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We study the analogue of Sidki’s weak commutativity con-
struction, defined originally for groups, in the category of Lie 
algebras. This is the quotient χ(g) of the Lie algebra freely 
generated by two isomorphic copies g and gψ of a fixed Lie al-
gebra by the ideal generated by the brackets [x, xψ], for all x. 
We exhibit an abelian ideal of χ(g) whose associated quotient 
is a subdirect sum in g ⊕ g ⊕ g and we give conditions for this 
ideal to be finite dimensional. We show that χ(g) has a sub-
quotient that is isomorphic to the Schur multiplier of g. We 
prove that χ(g) is finitely presentable or of homological type 
FP2 if and only if g has the same property, but χ(f) is not of 
type FP3 if f is a non-abelian free Lie algebra.
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1. Introduction

The weak commutativity construction was first defined for groups by Sidki [26] and 
goes as follows: for a group G, we define χ(G) as the quotient of the free product G ∗Gψ

of two isomorphic copies of G by the normal subgroup generated by the elements [g, gψ]
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for all g ∈ G. We think of this as a functor that receives the group G and returns the 
group with weak commutativity χ(G).

In a series of papers, many group theoretic properties were shown to be preserved by 
this functor. For instance, it preserves finiteness and solvability [26] and finite presentabil-
ity [7]. Moreover, if G is finitely generated nilpotent, polycyclic-by-finite or solvable of 
type FP∞, then χ(G) has the same property [15,22,19].

The group χ(G) has a chain of normal subgroups with some nice properties, which 
allows some of the proofs of the results cited above to be carried on. We write this series 
as R(G) ⊆ W (G) ⊆ L(G) (or R ⊆ W ⊆ L if G is understood) and we observe the 
following: W is always abelian and χ(G)/W is isomorphic to a subdirect product living 
inside G ×G ×G; the subquotient W/R is isomorphic to the Schur multiplier of G [24]; 
and χ(G) is a split extension of L by G.

We consider in this paper an analogue of this construction in the category of Lie 
algebras over a field. We fix once and for all a field K with char(K) �= 2, and we only 
consider Lie algebras over K. For any Lie algebra g, let gψ be an isomorphic copy, with 
isomorphism written as x �→ xψ. We define

χ(g) = 〈g, gψ | [x, xψ] = 0 for all x ∈ g〉.

We show that χ(g) has a chain of ideals

R(g) ⊆ W (g) ⊆ L(g) ⊆ χ(g)

satisfying the analogous properties as the chain of normal subgroups in the group case. 
Again, we write only R, W and L if there is no risk of confusion. So W is an abelian ideal, 
χ(g)/W is a subdirect sum living inside g ⊕ g ⊕ g, the subquotient W/R is isomorphic 
to H2(g; K) and χ(g) is a split extension of L by g.

We denote by U (g) the universal enveloping algebra of g. Recall that g is of homo-
logical type FPm if the trivial U (g)-module K admits a projective resolution

P : . . . → Pn → Pn−1 → . . . → P1 → P0 → K → 0

with Pj finitely generated for all j ≤ m. We say that g is of type FP∞ if it is of type 
FPm for all m ≥ 0. A Lie algebra is finitely generated if and only if it is of type FP1, 
and it is of type FP2 if it is finitely presentable.

There are few results about finite presentability of Lie algebras. For metabelian and 
center-by-metabelian Lie algebras, some methods developed by Bryant and Groves in 
[8–10] give a nice picture. Less is known about homological finiteness properties, but 
Groves and Kochloukova showed in [14] that solvable Lie algebras of type FP∞ are finite 
dimensional. This is inspired by a result by Kropholler that says that solvable groups of 
type FP∞ are constructible [20].

Our first result relies on some work of Kochloukova and Martínez-Pérez on subdirect 
sums of Lie algebras [18].
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Theorem 1.1. If g is of type FP2 or finitely presentable, then χ(g)/W has the same 
property.

Again, apart from the aforementioned paper, little is known about finiteness properties 
of subdirect sums of Lie algebras. In the group-theoretic case there are several results. For 
finite presentability and related homotopical finiteness properties of subdirect products 
of groups, see [1,4–6,23] to cite a few. Some homological counterparts of the results in 
these papers were treated in [21] and [17].

Theorem 1.1, together with the exactness of W � χ(g) � χ(g)/W , could be used to 
deduce finiteness properties for χ(g) when W is finite dimensional. In the same spirit of 
Theorem B in [19], we give a sufficient condition for that.

Theorem 1.2. If g is of type FP2 and g′/g′′ is finite dimensional, then W (g) is finite 
dimensional.

In [19] the authors show that the group-theoretic weak commutativity construction 
preserves the property of being solvable of type FP∞. The analogous result also holds for 
Lie algebras, but for a much simpler reason. By Theorem 1 in [14], if g is solvable of type 
FP∞, then it is finite dimensional. In this case of course g′/g′′ is also finite dimensional, 
and then so is W , by the theorem above. Moreover, χ(g)/W is clearly finite dimensional 
and solvable, being a Lie subalgebra of g ⊕ g ⊕ g. Thus we have the following corollary.

Corollary 1.3. If g is solvable of type FP∞, then so is χ(g).

The same reasoning above can be used if we assume at first that g is finite dimensional.

Corollary 1.4. If g is finite dimensional, then so is χ(g).

The condition g′/g′′ is finite dimensional is strong and does not apply, for instance, 
to free non-abelian Lie algebras. We do not have, however, any example of a finitely 
presentable Lie algebra g such that W (g) is not finite dimensional. The search for such 
an example is complicated because we do not have a method to determine that an element 
of W (g) is non-zero.

The following theorem shows that we actually do not need the restriction that g′/g′′
is finite dimensional to study finite presentability.

Theorem 1.5. Let g be a Lie algebra. Then g is finitely presentable (resp. of type FP2) if 
and only if χ(g) is finitely presentable (resp. of type FP2). If f is a free non-abelian Lie 
algebra, then χ(f) is not of type FP3.

In proof of the theorem we implicitly use the construction of HNN-extensions for Lie 
algebras, as defined by Wasserman in [27].
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Finally, we have the analogous result on the Schur multiplier as in the group case.

Theorem 1.6. For all g we have W (g)/R(g) 
 H2(g; K) as vector spaces over K.

The group-theoretic counterpart of this is contained in [26] and [24]. To prove our 
version, we use the description of the Schur multiplier of Lie algebras given by Ellis [12].

We observe that from the theorem above we get that if g is finitely presentable, 
then W (g)/R(g) is finite dimensional. Thus the question of whether there is a finitely 
presentable Lie algebra g such that W (g) is infinite dimensional reduces to the same 
question with respect to R(g).

We have analyzed R(g) for some specific Lie algebras. It turns out that R(g) is trivial 
whenever g is abelian, in contrast with the case of groups: R(G) �= 1 when G is any 
elementary abelian 2-group of order at least 8 ([22], Proposition 4.5). We also showed 
that R(g) is zero if g is perfect or 2-generated.

In any of these cases (that is, when R(g) = 0) and for m ≥ 2, we have that χ(g) is 
of type FPm if and only if χ(g)/W (g) is of type FPm. This is because under each of 
these hypotheses g is of type FP2 (being a retract of both χ(g) and χ(g)/W (g)), thus 
the Schur multiplier H2(g; K) is finite dimensional. This is especially interesting because 
χ(g)/W (g) has a more concrete description as a subdirect sum living inside g ⊕ g ⊕ g.

We used GAP [13] to obtain examples of Lie algebras over Q with R �= 0. For this we 
considered 3-generated nilpotent Lie algebras. From that also follows that R(f) �= 0 for 
f free of rank at least 3.

2. Preliminaries on homological properties of Lie algebras

We review here the definitions and some standard results on Lie algebras that we will 
use throughout the paper.

Recall that we have fixed a field K with char(K) �= 2, and we only consider Lie 
algebras defined over this field. For any Lie algebra g and S ⊆ g a subset, we denote by 
〈S〉 and by 〈〈S〉〉 the subalgebra and the ideal, respectively, generated by S.

