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Abstract

We investigate products of finite abelian groups of bounded exponent as profinite structures in the
sense of Newelski. In such groups we describe orbits under the action of the standard structural group
of automorphisms. Then we conclude that such groups are smaltbrmal andn-stable. LetX be
a product of countably many finite abelian groups. We also investigate the influence of modifications
of the standard structural group Bfon its smallnessz-normality andn-stability.
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0. Introduction

A profinite structure is a profinite topological spakewith a distinguished structural
groupAut*(X) which is a closed subgroup of the group of all homeomorphisns od-
specting the appropriate inverse system. A profinite group in this context is an inverse limit
of finite groups with structural group preserving the group action. We say that a structural
group of a profinite structure (groug is standard if it is the group of all homeomor-
phisms (topological automorphisms) &f respecting the appropriate inverse system. We
say thatX is small if for every natural number > 0, on the seX” = X x --- x X there
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are countably many orbits under the actionfat*(X). Profinite structures and groups in
this sense have been introduced in [N2] and [N3]. Small profinite groups occur naturally in
model theory as profinite groups interpretable in small theories [N2]. Newelski has devel-
oped the model theory of small profinite structures. Many results from stable model theory
have been proven in this contemt-normality andn-stability (see Definitions 1.2 and 1.3)
play the prominent role in all these considerations.

Unfortunately, there have been very little explicit examples of small profinite groups so
far. Wagner has proved [W] that every smallstable profinite group has an open abelian
subgroup and has finite exponent. On the other hand, it is easy to see (Example 1) that not
every abelian profinite group (even with the standard structural group) of finite exponent is
small.

The main aim of this paper is to find new classes of examples of small profinite groups.
The main result is a classification of small products of finite groups with the standard
structural group (Remark 1.4, Corollary 3.2.2 and Theorem 4.2).

More precisely, in this paper we deal with products of countably many finite groups.
Such products can be naturally considered as profinite groups (see Section 1). Newelski
has pointed out [N2] that if a produdt = [ [,,, X; of finite groups is small, then almost
all X; are abelian and( has finite exponent. In this paper we show the convers¥: if
is a product of finitely many finite groups and countably many finite abelian groups of
bounded exponent with the standard structural group, hénsmall. This yields a new
class of examples of small profinite groups. We prove also that these groupsramnal
andm-stable.

Let X be a product of countably many finite abelian groups of bounded exponent. To get
more examples of profinite groups we consider some modifications (by changing the group
Aut* (X)) of the profinite structure aX. As a result we obtain a family of closed subgroups
of the standard structural group &f such thatX with any group of this family as a new
structural group isn-normal andmn-stable. We also prove that X is a product of finite
abelianp-groups (wherep is a prime number) of bounded exponent and we replace the
standard structural group &f by its Sylow p-subgroup, then the arising profinite structure
is still small,m-normal andn-stable. This is relevant to interpreting small profinite groups
in fields [K]. Finally we consider products of finite groups as inverse limits of arbitrary
inverse systems of finite subproducts. We describe when such products are small, and we
show that if such a product is small, then it is atsenormal.

Our results yield new classes of examples of small profinite groups. Moreover, they
show that in all classes of groups which we consider (i.e. in products of finite groups with
the standard structural group and with some non-standard structural groups) there is no
small but notn-normal profinite group. This means that the answer to the open question,
if there exists a small profinite group (structure) which is mehormal (see [N2,N3]), is
negative in all these classes of groups.

1. Preliminaries

We present here all necessary definitions and basic facts on profinite structures and
groups in the sense of Newelski. For the proofs and more details about profinite struc-
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tures and groups see [N2,N3,W]. We start from the general definition of profinite structure.
A profinite space is an inverse limit of finite discrete spaces with topology inherited from
the product of finite spaces of our inverse system.

Definition 1.1. A profinite structure is a profinite topological spacewith a distinguished
structural groupAut*(X) which is a closed subgroup of the group of all homeomorphisms
of X respecting the inverse system definiXig

A profinite group in this context is an inverse limit of finite groups with a structural
group preserving the group action. We say that a structural group of a profinite structure
(group) X is standard if it is the group of all homeomorphisms (topological automor-
phisms) of X respecting the appropriate inverse system. We denote a profinite structure
by (X, Aut*(X)). When it is clear what the structural group is we just witelt turns out
thatAut*(X) is always a profinite group acting continuously ®n

The simplest examples of profinite groups are products of countably many finite groups.
Let X = Higw X; be such a product. We consider it as the inverse limit of finite groups
X [n=]];-, Xi, n > 0, with the natural projections. The standard structural group con-
sists here of these automorphismsXfwhich induce automorphisms of eagh| n for
n > 0. Any other structural group of can be chosen as a closed subgroup of the standard
one. In the whole paper, fare X, by n | n we denote the first coordinates ofy.

Let X be a profinite structure, e.g. a profinite group. Aet X be finite. ByAut*(X/A)
we denote the set of elementsAdit*(X) fixing A pointwise. We say thaV C X is A-
invariant if f[V] =V for every f € Aut"(X/A). If V is additionally closed, then we say
thatV is A-definable. Aru € X is a name ofV when for everyf € Aut*(X) we have that
fIVI=V iff f(a) =a. Itis easy (see [N2]) that every definable $&has a canonical
name denoted byV ™. This name belongs not necessarilyXo but is of the forma/E,
wherea € X" andE is a@-definable equivalence relation off'.

Fora € X" and A C X we defineo(a/A) = {f(a): f € Aut*(X/A)} (the orbit ofa
overA). Let 0,(A) ={o(a/A): a € X"}. Each orbit is always a closed subsetafFrom
now onA, B, ... denote finite subsets of anda, b, ... denote elements or finite tuples of
elements ofX.

