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1. INTRODUCTION

The Schur index was introduced by Schur in 1905. If y is an irreducible
character of a finite group G and F is a field of characteristic zero, the
Schur index my(x) of x with respect to F is the smallest positive
multiplicity of y in the character afforded by a G-module over the field F.
Schur calculated the Schur indices for the characters of a number of
classical groups, and ever since their calculation has been sought for the
characters of the classical groups. The Schur indices are intimately con-
nected to elements of certain Brauer groups. Brauer’s important work on
Schur indices elucidated this connection and other fundamental properties
of Schur indices. Further results on Schur indices have been obtained by
many others including Feit [3, 4. An overview of some of the known
general properties of the Schur index can be found in [3].

In this paper, we calculate the Schur indices of all the irreducible
characters of SL(n, ¢), the finite special linear groups, for all » > 1 and ¢
a power of a prime. Our proof is inspired by results in [16] and relies on
the formula to calculate certain Schur indices obtained in [17].
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The Schur indices have been completely calculated for some families of
finite quasisimple classical groups. Work by Feit [3, 4] calculated the Schur
indices of the characters of all the simple groups of order less than 10° and
of all the covering groups of all the sporadic simple groups. I calculated in
[15] those of the covering groups of the symmetric and alternating groups.
Those of other families of classical groups are calculated in [1, 18]. In 1955,
Green [7] calculated the irreducible characters of GL(n, ¢), the general
linear group of degree n over a finite field. The Schur indices of the
general linear group were finally computed by Zelevinsky [18] in 1981.
Lehrer [10] described the parameterization of the characters of SL(n, g) in
1973. Partial results on the calculation of the Schur indices for the
irreducible characters of the special linear groups have been obtained by
Janusz [8], Ohmori [12], Gow [5, 6], and Prasad [14]. The most detailed
information on the Schur indices of the irreducible characters of SI(n, q)
prior to the present paper appears in [6]. The paper [14] adds some
information on the real Schur indices of the irreducible characters of
SL(6,9).

We use Lehrer’s parameters for each irreducible character of SL(n, q)
to give an algorithm to calculate each Schur index. To make explicit this
parameterization, we define some combinatorial objects .%,, and we have a
bijection between %, and Irr(GL(n, q)), the set of irreducible characters of
GL(n, q); see Theorem 2.4 below. Associated with each A € .7,, we have
an irreducible character x, € Irr(GL(n, ¢)) and an irreducible character
¥, € Irr(SL(n, ¢)). The ¢, run through all the irreducible characters of
SL(n, ¢) up to GL(n, g) conjugacy. We have two natural actions of Z,, an
action corresponding to the Galois action on y,, and an action correspond-
ing to the multiplication of y, by linear characters of GL(n, q).

We give two answers to the problem of calculating the Schur indices.
The first answer, Theorem 5.9 below, calculates for each A € %, the
element [¢,] of the Brauer group in terms of a cross product of objects
defined combinatorially from A and its two acting groups. The Schur index
m;() = 1if and only if [,] = 1. When [¢,] # 1, then m () = 2.

Our second answer relies on local Schur indices. For p a rational prime
or %, the local Schur index m (¢) = me(c,[;A) is simply the Schur index of
, over the field Q, of p-adic numbers (the field R of real numbers if
p = «); see [3] for details. We define

M(4,) = {p: p is a rational prime or ® and m ,(¢3) # 1}.

Since the Schur indices involved are all 1 or 2 in our case, the set M(y,)
characterizes the element [¢,] € Br(Q(¢,)). In our second answer, we give
an explicit algorithm to calculate, from A, the set M(4,). This algorithm
first yields a finite set M such that M(y,) € M and then allows for the



SPECIAL LINEAR GROUPS 277

explicit calculation of m (¢,) for each prime p and, in particular, for each
prime p in the finite set M. The set M is described in Theorem 9.3. The
individual calculations of local Schur indices are given in Theorems 6.5,
7.3, and 8.8.

This paper settles a number of questions about the Schur indices of the
special linear groups. If € Irr(G) and G is one of the finite classical
groups studied in [3, 4], then |M(y)| < 2. The groups studied in [3, 4]
include all the simple groups of order less than 10°, the groups SL(2, q),
and all the sporadic simple groups and their covering groups. On the other
hand, |[M(y)| is unbounded when G runs through the covering groups of
the symmetric and alternating groups (see [15]) or through the covering
groups of the Weyl groups of type B,; see [1]. The work of Gow [6], which
provided the most detailed information on the Schur indices for SL(n, ¢)
prior to the present paper, left open the question as to whether or not
there existed a ¢ € Irr(SL(n, ¢)) such that |[M(i)| > 2, and even whether
or not there could be some i € Irr(PSL(n, ¢)) with M(y) # . As a
corollary of our results, we obtain here that |M(i)| is in fact unbounded
even for € Irr(PSL(n, q)); see Corollary 9.5.

I thank Kevin Keating for a number of useful conversations on number
theoretical topics relevant to the present paper.

2. GENERAL NOTATION

Quite often in this paper, we need to refer to the p-part of an integer n,
where p is a prime. By this we just mean the largest power of p dividing n,
and we denote it by n,,. In particular, the 2-part n, of n plays a prominent
role in many of the statements of our results.

The irreducible characters of GL(n, g) have been described by Green
[7]. We will use notation suggested by Lehrer [10] to parameterize the
characters of GL(n, q).

We let p be a prime number and we let g be a power of p. We have the
finite field F,, with exactly p elements. We fix an algebraic closure of F
which we denote F We think of each finite field in characteristic p as a
subfield of Fp In partlculzir F, is a subfield of FP For each positive integer

d, we denote by F, = Fu the multiplicative group of the field F,.. We

denote by Fd the character group of F,, that is, Fd is the group of group
homomorphisms F, —» C*. We define o: F,— F, by a,(6) = 6.

DEFINITION 2.1. (1) Two characters 6 and ¢ in Fd are conjugate if
cqu(e) = ¢ for some integer k. This yields an equivalence relation.

(2) A d-simplex s is a conjugacy class of size d in E. If 6 is some
element of s, we write s = (6).
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(3) The degree of a d-simplex s is d(s) = d.
(4) We denote by Z, the union of all the d-simplices and by & the
union U;_, Z,.

We let n be a positive integer. Then F,. can be viewed as a vector space
over F, of dimension n. We set GL(n, g) to be the group of all invertible
linear transformations of the vector space F,. over F, onto itself. Each
element of F, acts on the vector space F . by left multiplication, so we
think of F, as a subgroup of GL(n, ¢). There is the determinant function
det which provides a surjective homomorphism

det: GL(n,q) — F,,
whose kernel is denoted SL(n, ¢), and which provides a fixed isomorphism
from GL(n, q)/SL(n, q) onto F,.

Let & be the set of all partitions. For each v € 2, we denote, as usual,
by |v| the sum of its parts. Then we have the following fundamental
theorem, essentially due to Green [7]. We use the details of the parameter-
ization as given in Theorem 5 of [10].

THEOREM 2.2. Let # be the set of d-simplexes (d = 1,2,...). A parti-
tion-valued function \: ¥ — & such that ¥, c d(07)| M6))| = n deter-
mines a unique irreducible character of GL(n, q) denoted (- {6Y<? ---),
and all irreducible characters arise uniquely in this way.

Proof. See Theorem 5 in [10] for a detailed description of the parame-
terization and a proof of this theorem.

Since we will need to refer often to this parameterization, we introduce
some convenient notation to describe it.

DEeFINITION 2.3. (1) We let & be the set of all functions A: & — &2,
which assign the empty partition to almost all elements of £ and have the
property that, for every 6 € &, we have Mg, (6)) = A(6).

(2) For each A €., we define its degree to be
deg(A) = 2 [A(0)].
=54
(3) We denote by 7, the set of all elements of # of degree n.

(4) For each A €%, we denote by y, the irreducible character
(- (oY --v), where we take (6)” once for each simplex. Hence,
X, € Irr(GL(n, ¢)).

THEOREM 2.4. The map A — x, is a bijection &, = Irt(GL(n, q)).
Proof. This is just a restatement of Theorem 2.2.

If A €7, then the restriction of y, € Irr(GL(n, ¢)) to the center
Z(GL(n, q)) of GL(n, ¢q) is a multiple of some irreducible linear character.
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This linear character plays an important role in what follows. We include,
for completeness, an algorithm to compute it from A. The map a = « -1
provides a natural isomorphism from F, onto Z(GL(n, q)). Hence, the
linear character in question can be thought of as simply being an element
of F,.

PROPOSITION 2.5.  Let A € F,. Then the restriction of x, to Z(GL(n, q))
is a multiple of some linear character p. Furthermore, this linear character p,
when viewed as an element of F,, can be computed as

[ACO)I
)

p= d]i ];[(Res?l(ﬂ)

where, in the second product, 0 runs through a set of representatives of the
d-simplices.

Proof. Note that g,(6) and 6 have the same restriction to Fj, so the
product is independent of the chosen set of representatives. The result
follows easily from the description of the parameterization given in [10].

For each positive integer m we denote by m, = exp(2wi/m) a fixed
primitive mth root of 1. For each integer r which is relatively prime to m
we set g, € Gal(Q(n,,)/Q) to be the unique automorphism of Q(n,,) such
that o.(n,) = n,. Note that this notation meshes with the one used in
Definition 2.1. With the notation there, and setting m = |6(F,)|, we have,
since (g, m) = 1, that o, € Gal(Q(n,,)/Q), and the composition of the
character 6 with the Galois automorphism g, is simply 0,0 = ¢,(6) in the
notation before Definition 2.1.

DEFINITION 2.6. (1) For each A €., we denote by Q(A) the field Q
extended by the values of all the 6 in the support of A. Hence, Q(A) is Q
extended by a primitive mth root of 1, where m is the least common
multiple of all the |6(F,)| for § € &, such that A(#) is not the empty
partition.

(2) Let A €%, and let o< Gal(Q(A)/Q). Then, we define oA:
& —> P by, for § € Z, setting oA(0) = Ao '0) if 0 is such that Q(6) C
Q(A), and by setting oA(6) to be the empty partition otherwise. Naturally,
here o~ '6 denotes function composition. We have that oA € .7,.

(3) Let A €7,. We set
Galg(A) = {o € Gal(Q(A)/Q) : oA = A}.

(4) For any subgroup H of Gal(Q(A)/Q), we denote by H' the fixed
field of H.
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Remark. Galg()) is a subgroup of Gal(Q(A)/Q) which can easily be
computed from A. The g in Galg stands for the g in general linear group.

Lemma 2.7. Let A €%, Then Q(x,) € Q(N) and, for each o€
Gal(Q(A) /Q), we have that the composition of the character with the Galois
automorphism is simply ox, = x,,; see Definition 2.6.

Proof.  This follows from the description of the character y, given in
[10].

PROPOSITION 2.8. Let A € F. Then the field of values of x, is

Q1) = QN = Galg(),
in other words, it is simply the fixed field of Galg(A).

Proof. Since Q(A)/Q is a finite Galois extension, this follows immedi-
ately from Lemma 2.7 and Theorem 2.4.

3. MULTIPLYING IRREDUCIBLE CHARACTERS OF
GL(n,q) BY LINEAR CHARACTERS

As remarked above, the determinant function det Aprovides a fixed
isomorphism from GL(n, q)/SL(n, q) onto F,. If a € F,, then adet is a
linear character of GL(n,g). Building on some results of Lehrer [10],
Karkar and Green [9] have described the multiplication action of this
character on Irr(GL(%, ¢)). We introduce notation to describe their result,
and to study certain aspects of the multiplication action and its interaction
with the Galois action introduced earlier.

DEerFINITION 3.1. Let a € E Then, we wish to define the action of «
on various objects.

(1) By abuse of notation, we may also view « as a linear character
of GL(n, q) (strictly speaking, as the composition adet) or as a linear
character of F, for any positive integer d (strictly speaking, as the
composition «Norm, where Norm is the norm homomorphism Norm:
Fji — F). The context will determine which version of « needs to be
used.

(2) If y € Irr(GL(n, q)), then ay is simply the product of the two
characters of GL(n, g).

(3) If 6 € F,, for some positive integer d, then af is simply the
product of the two elements of F,.

