

which gives a presentation of the substack of X2(4) representing modules of type (b).

Proposition 4.5. The indecomposable modules of length 4 with m · M = k ⊕ k form a 
family F2 isomorphic to P1.

Proof. The condition rk(Ax Ay) = 2 from (4.2) says that either

(1) rkAx = rkAy = 1, or
(2) either Ax or Ay is invertible.

In the first case, up to the action of GL2 × GL2 we can assume

Ax =
(

1 0
0 0

)
.

At this point the multiplication table of a module with m ·M = k ⊕ k looks like

v1 v2 v3 v4

x· v3 0 0 0
y· αv3 + βv4 γv3 + δv4 0 0

and the conditions rkAx = rkAy = 1 and rk(Ax Ay) = 2 ensure that αδ = βγ and 
(β, δ) �= (0, 0), respectively. Assume δ �= 0. Then by replacing v4 with γv3 + δv4 we can 
assume γ = 0, δ = 1 and therefore α = 0. Further replacing v1 by v1 − βb2 yields the 
table

v1 v2 v3 v4

x· v3 0 0 0
y· 0 v4 0 0

(4.3)
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which is a single module. Similarly, if β �= 0, replacing v4 by αv3 + βv4 we can assume 
α = 0, β = 1 and therefore γ = 0. Further replacing v2 by v2 − δb1 we get

v1 v2 v3 v4

x· v3 0 0 0
y· v4 0 0 0

(4.4)

showing that case (1) contributes only two isomorphism classes of modules, both decom-
posable and representable by skew Ferrers diagrams (see Fig. 3).

We are left to deal with the loci in (4.2) where Ax is invertible and the one where Ay is 
invertible. These are isomorphic along their common intersection. If, say, Ax is invertible, 
by the action of GL2 × GL2 described in Lemma 4.4, we may assume Ax is the identity 
matrix and Ay is in Jordan form. If Ay is not diagonalizable and has eigenvalue η ∈ A

1, 
we get

Ax =
(

1 0
0 1

)
, Ay =

(
η 1
0 η

)
.

Joining this family with the module represented by the pair

Ax =
(

0 1
0 0

)
, Ay =

(
1 0
0 1

)
gives a family of indecomposable modules F2 parametrized by P1. This exhausts the 
non diagonalizable case, and all other modules are decomposable: for instance, if Ax is 
invertible and Ay is diagonalizable with eigenvalues (λ, μ), we obtain the module

v1 v2 v3 v4

x· v3 v4 0 0
y· λv3 μv4 0 0

which is the direct sum of two structure sheaves of length 2. �

Fig. 3. The left picture represents the two isolated modules (4.3) and (4.4). The right picture describes the 
family F2 = P

1 of indecomposable modules found in Proposition 4.5.

Theorem 1 follows combining Proposition 4.2 and Proposition 4.5 with one another.
For completeness, let us finish the classification of decomposable modules. By the 

proof of the previous proposition, we are left to consider the locus, in U , where Ax is 
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invertible and Ay is diagonalizable; this glues to the locus where Ay is invertible and 
Ax is diagonalizable. Up to the action of GL2 × GL2, when one between Ax and Ay is 
invertible, we can always assume the other to be in Jordan normal form.

Joining the locus where Ax is invertible and Ay has two equal eigenvalues with the 
module represented by the pair

Ax =
(

0 0
0 0

)
, Ay =

(
1 0
0 1

)
gives a family of decomposable modules

• •
P

1

representing all length 4 modules of the form OZ ⊕OZ , where Z ⊂ A
2 is a subscheme of 

length 2. These have automorphism group

G
4
a � GL2,

which distinguishes them from the decomposables of the form OZ ⊕ OZ′ with Z �= Z ′

two subschemes of length 2. The latter indeed have automorphism group

G
4
a �G

2
m.

We have already encountered a module of this type, namely

A/(y, x2) ⊕A/(x, y2), (4.5)

in the leftmost diagram of Fig. 3. The other sums of (different) structure sheaves of 
length 2 arise by considering the remaining types of pairs (Ax, Ay) up to GL2 × GL2. 
More precisely, we have the locus where Ax is invertible and Ay has distinct eigenvalues 
λ �= μ, and finally the Gm of modules represented by matrices

Ax =
(

0 0
0 ν

)
, Ay =

(
1 0
0 1

)
, ν �= 0. (4.6)

We now need to compute the motivic contribution of this family.

Lemma 4.6. The motivic contribution of the modules OZ ⊕ OZ′ , composed by the direct 
sum of two distinct structure sheaves of length 2 is
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L(L2 + 1)
L + 1 .

Proof. It is clear that (4.5) and (4.6) together contribute L. The remaining locus 
parametrizes Jordan forms of matrices with two distinct eigenvalues, namely

{
(λ, μ) ∈ A

1 × A
1 |λ �= μ

}/
Z2.

We compute the motivic class ξ of this locus formally, decomposing the motive of End(k2)
according to the Jordan type. We obtain the identity

L
4 = ξ · [GL2]

(L− 1)2 + L · [GL2]
GL2

+ L
[GL2]

L(L− 1)

where each “fraction” describes the orbit of a given Jordan form. The middle L
parametrizes matrices of the form λ · Id, and similarly the last L corresponds to non-
diagonalizable Jordan forms. After solving for ξ, the total contribution is

ξ + L = L
3 − L

2

L + 1 + L = L(L2 + 1)
L + 1 ,

proving the lemma. �
We summarize in Table 2 all families of modules of length 4. The automorphism 

groups of all modules are computed through Theorem 2.3.