We denote by U (g) the universal enveloping algebra of g. It can be described as 
the quotient of the tensor algebra on the vector space g by the ideal generated by the 
elements xy − yx − [x, y] for all x, y ∈ g. The obvious map i : g → U (g) is injective 
by the Poincaré-Birkhoff-Witt theorem. The augmentation ideal, which we denote by 
Aug(U (g)), is the kernel of the homomorphism U (g) → K taking i(g) to 0.

For a U (g)-module A, the n-th homology of g with coefficients in A is defined as

Hn(g;A) := TorU (g)
n (A,K).

If K is the trivial U (g)-module, then H1(g; K) 
 g/g′. The second homology can be 
computed by a Hopf formula analogue.
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Lemma 2.1 (Hopf formula). Let f be a free Lie algebra and let r ⊆ f be an ideal. Denote 
g = f/r. Then

H2(g;K) 
 [f, f] ∩ r

[f, r]
.

The following general facts about cohomology of Lie algebras can be found in [28], 
Chapter 7. For a short exact sequence h � g � q of Lie algebras and a U (g)-module 
A, there is an associated Lyndon-Hochschild-Serre spectral sequence

E2
p,q = Hp(q;Hq(h;A)) ⇒ Hp+q(g;A),

which is convergent and concentrated in the first quadrant. The differential dr of the 
r-th page has bidegree (−r, r − 1). If A is a trivial U (g)-module, then the associated 
5-term exact sequence is written as

H2(g;A) → H2(q;A) → H0(q;H1(h;A)) → H1(g;A) → H1(q;A) → 0.

There is also Künneth formula to compute the homology of direct sums:

Hn(g⊕ h;K) 
 ⊕0≤i≤nHi(g;K) ⊗K Hn−i(h;K).

A U (g)-module A is said to be of type FPm if it admits a projective resolution

P : . . . → Pn → Pn−1 → . . . → P1 → P0 → A → 0

with Pj finitely generated for all j ≤ m. Part of the relevance of modules of type FPm

is explained by the following lemma.

Lemma 2.2. Let g be a Lie algebra and let A be a U (g)-module. If A is of type FPm, 
then Hj(g; A) is finite dimensional for all j ≤ m.

Proof. Let

P : . . . → Pn → Pn−1 → . . . → P1 → P0 → A → 0

be a projective resolution of A with Pj finitely generated for all j ≤ m. Then H∗(g; A)
is the homology of the complex Pdel ⊗U (g) K, where Pdel is the deleted resolution. In 
particular, Hi(g; A) is a subquotient of Pi ⊗U (g) K, which is finite dimensional when Pi

is finitely generated as a U (g)-module. �
We say simply that g is of type FPm if K is of type FPm as a trivial U (g)-module. 

Notice that by the previous lemma if g is of type FP2, then H2(g; K) is finite dimensional.
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As we have already mentioned, FP1 is the same as finite generation, and finite pre-
sentability implies the property FP2. For these results see the survey [16]. We also have 
the following.

Lemma 2.3. A Lie algebra g is of type FP2 if and only if there is a finitely presented Lie 
algebra h and an ideal r ⊆ h such that g 
 h/r and r = r′.

This is well-known for groups. The proof that we can find in [7], Lemma 3.1, can be 
easily adapted to Lie algebras. Notice that this depends on the equivalence of the concepts 
of “Lie algebra of type FP2” and “almost finitely presented Lie algebra”. Again, the proof 
of Proposition 2.2 in [2] works perfectly fine when translated to Lie algebras.

It is clear that retracts of finitely presentable Lie algebras are again finitely pre-
sentable. This is also true for the homological finiteness properties that we consider. 
Again, this is well-known for groups.

Lemma 2.4. If g is a Lie algebra of type FPm and b is a retract of g (that is, g 
 a � b

for some ideal a), then b is also of type FPm.

Proof. By Theorem 1.3 in [2], we have that g is of type FPm if and only if it is finitely 
generated and Hj(g; 

∏
λ∈Λ U (g)) = 0 for all 1 ≤ j < m and for all index sets Λ.

Clearly if g is finitely generated, then so is b, so we only need to worry about the 
properties of the homologies. We argue as in [11], Proposition 4.1. If π : g → b and 
σ : b → g are the split homomorphisms, then for any index set Λ there are induced 
homomorphisms on homology

π∗ : Hj(g;
∏

λ∈Λ

U (g)) → Hj(b;
∏

λ∈Λ

U (b))

and

σ∗ : Hj(b;
∏

λ∈Λ

U (b)) → Hj(g;
∏

λ∈Λ

U (g)),

for all j. It follows by functoriality that π∗ ◦ σ∗ = id. Thus σ∗ is injective, from what 
follows that Hj(b; 

∏
λ∈Λ U (b)) = 0 for all 1 ≤ j < m when g is of type FPm, so in this 

case b is also of type FPm. �
Another fact that we will need is that if g is finite dimensional, then U (g) is left (and 

right) noetherian as a ring (Proposition 6 of I.2.6 [3]). In particular, in this case g is of 
type FP∞.

Finally, we will make use of a technical result on finite dimensional modules over free 
Lie algebras. This is Lemma 3.1 in [18].
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Lemma 2.5. Let f be a free Lie algebra and let A be a U (f)-module. Suppose that there 
is some c ∈ U (f) � {0} such that both H1(f; A) and cA are finite dimensional. Then A
is finite dimensional.

3. The weak commutativity construction

In this section we define and establish the first properties of χ(g) and its chain of 
ideals R ⊆ W ⊆ L. Let g be a Lie algebra and let gψ be an isomorphic copy. For any 
x ∈ g, we denote by xψ its image in gψ. We define χ(g) by the presentation

χ(g) = 〈g, gψ | [x, xψ] = 0 ∀x ∈ g〉.

This must be understood as the quotient of the free Lie sum of g and gψ by the ideal 
generated by the elements [x, xψ], for all x ∈ g.

Let L = L(g) be the ideal of χ(g) generated by the elements of the form x − xψ, for 
all x ∈ g. Equivalently, L is the kernel of the homomorphism α : χ(g) → g defined by 
α(x) = α(xψ) = x for all x ∈ g. It is clear that this homomorphism is split, that is, 
χ(g) 
 L � g.

Lemma 3.1. L is generated as a Lie algebra by the elements x − xψ, for all x ∈ g.

Proof. By the relations that define χ(g) we have that [x +y, (x +y)ψ] = 0 for all x, y ∈ g, 
so

0 = [x + y, (x + y)ψ] = [x, xψ] + [x, yψ] + [y, xψ] + [y, yψ] = [x, yψ] + [y, xψ].

Thus [x, yψ] = [xψ, y] for all x, y ∈ g.
Denote by A the Lie subalgebra of χ(g) generated by the elements y−yψ, for all y ∈ g. 

We want to show that A = L, and for that it is enough to show that [x, y− yψ] ∈ A and 
[xψ, y−yψ] ∈ A for all x, y ∈ g. Even more, as [x, y−yψ] −[xψ, y−yψ] = [x −xψ, y−yψ] ∈
A, it suffices to show that any of these commutators is an element of A.

Now

a1 := [x− xψ, y − yψ] = [x, y] − 2[x, yψ] + [xψ, yψ] ∈ A

and

a2 := [x, y] − [x, y]ψ = [x, y] − [xψ, yψ] ∈ A.

But then

2[x, y − yψ] = a1 + a2 ∈ A,

which proves that [x, y − yψ] ∈ A provided that char(K) �= 2. �
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Similarly, let D = D(g) be the ideal of χ(g) generated by the elements of the form 
[x, yψ] for all x, y ∈ g. It can be seen as the kernel of the homomorphism β : χ(g) → g ⊕g

defined by β(x) = (x, 0) and β(xψ) = (0, x) for all x ∈ g.
By putting together α and β, we define a new homomorphism. Define

ρ : χ(g) → g⊕ g⊕ g

by ρ(x) = (x, x, 0) and ρ(xψ) = (0, x, x) for all x ∈ g, and let W = W (g) be its kernel. 
Notice that

ρ(z) = (β1(z), α(z), β2(z))

for all z ∈ χ(g), where β1 and β2 are the two components of β. Then clearly ker(ρ) =
ker(α) ∩ ker(β), that is, W = L ∩D.