(4) If X €7, then we define aX: & -2 by aA(0) = Ma™'0). It is
easy to see that oA € F and deg(aA) = deg(\).
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(5) If A €7, then we define the subgroup of F,
AN =N {ker(a) ca € F, and ak = /\}.
(6) Let A €.7,. We set
Galr(A) = {0’ € Gal(Q())/Q): for some « € F, we have o) = a)\}.

Remark. Galr()) is a subgroup of Gal(Q(A)/Q) which can easily be
computed from A. The r in Galr stands for restriction to the special linear
group. Obviously, Galr(A) contains Galg(A).

LemMA 3.2. We have defined an action of E on & that preserves de-
grees. Furthermore, if A € F and o, B € F,, then al = BA if and only if
Res’) () = Res%, (B).

Proof. 1t is straightforward to check that we have an action of 1?1 on 4.
For the second part, it is enough to check that aA = A if and only if
ker(a) 2A4N). In ot’ller words, we need to check that the s’t\abilizer S of A
under the action of F, is exactly the set of all elements of F;, whose kernel
contains .#A(A). Since F, is cyclic, we let y be a generator of S. The set of

elements of E whose kernel contains ker(y) is simply {y) = S. Hence,
A(A) = ker(ty). The lemma follows.

THEOREM 3.3.  For each o € E and each A € F,, ay, is an irreducible
character of GL(n, q), and in fact

AX) = Xanr-

Proof. This is the content of the proposition in Section 3 of [9].

PROPOSITION 3.4.  Let A € F,. Then, the field of values of Resgi{i>3(x,)
is

Q(Resgl(ra( X)) = Q)™ = Galr( 1),

in other words, it is simply the fixed field of Galr()).

Proof.  Since Q(1)/Q is a finite Galois extension and Q( x,) € Q(A), we
need to show that

Gal(Q( 1) /Q(Resgia)( x,))) = Galr(A).

If o€ Galr()), as a € 1?1 when considered as a linear character of
GL(n, q) contains SL(n,q) in its kernel, then oResg{d)(x,) =
Resgi(n 2 x,), and it follows that

o € Gal(Q(1) /Q(ResikiB( x,) ))-
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Conversely, if o € Gal(Q(A)/Q(Resg{i>#)(x,)), then the restriction of
ox, to SL(n,q) equals the restriction of x, to SL(n,q), whence, by
Clifford theory, there exists some linear character a of GL(n, q)/SI(n, q)
such that oy, = ay,. Hence, o € Galr(A), and we are done.

4. CHARACTERS OF SL(n,q) AND THEIR FIELDS
OF VALUES

The characters of SL(n, q) have been parameterized by Lehrer [10]. In
this section, we set some notation for this parameterization, and we
calculate for each irreducible character its inertia group and its field of
values.

DErINITION 4.1. Let A €.%,, then we denote by ¢, any irreducible

character contained in Resgr{r4)( x,).

Remarks. The character ¢, is only defined up to conjugation by some
element of GL(n, ¢). Our purpose here is to describe the field of values
and the Schur indices of ¢, over all fields. As these are invariant under
conjugation by elements GL(n, ¢), it does not matter, for our purposes,
which irreducible of SL(n, q) is represented by ¢,.

PROPOSITION 4.2.  Each irreducible character of SWn,q) is GL(n, q)
conjugate to some ,, for some A € &,. Furthermore, if \, X\ € F,, then the
GL(n, g)-orbit of characters conjugate to i, is the same as that of characters
conjugate to s, if and only if there exists some a € F, such that X = aA.

Proof. This follows from Clifford Theory, Theorem 2.4, and Theo-
rem 3.3.

PROPOSITION 4.3.  Let A € F. Then, the inertia group in GL(n, q) of
is the set of all elements of GLAn,q) whose determinant is in A(N); see
Definition 3.1(5) above. Furthermore, the set of all a € Fl such that al = A
is the set of all elements of E whose kernel contains ().

Proof. Let I be the inertia group of ,. By Clifford Theory, there exists
an irreducible character p of I, with the properties that ResgL(m o(P) =1
and Ind§™"9(p) = x,. If a € F,, then ay, = y, if and only if Res}'(a)p
= p if and only if ker(adet) 2 I. Hence,

I=N {ker(adet) ta € Eand ay, = XA}'
By Theorem 2.4 and Theorem 3.3,

{aeﬁ:aXA=X)‘}={a€E:a/\=)\}.
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By Lemma 3.2,
N {ker(a) ca € F, and a\ = /\} =7(A).

The proposition follows.

COROLLARY 4.4. Let A €%, Then, the index [F,: AN divides
(g — 1,n).

Proof. Since |F||=gqg — 1, we only need to show that the index
[F, : A(MN)] divides n. Let a € F, be a generator of the cyclic group of all
clements of F, whose kernel contains A(A). Then, the order of « is
[F, : AMN)]. By Proposition 4.3, we have aA = A. Hence, the values of A
are constant within each orbit of @ on Z. Since the orbits of « all have
[F, : AMN)] elements of £ in them, it follows from Definition 2.3 that
deg(A) = n is a multiple of [F, : A(A)], as desired.

Remark. The corollary can also be obtained easily from the remark
that the center of GL(n, ¢) will be contained in the inertia group of ,.

THEOREM 4.5 (Zelevinsky). Let A € Z,. View GL(n,q) as a set of
matrices with coefficients in ¥,. Let U be the Sylow p-subgroup of GL(n, q) of
unipotent upper triangular matrices. Then there exists a linear character 6 = 6,
of U such that (Res$"9( x,), 0), = 1. Furthermore, 6 has the following
form: There is an additive character a: ¥, — C* and integers k,, ..., k, such
that, for each matrix (uij) ey,

0((”1']')) = a(zui,i+l)9

where the sum is fori = 1,...,n — 1 but omits i = k1,...,&. Furthermore,
0 = 1 if and only if M p) is the partition (n) for some p € F,.

Proof.  See Proposition 12.4 in Zelevinsky [18].

LEMMA 4.6. Keep the notation of Theorem 4.5. Let v € F, be an element
of order p — 1, and let x € GL(n, q) be the diagonal matrix whose entries are
v" L w2 .., 1. Then Q(8) is contained in the field of pth roots of 1, the
element x normalizes U, its determinant is det(x) = v®, and 6* = 76, where
T is a generator of the group Gal(Q(6)/Q).

Proof. Tt follows from the definition of 6 that Q(6) is contained in the
field of pth roots of 1. A direct computation shows that x normalizes U
and that, for each u = (u;;) € U, the (i,i + Dth entry of xux™" is vu, ;.
The element v is a generator of the multiplicative group of the prime field
F, and can be thought of as the reduction modulo p of some integer b,
where b is relatively prime to p. Hence, for each u € U we have
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6*(u) = 0(u)®. Setting 7 to be the Galois automorphism of Q(#) which
raises each pth root of 1 to its bth power, we see that 70 = 0*. Since v
has order p — 1 modulo p, 7 is actually a generator of Gal(Q(6)/Q)
Finally, the computation of the determinant of x is straightforward.

LEmMMA 4.7.  Keep the notation of Theorem 4.5 and Lemma 4.6. Let I be
the inertia group of . If p is odd, q is not a square,2 < n, < (p —1),, and,
for any element B € F, of order n,, we have BA = A, then {x) N I has index
2 in {x). Otherwise, {x) C I.

Proof. By Proposition 4.3,
[(x):{x) N I]=[{det(x)):{det(x)) NA(N)].

Since F, is cyclic, [{det(x)) : {det(x)) N.AA)] is the denominator of the
fraction

)
Kaet(x))]°

By Lemma 4.6, det(x) = v®. Hence, {det(x))| = (p — 1)/ged(p — 1,(2)).

By Corollary 4.4, [ AAM| = (¢ — 1)/c, where ¢ is some integer dividing
(g — 1,n). Hence

sl g1 lp-n(y)) |

/= [(det(x))]| N p— 1 ¢

If r is an odd prime, the r-part f, of f is an integer multiple of the r-part
of ((q—1D/(p—1)-(ged(p — 1,n)/ged(qg — 1,n)), which is itself an
integer. Hence, the denominator of f is a power of 2. The fraction
(g —1D/(p—1) is always an integer. If n is odd or p = 2, then the
2-part of ged(p — 1,(2))/c is an integer, so that f is an integer and the
lemma holds in this case. Hence, we assume that n is even and p is odd.
Now, the denominator of f is the 2-part of the denominator of

n
p—1 c ’

If n, > (p — 1),, then the 2-part of f is an integer multiple of the 2-part
of (¢ — 1D/(p —1)-(ged(p — 1,n)/ged(g — 1, n)). Hence, the denomi-
nator of f is again 1 and the lemma holds in this case. Hence, we assume
that 2 < n, < (p — 1),. Now, the 2-part of ged(p — 1,n/2) is n,/2 and
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the 2-part of ged(g — 1, n) is n,. If ¢ is a square, then (¢ — 1)/(p — D is
an even integer, so that the denominator of f is 1 and the lemma holds in
this case. We assume henceforth that ¢ is not a square. Now (g — 1)/
(p — 1 is an odd integer. Hence, the denominator of f is 2 if ¢, = n,, and
1 otherwise. By Proposition 4.3, ¢, = n, if and only if BA = A. Hence, the
lemma holds.

THEOREM 4.8. Let A €F,. Then the field of values Qi) of ¢, €
Irr(SL(n, q)) is as follows. If p is odd, q is not a square,2 < n, < (p — 1),,
and, for any element B € F, of order n,, we have BA = A, then Q(i) =
Galr(/\)’(@), where € € {1, —1} and p = e (mod4). Otherwise, Q(4,) =
Galr(A)'.

Proof. We use the notation of Theorem 4.5, Lemma 4.6, and Lem-
ma 4.7. Since U < SL(n, q), 0 is contained in the restriction of exactly one
of the GL(n, gq) conjugates of i, and we assume without loss that 6 is
contained in the restriction to U of ¢,. Let I be the inertia group of i, in
GL(n,q). If y € {x) N1, then 6” is contained in Resi“"9(ys). Con-
versely, suppose y € {x) and 6” is contained in Res{“" (¢ ). Then there
is a unique irreducible summand of Resg{;>#)( x,) which contains 6” in its
restriction to U. This irreducible character is both ¢, and . It follows
that y € (x) N I. Hence, for y € {x), we have that 6 € Res{"" (¢ if
and only if y € {x) N L.

Set F = Galr(\), K = F(9), and K to be the algebraic closure of K.
Since Resgi(#)(x)) is_a sum of conjugates of i, by Proposition 3.4,
F € Q(y). If o € Gal(K/K), then, by Proposition 3.4, o Resgi(»4)( x,) =
Resgl( 2 x,), and as ¢ is the unique irreducible in Resg(;>)( x,) which
contains 6, it follows that oy, = ¢,. Hence, F < Q(¢,) C K.

Suppose first that 6 = 1. Then, Q(4%,) = F and, by Theorem 4.5, A(p) is
the partition (n) for some p € F,. It follows that if 8 € F, and BA = A
then B = 1. Hence, the theorem holds in this case.

Assume, henceforth, that 6 # 1. Let n, be a primitive pth root of 1.
Then Q(9) = Q(np) and K=F (”flp)- Since F is contained in a field of p’th
roots of 1, we have Q(”flp) N F = Q. Let 7, be the unique element of
Gal(K/F) which restricts to 7€ Gal(Q(6)/Q) (see Lemma 4.6). We
define the subgroup T of Gal(K/F) as follows: If p _is odd, g is not a
square, 2 < n, < (p — 1), and, for any element B € F, of order n,, we
have BA = A, then T = {72). Otherwise, we set T = {(7,) = Gal(K/F).

We now show that Gal(K/Q(¢,)) = T. Suppose o € T. Then, by Lemma
4.6 and Lemma 4.7, there is some y € {(x) NI such that o0 = 6”. It
follows that o6 € Resi-™9(y;). Hence, o 'y, is an irreducible character
contained in Resgf((,f; g))( X)) which contains 6 in its restriction to U. Hence,
o W, = ¢. Hence, T < Gal(K/Q(y)). Conversely, suppose o €
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Gal(K/Q(4)). Then, o = 7' for some appropriate integer m. Now
g = 0*" is contained in the restriction of  to U. It follows that
x™ e {x) N I. Hence, again by Lemrna 4.6 and Lemma 4.7, we have that
o € T. Hence, Gal(K/Q(¢,)) =

Suppose p is odd, g is not a square 2<n, <(p—1),, and, for any
element B € F of order n,, we have BA = A. Then \/5 € K, where
ec{l, -1} and p = € (mod4), and, for o € Gal(K/Q(4,)), we have
o€ T if and only if o(y/ep) = y/ep. Hence, Q(s) = F(y/ep), and the
theorem holds in this case. Otherwise, Q(¢,) = F, and again the theorem
holds. This concludes the proof of the theorem.