Table 2
All length 4 modules supported at the origin, along with the class of their 
automorphism group and the corresponding motivic contribution. The first three 
rows describe indecomposable modules.

r C(4)0 [AutA(M)] Motivic contribution
1 OZ L

3(L − 1) L
3 + 2L2 + L + 1

2 F1 L
3(L − 1) L + 1

2 F2 L
5(L − 1) L + 1

2 k ⊕ A/m2
L

5(L − 1)2 1
2 k ⊕ OZ , Z curvilinear L

4(L − 1)2 L(L + 1)
2 OZ ⊕ OZ L

4[GL2] L + 1

2 OZ ⊕ OZ′ , Z �= Z′
L

4(L − 1)2
L(L2 + 1)

L + 1
3 k2 ⊕ OZ L

5(L − 1)[GL2] L + 1
3 k ⊕ (A/m2)∗ L

5(L − 1)2 1
4 k4 [GL4] 1

Remark 4.7. The coefficient of t4 in (2.1) can be computed to be

[
C(4)0

]
= 1 (

L
15 + 2L14 + L

13 + L
12 − 2L11 − 2L10 − L

9 + L
7) .
[GL4]
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The sum of the motives in the rightmost column of Table 2, each divided by the motive 
of the corresponding automorphism group, recovers precisely this class, confirming our 
calculation.

5. Torus action

Let V be an n-dimensional vector space, and consider the commuting variety

Cn =
{

(X,Y ) ∈ End(V )2
∣∣ [X,Y ] = 0

}
⊂ End(V )2.

It contains the closed subscheme Nn of pairs of commuting nilpotent matrices. The 
group GLn acts on these spaces by simultaneous conjugation, and the closed immersion 
of quotient stacks

Nn/GLn ⊂ Cn/GLn

is equivalent to the closed immersion

C(n)0 ⊂ C(n)

of the stack of coherent sheaves supported at the origin inside the full stack of coherent 
sheaves of length n. The natural action of the torus T = G

2
m on A2, given by rescaling 

coordinates,

(t1, t2) · (x, y) = (t1x, t2y),

can be lifted to GLn-equivariant actions on Cn and Nn. This gives an induced T-action 
on C(n), leaving C(n)0 invariant. We show in Proposition 5.2 below that this torus action 
has finitely many fixed points. This will finally make precise the connection with skew 
Ferrers diagrams, which we used as a mere graphical representation so far.

Recall that a skew Ferrers diagram is a difference of two Ferrers diagrams; a particu-
larly interesting class of skew Ferrers diagrams are parallelogram polyominoes, studied 
for instance in [12,5].

Definition 5.1. A parallelogram polyomino is a skew Ferrers diagram that is connected 
and has no cut point. We illustrate the terminology in Fig. 4.

Fig. 4. From left to right: a connected skew Ferrers diagram with a cut point, a disconnected skew Ferrers 
diagram, a parallelogram polyomino of area 4.
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Proposition 5.2. The T-fixed locus C(n)T ⊂ C(n) lies in C(n)0 and is finite. The inde-
composable T-fixed modules are in bijection with the set of parallelogram polyominoes.

Proof. The support of a torus-fixed module is a torus-fixed subscheme of A2, so 
C(n)T ⊂ C(n)0. Let F ∈ C(n)T be a torus fixed A-module. Then F corresponds to 
a T-representation

ρ : T → GL(V )

of the underlying vector space V such that the maps ρt : V →̃V are A-linear isomor-
phisms. Let Γ = Z

2 be the character lattice of the torus. There is a k-linear decomposition

V =
⊕
χ∈Γ

Vχ

into irreducible subrepresentations

Vχ = { v ∈ V | ρt(v) = χ(t)v for all t ∈ T } .

So V has an eigenbasis v = { v1, . . . , vn } indexed by characters χ1, . . . , χn ∈ Γ. By 
A-linearity of ρt, for every i we have the relation

ρt(x · vi) = x · ρt(vi) = χi(t)(x · vi).

In other words, x · vi is either 0 or belongs to v. The same holds for y · vi by the same 
reasoning. We have shown that a torus fixed module has a k-linear basis v such that 
x · vi and y · vi both lie in v ∪ {0}. The set

{ χ1, . . . , χn } ⊂ Γ

determines a skew Ferrers diagram of area n, hence C(n)T is finite. Finally, any cut 
point of a skew Ferrers diagram determines two proper submodules of the corresponding 
module, and these are necessarily direct summands. Conversely, a decomposable (torus-
fixed) module can be represented by joining several parallelogram polyominoes creating 
cut points. �

Consider the numbers

cn =
∣∣ { F ∈ C(n)T

∣∣ F indecomposable
} ∣∣

and their generating function
∞∑

n=0
cnq

n = 1 + q + 2q2 + 4q3 + 9q4 + 20q5 + · · ·

The main result of [5] is the calculation of the generating function F of the numbers of 
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parallelogram polyominoes with prescribed area and number of columns. The result is

F (t; q) =
∞∑

n=0

(−1)nq
(n+1

2
)

(q; q)n(q; q)n+1
qn+1tn+1

/ ∞∑
n=0

(−1)nq
(n
2
)

(q; q)2n
qntn,

where (a; q)n =
∏n−1

i=0 (1 −aqi) is the q-Pochhammer symbol and q (resp. t) is the variable 
that keeps track of the area (resp. number of columns). It follows from Proposition 5.2
that one can compute

∞∑
n=0

cnq
n = F (1; q).
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