Lemma 3.2. For all g, we have [D, L] = 0.

Proof. By Lemma 3.1, the ideal L is generated as a Lie algebra by the elements x − xψ, 
for x ∈ g. Thus it is enough to show that

[[y, zψ], x− xψ] = 0

for all x, y, z ∈ g. We will make repeated use of the fact that [x, yψ] = [xψ, y] for all 
x, y ∈ g.

Consider the element [[x, y], zψ] ∈ χ(g), for some x, y, z ∈ g. By the Jacobi identity 
we have

[[x, y], zψ] = [[x, zψ], y] + [x, [y, zψ]]. (3.1)

On the other hand, as [[x, y], zψ] = [[x, y]ψ, z] = [[xψ, yψ], z], we have

[[x, y], zψ] = [[xψ, z], yψ] + [xψ, [yψ, z]]. (3.2)

By subtracting (3.2) from (3.1) we obtain

0 = [[x, zψ], y − yψ] + [x− xψ, [y, zψ]],

and then

[[x, zψ], y − yψ] = [[y, zψ], x− xψ] (3.3)

for all x, y, z ∈ g.
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Now

[[x, zψ], y − yψ] = [[xψ, z], y − yψ]
= −[[z, xψ], y − yψ]
= −[[y, xψ], z − zψ]

by (3.3). If we apply once again this reasoning we get

[[x, zψ], y − yψ] = −[[y, xψ], z − zψ]
= [[x, yψ], z − zψ]
= [[z, yψ], x− xψ].

The equality above, together with (3.3), gives us that

[[y, zψ], x− xψ] = −[[y, zψ], x− xψ]

for all x, y, z ∈ g, which completes the proof, since char(K) �= 2. �
The lemma above tells us that W is actually a central subalgebra of L + D. In par-

ticular, it is an abelian ideal of χ(g) as we announced.
Now we analyze the quotient χ(g)/W or, equivalently, the image Im(ρ).
Denote by p1, p2 and p3 the projections of g ⊕ g ⊕ g onto its first, second and third 

coordinate, respectively. For any x ∈ g we have

x = p1(ρ(x)) = p2(ρ(x)) = p3(ρ(xψ)),

thus the image Im(ρ) is a subdirect sum in g ⊕ g ⊕ g. We will see in the next propo-
sition that actually Im(ρ) projects surjectively simultaneously on any two copies of g, 
which allows us to get some information about finiteness properties. This will prove 
Theorem 1.1.

Proposition 3.3. If g is finitely presentable (resp. of type FP2), then Im(ρ) is finitely 
presented (resp. of type FP2) as well.

Proof. Suppose first that g is finitely presentable. For convenience, in this proof we 
denote by g1 ⊕ g2 ⊕ g3 the range of ρ. Denote by p(i,j) : g1 ⊕ g2 ⊕ g3 � gi ⊕ gj the 
projection for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. For any (x, y) ∈ g ⊕ g we have

(x, y) = p1,2(ρ(x− xψ + yψ))
= p1,3(ρ(x + yψ))
= p (ρ(x− y + yψ)).
2,3
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Thus p(i,j)(Im(ρ)) = gi ⊕ gj for all i, j. It follows by Corollary D1 in [18] that Im(ρ)
will be finitely presented as soon as Im(ρ) ∩ gi �= 0 for i = 1, 2, 3 (where gi is seen as a 
subalgebra of g1 ⊕ g2 ⊕ g3).

For any x, y ∈ g we have

ρ([x, yψ]) = [(x, x, 0), (0, y, y)] = (0, [x, y], 0) ∈ Im(ρ) ∩ g2.

So if g′ �= 0 (so that [x, y] �= 0 for some x, y), then Im(ρ) ∩ g2 �= 0. In this case we also 
have

ρ([x, y − yψ]) = ([x, y], 0, 0) ∈ Im(ρ) ∩ g1

and

ρ([xψ, yψ − y] = (0, 0, [x, y]) ∈ Im(ρ) ∩ g3,

so that Im(ρ) ∩ gi �= 0 also for i = 1 and i = 3, as we wanted. If g′ is actually trivial, 
then it is easily seen that Im(ρ) is abelian. But it is also finitely generated, because χ(g)
is, so Im(ρ) is again finitely presented in this case.

The proof for g of type FP2 is the same, except that we use Corollary F1 of [18]
instead of Corollary D1. �

Notice that g is a retract of Im(ρ), so the converse to the proposition above also holds.

4. A condition that forces W to be finite dimensional

We fix g and we study W = W (g) by means of the extension W � L � ρ(L). Since 
W is central in L, the associated 5-term exact sequence can be written as

H2(L;K) → H2(ρ(L);K) → W → H1(L;K) → H1(ρ(L);K) → 0.

It follows that W is finite dimensional if both H2(ρ(L); K) and H1(L; K) 
 L/L′ are.

4.1. Bounding the dimension of H2(ρ(L); K)

Notice that ρ(L) is the subalgebra of g ⊕ g ⊕ g generated by the elements of the form

ρ(x− xψ) = (x, x, 0) − (0, x, x) = (x, 0,−x)

for x ∈ g. We can identify it with the following subalgebra of g ⊕ g:

ρ(L) 
 S := 〈{(x,−x) | x ∈ g}〉 ⊆ g⊕ g.
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It is clear that S is a subdirect sum in g ⊕ g, but it is not in general of type FP2
(which would imply that H2(S; K) is finite dimensional). For instance, this is not the 
case if g is free non-abelian by Theorem A of [18]. We need to impose some restrictions.

Lemma 4.1. If g is of type FP2 and g′/g′′ is finite dimensional, then H2(S; K) is finite 
dimensional as well.

Proof. For any x, y ∈ g, we have [(x, −x), (y, −y)] = ([x, y], [x, y]) ∈ S. Thus

([x, y], 0) = 1
2(([x, y], [x, y]) + ([x, y],−[x, y])) ∈ S.

Similarly, (0, [x, y]) ∈ S, so g′ ⊕ g′ ⊆ S.
Notice that S/(g′⊕ g′) 
 g/g′, and an isomorphism can be given by projection on the 

first coordinate. Consider the Lyndon-Hochschild-Serre spectral sequence associated to 
this quotient:

E2
p,q = Hp(g/g′;Hq(g′ ⊕ g′;K)) ⇒ Hp+q(S;K).

If we want to show that H2(S; K) is finite dimensional, it is enough to show that E2
p,q is 

finite dimensional for all p, q ≥ 0 with p + q = 2.
First consider (p, q) = (2, 0). Clearly H0(g′ ⊕ g′; K) 
 K, so E2

2,0 
 H2(g/g′; K). But 
g/g′ is finite dimensional, hence of type FP2, so H2(g/g′; K) is finite dimensional.

Let (p, q) = (1, 1). First of all, H1(g′ ⊕ g′; K) 
 g′/g′′ ⊕ g′/g′′. The action of g/g′ on 
H1(g′ ⊕ g′; K) is then converted in an action by g/g′ on g′/g′′ ⊕ g′/g′′, which is induced 
by the adjoint action on the first coordinate and the same on the second coordinate, but 
with opposite sign.

Now, g′/g′′ is clearly finitely generated as a g/g′-module, and since g/g′ is of finite 
dimension, U (g/g′) is noetherian. This implies that g′/g′′ ⊕ g′/g′′ is actually of type 
FP∞ as a U (g/g′)-module. Thus H1(g/g′; H1(g′ ⊕ g′; K)) 
 H1(g/g′; g′/g′′ ⊕ g′/g′′) is 
finite dimensional.

Finally, let (p, q) = (0, 2). Now we want to show that H0(g/g′; H2(g′⊕ g′; K)) is finite 
dimensional. By the Künneth formula

H2(g′ ⊕ g′;K) 
 ⊕0≤i≤2(Hi(g′;K) ⊗K H2−i(g′;K)).

Clearly it is enough to show that each of the components of the direct sum above is 
finitely generated as a g/g′-module.