5. THE CENTRALIZER ALGEBRA FOR EACH
IRREDUCIBLE CHARACTER

In this section we calculate the element of the Brauer group [¢,] €
Br(Q(,)) associated with each irreducible character i, € Irr(SL(n, ¢)) in
terms of cross products. Our main tool is the formula for calculating such
elements in terms of cross products which was proved in [17].

Notation 5.1. Given K/F a finite Galois extension of degree n, with
Galois group Gal(K/F) = {7) cyclic and generated by 7 and some ele-
ment a € F*, then there exists the cross product of K and 7 with respect
to a; see for example [13]. This is a central simple algebra over F of
dimension n?, containing K and a certain invertible element ¢ which acts
by conjugation on K as 7 and such that " = a. Since we write our maps
on the left, our convention is that tkt~! = 7(k) for all k € K. These
conditions characterize the cross product up to an F-algebra isomorphism.
We denote by [K/F, 7, a] the element of the Brauer group Br(F) which
has the cross product of K and 7 with respect to a as a representative.

THEOREM 5.2. Let G be a finite group, x € Irr(G), and F be a field
containing Q( x). Let U be a subgroup of G and 6 € Irr(U) be such that
6(1) =1 and (Res§(x),0) = 1. Set K = F(0) and set n =|Gal(K/F)|,
and assume that Gal(K/F) = (o) is cyclic. Assume that there exist a group
H containing G as a normal subgroup and a character x € Irr(H) extending
the character x, such that F(x) N K = F. Assume, furthermore, that there is
some element x € N, (U) such that, for all u € U, 6(x 'ux) = o6(u) and
x" € U. Then, there exists some h in the coset x 'G such that x(h) #+ 0 and,
for each such h, we have

[x]=[K/F,o,x(h)"6(x")].

Proof. This is Theorem 2.4 in [17].
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LEMMA 5.3. Let A €%, and suppose t € F(A). Then there exists some
x € GL(n, q) such that det(x) = t and x,(x) # 0.

Proof.  Suppose x,(x) = 0 for all x € GL(n, ¢) with det(x) = 7. Let «
be the characteristic function of the set {¢} in .#(A). Then, we may write «
as a linear combination X ¢y a) Mo 0> Where p, € C and not all are 0.
Each 6 is a linear character, so we may extend it to a linear character
0y € F. Let kg = T, recsay Mo 0o- Hence, Res’, (k) = k. Let I be the
preimage in GL(n, q) of #(A). By Proposition 4.3, x, is induced from
some character ¢y, of I. Since [ is a normal subgroup of GL(n,q), x,
vanishes outside /. Hence, we have that «, x, = 0. It follows that

0=rKoxp = Z T Ind?L(n’q)( )
o< Irr(#(N))
= X e IndfHO(64s).
0 < Irr(F(A)

However, by Proposition 3.2, each Indf™"?(6y) = 0, x, = Xy, is a
distinct irreducible character of GL(n, g). Hence, the equality contradicts
the linear independence of irreducible characters. This completes the
proof of the lemma.

LEMMA 5.4. Let A €%,. Let  be any of the irreducible characters of
SL(n, q) parameterized by A, and set F = Q(is,) and K = F (n,), where ), is
a primitive pth root of 1. Assume that, for p € F,, M p) is not the partition
(n) or, equivalently, assume that ¢, + 1. Let v € F, be of order p — 1.
Set vy = v""" D and k = (p — 1)/2 if pis odd, q is not a square, 2 < n, <
(p — 1,, and, for any element B € F, of order n,, we have BA = A; set
vy = v® and k = p — 1 otherwise. Then, the following hold:

(1) There exists some y € GL(n,q) such that det(y) = v, and
XA(y ) # 0.

(2)  For eachy satisfying the conditions of (1), we have that x,(y)* € F*
and, for some appropriate generator o of Gal(K/F), we have

[l = [K/F, o x0(0)].

Proof. Applying Theorem 4.5, we obtain a subgroup U and a linear
character 6 of U with the properties specified in the theorem. As ¢, is
contained in Resg(;>#)( x,), and conjugation by elements of GL(n, ¢) does
not affect the Schur index of the character, we assume without loss that
(RespH™9(4s,), @) = 1. From our general assumption on A and the proper-
ties specified in Theorem 4.5 it follows that 6 # 1. Furthermore, we keep

the notation of Lemma 4.6 and Lemma 4.7. In particular, there is an
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element x € GL(n, q) normalizing U such that 6* = 70, where 7 is a
generator of Gal(Q(n,)/Q). Setting F, = Galr(}), since F, N Q(n,) = Q,
we may extend 7 uniquely to some element 7, € Gal(F(n,)/F). "We set
o=1 if p is odd, ¢ is not a square, 2 <n, < (p — 1),, and, for any
element B € F of order n,, we have BA = A; we set o = 7, otherwise.
Following the proof of Theorem 4.8, we see that K = Fo(np), k=[K:F],
and (o) = Gal(K/F).

By Lemma 4.7, we have that v, € #(A). Hence, by Lemma 5.3, there
exists some y € GL(n, ¢) such that det(y) = v, and y,(y) # 0. Hence, (1)
holds. Let I be the inertia group of ¢, in GL(n, ¢). Then, by Clifford’s
Theorem, there exists a unique extension p of ¢, to [ such that
Ind$™"9( p) = y,. The field of values of p is F(p) = F( x,). By Proposi-
tion 2.8, Q( x,) < Q(A). Since Q(A) N Q(n,) = Q, it follows that F(p) N K
= F. Hence, by Theorem 5.2, there exists some z € I such that det(z) = v,
and p(z) # 0 and [4,] = [K/F, o, p(2)*].

Let y be any element satisfying (1) We now show that x,(y)/p(z) € F*.
Let 7 € Gal(Q/F). Then TY, = ay,, for some a € Fl It follows that X
is induced from Res!'(a)p, and also from 7p. By the uniqueness in
Clifford’s Theorem, it follows that 7p = Resf'(a)p. Hence, 7( x,(y)) =
a(vy) x,(y) and 7( p(2)) = a(vy)p(2). Hence, x,(y)/p(z) € F*. Since the
value of [K/F, o, p(z)*] is not affected when we multiply p(z)* by the
norm of some element of K, and the norm of any element of F is its kth
power, we have that [K/F, o, p(2)¥] = [K/F, o, x,(y)*]. This completes
the proof of the lemma.

LEMMA 5.5.  Assume the notation of Lemma 5.4. Let v, be the 2-part
of vy. Then, the following hold:

(1) There exists some y € GL(n,q) such that det(y) = v, and
x(y) # 0.

(2)  For eachy satisfying the conditions of (1), we have that x,(y)* € F*
and, for some appropriate generator o of Gal(K/F), we have

[l = [K/F, o x0(0)].

Proof.  Since v, € A(\), we have that v, € #A(A). Hence, (1) follows
immediately from Lemma 5.3. Let y satisfy the conditions of (1). Let
n € F, be such that v = v, u. Then p has odd order and, by the
definition of »,, w is either the nth power or the 5th power of some
element of odd order dividing p — 1 of F,. Hence, in all cases there exists
some w € F, such that w” = p and o has odd order. Set x = y(wl) €
GL(n, g) to be the product in GL(n, q) of y with « times the identity.
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Then, det(x) = det(y)w” = v,. Let p be the unique linear character
contained in_the restriction of x, to Z(GL(n,q)), when viewed as an
element of F,. Then, x,(x) = p(w)x,(y). In particular, y,(x) # 0, and by
applying Lemma 5.4 we get

(] = [K/F, o, p(@) ()]

Since k is divisible by the full 2’-part of p — 1 and « has odd order
dividing p — 1, it follows that p(w)* = 1, and the results follow.

LEMMA 5.6. Assume the notation of Lemmas 5.4 and 5.5. Then, the
following hold.

(D) Ifp=2,0ornisodd, orn, > (p —1),, then [,] = 1.

(2) Suppose p is odd, 2 <n, <(p —1),, and q is a square. The
restriction of x, to Z(GL(n, q)) = F, is a multiple of some irreducible linear
character, which we denote by p. Let m be the order of p. Then, if
m, = (g — 1), we have [{,]1 = [K/F, o, —1] as an element of Br(Q(i,)),
and if m, # (¢ — 1), we have [,] = 1.

(3) Suppose p is odd, n, = (p — 1),, q is not a square, and, for some
(hence for all) element B € F, of order n,, we have BX = X. Then []=1.

(4)  Suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for
some (hence for all) element B € F, of order n,, we have B\ = A. The
restriction of x, to Z(GL(n, q)) = F, is a multiple of some irreducible linear
character, which we denote by p. Let m be the order of p. Then, if m, =
(g — 1, we have [] = [K/F, o, —1] as an element of Br(Q()), and if
m, #+ (g — 1), we have [,] = 1.

Proof. Suppose that, for some w € F,, we have " = v,. Let
ResZi@ ,(x)) = dp, where p € F, and d is a positive integer. Then, by
Lemma 5.5,

[¥] = [K/F,o-,)()\(a)l)k] = [K,F,o,p(w)k],

since d* is a norm.

If p=2or nisodd, w does exist because v, has order a power of 2. If
n, > (p — 1),, then v, = 1, so again w exists. In these cases k =p — 1
and o* = 1. Hence, if p =2, n is odd, or n, > (p — 1),, then [¢] = 1.
Hence, (1) holds.

Suppose p is odd, and n, > (p — 1),, and ¢ is a square. In this case, v,
has order 2(p — 1),/n,. Since q is a square, there exists some w € F, of
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order 2(p — 1), such that w" = v,. In this case, we have k = p — 1 and
o* = —1. Hence, [,] = [K/F, o, p(— 1)]. Hence, (2) holds.

Suppose p is odd, n, = (p — 1),, g is not a square, and, for some
(hence for all) element B € F, of order n,, we have BA = A. In this case,
vy =v"""Y and k = (p — 1)/2. Hence, v, = 1 and, taking o = 1, we
see that [¢,] = 1. Hence, (3) holds.

Finally, suppose p is odd, 2 <n, <(p — 1),, g is not a square, and,
for some (hence for all) element B € F, of order n,, we have BA = A. In
this case, v, = v"® Y and k = (p — 1)/2. Hence, the order of v, is
(p — 1,/n, > 1. Hence, we may take some w € F,; of order (p — 1),
such that " = v,. In this case, we have "= —1 and [¢] =
[K/F, o, p(—1)]. Hence, (4) holds. This completes the proof of this
lemma.

To handle the case not covered by the previous lemma, we need to
introduce further notation.

DEFINITION 5.7. Let A €%, and assume that p is odd, g is not a
square, 2 < n, < (p — 1),, and, for some (hence for all) element B € F,
of order n,, we have BA # A. We fix some element ¢ € F, of order
2(p — 1,/n,. Then, we define a map

5: Galr(A) —» C*

as fo}l\ows. Let o € Galr(A). Then, by Definition 3.1, there exists some
a € F, such that oA = aA. We set 8(a) = a(?).

PROPOSITION 5.8. The map & of Definition 5.7 is well defined. Further-
more, its values are 2(p — 1),/n,th roots of unity in Q(A), and & is a
crossed homomorphism; in other words, for all o,t € Galr(A), we have
6(o7) = 8(0)o(8(1)). In addition, if x € GL(n, q) is such that det(x) = t,
then, for each o € Galr(A), we have

a(x(x)) = 8(a)x(x).

Proof. By hypothesis, if B € E has order n,, then BA # A. By Lemma
3.2, it follows that the kernel of 8 does not contain .#(A). Hence, the index
of A(A) in F, is not divisible by n,. It follows that # € #(A). Now, for each
o € Galr()), by Definition 3.1, there exists some a € F,; such that oA =
al. By Lemma 3.2 Res’),(a) is uniquely determined by o. Hence,
8(o) = a(t) is well defined. Since 8(o) is the value of a linear character
on t,itisa (2(p — 1),/n,)th root of unity. Furthermore, « is the quotient
of some character in the support of A by some Galois conjugate of itself.
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Hence, all the values of a are in Q(A), aI}_q, in particular, so is (o). Let
o, 7 € Galr(A). Then, there exist a,y € F, such that oA = aA and 7A =
vyA. It follows that

otA = o o(yA) = (oy) aA.