One of the components is

H1(g′;K) ⊗K H1(g′;K) 
 g′/g′′ ⊗K g′/g′′,

which is clearly finitely generated, since g′/g′′ is of finite dimension.
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The other two components are isomorphic and we have

H2(g′;K) ⊗K H0(g′;K) 
 H2(g′;K) ⊗K K 
 H2(g′;K).

Consider a projective resolution

P : . . . → Pn → Pn−1 → . . . → P2 → P1 → P0 → K → 0

of K as a U (g)-module, with Pj finitely generated for j ≤ 2. By applying the functor 
K ⊗U (g′) −, we get a complex of U (g/g′)-modules, and the modules are still finitely 
generated up to dimension 2. As U (g/g′) is noetherian, the homologies of this complex 
are also finitely generated up to dimension 2. But

Hi(K ⊗U (g′) P) 
 Hi(g′;K).

Thus H2(g′; K) is finitely generated as a U (g/g′)-module, as we wanted. �
4.2. Bounding the dimension of L/L′

Lima and Oliveira proved in [22] that, in the group-theoretic case, the quotient L/L′

is finitely generated as soon as the original group G is finitely generated. The idea was 
to realize L/L′ as a certain quotient of the augmentation ideal Aug(ZG), where a finite 
generating set could be detected more easily. We adapt their argument.

Recall that we denote by U (g) the universal enveloping algebra of g. It can be seen 
as an abelian Lie algebra, that is, a vector space with trivial bracket. There is an action 
of g on it by left multiplication in the associative sense, that is, for any x ∈ g and 
x1 · · ·xn ∈ U (g) a monomial, the action is given by

x · (x1 · · ·xn) = xx1 · · ·xn.

The augmentation ideal Aug(U (g)) is clearly invariant by this action, so we can 
consider the semi-direct product Γ = Aug(U (g)) � g. Our convention is that, for 
u1, u2 ∈ Aug(U (g)) and x1, x2 ∈ g, the bracket is given by

[(u1, x1), (u2, x2)] = (x1u2 − x2u1, [x1, x2]).

Consider the Lie algebra presented by

Δ = 〈g, gψ | [L ,L ] = 0〉,

where L = 〈〈x − xψ; x ∈ g〉〉, an ideal of the free Lie sum of g and gψ. Define θ : Δ → Γ
by

θ(x) = (0, x) and θ(xψ) = (−x, x).
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It is not hard to check this defines θ as a homomorphism of Lie algebras. Notice that for 
any x1, . . . , xn ∈ g we have

θ(x1 − xψ
1 ) = (x1, 0)

and

θ([x1, . . . , xn−1, xn − xψ
n ]) = (x1 · · ·xn, 0),

where [x1, . . . , xn−1, xn − xψ
n ] is a right-normed bracket. So θ(L ) = Aug(U (g)). Also, θ

is surjective, as its image contains a basis for Aug(U (g)), as well as all elements of the 
form (0, x), for x ∈ g.

Lemma 4.2. θ is injective.

Proof. First notice that Δ = L � g. Since θ restricts to the identity on g, we only need 
to show that θ|L : L → Aug(U (g)) is injective.

Let {xj}j∈J be an ordered basis of g. Observe that L is linearly spanned by the 
brackets [y1, . . . , yn−1, xj − xψ

j ], with yi ∈ g ∪ gψ and j ∈ J . Moreover, since [L , L ] =
0, we have [y, 	] = [yψ, 	] for all 	 ∈ L and y ∈ g, so we can actually assume that 
each yi lies in g. Finally, we can pass to the elements of the basis: L is spanned by 
[xj1 , . . . , xjn−1 , xjn − xψ

jn
] with j1, . . . , jn ∈ J .

For any j1, . . . , jn ∈ J , let

	(xj1 , . . . , xjn) := [xk1 , . . . , xkn−1 , xkn
− xψ

kn
],

where {k1, . . . , kn} = {j1, . . . , jn} and k1 ≤ . . . ≤ kn.
Let Am be the subspace spanned by all possible 	(xj1 , . . . , xjn) with n ≤ m. Notice 

that θ takes the set of the 	(xj1 , . . . , xjm) to a basis of Aug(U (g)), as described by the 
Poincaré-Birkhoff-Witt theorem. Thus to show that θ is injective, it is enough to prove 
that L =

∑
m Am. To see that this is the case we use the following claim, which we 

prove by induction.

Claim. For any k, j1, . . . , jn ∈ J , there is some a ∈ An such that

[xk, 	(xj1 , . . . , xjn)] = a + 	(xk, xj1 , . . . , xjn).

Suppose n = 1. If k ≤ j1, then [xk, 	(xj1)] = 	(xk, xj1) by definition. Otherwise, notice 
that

[xk, 	(xj1)] = [xψ
k , 	(xj1)] = [xψ

k , xj1 − xψ
j ] = [xj1 , xk − xψ

k ] + ([xk, xj1 ] − [xk, xj1 ]ψ)

1
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The first equality comes from the fact that [L , L ] = 0. But [xj1 , xk − xψ
k ] = 	(xk, xj1)

and [xk, xj1 ] − [xk, xj1 ]ψ lies in A1, as we can see by rewriting [xk, xj1 ] in terms of the 
basis elements of g. So we are done in this case.

Now suppose that n > 1 and that the claim holds for smaller values of n. 
Let k, j1, . . . , jn ∈ J with j1 ≤ . . . ≤ jn. If k ≤ j1, then [xk, 	(xj1 , . . . , xjn)] =
	(xk, xj1 , . . . , xjn) by definition. Otherwise, by the Jacobi identity we have:

[xk, 	(xj1 , . . . , xjn)] = [[xk, xj1 ], [xj2 , . . . , xjn − xψ
jn

]] + [xj1 , [xk, [xj2 , . . . , xjn − xψ
jn

]]]

Let [xk, xj1 ] =
∑

α λαxα, with λα ∈ K and α ∈ J . Then

[[xk, xj1 ], [xj2 , . . . , xjn − xψ
jn

]] =
∑

α

λα[xα, 	(xj2 , . . . , xjn)] =: a.

By induction hypothesis a ∈ An. Also by induction hypothesis we can write

[xk, [xj2 , . . . , xjn − xψ
jn

]] = b + 	(xk, xj2 , . . . , xjn),

for some b ∈ An−1. Notice that [xj1 , b] ∈ An (again by induction hypothesis) and 
[xj1 , 	(xk, xj2 , . . . , xjn)] = 	(xj1 , xk, xj2 , . . . , xjn) = 	(xk, xj1 , . . . , xjn), since j1 < k and 
j1 ≤ jt for 2 ≤ t ≤ n. Thus:

[xk, 	(xj1 , . . . , xjn)] = a + [xj1 , b] + 	(xk, xj1 , . . . , xjn),

with a + [xj1 , b] ∈ An, as we wanted. The claim is proved.

Finally, L =
∑

n An. Indeed, it is clear that L ⊇
∑

n An. For the reverse inclusion, 
recall that L is linearly spanned by the brackets w = [xj1 , . . . , xjn−1 , xjn − xψ

jn
] with 

j1, . . . , jn ∈ J . It follows by the claim that w and 	(xj1 , . . . , xjn−1 , xjn) differ only by an 
element of An, and 	(xj1 , . . . , xjn−1 , xjn) ∈ An by definition, so we are done. �

So θ : Δ → Γ is an isomorphism. Now we introduce the relations of χ(g). Notice that 
for x ∈ g we have

θ([x, xψ]) = [(0, x), (−x, x)] = (−x2, 0).

Denote by I the smallest ideal of Aug(U (g)) � g containing (x2, 0) for all x ∈ g. Notice 
that I ⊆ Aug(U (g)) and that I is invariant by the action of g, so the semi-direct product 
Aug(U (g))

I � g still makes sense. It follows that θ induces an isomorphism

θ̄ : χ(g)
L′ → Aug(U (g))

I
� g,

and restriction induces an isomorphism of L/L′ and Aug(U (g))/I.
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Remark 4.3. Notice that I is the two-sided ideal of U (g), as an associative algebra, 
generated by the elements x2, for x ∈ g. This follows by the fact that I is closed by left 
multiplication by elements of g, by construction, but also by right multiplication, which 
can be deduced from the identity (4.1) in the proof below.

Proposition 4.4. If g is a finitely generated Lie algebra, then L/L′ is finite dimensional.

Proof. We must show that Aug(U (g))/I is finite dimensional. First notice that for any 
x, y ∈ g, the following holds modulo I:

0 = (x + y)2 = x2 + xy + yx + y2 = xy + yx,

so

xy = −yx (mod I) (4.1)

for all x, y ∈ g. Also

[x, y] = xy − yx = 2xy (mod I) (4.2)

for all x, y ∈ g.
Notice that Aug(U (g))/I is generated as a vector space by the image of g under the 

projection Aug(U (g)) � Aug(U (g))/I. Indeed for any monomial x1 · · ·xn, with n ≥ 2, 
we have by (4.2)

x1 · · ·xn = x1 · · ·xn−2(
1
2 [xn−1, xn]) = x1 · · ·xn−2x

′
n−1 (mod I),

where x′
n−1 = 1

2 [xn−1, xn]. By induction we see that x1 · · ·xn is congruent modulo I to 
1

2n−1 [x1, . . . , xn] (again a right-normed bracket), which is the image of an element of g.
Now suppose that g = 〈x1, . . . , xn〉. Then any x ∈ g can be written as a linear 

combination of arbitrary brackets of any length involving the xi’s. If c is any of these 
brackets, then writing it associatively in Aug(U (g)) we obtain a sum of elements of the 
form

λxi1 · · ·xim

with λ ∈ K, ij ∈ {1, . . . , n} and m ≥ 1. By commuting the variables (using identity 
(4.1)), we get that, modulo I, c is a sum of elements of the form

μxt1
1 · · ·xtn

n

with μ ∈ K and tj ≥ 0 for all j. By the definition of I, this term is 0 in Aug(U (g))/I
if tj ≥ 2 for some j. It follows that Aug(U (g))/I is actually generated by the arbitrary 



160 L.A. de Mendonça / Journal of Algebra 529 (2019) 145–173
brackets involving x1, . . . , xn such that no xj is repeated. Thus the brackets of length 
not greater than n are sufficient, whence Aug(U (g))/I is finite dimensional. �

This completes the proof of Theorem 1.2.

Remark 4.5. Notice that for any u, v, w ∈ g, the following holds in χ(g):

[u, [v, w]] − [uψ, [vψ, wψ]] = [u− uψ, [v − vψ, w − wψ]].

This can be proved using the identities of the form [u, vψ] = [uψ, v] and [D, L] = 0. Now, 
if g = 〈x1, . . . xn〉, then L/L′ is generated by the elements xi−xψ

i and [xi, xj ] − [xi, xj ]ψ
with 1 ≤ i < j ≤ n, since m −mψ ∈ L′ for any monomial m of degree at least 3. This 
gives a simpler proof of Proposition 4.4, but we decided to keep the one above because 
it offers extra insight on the structure of χ(g).

5. Finiteness properties of χ(g)

In the last section we showed that L/L′ is of finite dimension as soon as g is finitely 
generated, but it turns out that actually L is already finitely generated. Consider the 
exact sequence given by

0 → W → L → ρ(L) → 0.

Notice that ρ(L) is finitely generated. Indeed, if x1, . . . , xn generate g, then the elements 
(xi, 0, −xi) and ([xj , xk], 0, 0) for 1 ≤ i ≤ n and 1 ≤ j < k ≤ n generate ρ(L).

Proposition 5.1. If g is finitely generated, then L = L(g) is finitely generated.

Proof. Let T ⊆ L be a finite set whose image generates ρ(L). The fact that W is central 
implies that the subalgebra 〈T 〉 is actually an ideal. Indeed, any 	 ∈ L is written as 
	 = τ + w for some τ ∈ 〈T 〉 and w ∈ W , so

[t, 	] = [t, τ ] + [t, w] = [t, τ ] ∈ 〈T 〉

for any t ∈ T .
The quotient L/〈T 〉 is the image of W by the canonical projection, therefore is abelian. 

But then it is also finitely dimensional, being a quotient of L/L′. The exactness of 
〈T 〉 � L � L/〈T 〉 implies that L is itself finitely generated. �
5.1. Finite presentability

The first step towards a proof of the first part of Theorem 1.5 is to establish it for 
free Lie algebras.
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Proposition 5.2. If f is a free Lie algebra of finite rank, then χ(f) is finitely presented.

Proof. Recall that χ(f) 
 L � f. Let {x1, . . . , xm} be a free basis for f and let L =
〈	1, . . . , 	n〉. Notice that χ(f)/D 
 f ⊕ f, which is a finitely presented Lie algebra. Since 
χ(f) is finitely generated, D is finitely generated as an ideal. Let D = 〈〈d1, . . . , ds〉〉. Each 
di can be written as a sum of brackets involving the generators 	1, . . . , 	n, x1, . . . , xm; we 
denote by δi one of such sums.

Similarly, χ(f)/W 
 Im(ρ) is finitely presented by Proposition 3.3, thus we can write

Im(ρ) = 〈	1, . . . , 	n, x1, . . . , xm | τ1, . . . , τk〉

for some τi’s. If we denote by F the free lie algebra on {	1, . . . , 	n, x1, . . . , xm}, then 
the obvious homomorphism F � Im(ρ) is injective on the subalgebra generated by 
{x1, . . . , xm}, as f is free on this set. It follows that each τi is an element of the ideal of 
F generated by {	1, . . . , 	n}.

Finally, since L is an ideal, we can choose words μi,j in 	1, . . . , 	n representing [xi, 	j ], 
for each i, j.

Let Γ be the Lie algebra generated by the symbols 	i, xi, di, wj , where i runs through 
the appropriate indices and 1 ≤ j ≤ k, subject to the following defining relations:

(1) di = δi for 1 ≤ i ≤ s;
(2) wi = τi for 1 ≤ i ≤ k;
(3) [xi, 	j ] = μi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n;
(4) [di, 	j ] = 0 for 1 ≤ i ≤ s and 1 ≤ j ≤ n;
(5) [wi, 	j ] = 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ n.

Denote by L0 the subalgebra of Γ generated by {	i|1 ≤ i ≤ n}, by D0 the ideal 
generated by {di|1 ≤ i ≤ s} and by W0 the ideal generated by {wi|1 ≤ i ≤ k}. Notice 
that L0 is actually an ideal of Γ, by the relations of types 3, 4 and 5, together with 
the definition of the words μi,j. The relations of type 4 imply that [D0, L0] = 0. From 
the relations of type 5 we conclude that W0 commutes with L0, while the relations 
of the types 2, 3 and 4 imply that W0 commutes with D0, since each wi represents 
an element of the ideal generated by 	1, . . . , 	n, that is, the subalgebra L0 ⊆ Γ, which 
commutes with D0. So W0 is central in L0 + D0, and in particular it is an abelian ideal 
of Γ.

It is clear that there is a well-defined surjective homomorphism φ : Γ → χ(f) that takes 
the generators of Γ to the corresponding elements in χ(f). The choice of τ1, . . . , τk implies 
that φ induces an isomorphism Γ/W0 
 χ(f)/W . Thus ker(φ) ⊆ W0. Also φ(L0) = L

and φ(D0) = D, and since W0 ⊆ L0 + D0, we have

Γ 
 χ(f) 
 f

′ .
L0 + D0 L + D f
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Now W0 is a module over the universal enveloping algebra of Γ/(L0 +D0) 
 f/f′, and 
it is generated by w1, . . . , wk. The fact that U (f/f′) is noetherian implies that ker(φ), 
being a submodule of W0, is finitely generated too. But then χ(f) 
 Γ/ker(φ) is finitely 
presented. �
Corollary 5.3. If g is finitely presented, then so is χ(g).

Proof. Let g = f/〈〈R〉〉, where f is a free Lie algebra of finite rank and R is a finite set. 
By Proposition 5.2 we know that χ(f) is finitely presented. But then

χ(g) 
 χ(f)/〈〈r, rψ; for r ∈ R〉〉

is also finitely presented. �
The converse to the corollary above is clearly also true since g is a retract of χ(g).