Hence, we have 6(o7) = 8()o(8(7)), and § is a cross homomorphism.
Finally, let x € GL(n, ¢) be such that det(x) =¢. By Lemma 2.7 and
Theorem 3.3, we have

a(x0(x)) = a() x(x),

completing the proof of the proposition.

Remark. Note that, by Lemma 5.3, an element x € GL(n, ¢) such that
det(x) = ¢ and y,(x) # 0 does exist. Hence, we could also have defined &
in terms of any non-zero character value of y, on the set of elements
whose determinant is ¢, say, x,(x) # 0, by setting 8(o) = o( x,(x))/x,(x).

The following theorem describes the element of the Brauer group
associated to each irreducible character of SL(rn, ¢). Note that, in Theorem
4.8, we describe Q(4,) for each ¢, € Irr(SL(n, ¢)). The next theorem gives
[4,] € Br(Q(¢)) for each ¢, € Irr(SL(n, q)).

THEOREM 5.9. Let A € F,. Let i, be any of the irreducible characters of
SL(n, q) parameterized by A. Set F = Q(y) and K = F(n),), where n, is a
primitive pth root of 1. We take T to be an appropriate generator of
Gal(K/F). Then, the following hold:

(D) Ifp=2o0ornisodd, orn, > (p — 1),, then [] = 1.

(2) Suppose p is odd, 2 <n, <(p —1),, and q is a square. The
restriction of x, to Z(GL(n, q)) = F, is a multiple of some irreducible linear
character, which we denote by p. Let m be the order of p. Then, if
m, = (q — 1), we have [] = [K/F, 7, —1] as an element of Br(Q(y,)),
and if m, # (g — 1), we have [¢,] = 1.

(3)  Suppose p is odd, n, = (p — 1),, q is not a square, and, for some
(hence for all) element B € F, of order n,, we have BA = A. Then [4,] = 1.

(4)  Suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for
some (hence for all) element B € F, of order n,, we have B\ = A. The
restriction of x, to Z(GL(n, q)) = F, is a multiple of some irreducible linear
character, which we denote by p. Let m be the order of p. Then, if
m, = (q — 1), we have [,] = [K/F, 7, —1] as an element of Br(Q(y,)),
and if my, # (q¢ — 1), we have [¢,] = 1.
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(5) Suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for
some (hence for all) element B € F, of order n,, we have BA # A. Then,
there exists some element v € Q(A)* such that, for all o € Galr()), we have

a(y) =38(a)y.

Furthermore, for each such vy, we have that y?~' € Q) and [¢] =
[K/F,7,y" '] as an element of Br(Q(i)).

These five cases are mutually exclusive and cover all the irreducible charac-
ters of SIn, q).

Proof. Assume first that, for some p € E, A p) = (n). This means that
i, is the trivial character of SI(n,q). Of course, in this case [¢,] = 1.
We also are in Case (1), (2), or (5) of our theorem. If we are in Case (1),
the theorem holds. If we are in Case (2) then, by Proposition 2.5, m, <
(¢ — 1),, which implies that the theorem also holds. So assume we are in
Case (5). Set y' = p(¢), using the ¢ of Definition 5.7. It follows from
Definition 5.7 that 6(o) = a(y')/y/, for all o € Galr(A). This implies
that y'/y € Q*. Since y’ is a (p — 1)st root of 1, y?~! is the (p — 1st
power of a non-zero rational number. Hence, [K/F, 7, y” '] =1 and tljg
theorem holds in this case. We assume, henceforth, that for each p € F|,
M p) # (n).

Lemma 5.6 now tells us that (1)—(4) of our theorem hold. Hence, we
only need to show the remaining case, that is, (5). Suppose p is odd,
2<n,<(p—1,, q is not a square, and, for some (hence for all)
element B € F, of order n,, we have BA # A. Assume the notation of
Lemma 5.4 and Lemma 5.5. In our case, we have v, = v® and k = p — 1.
The element v, is the 2-part of v,, so v, has order 2(p — 1),/n,. We
identify v, with the element ¢ of Definition 5.7. By Lemma 5.5, there
exists some y € GL(n, ¢) such that det(y) = ¢, x,(y) # 0, and

[lﬂ/\] = [K/F’ 75 XA(y)p_l] :
By Proposition 5.8, for each o € Galr(A), we have

a(x(y)) =38(a)x(y).

Hence, an element with the properties listed in (5) for y does exist. Let
now y € Q(A)* be any element such that, for all o € Galr(A), we have

a(y) =8(o)y.
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Then, x,(y)/y € F* and (x,(y)/y)?~ ! is its norm from K to F. It then
follows that

[K/F. 7o) = [K/F 7y
Hence, the theorem holds.

This theorem becomes simpler to state for the characters of PSI(n, ¢).

LEMMA 5.10. Let A € F,. Let i be any of the irreducible characters of
SL(n, q) parameterized by A. Assume that the restriction of x, to
7Z(GL(n, q)) = Fiisa multiple of some irreducible linear character, which we
denote by p € F,. Let m be the order of p. Then i can be viewed as a
character of PSWn, q) if and only if m divides (q —1)/ged(q — 1, n).
Furthermore, suppose a € F,. Then ay, = x,, is an irreducible character of
GL(n, q) and its restriction to Z(GL(n,q)) is a multiple of the linear
character a'p.

Proof. Multiplication of the identity of GL(n, g) by the scalars of the
field F, provides the isomorphism between F;, and Z(GL(n,q)). The
intersection Z(GL(n, g¢)) N SI(n, q) is the subgroup of Z(GL(n,q)) of
order ged(g — 1,n), so it is in the kernel of ¢, if and only if m divides
(g — 1)/gcd(g — 1,n). The determinant function on Z(GL(n, q)) trans-
lates into the map F;, — F, which raises every element to its nth power.
Hence, the restriction of y, is indeed a multiple of the irreducible
character corresponding to a’p.

COROLLARY 5.11.  Let A € F,. Let i, be any of the irreducible characters
of SIn, q) parameterized by A. Set F = Q(4) and K = F(n,), where n, is a
primitive pth root of 1. We take T to be an appropriate generator of
Gal(K/F). Assume, furthermore, that s, can be viewed as a character of
PSL(n, q). Then, the following hold.:

(1) Ifp=2 nisodd, n,>(p—1,, qis a square, or, for some
(hence for all) element B € F, of order n,, we have B\ = A, then [¢,] = 1.
(2) Suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for

some (hence for all) element B € F, of order n,, we have BA # A. Then
there exists some element v € Q(A)* such that, for all o € Galr()), we have

a(y) =8(a)y.

Furthermore, for each such y we have that y*~' € Qi) and [§]=
[K/F,7,y"~ '] as an element of Br(Q(i)).

Proof. Suppose p = 2, or n is odd, or n, > (p — 1),, or q is a square,
or, for some (hence for all) element B € F, of order n,, we have BA = A.
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Then, we are in one of the cases (1)-(4) of Theorem 5.9. The corollary
holds if we are in Case (1) or (3). If we are in Case (2) or (4), then, by
Lemma 5.10, m, # (¢ — 1),, so that [¢,] = 1, and the corollary also holds
in these cases. Hence, we need to assume that p is odd, 2 < n, sA(p - 1),,
q is not a square, and, for some (hence for all) element 8 € F, of order
n,, we have BA # A. This implies that we are in Case (5) of Theorem 5.9.
Hence, the corollary holds in all cases.

6. REAL SCHUR INDICES

In the previous section we saw that the element of the Brauer group
[4,] € Br(Q(y,)) associated to each ¢, € Irr(SL(n, ¢)) can be expressed
explicitly as a cross product of the form [K/F, 7, y], where F = Q(i),
K = F(n,) (where ), is a primitive pth root of 1), 7 is a generator of
Gal(K/F), and y € F*. The Schur index m(4;) of ¢ is then simply the
order of this element of Br(F), and it is trivial if and only if y is a norm
from K.

For each p which is either % or a finite prime, there is the local Schur
index m p( ); see, for example, [3] for details. The local Schur index of i,
at p is the order of the image of [¢,] in the Brauer group of the
compositum of F and Q » (the field of real numbers if p = «, and the field
of p-adic numbers if p is a finite prime). Our goal is to calculate m ()
for all p and all ¢, € Irr(SL(n, ¢)). The (rational) Schur index of i, is
then the lowest common multiple of all the local Schur indices m (43, for
p running through o and all the finite primes.

In the present section, we calculate m_(¢,), the real Schur index of i,
for each irreducible character i, € Irr(SL(n, ). The character of order 2
of F, plays a special role in what follows, so we begin by fixing some
notation for it.

Notation 6.1. Assume that p is odd. Then, we denote by sgn the
element of F, of order 2.

Recall that, for each integer r which is relatively prime to m, we have
set o, € Gal(Q(n,,)/Q) be the unique automorphism of Q(n,,) such that
a,(n,) = 1.

PROPOSITION 6.2.  Let A € F,. Let i, be any of the irreducible characters
of SIn, q) parameterized by A. Then the following are equivalent:

(1) 4, has real values.

(2) There exists some o € E such that o_ A = al, and, furthermore,
if pis odd, q is not a square,2 < n, < (p — 1),, and, for any element 8 € F,
of order n,, we have BA = A, then p = 1 (mod 4).
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Proof.  The field of values Q(4,) is described in Theorem 4.8. Note, that
o_, is complex conjugation in Q(A). Hence, Galr(A) is contained in R if
and only if o_; € Galr(A). By Definition 3.1, o_; € Galr(2) if and only if
there exists some « € F; such that o_,;A = aA. The proposition then
follows immediately from Theorem 4.8.

COROLLARY 6.3. Let A € F,. Let i be any of the irreducible characters
of S n, q) parameterized by A. Assume that s, has real values and 4 <
n, < (g — 1),. Let the restriction of x, to Z(GL(n, q)) = F, be a multiple of
p € F,. Let m be the order of p. Then, m, # (q — 1),.

Proof.  Suppose m, = (¢ — 1),. By Proposition 6.2 and Lemma 5.10 we
have p~! = o_, p= a'p, for some « € F,. This means that p? = a "
The 2-part of the order of p* is (g — 1),/2 > 2, whereas the 2-part of the
order of o™ is at most (¢ — 1),/4. This contradiction completes the
proof of the corollary.

The following results describe the real Schur index of each irreducible
character of SL(n, ¢). This Schur index is, of course, always either 1 or 2.

LEMMA 6.4. Let A € F,. Let i be any of the irreducible characters of
SL(n, q) parameterized by . Then, the real Schur index m (i) is 2 if and
only if all of the following hold:

(1) n, =2, pis odd, and there exists some o € F, such that o_,\ =
aA.

(2)  Suppose q is a square. The restriction of x, to Z(GLn, q)) = F, is
a multiple of p € F,. Let m be the order of p. Then m, = (g — 1),.

(3) Suppose q is not a square and we have sgn A = A. The restriction of
X, to Z(GL(n, q)) = F, is a multiple of p € F,. Let m be the order of p.
Then, p = 1 (mod4) and m, = (g — 1),.

(4) If q is not a square and we have sgn A # A, then the order of « is
divisible by (p — 1),.

Proof.  Suppose first that m () = 2. By Theorem 5.9(1), p is odd and
2 <n, <(p — 1),. Furthermore, ¢, has real values so that, by Proposi-
tion 6.2, there exists some a € F, such that o_;A = aA. In addition, if ¢

is not a square, and, for any element 8 € E of order n,, we have BA = A,
then p = 1 (mod4).

Suppose that 4 < n,. Then, by Corollary 6.3, we have m, # (¢ — 1),. It
follows from Theorem 5.9 that, for some (hence for all) element B & E of
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order n,, we have BA # A. Furthermore, there exists some element
v € Q(A)* such that, for all o € Galr()), we have

a(y) =68(a)y.