5.2. Property FP2

The version of this result for the property FP2 can be obtained from the lemmas in 
Section 2.

Proposition 5.4. If g is of type FP2, then so is χ(g).

Proof. By Lemma 2.3, there is a finitely presented Lie algebra h and an ideal r ⊆ h such 
that g 
 h/r and r = [r, r]. Now, χ(h) is finitely presented by Corollary 5.3, and clearly 
χ(g) 
 χ(h)/I, where I is the ideal generated by x and xψ, for all x ∈ r. This ideal is 
perfect, since r = [r, r] ⊆ [I, I], and the same holds for rψ. Thus χ(g) is of type FP2 by 
Lemma 2.3. �

Again, the converse is true by the Lemma 2.4.

5.3. χ(·) does not preserve FP3

Fix f a non-abelian free Lie algebra of finite rank. Recall that subalgebras of a free 
Lie algebra are again free (see [25]).

Lemma 5.5. Let S = 〈{(x, −x) | x ∈ f}〉 ⊆ f ⊕ f. Then H2(S; K) is infinite dimensional.

Proof. Let π : f ⊕ f → f be the projection onto the second coordinate and let N =
ker(π) ∩S. Notice that N ⊆ f ⊕ 0 
 f, so it is a free Lie algebra. In fact, it is not hard to 
see that N is the inclusion of f′ on the first coordinate of f ⊕ f, i.e., N = f′ ⊕ 0 (see the 
proof of Lemma 4.1). The sequence N � S � f is exact, so there is a spectral sequence
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E2
p,q = Hp(f, Hq(N ;K)) ⇒ Hp+q(S;K).

The fact that f is free implies that E2
p,q = 0 for all p ≥ 2, so E2 = E∞.

Suppose on the contrary that H2(S; K) is finite dimensional. Then the subquotient 
E2

1,1 is also finite dimensional, and

E2
1,1 = H1(f;H1(N ;K)) 
 H1(f;N/N ′).

Now fix any c ∈ f′ � {0}. Notice that c acts trivially on N/N ′, so dimK(c ·N/N ′) = 0, 
where c is identified with its image in U (f). It follows by Lemma 2.5 that N/N ′ is itself 
finite dimensional, which in turn is equivalent to N being finitely generated. This is a 
contradiction, since N 
 f′, and f is a non-abelian free Lie algebra. �
Lemma 5.6. If χ(f) is of type FP3, then H2(L; K) is of finite dimension.

Proof. The short exact sequence L � χ(f) � f gives rise to a spectral sequence:

E2
p,q = Hp(f;Hq(L;K)) ⇒ Hp+q(χ(f);K).

Notice that, as in the proof of Lemma 5.5, the fact that f is free implies that E2 = E∞. 
Now H3(χ(f); K) is finite dimensional, thus E2

p,q = E∞
p,q is finite dimensional as well 

whenever p + q = 3. In particular, E2
1,2 = H1(f; H2(L; K)) is finite dimensional.

Now for any x, y ∈ f the element [x, y] acts trivially on L, since it is the image of 
the element [x, yψ] ∈ D ⊆ χ(f), and [D, L] = 0. It follows that [x, y] acts trivially on 
H2(L; K) as well. Finally since f is non-abelian, [x, y] can be taken to be non trivial, so 
Lemma 2.5 applies again: H2(L; K) is finite dimensional. �
Proposition 5.7. χ(f) is not of type FP3.

Proof. Suppose on the contrary that χ(f) is of type FP3. Consider the spectral sequence 
associated to W � L � S:

E2
p,q = Hp(S;Hq(W ;K)) ⇒ Hp+q(L;K).

Since S ⊆ f ⊕ f, it follows that E2
p,q = 0 for all p ≥ 3. Consider the term E2

1,1. Recall that 
the bidegree of the differential map of the spectral sequence {Er} is (−r, r − 1). Thus 
the differential maps that involve E2

1,1 are

d2
1,1 : E2

1,1 → E2
−1,2

and

d2
3,0 : E2

3,0 → E2
1,1.
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Note that E2
−1,2 = 0 = E2

3,0, so E2
1,1 = E3

1,1. The fact that E3 is non trivial only on the 
columns p = 0, 1, 2, together with the knowledge of the bidegree implies that dr is trivial 
for r ≥ 3. Thus E3 = E∞. It follows that E2

1,1 = E∞
1,1 is a subquotient of H2(L; K), 

which is finite dimensional by Lemma 5.6.
On the other hand

E2
1,1 = H1(S;H1(W ;K)) = H1(S;W ).

Notice that S acts trivially on W , so H1(S; W ) 
 S/S′ ⊗K W . Thus W must be finite 
dimensional, since S/S′ is not trivial (S projects onto f/f′).

Finally, the 5-term exact sequence associated to W � L � S can be written as:

H2(L;K) → H2(S;K) → W → H1(L;K) → H1(S;K) → 0.

But H2(L; K) and W are both finite dimensional, so H2(S; K) is finite dimensional as 
well. This contradicts Lemma 5.5. �
6. Stem extensions and the Schur multiplier

Given any Lie algebra g, denote

R = R(g) := [g, L, gψ] ⊆ χ(g).

This is the subalgebra of χ(g) generated by the triple brackets [x, [	, yψ]], for all x, y ∈ g

and 	 ∈ L = L(g). It follows from the facts that L is an ideal and [L, D] = 0 that R is 
actually an ideal of χ(g). Notice also that R ⊆ W = W (g).

Recall that D is the ideal of χ(g) generated by the elements [y, zψ]. In general it is 
not generated by these elements as a Lie subalgebra, but it will be modulo R. Indeed, 
notice that for x, y, z ∈ g we have

[x, [y − yψ, zψ]] = [x, [y, zψ]] − [x, [yψ, zψ]] = [x, [y, zψ]] − [x, [y, z]ψ]

Since [x, [y− yψ, zψ]] ∈ R, it follows that [x, [y, zψ]] is congruent to [x, [y, z]ψ]. The same 
holds for [xψ, [y, zψ]]. Thus D/R is actually generated as an algebra by the image of the 
brackets [x, yψ], for x, y ∈ g.

Now we consider the quotient W/R. Since W ⊆ D, it follows by the comments above 
that the elements of W/R are of the form:

w + R =
∑

α

λα[[xα,1, y
ψ
α,1], . . . , [xα,nα

, yψα,nα
]] + R, (6.1)

with λα ∈ K and xα,j , yα,j ∈ g. Also, as W ⊆ L, it must be true as well that
∑

λα[[xα,1, yα,1], . . . , [xα,nα
, yα,nα

]] = 0, (6.2)

α
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and this describes completely the elements of W/R.

6.1. W/R is a quotient of H2(g; K)

Following Ellis [12], we consider the non-abelian exterior product g ∧ g. It is defined 
as the Lie algebra generated by the symbols x ∧ y, with x, y ∈ g, subject to the following 
defining relations:

(1) (x1 + x2) ∧ y = x1 ∧ y + x2 ∧ y;
(2) x ∧ (y1 + y2) = x ∧ y1 + x ∧ y2;
(3) λ(x ∧ y) = (λx) ∧ y = x ∧ (λy);
(4) x ∧ x = 0;
(5) [x1, x2] ∧ y = [x1, y] ∧ x2 + x1 ∧ [x2, y];
(6) x ∧ [y1, y2] = [x, y1] ∧ y2 + y1 ∧ [x, y2];
(7) [x1 ∧ y1, x2 ∧ y2] = [x1, y1] ∧ [x2, y2];

for all x, x1, x2, y, y1, y2 ∈ g and λ ∈ K.
Let φ : g ∧ g → g be the Lie algebra homomorphism defined by φ(x ∧ y) = [x, y]. The 

main result in [12] is that ker(φ) is isomorphic to the Schur multiplier H2(g; K).
Notice that an element in ker(φ) is written as

∑

α

λα[xα,1 ∧ yα,1, . . . , xα,nα
∧ yα,nα

], (6.3)

with λα ∈ K and xα,j , yα,j ∈ g such that

∑

α

λα[[xα,1, yα,1], . . . , [xα,nα
, yα,nα

]] = 0 (6.4)

in g. Consider the homomorphism θ : g ∧ g → χ(g)/R defined by θ(x ∧ y) = [x, yψ]. It is 
not hard to see that θ is well defined. Moreover, it follows by (6.1), (6.2), (6.3) and (6.4)
that θ induces a surjective homomorphism

θ1 : ker(φ) → W/R,

thus W/R is a quotient of H2(g; K).