Furthermore, for each such vy, we have y?~ '€ Q(¢,) and [¢] =
[K/F,7,y"'] as an element of Br(Q(i,)). Since m,(i) = 2, we must
have that y”~! is a negative real number. However, by Proposition 5.8,
8(o_)is a 2(p — 1),/n,)th root of 1. Hence, (6(o_,)?~D/? = 1. Since
o_(y) = 8(a_,)y, it follows that y»~1/2 € R, and this in turn implies
that y?~! is positive. This contradiction shows that n, = 2. Furthermore,
this argument also shows that if we are in Case (5) of Theorem 5.9,
m,(¢,) = 1, unless (p — 1), divides the order of 6(o_,). By Definition
5.7, this implies that, in this case, the order of « is divisible by (p — 1),.
Hence, if m (¢) = 2, it follows from Theorem 5.9 that (1)-(4) of our
lemma hold.

Conversely, suppose that (1)—(4) of our lemma hold. By Proposition 6.2,
Y, has real values. We use the notation of Theorem 5.9. Note that F is a
real field and K is not contained in R. Hence, if [¢,] = [K/F, 7, a] then
m,(¢,) = 2 if and only if a < 0. By Theorem 5.9, it follows immediately
that m(y,) = 2 if either ¢ is a square or if g is not a square and
sgn A = A. Hence, we assume that g is not a square and sgn A # A.
Hence, by Theorem 5.9(5), there exists some element y € Q(A)* such
that, for all o € Galr(A), we have

o(y) =68(0)y,

and, furthermore, y”~!' € Q(y) and [,] = [K/F, 7, y”~ '] as an element
of Br(F). By Definition 5.7, 8(o_,) = a(t), where ¢ is an element of order
(p — 1),. Hence, as the order of « is divisible by (p — 1),, it follows that
8(o_,) is a primitive (p — 1),th root of 1. It follows that y?~ /2 is not a
real number, for complex conjugation sends it to its negative. Hence, y? ™!
is a negative real number. Hence, m_(¢,) = 2 in all cases. The lemma is
proved.

THEOREM 6.5. Let A € F,. Let i, be any of the irreducible characters of
SL(n, q) parameterized by A. Then the real Schur index m (i) is 2 if and
only if all of the following hold:

(1) n, =2, pis odd, and there exists some o € F, such that o_,\ =
aA.

(2)  Suppose q = 1 (mod4). The restriction of x, to Z(GL(n, q)) = F,
is a multiple of p € F,. Let m be the order of p. Then, m, = (¢ — 1),.

(3) Suppose g = —1 (mod4). Then sgn A # A and the order of « is
even.
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Proof. By Lemma 6.4, we assume without loss that n, = 2, and p is
odd, and there exists some « € F, such that o_;A = aA, that is to say, we
assume that (1) holds. If ¢ is a square, then g = 1 (mod4), so the result
follows immediately from Lemma 6.4. Hence, we assume that g is not a
square.

Suppose p = 1 (mod4). Note that, since g is not a square, we have
(g — 1, = (p — 1),. The restriction of y, to Z(GL(n, ¢)) = F, is a multi-
ple of p € I’V\l Let m be the order of p. By (1) and Lemma 5.10, restricting
o_, x, to the center of GL(n, q), we have p~' = a’p. If m, = (g — 1),,
then the order of «” is divisible by (¢ — 1), /2 > 1, which implies that the
order of « is divisible by (¢ — 1),. Conversely, and similarly, if the order
of a is divisible by (¢ — 1), then m, = (¢ — 1),. It then follows immedi-
ately from Lemma 6.4 that the theorem holds if ¢ = 1 (mod 4).

Finally, assume that g is not a square and ¢ = —1 (mod4). Then, if
sgn A = A, by (3) of Lemma 6.4, m_(¢,) = 1, so that the theorem holds in
this case. Hence, we assume that sgn A # A. In this case, by Lemma 6.4,
since (p — 1), = 2, we have that m(¢,) = 2 if and only if the order of «
is even. This completes the proof of the theorem.

From the above theorem, we easily obtain the following, first proved by
Gow [6], which describes the real Schur indices in the case ¢ = 1 (mod 4).

COROLLARY 6.6. Let ¢ = 1 (mod4) be a power of a prime, and let  be
an irreducible character of SIUn, q), for some n. Then, m () = 2 if and
only if ¢ is real valued, n, = 2, and  does not have the central involution of
SL(n, q) in its kernel.

Proof. By Theorem 6.5, the corollary holds if n, # 2. Hence, assume
n, = 2. By Proposition 6.2, in this case, ¢ has real values if and only if (1)
of Theorem 6.5 holds. It is clear that the condition that ¢ does not contain
the central involution of SL(n,q) in its kernel is equivalent to (2) of
Theorem 6.5. The corollary then follows immediately from Theorem 6.5.

Unlike what was speculated in [6], however, the situation is quite
different in the case ¢ = —1 (mod4), as soon as n > 6. In the next
corollary we show that the real Schur index is totally unrelated to whether
or not the central involution is in the kernel for the set of irreducible
characters of each SI(n,q), as soon as ¢ = —1 (mod4), n, = 2, and
n > 6. A similar result was noted in [14] for the case n = 6.

COROLLARY 6.7. Let ¢ = —1 (mod4) be a power of a prime and let
n > 2 be an integer such that n, = 2. Then, there exist i, ,, 5, §, €
Irr(SL(n, q)) with the following properties:

(D) Py, ..., P, are all real valued.
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Q) ¢, and , can be thought of as characters of PSIn, q), and
and , do not have the central involution of SI(n, q) in their kernels.

(3) ¢, and ; have real Schur index 1, and , and W, have real
Schur index 2.

Proof. We may set ¢, to be the trivial character of PSL(n, q). We
define A, €%, as follows. We set A;(sgn) = (n — 1) and Ay(1) = (),
where (n — 1) and (1) represent the partition with only one row of length
respectively n — 1 and 1. Furthermore, we set A; to assign the empty
partition to every other element of Z. Clearly, A; € 7, so we set ¢; = ¢,
€ Irr(SL(n, q)). Since n — 1 is odd, the central involution of SL(n, g) is
not in the kernel of ¢;; see Proposition 2.5. Furthermore, we have
sgn A\, # A; (as n > 2) and o_,A; = A;. By Proposition 6.2, it follows that
i has real values and, by Theorem 6.5, m.(y;) = 1.

Let € F, have order (¢* — 1),. Note that 01 =0,0+ 0= 0,0 and
that 6, 67 € &,. When viewed as an element of F (see Deflmtlon 3 1), sgn
is simply 67 * D> the element of order 2 of F2. Hence, o_,0 = 6~ ' = sgn 67
and o_,07 = 077 = sgn 0. Furthermore, sgn 0 & {0, 69}. Set .=
0@+ 1D2/2 Then, + € %, has order 4, and o_,t. = sgn ¢ = o, # . Define
A(0) = L,(09) = (1), and A,(v) = A(sgn o) = (n — 4)/2), and A,(1) =
A, (sgn) = (1). We let A, assign the empty partition to all other elements of
Z.Then, A, €9, sgn A, # A,, and o_ A, = sgn A,. We set 5, = ¢ . It
then follows from Proposition 6.2 and Theorem 6.5 that ¢, has real values
and m_(¢,) = 2. Furthermore, by Proposition 2.5, ¢, can be thought of as
being a character of PSL(n, ¢).

Finally, we define A, with A,(6) = A,(69) = (1) and A,(v) = A,(sgn ¢)
= ((n — 2)/2), and by letting A, assign the empty partition to all the other
elements of . This time, we have that , = ¢ € Irr(SL(n, q)) has real
values, m (i) = 2, and the central involution of SI(n,q) is not in its
kernel. This concludes the proof of the corollary.

7. p-LOCAL SCHUR INDICES

In this section, we describe the local Schur indices m () for each
irreducible character ¢, € Irr(SL(n, ¢)), where p is the prime divisor of q.

LEMMA 7.1. Let A €%,. Let F be a p-adic completion of the field of
values Q(y) of ¢, € Irr(SLAn, q)). We let vy be the discrete valuation of F
normalized so that v.(F*) = Z. Let

R={xeF:v(x) =0}
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be its valuation ring, let p = {x € R: vp(x) > 0} be its unique maximal ide{z_l\.
If pis odd, q is not a square,2 < n, < (p — 1),, and, for any element B € F,
of order n,, we have BA = A, then we set d = (p — 1) /2, and otherwise we
set d =p — 1. Let m, be a primitive pth root of 1, and let K = F(n,). Let
a € F*, and assume that vp(a) = 0. Then a is a norm from K if and only if
the projection a € (R/p)* of a is the dth power of some element of R/p.

Proof. Since Q(A) is an extension of Q by p'th roots of 1, p is
unramified in the extension Galr(A)Y/Q. By Theorem 4.8, the field of
values Q() is as follows. If p is odd, g is not a square, 2 < n, < (p — 1),,
and, for any element 8 € F; of order n,, we have BA = A, then Q(y,) =
Galr( /\)’(\/5), where € € {1, —1} and p = € (mod4). Otherwise, Q(¢,) =
Galr(A). This means that in all cases any prime divisor of p is totally
ramified in the extension Q(i,)/Galr(A). Furthermore, the extension
Q()(n,)/Q(¢y) is totally ramified at any prime divisor of p and it has
degree d.

The extension K/F is Galois, totally ramified, and its degree is d. We
let vy be the normalized valuation on K and let 7 be a uniformizer for
Ug. We set 7 to be the norm in F of 7. Then 7 is a uniformizer of F.
Let S be the valuation ring of K and let p, be its maximal ideal. R is
contained in S and the inclusion map generates an isomorphism R/p —
S/pg. Let b € K*. We write b = bym}, where b, € K*, vi(b,) = 0, and
n € Z. Let ¢, be the norm of b,. Since the extension is totally ramified,
each element o € Gal(K/F) fixes each element of the residue field
S/p k. Hence, each element of Gal(K/F) fixes b,, the projection of b,
into the residue field S/p of K. Therefore, c, is the dth power of some
element of S/p k. Since ¢, € F*, we may also say that the projection of ¢,
in R/p is the dth power of some element of R/p. The norm of 7 is, by
definition, 7, so we have that the norm of b is an element of F* of the
form c, 7", where n € Z and the projection of ¢, in R/p is a dth power.
The set of all such elements of F* forms a subgroup of F* of index d. In
addition, for example, by Theorem (1.3) in Chapter III of [11], the set of
norms from K* into F* forms a subgroup of F* of index d. It follows
that the set of norms of K* in F* is exactly the set of all elements of F*
of the form c,m", where v;(c,) = 0, the projection of ¢, in R/p is a dth
power and n € Z. The lemma then follows immediately.

LEMMA 7.2.  Assume the notation of Lemma 7.1. Let q,, be p raised to the
odd part of the exponent of p in q. Then, |R /p|, the cardinality of the residue
field, is a square if and only if o, & Galr()).

Proof. The cardinality of a p-adic residue field of Q(A) is simply p
raised to the order of o, as an element of Gal(Q(A)/Q). The cardinality
of a p-adic residue field of Galr(A) is likewise p™, where m is the smallest
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positive integer such that g,” € Galr(A). Since the p-adic residue fields of
Galr(A) and of Q(¢) are isomorphic, it follows that the cardinality of the
residue field of F is a square if and only if o, projects into an element of

even order in Gal(Q())/Q)/Galr(A). Let :r;e Gal(Q(A) /Q) /Galr(A) be
the projection of o,, and generally denote by 7 the projection into the
quotient group of any element 7€ Gal(Q(A)/Q). By Definition 2.3 and
Definition 2.6, we have o, € Galg(\). Write g = p*>"?, where « is a
non-negative integer and B is a positive odd integer. We then have
g, = p”. Furthermore, since Galg(A) C Galr()), the order of g, is a divisor
of 2B.

Suppose that o, € Galr(A). Then the order of :r; is a divisor of B and
therefore odd. It then follows that the order of the residue field is not a
square, and the lemma holds in this case. Hence, suppose that o, &
Galr(A). Then, the order of o o, is not a divisor of B, and since it divides 2B
it follows that it is even. Hence the cardinality of the residue field is a
square in this case. Hence, the lemma holds in all cases.

THEOREM 7.3. Let A € F,. Let i, be any of the irreducible characters of
SL(n, q) parameterized by A. Let q, be p raised to the odd part of the
exponent of p in q. Then, the p-local Schur index m (i) is always 1 or 2.
Furthermore, it is 2 if and only if all of the following hold.:

(1) pisodd,2 <n, <(p—1),, qis a square, and there exists some
a € F, such that o, A = aA.

(2)  The restriction of x, to Z(GIn, q)) = F, is a multiple of E . Let
m be the order of p. Then, m, = (¢ — 1),

Proof. We assume the notation of Lemma 7.1. Suppose, first, that A
satisfies Conditions (1) and (2). Then, by (1) g, € Galr(A). It follows from
Lemma 7.2 that |R/p| is not a square. Completing the field Q(¢,) under a
p-adic valuation, we obtain, from Theorem 5.9, that the element of Br(F)
associated with ¢, is [K/F, 7, —1], where 7 is a generator of Gal(K/F).
Furthermore, m p( ) is the order of this element of the Brauer group. It
follows immediately then that, in our case, m p( ) is either 1 or 2. In the
notation of Lemma 7.1, we have d = p — 1. Since |R/p| is not a square, it
follows that —1€ |R/pl is not a dth power. Hence, by Lemma 7.1, —1 is
not a norm from K. Hence, m ,(¢;) # 1, which implies m (%) = 2. Hence,
the theorem holds in this case. It only remains to show that if A does not
satisfy (1)—(2) then m (¢) = 1.

Suppose A does not satisfy (1)-(2) and m (%) # 1. If p = 2, n is odd, or
n, > (p — 1),, then, by Theorem 5.9(1), we have m (¢;) = 1. Hence, p is
odd and 2 < n, < (p — 1),. Assume that ¢ is a square. Then, if (2) of our
theorem does not hold, then Theorem 5.9 yields m () = 1, a contradic-
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tion. Hence, in this case (2) must ‘hold, and, by our assumption, it follows
that there does not exist any o € F1 such that o, A = aA. In other words,
we have > 0, & Galr(A). By Lemma 7.2, this implies that |R/p| is a square.
Hence, —1€ R/p is a (p — Dth power. Furthermore, by Theorem 5.9, we
must have that —1 is not a norm from K, but this contradicts Lemma 7.1.
This contradiction shows that g is not a square.

Suppose now that for any element 8 € F, of order n, we have BA = A.
Then, by Theorem 5.9, we must have again that —1 is not a norm from K.
However, in the notation of Lemma 7.1, we have d = (p — 1)/2, and it
follows that —1 is the dth power of some element of R/p. Hence, by
Lemma 7.1, we have that —1 is a norm from K’.\This contradiction shows
that, for some (hence for all) element B < F; of order n,, we have
BA # A

By Theorem 4.8, the field of values of i, is contained in Q(A). Let L be
a completion of Q(A) under some extension of the valuation v, so that
F c L. By Theorem 5.9(5) there exists some element y € L™ such that, for
all o € Gal(L /F), we have

o(y) =68(0)y,

yP~te F*,and [] = [K/F,7,y?~ '] as an element of Br(F), where 7 is
a generator of Gal(K/F). Multiplying y by any integral power of p does
not affect its listed properties. Since p is unramified in the extension
L/Q,, it follows that we may assume without loss that y is such that
v;(y) = 0, where v, is the normalized valuation of L.

Let g, be the cardinality of the residue field of F. Then, by the
argument of the proof of Lemma 7.2, it follows that o, € Galr(A) and that
g, is the smallest power of p greater than 1 such that o, € Galr(}). By
Definition 2.3 and Definition 2.6, we know that o, € Galg()\) c Galr(a).
Hence, o, is a power of o,. Since ¢ is not a square, we have that

q
o, = o', for some odd integer u. By Definition 5.7, 8(a, ) is a 2“th root of

1q for some 2 a divisor of p — 1. Furthermore, since o, € Galg()), we
have 8(o,) = 1. Since & is a cross homomorphism (Lemma 5.8) and o,
fixes 8(q,), it follows that &(a,) = (8(a, )" = 1. Since u is odd, this
implies that 8(a, ) = 1. Hence, o,(y) = y This implies that y can be
thought of as a non-zero element of the residue field of F. Hence, y”~ ! is
the (p — Dth power of some element of the residue field of F. Hence, by
Lemma 7.1, it follows that y?~! is a norm from K. Hence, mp( ) =1
This contradicts our assumption and, therefore, concludes the proof of the
theorem.

COROLLARY 7.4. Let A € F,. Let i be any of the irreducible characters
of S(n, q) parameterized by A. Assume that s, can be thought of as being a
character of PSL(n, q). Then, m (¢) = 1.
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Proof.  Suppose m (¢,) # 1. By Theorem 7.3, p is odd and n is even,
and p has order divisible by (¢ — 1),. By Lemma 5.10, it follows immedi-
ately that i, cannot be viewed as a character of PSL(n, ¢). Hence, the
corollary holds.

8. rLOCAL SCHUR INDICES

In this section we describe the local Schur indices m,(y,) for each
irreducible character s, € Irr(SL(n, q)), where r is a (finite rational)
prime different from p, the prime divisor of gq.

DEFINITION 8.1. We let r be a (finite rational) prime with r # p, and
we let A € #. Suppose p is odd, 2 < n, < (p — 1),, g is not a square, and,
for some (hence for all) element B € F, of order n,, we have BA # A.
Then, we define Q(A,r), RGalr(A,r), and 3§, RGalr(A,r) - C* as
follows:

(1) Suppose r is odd. Then, we set Q(A, r) = Q(A), and we define
RGalr(A, r) to be the subgroup of Galr()) of those elements that fix every
r'th root of unity. Furthermore, we define §,: RGalr(A, r) - C* to be the
restriction of 8 (see Definition 5.7) to RGalr(A, r).

(2) Suppose r = 2. The restriction of y, to Z(GL(n,q)) = F, is a
multiple of p € F,. Recall from Definition 5.7 that § is defined after some
t € F, of order 2(p — 1),/n, has been fixed. Now fix further some ¢, € F,
such that ¢ = ¢* and some ¢ € C* such that {2 = p(t,). Then, we set
Q(A,2) = Q(A)(¢) to be Q(A) extended by ¢. We define RGalr(A, 2) to be
the subgroup of Gal(Q(A,2)/Q) of those elements which fix every 2'th
root of unity and which, when restricted to Gal(Q(A)/Q), are elements of
Galr(A). Finally, for o € RGalr(A,2), we let o, € Galr()) be its restric-
tion, and we set

8,(a) =8(ay)a(L)/ ¢

LEMMA 8.2.  Assume the hypotheses of Definition 8.1. Then, 8, is a group
homomorphism and its values are in the set {1, —1}. Furthermore, if r = 2,
¢ is a primitive (2m,)th root of unity in Q(A,2).

Proof. By Lemma 5.3, there exists some x € GL(n, q) such that det(x)
=t and x,(x) # 0. Let y be the value of the central character of x, on
the conjugacy class sum C of x. Then, y # 0 and, since for all the
summands y of C we have det(y) = ¢, it follows from Proposition 5.8 that,
for all o € Galr(A), we have

a(y) =8(a)y.
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Furthermore, y? is the value of the central character on C2. Let Z be the
subgroup of Z(GL(n, q)) of order (p — 1),. Then, ¢* is the determinant of
some element of Z, say z, € Z, and det(z,) = t*. Let v = p(z,). If r = 2,
we choose z, to be identified with #, so that we have {2 = v. In any case,
v is some m,th root of unity. Let y and y' be any GL(n, ¢q) conjugates of
x. Then, det(yy’) = t*. It follows that yy' = z,s, for some s € SL(n, q).
Furthermore, x,(yy') = vyx,(s). Hence, the value of the central character
of x, on C*is vf, where f € QResg 9 x,)) = Q(43); see Theorem
4.8. In other words, we have y? = vf.

Suppose first that r is odd. Let o € RGalr(A, r). Since v is an m,th
root of unity, by Definition 8.1, we have o(y?) = y% It follows that
6(o) € {1, —1}. Furthermore, since & is a cross homomorphism (Proposi-
tion 5.8), it follows that the restriction of § to RGalr(A,7) is a group
homomorphism. Hence, the theorem holds in this case.

Assume now that r = 2. Let o € RGalr(A,2). Let o, € Galr()) be the
restriction of o. Since y € Q(A), it follows that

8(ay) =oy(v)/vy=0(v)/7-

Hence, for each o € RGalr(A,2),

8y(a) = o (v ")/ (¥").

It is straightforward to check, from the above equation, that &, is a
crossed homomorphism. Furthermore, since y? = vf and {° = v, it fol-
lows that (y{')?* = f € Q(4). This implies that 8,(o) € {1, —1}, for all
o € RGalr(A,2). Hence, 6, is a group homomorphism also in this case.
This completes the proof of the lemma.

If p is an even prime of the ground field, there can be quadratic
extensions which are ramified at p but whose discriminant has an even
valuation by p. We could say, for lack of a better word, that, up to squares,
the extension has an odd discriminant. ( Note. Strictly speaking, the discrim-
inant of such an extension is still divisible by p, but, up to squares, it is
not.) For this reason, when r = 2, we will need to distinguish between two
types of extensions.

DEFINITION 8.3. We let A € . Suppose p is odd,2 < n, < (p—1,,q
is not a square, and, for some (hence for all) element 8 € F, of order n,,
we have BA # A. Then we say that 8,: RGalr(A, r) - C* has an even or
odd discriminant according to the following: Let ¢, be a 2-element of
largest possible order in Q(A,2). We let M, and M, be the set of all
elements of Q({,) which are fixed under the action of respectively
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RGalr(A,2) and ker(8,). By Definition 8.1 and Lemma 8.2, M, is an
extension field of M,, and its degree [M,: M,] = |8,(RGalr(A,2))| is at
most 2. If [M,: M,] =1, we say that §, has odd discriminant. Suppose
[M,:M,]=2. Let A> be the discriminant of the extension. Since the
extension M,/Q is totally ramified at 2, we let v be the normalized
valuation of M, dividing 2. Then, v(A?) is uniquely determined modulo 2.
We say that 8, has odd discriminant if v(A*) = 0 (mod2), and we say that
8, has even discriminant if v(A?) = 1 (mod2).

LEMMA 8.4. Assume the hypotheses of Definition 8.1. Let some element
v € Q(A)* be such that, for all o € Galr(A), we have o(y) = 8(o)y and
yP~' € Q(¢)*. Let v be a normalized r-adic valuation on Q(ys,). Then, the
following hold:

(1) Suppose r is odd. Then,

v(y?" ") = (p - 1)/|8(RGalr(A,r))| (mod p — 1).

(2) Suppose r = 2. If 8, has an odd discriminant, then p — 1 divides
v(yP™Y). If &, has an even discriminant then v(y?~ ') =(p —1)/2
(mod p — 1).

Proof. Let m be an element of largest 7'th order in Q(A). We set
F = Q()(n) and L = F(y). Let v, and let v, be normalized valuations
of F and L respectively, where v, divides v, which in turn divides v. We
set K = Q(A,r). It follows from Theorem 4.8 and Definition 8.1 that
RGalr(A, r) is the Galois group of the extension K/F. The extension
F/Q(4) is unramified at v, since n has r'th order. Hence, we have

o(f) =vp(f)  forall f€ Q)"

The extension L /F is totally ramified at v.

Consider first the case where r is odd. Then, it follows from Definition
8.1 that §,(RGalr(A, r)) is isomorphic to Gal(L/F). Suppose
|6,(RGalr(A, )| = 1. Then y € F*, and it follows that v.(y?~!) = (p —
Doy(y). Hence, v(y?~1) = v(y?~1) is divisible by p — 1. Therefore, the
lemma holds in this case. Henceforth, we assume that |§.(RGalr(A, r))| # 1.
Observe that, by Lemma 8.2, we have |8, (RGalr(A, )| = 2, so that [L : F]
=2 and y? € F*. Now since L/F is totally ramified and v, does not
divide 2, it follows that v;(y) is odd. Hence,

o(v? 1) = op(v" ") = (p = Dug(v) /2= (p = 1)/2 (mod p — 1).

Hence, the lemma holds if » is odd.