6.2. H2(g; K) is a quotient of W/R

Now we adapt the arguments in [26], Section 4.1. Suppose that

0 → Z → h → g → 0 (6.5)
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is a stem extension of Lie algebras, that is, (6.5) is an exact sequence, Z is a central ideal 
of h and Z ⊆ h′. Consider

P = 〈{(x, x, 0), (0, x, x) | x ∈ h}〉 ⊆ h⊕ h⊕ h.

In other words, P is the image of ρh : χ(h) → h ⊕ h ⊕ h. It is not hard to check that P
can be described also as

P = {(x, y, z) ∈ h⊕ h⊕ h | x− y + z ∈ h′}.

Define

B = {(z, z + z′, z′) | z, z′ ∈ Z} ⊆ P. (6.6)

Notice that B is a central subalgebra of P , since Z is central in h. It follows that 
P/B is a quotient of χ(h), by means of the homomorphism θ : χ(h) → P/B such that 
θ(x) = (x, x, 0) + B and θ(xψ) = (0, x, x) + B. Since θ(z) = θ(zψ) = 0 for all z ∈ Z, 
it follows that θ factors through a homomorphism λ : χ(g) → P/B, thus making the 
following diagram commutative:

χ(h) θ
P/B

χ(g)
λ

Lemma 6.1. We have:

(1) R(g) ⊆ ker(λ) ⊆ W (g),
(2) λ(W (g)) 
 Z.

Proof. The first inclusion in (1) is clear, since R(g) is the image of R(h), and R(h) ⊆
ker(θ). The second inclusion is also clear, since ρ(χ(g)) 
 P/(Z ⊕Z ⊕Z), which clearly 
is a quotient of P/B, and ρ can be written as the composite:

χ(g) λ

ρ

P/B
π

ρ(χ(g)),

where π is the canonical projection.
As to item (2), notice that since λ(W (g)) ⊆ ker(π), every element of λ(W (g)) is of 

the form (z1, z2, z3) + B, with zi ∈ Z. Such elements are clearly equivalent to elements 
of the form (0, z, 0) + B in P/B for some z ∈ Z. Conversely, any such element must be 
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in the image of λ, and actually it must be the image of some element of W (g), since it 
projects to 0 in ρ(χ(g)).

Thus λ(W (g)) = {(0, z, 0) + B | z ∈ Z} ⊆ P/B. The homomorphism Z → λ(W (g))
that takes z to (0, z, 0) + B is clearly well defined and surjective, and it also injective, 
by the description of B in (6.6). Thus λ(W (g)) 
 Z. �

By the lemma above we see that W/R = W (g)/R(g) has Z as quotient for every Z
that occurs as the kernel of some stem extension of g. Now we show that H2(g; K) is 
one of such kernels, from what follows that H2(g; K) is a quotient of W/R.

Lemma 6.2. Any Lie algebra g fits into a stem extension written as

0 → H2(g;K) → h → g → 0.

Proof. Write g = f/n, where f is a free Lie algebra. Then by the Hopf formula

H2(g;K) = [f, f] ∩ n

[f, n] .

Thus we can see H2(g; K) as a subalgebra of the abelian Lie algebra n/[f, n]. It follows 
that H2(g; K) admits a complement, that is, there is some a ⊆ n, with [f, n] ⊆ a, such 
that

n

[f, n] 
 H2(g;K) ⊕ a

[f, n] . (6.7)

Notice that [f, a] ⊆ [f, n] ⊆ a, so a is an ideal of f. Consider the exact sequence:

0 → n/a → f/a → f/n → 0. (6.8)

The choice of a implies that n/a 
 H2(g; K). Since [f, n] ⊆ a, the extension is central. 
By the direct sum description (6.7), any element of n is equivalent modulo a to some 
w ∈ [f, f], so n/a ⊆ [f/a, f/a]. Thus (6.8) is a stem extension. �

Let λ2 : W (g)/R(g) → H2(g; K) be the homomorphism induced by the homomor-
phism arising in Lemma 6.1 when we take Z to be H2(g; K). By thinking of H2(g; K)
given by the Hopf formula for a fixed presentation of g, as in Lemma 6.2, we can write 
explicit expressions for λ2 and for the isomorphism α : H2(g; K) → ker(φ) of [12]. It is 
not hard to see then that the composition

H2(g;K) α
ker(φ)

θ1
W (g)/R(g)

λ2
H2(g;K)

is the identity. So W (g)/R(g) 
 H2(g; K), as we wanted.
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7. Examples

In this section we consider some examples. We begin by observing that we can describe 
Im(ρ) as

Im(ρ) = {(x, y, z) ∈ g⊕ g⊕ g | x− y + z ∈ g′} (7.1)

for any Lie algebra g. We want to obtain information about W (g) and R(g) in some 
particular cases.

7.1. Abelian Lie algebras

Let g be a finite dimensional abelian Lie algebra and let x1, . . . , xn be a basis. Then 
χ(g) is generated by the symbols x1, . . . , xn and xψ

1 , . . . , x
ψ
n with defining relations given 

by:

(1) [xi, xj ] = 0 for all i > j;
(2) [xψ

i , x
ψ
j ] = 0 for all i > j;

(3) [xi, x
ψ
i ] = 0 for all i;

(4) [xi, x
ψ
j ] = [xψ

i , xj ] for all i > j.

Notice that the elements [xi, x
ψ
j ] are central. Indeed

[xi, x
ψ
j ] = −1

2 [xi − xψ
i , xj − xψ

j ],

and by the Jacobi identity, together with the fact that [D, L] = 0, we get that [[xi −
xψ
i , xj − xψ

j ], xk] = 0 for all k, and similarly for xψ
k .

Proposition 7.1. If g is an abelian Lie algebra of dimension n, then χ(g) is a Lie algebra 
of dimension 2n +

(
n
2
)
. We also have that W = D is a central ideal of dimension 

(
n
2
)
, 

with χ(g)/W 
 g ⊕ g. Finally, R = 0.

Proof. The remarks above the proposition imply that D is linearly generated by [xi, x
ψ
j ], 

for i > j. Each of these elements is clearly in the kernel of ρ, that is, in W , so D = W . 
Now D/R 
 W/R 
 H2(g; K) 


∧2(g), thus dim(D) ≥
(
n
2
)
. But then the elements 

[xi, x
ψ
j ] with 1 ≤ j < i ≤ n must be linearly independent and R = 0. Moreover, it is 

clear by (7.1) that Im(ρ) 
 g ⊕ g. �
7.2. Perfect Lie algebras

Let g be perfect, that is, g = g′. Notice that in this case Im(ρ) = g ⊕ g ⊕ g. Moreover, 
W is a central ideal of χ(g). In fact, for x, y ∈ g ⊆ χ(g) and w ∈ W , we have
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[[x, y], w] = [[x,w], y] + [x, [y, w]] = [[x,w], yψ] + [x, [yψ, w]] = [[x, yψ], w] = 0.

The first and the third equalities are instances of the Jacobi identity; the second and 
the fourth are consequences of [L, D] = 0. Thus W commutes with g′ = g ⊆ χ(g), and 
similarly with gψ. In this case R(g) = [g, [L, gψ]] = 0. Indeed:

R(g) = [g, [L, gψ]] = [g′, [L, gψ]] ⊆ [g, [g, [L, gψ]]] = 0,

since [g, [L, gψ]] ⊆ W .
We conclude that χ(g) is a central (in fact stem) extension of H2(g; K) by g ⊕g ⊕g. In 

particular, if g is superperfect, that is, g is perfect and H2(g; K) = 0, then χ(g) 
 g ⊕g ⊕g.