SPECIAL LINEAR GROUPS 305

Consider now the case where r = 2. We assume the notation of Defini-
tion 8.1. Let » = y{™!, and let E = F(v). It is straightforward to show
that, for all o € RGalr(A,2), o(v) = §,(a)v. Since §, is a group homo-
morphism with values in the set {1, —1} (Lemma 8.2), it follows that
Gal(E /F) is isomorphic to 8,(RGalr(A,2)) and that »> € F*. Note that,
since { is a root of unity,

v(y? ") = v((v(l)p_l) =v(vP ).
Hence, if &, is trivial then E = F, and it follows that

o) = vp(v?h) = (p = Dop(v)

is a multiple of p — 1. Since by definition 8.2 has an odd discriminant in
this case, the lemma holds if §, is trivial. We assume henceforth that §, is
not trivial. By Lemma 8.2, 8, is a group homomorphism and its kernel has
index 2. We have that E /F is a quadratic extension and that v> € F*. Let
M, and M, be as in Definition 8.3, and let A> € M}* be the discriminant
of the extension M,/M,. We have Q(¢{,) N F = M, and Q({,) N E = M,.
Hence, A? is equal to »? up to squares in F*. In particular, we have
vp(A?) = v(v?) (mod?2). It follows that

U(Vpil) =vp(v?71) = (p — Dg(v?) /2
(p— Vvp(A*) /2 (mod p — 1).

Since 2 is fully ramified in M,/Q and v, is an even valuation, v, divides
the unique even valuation v,, of M,. Since F = M,(n), v,, is unramified in
the extension F/M,. Therefore, v.(A?) = v,,(A*). The lemma then follows
immediately from Definition 8.3.

DEFINITION 8.5. We let r be a (finite rational) prime with r # p, and
we let A € 7.

(1) We denote by Ram(A, r) the subgroup of Gal(Q(A)/Q) of all
those elements that fix every r'th root of unity.

(2) We denote by g, the element of Gal(Q(A)/Q) which fixes every
r-element of Q(A)* and which raises every r'th root of unity in Q(A, r) to
its rth power.

LEMMA 8.6. Let A € F,. Let r be a (finite rational) prime with r # p.
Let F be an r-adic completion of the field of values Q(i) of ¥, €
Ire(SL(n, q)). We let v, be the discrete valuation of F normalized so that
vp(F*) = Z. Let m, be a primitive pth root of 1 and let K = F(n,). Let
d =[K:Flandlet a € F*. Then a is a norm from K if and only if d divides
vep(a).



306 ALEXANDRE TURULL

Proof. The extension K/F is Galois and unramified, and its degree is
d. We let vy be the normalized valuation on K. Let b € K*, and let ¢ be
the norm of b. Then vi(c) = dvg(b). As K/F is unramified, it follows
that vx(c) = vi(c) is a multiple of d. Hence, the norm of b is an element
of F* whose valuation is divisible by d. The set of all such elements of F*
forms a subgroup of F* of index d. In addition, for example, by Theorem
(1.3) in Chapter III of [11], the set of norms from K* into F* forms a
subgroup of F* of index d. It follows that the set of norms of K* in F*
is exactly the set of all elements of F* whose valuation is divisible by d.
The lemma then follows immediately.

LEMMA 8.7. Assume the notation of Lemma 8.6. Suppose p is odd,
2 <n, <(p—1),, qis not a square, and, for some (hence for all) element
B € F, of order n,, we have BA # A. Then, d, = (p — 1), if and only if
both of the following hold:

(1) ris a non-square modulo p.

(2) Let o be the image of o, in Gal(Q(A)/Q)/Ram(A, r) Galr(A).
Then, the order of o, is odd.

Proof. By Theorem 4.8, we have that Q(i,) = Galr(A). Let r* be the
order of the residue field of F. Then « is the order of o. Furthermore,
since K/F is unramified, the order of the residue field of K is r%®. Let S8
be the multiplicative order of » modulo p. Then, since K = F(n,), da is
the least common multiple of 8 and «. It is a standard result that
B, =(p — 1), if and only if r is a non-square modulo p. Hence, d, =
(p — 1), if and only if (1) holds and « is odd. However, since « is the
order of o, a is odd if and only if (2) holds. This concludes the proof of
the lemma.

THEOREM 8.8. Let r be some ( finite rational) prime different from p. Let
A € E,. Let s, be any of the irreducible characters of SL(n, q) parameterized
by A. Then the r-local Schur index m (i) is always 1 or 2. Furthermore, it is
2 if and only if all of the following hold.:

(1) pisodd, 2<n,<(p—1),, qis not a square, and, for some
(hence for all) element B € F, of order n,, we have BA # A.
(2) ris a non-square modulo p.

(3) Let g, be the image of o, in Gal(Q(A)/Q)/Ram(A, r) Galr(A) (see
Definition 8.5). Then, the order of o is odd.

(4) The map §,.: RGalr(A, r) — {1, —1} (see Definition 8.1 and Lem-
ma 8.2) is not trivial.

(5) Ifr =2, then 8, has an even discriminant (see Definition 8.3).
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Proof. Assume the notation of Lemma 8.6. Suppose first that (1) is not
satisfied. Then, by Theorem 5.9, either m,(¢,) = 1 or the element of the
Brauer group Br(F) associated with i, is [K/F,7, —1], where 7 is a
generator of the Galois group of K/F. However, vy(—1) = 0, so that it
follows from Lemma 8.6 that —1 is a norm from K. Hence, in any case,
m,(¢,) = 1. It follows that the theorem holds in the case where (1) is not
satisfied. We assume henceforth that (1) holds.

We assume the notation of Lemma 8.7. By Theorem 5.9, there exists
some y € Q(A)* such that y? '€ F* and [y,]=[K/F,7,y" '€
Br(F). By Lemma 8.4, v.(y?~") is divisible by (p — 1)/2. Suppose that
either (2) or (3) does not hold. Then, by Lemma 8.7, d, # (p — 1),.
Hence, d divides (p — 1)/2, and, by Lemma 8.6, y?~! is a norm from K.
This implies that m,(i,) = 1. Hence, the theorem holds if either (2) or (3)
does not hold. Henceforth, we assume that (2) and (3) hold. By Lemma 8.7,
it follows that d, = (p — 1),.

Suppose (4) does not hold. Then & is trivial, and it follows from
Definition 8.3 and Lemma 8.4 that v,.(y”~1') is divisible by p — 1. Since d
divides p — 1, it follows from Lemma 8.6 that y”~! is a norm from K and
m, () = 1. Hence, the theorem also holds in this case. We assume
henceforth that (4) holds. Analogously, if (5) does not hold, then r = 2,
and by Lemma 8.4 followed by Lemma 8.6 we again obtain m,(¢,) = 1.
Hence, the theorem also holds if (5) does not hold. We assume henceforth
that (5) holds.

In the case we have left, namely, when (1)—(5) hold, Lemma 8.4 yields
that v(y?~") = (p — 1)/2 (mod p — 1). Since d, = (p — 1),, it follows
that d does not divide v,(y?~'). By Lemma 8.6, this tells us that y”~ ! is
not a norm from K. Hence, m,(¢,) # 1. Since d divides p — 1 and p — 1
divides v((y?~1)?), then d divides v ((y?~1)?). It follows that (y”~1)* is
a norm from K and m,(¢,) divides 2. Hence, m, (i) = 2. This completes
the proof of the theorem.

9. GLOBAL PROPERTIES

Theorem 5.9, above, provides for each irreducible character ¢ €
Irr(SL(n, q)) a representative for the class [#] € Br(Q()) in the Brauer
group of Q(¢). We have seen that m (¢) < 2, for p any rational prime or
o (a fact originally proved by Gow [5]). Hence, [i/] can also be character-
ized by the values of m(¢) for all p a rational prime or =« (see, for
example, [3, Theorem 2.14]). In this section, we describe for each ¢ the set
of all p such that m (¢) # 1 and obtain some properties of these sets.
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DEFINITION 9.1. Let G be a finite group and let 4 € Irr(G). We set
M(4) = {p: p is a rational prime or  and m, () # 1}.

LEMMA 9.2.  Let A € F. Suppose that 8, is defined for A and &, has an
even discriminant (see Definition 8.1 and Definition 8.3). Let v € Q(A)™ be
any 2-element. Then there exists some o € Galr(A) such that o fixes every
element of odd order in Q(A)* and 8(o) #+ o(v)/v (see Definition 5.7). In
particular, the restriction of 8 to the subgroup of all the elements of Galr(A)
which fix every element of odd order in Q(\)* is not identically 1.

Proof. Suppose that, for all o, € Galr(A) such that o, fixes every
element of odd order in Q(A)*, we have 6(o) = o,(v)/v, where v &
Q(A)* is a fixed 2-element. Let ¢ be as in Definition 8.1. Then ¢ is a
2-element in Q(A,2)*, and, for every o € RGalr(2, 2), letting o, € Galr(A)
be its restriction, we have §,(a0) = 8(ay)o({™1) /¢ 1. It then follows from
our hypothesis that, setting u = v¢{~!, we have 8,(0) = o(u)/pu, for all
o € RGalr(),2). Here, u = v{™' € Q(A,2)* is a fixed 2-element. Setting
M, and M, as in Definition 8.3, we see that u?> € M, and M, = M,( ).
Since 8, has an even discriminant, Definition 8.3 implies that u” has an
odd 2-adic valuation, against the fact that it is a root of unity. This
contradiction completes the proof of the lemma.

Next, we describe for every irreducible character € Irr(SL(n, ¢)) an
easily computable finite set M such that M(y) € M. This, together with
the earlier results giving m (¢) for all p, provides both a description of
[¢] as an element of Br(Q(¢)) and the rational Schur index m (). In
order not to complicate the statement of the theorem, we do not try use
the smallest possible set M. In particular, Theorem 5.9 provides a number
of instances where M(y) is immediately known to be the empty set, but we
do not incorporate the full strength of these results into our next theorem.

THEOREM 9.3. Let A € F,. Let ¢, be any of the irreducible characters of
SL(n, q) parameterized by A. Then, the following hold:

(D) Ifp=2,0ornisodd, orn, > (p —1),, then M({) = &.

(2) Suppose p is odd, 2 <n, <(p —1),, and q is a square. Then,
M) < {, p}.

(3) Suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for
some (hence for all) element B € E of order n,, we have BA = A. Then,
M) C {=).

(4)  Suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for
some (hence for all) element B € I::I of order n,, we have BA # A. Let P())
be the set of all (finite) rational primes r, such that r is non-square modulo p
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and there exist o € Gal(Q(A)/Q) and a € E such that o has order a power
of 2 and fixes every element of ¥' order in Q(N)*, oA = aA, and the order of
a is divisible by n,. Then M(¢,) € P(A) U {}.

Hence, for each A, we have an easily computable finite set M such that
M) € M. For each element r € M, we then can compute m (i) using
Theorem 6.5, Theorem 1.3, and Theorem 8.8. This then computes M(is,) as
the set of all r € M such that m, () + 1. Hence, this describes explicitly [ s, ]
as an element of Br(Q(y)) in terms of its invariants. Finally, if M(,) = &
then mo(4y) = 1. Otherwise, my(h) = 2.

Proof. (1) follows immediately from Theorem 5.9(1). Suppose p is odd,
2 <n, <(p—1),,and g is a square. Then, by Theorem 8.8, we have that
m,(,) = 1 for all finite rational primes r different from p. Hence, (2)
holds. Suppose p is odd, 2 <n, <(p — 1),, g is not a square, and, for
some (hence for all) element B € F, of order n,, we have BA = A. Then,
by Theorem 7.3 and Theorem 8.8, if r is any finite rational prime, then
m,(¢) = 1. Hence (3) holds.

Finally, suppose p is odd, 2 < n, < (p — 1),, q is not a square, and, for
some (hence for all) element B € F, of order n,, we have BA # A. Let r
be a finite rational prime such that m, (i) # 1. We need to show that
r € P(A). By Theorem 7.3, m (¢) = 1, so that r # p. By Theorem 8.8(2, 4,
and 5), this implies that r is a non-square modulo p; 8, is not trivial; and
that, if » = 2, 6, has an even discriminant. If r is odd, by Definition 8.1,
there exists some o € Galr(A) that fixes every element of r' order in
Q(A)* and such that (o) # 1. By Lemma 9.2, such an element o exists
also when r = 2. If r = 2, then o has order a power of 2. If r # 2, then, by
Lemma 8.2, (o) = §(c) = —1 and §, is a group homomorphism, which
implies that, by replacing o by an odd power of itself if necessary, we may
assume that o has order a power of 2. Hence, the order of o is a power of
2 in any case. By Definition 3.1, o € Galr(A) just means that there exists
some a € F, such that oA = aA. By Definition 5.7, (o) # 1 then implies
that the order of « is divisible by n,. This shows that r € P(A) and
completes the proof of the theorem.

Walter Feit has studied some global properties of the centralizer algebra
for each irreducible character of some families of finite groups. In [3, 4]
Feit proves that, for every character ¢ of each of the families he considers,
he has |M(i)| < 2. These families include all finite simple groups of order
less than 10, the covering groups of each of the sporadic simple groups,
and other quasi-simple groups. In contrast, |[M(y)| is unbounded when
runs through the characters of the double covers of the alternating groups
[15]. The work of Gow [6] left open the question of whether or not |M(y))|
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could be bigger than 2 for € Irr(SL(n, ¢)). We now study M(), for
¢ € Irr(SL(n, ¢q)). We prove, in particular, that |M(y)| is unbounded.

THEOREM 9.4. Let p be any odd prime and let g be any odd power of p.
Let M = {ry,...,r;} be a set of odd primes different from p. Assume that r; is
a non-square modulo p, for i = 1,...,s. Assume, in addition, that the
number of primes r; for which p is a non-square modulo r; is even. Then there
exists some n and some A € F, such that §, € Irre(SL(n, q)) has rational
values and M < M(y5) € M U (2,0}, Furthermore, if r; does not divide
(g—1 fori=1,...,5 and s > 3, then we may view ¥, as an irreducible
character of PSIUn, q).

Proof. We only need to consider the case s > 1. Let sgn € E be the
element of order 2. Let d be the smallest positive integer such that
r, -+ r, divides g — 1, and let p: F, > C* be a linear character such that
| p(E)l =1, -+ r,. By Definition 2.1, p € &,. For i = 1,...,s, let m; be a
primitive r,th root of unity. Then, Q( p) = Q(1,,...,n,). We set

G,’ = Gal(Q(m,---,”fls)/Q(m,---,n;fl, 77;‘+1’---7775)-

Then, Gal (Q( p)/Q) is the direct product G, X --- X G,. Each G; is cyclic
of even order. We define 6 to be the unique linear character of
Gal(Q( p)/Q) which restricts to each G; as its linear character of order 2.

We now define A €. as follows. If o € ker(§), we let AM(op) = (1) be
the unique partition of 1. If o € Gal(Q(p)/Q) but o & ker(5), then we
set A(sgn op) = (1) (see Definition 3.1 for the meaning of the product of
sgn with an element of Z,). If s > 1 or r; = 1 (mod4), we further set
A1) = Msgn) = (1. If s = 1 and r, = —1 (mod4), we set, instead, A(1) =
A(sgn) to be the empty partition. In any case, we assign the empty partition
to all the other elements of Z.

It follows from our definition of A that, for each o € Gal(Q( p)/Q), we
have oA = A if o € ker(8), and oA = sgn A if o & ker(5). Using the
direct product decomposition of Gal(Q(p)/Q), we may write o, as a
product 7, -+ 7,, where 7, € G,. The 2-part of the order of 7; is (r; — 1),
if and only if g is a non-square modulo r; if and only if p is a non-square
modulo r;. Hence, 6(7;) = —1 if and only if p is a non-square modulo r;.
Since the number of such r; is even by hypothesis, it follows that §(o,) = 1,
which implies o, A = A. Hence, A € # (Definition 2.3).

Let n = deg(A) (Definition 2.3). If s > 1 or r; = 1 (mod4), then n =
240G =D-(ry,=1D.If s=1and r, = —1 (mod4), then n = (r;, — 1.
In any case, n, = 2. It follows from the definition of A that sgn A # A.
Hence, the hypotheses of Definition 5.7 are satisfied. We pick ¢t € F; of
order 2(p — 1),/2 = (p — 1),. From Definition 3.1 we have Galr(\) =
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Gal(Q( p)/Q). Furthermore, it follows from our choice of ¢ that the § of
Definition 5.7 coincides with the 6 we constructed above.

By Theorem 4.8, we have Q(¢,) = Q. Since ¢ is not a square, it follows
from Theorem 7.3, that m (y3) = 1. By Definition 8.1, RGalr(A, r,) = G;
and o, has order 2, for i = 1,...,s. Theorem 8.8 then immediately implies
that for odd finite primes r we have m, () = 2 if and only if r € M.

Finally, suppose that r; does not divide (¢ — 1) for i =1,...,s and
s > 3. Let u = Resj(sgn op), for some o € Galr(Q(A)/Q), but o &
ker(§). Since the order of w divides both g — 1 and the order of sgn p,
the order of u is at most 2. It follows that w is independent of our choice
of o. For similar divisibility reasons, Resi/(op) =1, for all o€
Gal(Q(A) /Q). The support of A consists of sgn gp for o € Gal(Q(A)/Q),
but o & ker(8), and op, for o € ker(8). The action of ¢, stabilizes both

q
of these sets. Let a be the number of orbits of a, in its action on the set

S = {sgnop:oe Gal(Q(A)/Q) but o & ker(5)}.

By Proposition 2.5, the restriction of x, to Z(GL(n, ¢)) is u*. The number
of elements of S is S| = (r, — 1)+ (r, — 1)/2. The orbits of o, on § all
have the same number of elements in them, namely, the multiplicative
order B of g modulo r, -+ r,. Since this order is the lowest common
multiple of the multiplicative order of ¢ modulo each of the r;, it follows
that the 2-part of B8 divides r; — 1 for some i, say, 8, |r, — 1. Since s > 3,
it follows that « = |S|/B is even. Hence, Z(GLAn, ¢)) is in the kernel of y,
and ¢, can be viewed as a character of PSI(#n, ¢) (see Lemma 5.10). This
concludes the proof of the theorem.

We now introduce some notation for the statement of the next corollary.
For G any finite group, we set

MM(G) = max{|M(¢)]|: ¢ € Irr(G)}

to be the maximum cardinality of all the sets M(i) as ¢ runs through the
irreducible characters of G.

COROLLARY 9.5. Let p be any odd prime and let g be any power of p.
Then if q is a square, then MM(SIn, q)) < 2. If q is odd and q is not a
square, then

limsup (MM(SL(n, q))) = limsup ( MM(PSL(n,q))) = =.

n— o n— o

Proof. Suppose q is a square. Then, by Theorem 9.3, MM(SL(n, q)) <
2, and the lemma holds in this case. Suppose ¢ is not a square. Using
Dirichlet’s Theorem, we may obtain, for arbitrarily large s, distinct odd
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primes ry,...,r,, different from p, and such that r, is a non-square
modulo p and not a divisor of ¢ — 1, for i = 1,...,s. Using Dirichlet’s
theorem and quadratic reciprocity, we may also find a larger prime r’
which is a non-square modulo p and is not a divisor of ¢ — 1, and for
which p modulo 7' is also a non-square. Adding the new prime r’ if
necessary to ry,...,r,, we may assume, in addition, that the number of
primes r; for which p is a non-square modulo r; is even. Set M =
{r,,...,r}. Then, by Theorem 9.4, there exists some n and some A €7,
such that ¢, € Irr(PSL(n, ¢)) € Irr(SL(n, ¢)) has rational values and M C
M(4,). This shows that there exist n with MM(PSL(n, q)) arbitrarily large.
This concludes the proof of the corollary.

These results show that |M(y)| can be arbitrarily large for ¢
Irr(SL(n, @), if we let n vary. Our next goal is to show that, on the other
hand, |M(i)| is always bounded above by n.

LEMMA 9.6. Suppose A € F and o € Galr(A) has order a power of 2.
Then, there exists some o € F,, such that oA = a) and, for each odd prime
r dividing the order of «, there exists some r-element a € Q(A\)* such that
o(a) # a.

Proof. Assume the lemma is false, and let A and o provide a coun-
terexample. Let P be the set whose elements are 2 and all the primes r
for which there exists some r-element a € Q(A)* such that o(a) # a. By
Definition 3.1, there exists some a € F; such that oA = aA. Among all
such «, we choose one whose order is divisible by the smallest number of
primes not in P. Let Q be the set of prime divisors of the order of «
which are not in P. By the minimality of our counterexample the cardinal-
ity of Q is as small as possible, but not zero. Pick some s € Q.

Write a = By, where B,y € F, are respectively the s-part and the
s’-part of «. Since s & P, o fixes 8 and ¢ normalizes each Hall subgroup
of f’\l Using repeatedly the fact that oA = aA, we obtain that A = B%YA,
where o is the order of o (a power of 2) and 7y’ is such that any prime ¢
dividing its order satisfies ¢ # s and ¢t € P U Q. Since the order of B is
odd, this implies that BA = y"A, where y” is again such that any prime ¢
dividing its order satisfies ¢ # s and t € P U Q. Then, we have aA = y"yA,
where y"y is such that any prime ¢ dividing its order satisfies ¢ # s and
t € P U Q. This contradicts our choice of « and completes the proof of
the lemma.

PROPOSITION 9.7.  Let q be any power of a prime, n a positive integer, and
¢ € Irr(SW(n, q)). Then, the number of finite primes in M(ys) is a most
n — 1. In particular, IM(J)| < n.
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Proof. Assume that the proposition is false, and let ¢ be a counterex-
ample. Let A €%, be such that ¢ is GL(n, q) conjugate to . If ¢ is a
linear character, then M(y) = &, and |[M()| <n — 1, a contradiction.
Hence, ¢ is non-linear and, in particular, n > 2. Hence, by Theorem 9.3,
we have that p is odd, 2 < n, < (p — 1),, and ¢ is not a square, and, for

—

some (hence for all) element 8 € F, of order n,, we have BA # A.

Let B € F] be of order n,. Then we have BA # A. Hence, there exists
some 0 € Z such that A(0) is not the empty partition and A(6) # A(87'9).
Let m be such that 6 € 77; We let t € F| be as in Definition 5.7 and we
let ¢, € F,, be a 2-element whose norm is ¢. Furthermore, we set v = 0(z).
Hence, v is a 2-element of Q(A)*.

Suppose 2 € M(y). Then, by Theorem 8.8, 8, has an even discriminant.
Hence, we may apply Lemma 9.2, which yields that there exists some
7, € Galr(A) such that 7, fixes every element of odd order in Q(A)* and
5(r,) # 7,(v)/v. Since the order of 7, is a power of 2, by Lemma 9.6,
there exists some «, € E, a 2-element, such that 7,A = a, A. This implies
that a5 '7,M(0) = X(0), so that 7,'(a,0) is in the support of A. Set
0,=1,"(a,0) € F,. If 6, = 6, then 75 "(ay(1)0(z,)) = 6(t,), which im-
plies 8(r,)v = 7,(v), a contradiction. Hence, 6, # 6. In addition, the odd
part of 6, coincides with the odd part of 6.

Suppose r € M(yy) and r is a finite odd prime. By Theorem 8.8, there

exists some 7, € RGalr(A,r), a 2-element, such that &(r,) = —1. By
Lemma 9.6 there exists «, € F}, a {2, r}-element, such that 7. A = «,A. By
Definition 5.7, «,(¢) = —1, which implies that n, divides the order of «,.

Set 6. = 7 (e,0) € F, and ¢, = 6,6 L. Since 7. € RGalr(A, r), r is odd,
and n, divides the order of «,, we also have that n, divides the order of
¢,. Since a; '1.A(0) = A(9), we have that A(6,) = A(6), so that 6, is in the
support of A. Furthermore, then {2, r)-part of 6, coincides with the
{2, rY-part of 6.

Suppose, for some finite odd r € M(4y), the r-part of 6, equals the
r-part of 6. Since the order of ¢, is divisible by n,, a power of it, ¢?, say,
can be identified with B~! when viewed as an element of f,; Repeated
applications of the identity a,'7,.A = A then yield, in particular, that
M1 ',)0) = M0). But (77 '2,)%0 = (77 'a,)* " ($,0) = ¢, since the or-
der of ¢, is not divisible by r. Since ¢ = B, this contradicts our choice
of 6. Hence, for each finite odd r € M(y), the r-part of 6, is different
from the r-part of 6.

Now the elements 6,, for r € M(i) a finite odd prime, are all distinct
and different from 6, as well as different from 6, if 2 € M(y). Hence, the
set {6} U {6, : r is finite, » € M(y)} is contained in the support of A and
has cardinality at least one more than the number of finite elements of
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M(4). This implies that n = deg(A) is at least one more than the number
of finite elements of M(i). The proposition then follows.

10.

11.
12.

13.
14.
15.
16.

17.
18.
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