7.3. Lie algebras generated by two elements

We will show that R(f) = 0 if f is free of rank 2.

Remark 7.2. We will use repeatedly that for any d ∈ D and [x1, . . . , xi, . . . , xn] an 
arbitrarily arranged bracket of elements xi ∈ f ∪ fψ, we have

[[x1, . . . , xi, . . . , xn], d] = [[x1, . . . , x
ψ
i , . . . , xn], d]

for any i, as a consequence of [D, L] = 0. If xi is already an element of fψ, we interpret 
ψ as an automorphism of order 2, that is, xi = yψ ∈ fψ and xψ

i = (yψ)ψ = y ∈ f.

Let {x, y} be a free basis of f and let M be the set of monomials in these generators. 
We want to show that R(f) = [f, [L, fψ]] = 0. Clearly it is enough to show that

R(g, 	, h) := [g, [	, hψ]] = 0 (7.2)

for all g, h ∈ f and 	 ∈ L. By linearity, it suffices to consider g, h ∈ M . We will show that 
actually it is enough to consider indecomposable monomials, that is, g, h ∈ {x, y}. For 
this, it suffices to show that if g or h can be written as a non-trivial bracket, then (7.2)
follows from the identities with respect to each of the terms of the bracket.

First, if we have

[[g1, g2], [	, hψ]] = [g1, [g2, [	, hψ]]] − [g2, [g1, [	, hψ]]].

So if R(gi, 	, h) = 0 for i = 1, 2, then R([g1, g2], 	, h) = 0 as well.
Similarly, suppose h = [h1, h2]. By the Jacobi identity we have:

[g, [	, [h1, h2]ψ]] = [[	, hψ
1 ], [g, hψ

2 ]] + [[g, [	, hψ
1 ]], hψ

2 ] − [[g, [	, hψ
2 ]], hψ

1 ] − [[	, hψ
2 ], [g, hψ

1 ]].
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The first and the fourth terms in the right-hand side of the equation above vanish because 
[D, L] = 0. The second and the third terms vanish if we assume that R(g, 	, h1) =
R(g, 	, h2) = 0.

Now we want to do the same with respect to 	. We will show that is enough to consider 
the elements 	 = m −mψ, with m ∈ {x, y}.

Clearly it is enough to let 	 run through a linear spanning set for L. We know that L
is generated as an algebra by the elements m −mψ with m ∈ M . Thus a spanning set 
for L can be obtained by considering the long brackets involving these elements.

Now recall that given m, n, p ∈ M , we have:

[m−mψ, [n− nψ, p− pψ]] = [m, [n, p]] − [m, [n, p]]ψ.

This was hinted in Remark 4.5. From this follows that L is linearly spanned by elements 
of the form m −mψ and [m −mψ, n − nψ] with m, n ∈ M . Now:

[g, [[m−mψ, n−nψ], hψ]] = [g, [[m−mψ, hψ], n−nψ]] + [g, [m−mψ, [n−nψ, hψ]]] = (∗)

If R(n, m −mψ, h) = R(m, n − nψ, h) = 0, then:

(∗) = −[g, [[m−mψ, hψ], nψ]] − [g, [mψ, [n− nψ, hψ]]]

Then by the Jacobi identity, together with [D, L] = 0, we have:

(∗) = −[[g, [m−mψ, hψ]], nψ] − [mψ, [g, [n− nψ, hψ]]],

so R(g, [m − mψ, n − nψ], h) = 0 if we also assume that R(g, m − mψ, h) = 0 and 
R(g, n − nψ, h) = 0.

We are down to: if R(g, m −mψ, h) = 0 for all g, h ∈ {x, y} and m ∈ M , then R(f) = 0.
Finally, it is enough to consider m ∈ {x, y}. In fact, if m = [u, v], then

[g, [[u, v], hψ]] = [[g, [u, hψ]], v] + [[u, hψ], [g, v]] + [[g, u], [v, hψ]] + [u, [g, [v, hψ]]].

To see that R(g, [u, v] − [u, v]ψ, h) = 0, we need to show that we can change any instance 
of u (resp. v) for uψ (resp. vψ) in the right-hand side of the equation above. For the first 
term we use that R(g, u − uψ, h) = 0 and then Remark 7.2 (to change v for vψ). The 
fourth term is analogous, but we use that R(g, v − vψ, h) = 0. For the second and third 
terms we apply Remark 7.2 twice.

By the arguments above, for R(f) = 0, it is enough that R(g, m −mψ, h) = 0 with 
g, h, m ∈ {x, y}. But this can verified directly, being consequence of the relations [x, xψ] =
0, [y, yψ] = 0 and [D, L] = 0. Thus:

Proposition 7.3. If g can be generated by two elements, then R(g) = 0.
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Proof. We have proved for f free of rank two. In general, if g is generated by two elements, 
then there is a surjective homomorphism ϕ : f → g, which induces ϕ∗ : χ(f) → χ(g). It 
is clear that ϕ∗(R(f)) = R(g), so the result follows. �
Remark 7.4. Observe that the proof above does not work for a free Lie algebra of rank 
greater than 2, since we can not guarantee the base step: [xψ, [y − yψ, z]] will not be 
trivial if x, y and z are three independent generators.

7.4. Other small Lie algebras

Observe that for any finite dimensional Lie algebra g, the following holds:

dim(χ(g)) ≥ 2dim(g) + dim(g′) + dim(H2(g;K)). (7.3)

Indeed, it follows by (7.1) that dim(Im(ρ)) = 2dim(g) + dim(g′). On the other hand, 
dim(W ) ≥ dim(W/R) = dim(H2(g; K)), which gives the bound. It is clear that (7.3) is 
an equality if and only if R(g) is trivial. By computing with GAP [13], we were able to 
find Lie algebras g with coefficients in Q for which that does not happen. These are:

(1) Let g be the Lie algebra generated by three elements a, b and c such that [a, b] =
[b, c] = [a, c] is a non-zero central element. Then:

H2(g;Q) 
 Q4, dim(χ(g)) = 14, dim(R(g)) = 1;

(2) If g is the free nilpotent Lie algebra of rank 3 and class 2, then:

H2(g;Q) 
 Q8, dim(χ(g)) = 27, dim(R(g)) = 4.

We have the following corollary.

Corollary 7.5. If f is a free Lie algebra of rank at least 3, then R(f) �= 0.

8. Remarks about the characteristic 2 case

We will show that the conclusion of Lemma 3.1, which is essential for the development 
of the results of this paper, fails almost always in characteristic 2.

Proposition 8.1. Suppose that char(K) = 2. Then the ideal L is generated by {x − xψ |
x ∈ g} as a subalgebra if and only if g is abelian and χ(g) 
 g ⊕ g.

Proof. The “if” direction is clear. Denote by A the subalgebra of χ(g) generated by the 
elements x − xψ and suppose L = A.
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First notice that ρ(A) is generated by the elements ρ(x − xψ) = (x, 0, −x) for x ∈ g. 
In characteristic 2 the set of these elements is closed by the bracket, as well as sum and 
multiplication by scalar:

[(x, 0,−x), (y, 0,−y)] = ([x, y], 0, [x, y]) = ([x, y], 0,−[x, y]).

It follows that ρ(A) = {(x, 0, x) | x ∈ g}. Now let x, y ∈ g. Then [x, y − yψ] ∈ L = A. 
But

ρ([x, y − yψ]) = [(x, x, 0), (y, 0,−y)] = ([x, y], 0, 0) ∈ ρ(A),

therefore [x, y] = 0, that is, g is abelian.
Now define σ : χ(g) → g by σ(x) = x and σ(xψ) = 0. It is clear that σ(A) = g. Notice 

that [x, yψ] = [xψ, y] still holds. Then:

[x− xψ, y − yψ] = [x, y] − [x, yψ] − [xψ, y] + [x, y]ψ = 2[x, yψ] = 0.

The inverse for σ|A is then well defined. Now for any x, y ∈ g, we have [x, yψ] = [x, y −
yψ] ∈ L = A. But σ([x, yψ]) = 0, so [x, yψ] = 0. Thus [g, gψ] = 0 in χ(g), as we 
wanted. �
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