We say that a profinite structugé is small if |0, (9)| < w for every natural number
n > 0. EquivalentlyO1(A) is countable for every finite set C X.

Every small profinite structure can be enlargedst¥ by adding so called imaginary
elements, i.e. elements of the fow E, wherea € X" and E is a (-definable equiva-
lence relation onX”. Then, for every suctk, X"/E is still a profinite structure, where
the structural group is induced Byt (X) acting onX/E. Formally, X®9 is a disjoint
union of all spaceX/E, whereE is a@-definable equivalence relation off', equipped
with the disjoint union topology. TheAut*(X) acts continuously ox®%and we consider
(X®9, Aut*(X)) in the same way aéX, Aut'(X)). We see that canonical names belong
to X®9. For more details see [N2].

Two profinite structureq X, Aut*(X)) and (Y, Aut*(Y)) are isomorphic if there is
a homeomorphisny : X — Y such that the pullback functioff* mapsAut*(Y) onto
Aut*(X). We say that a profinite structuge is interpretable in a profinite structuie if
there is a continuous 1-1 mappirfgof X onto a setf(X) definable inY®9 over some



K. Krupinski / Journal of Algebra 288 (2005) 556-582 559

finite setA, such that the pullback function mapsit*(Y/A) onto a closed subgroup of
Aut*(X). It is easy to see that any profinite structure interpretable in a small one is also
small.

For a finiteA C X by acl(A) we denote the algebraic closure 4fi.e. the set of these
elements ofx®dwhich have finitely many conjugates undiut(X/A).

For every finiteA, B € X we have that(a/AB) (AB denotesA U B) is open or
nowhere dense in(a/A). In the first case we say thatis m-independent o3 over A
and we writed"| 4 B, otherwisex is m-dependent oB over A and we writez' /. 4 B.

In small profinite structures-independencél. has similar properties as forking inde-
pendence in stable theories.

1. (Symmetry) For finited, B, C € X we have that"| ¢ B iff B"L ¢ A.

2. (Transitivity) For finiteA € B € C € X anda C X we have thati'| oC iff d"l 3C
anda.l 4B.

3. (Extensions) For every finite, A, B C X there is some’ € o(a/A) with a’"] 4B.

4. a € acl(A) impliesa'l 4 B for every finiteB C X.

Definition 1.2. The rankM is the function from the collection of orbits over finite sets to
the ordinals together witho satisfying

Ma/A)>a+1 iff thereisaB D A witha'L 2B andM(a/B) > a.

X is m-stable if every orbit has ordinal1-rank. Equivalently there is no infinite se-
guenceA; C Ay C --- of finite subsets o anda € X such thato(a/A;+1) is nowhere
dense irv(a/A;) for everyi. We say thatX hasM-rankn if the supremum of\1-ranks
of 1-orbits inX equals:.

Definition 1.3. A profinite structureX is m-normal if for every finitea, A C X, there is a
clopenU > a, such that/ No(a/A) has finitely many conjugates undéut (X /a).

In the above definition we can chooselas canonical open neighbourhoodwgfwhere
by a canonical open setin

X=lmx; c[[x:
we mean the set of elementsXfwith theith coordinate fixedi(is arbitrary). A canonical
open set inX” is a product of canonical open setsin

It is worth noticing thatz-normality andm-stability have been investigated so far only
under the assumption of smallness [N2,N3]. This is because under the assumption of small-
ness these notions have good model-theoretic properties.

We recall here the remark of Newelski [N2].

Remark 1.4. If a productX = [];., X; of countably many finite groups is small, then
almost allX; are abelian and has finite exponent.
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Denote byAut*(X) the standard structural group of a profinite structkird_et G; and
G be closed subgroups #ut*(X). By a simple calculation we obtain

Remark 1.5. If G; and G are conjugate irdut*(X), then(X, G1) is small ¢z-normal,
m-stable) iff (X, G2) is small z-normal,m-stable).

We end this general part by a remark thahormality is invariant under fixing finite
subsets of. More precisely, for a finite subsstof a small profinite structur& (Aut*(X)
is not necessarily standard), we have

Remark 1.6. (X, Aut*(X)) is m-normal iff (X, Aut*(X/B)) is m-normal.

Proof. (—) is trivial.

(<) In the proof we use properties of listed earlier. Consider finite, A € X as
in the definition ofm-normality. Without loss of generality we can assume thatl B.
Now from the assumption we can choose a canonical open neighbourhedd &f' such
thato(a/AB)NU = o0(a/A) N U ando(a/AB) N U has finitely many conjugates under
Aut*(X/aB). So"o(a/AB)N U™ € acl(aB).

To finish our proof it is enough to show that(a/A) N U " € acl(a). Suppose for a con-
tradiction that o(a/A) N U™ ¢ acl(a). Of course we have th&b(a/A) N U € acl(aA).
Using this andd" , B we get™o(a/A) N UL ,B, s0"o(a/A)N U™ ¢ acl(aB). Thisis a
contradiction. O

The same is true for-stability. Namely, for a small profinite structudewe have
Remark 1.7. (X, Aut* (X)) is m-stable iff (X, Aut*(X/B)) is m-stable.

Proof. (—) is trivial.

(<) Suppose for a contradiction that there are finite dgts A1 C--- C X anda € X
such thata £ 4, A;+1 for all i € w. Using properties ofL we can findB’ € o(B) such
that B” LaA_; for all i € w. This implies thata L g 4, B'A; 41 for all i € w, so by the
automorphism we can find arf andAy € A € --- € X such that:’ L g4 BA[, for all
i € w. This is a contradiction. O

Notice that Remark 1.7 follows directly from the standard fact th&erank is invariant
on m-independent extensions, i.eaifl 4 B, thenM(a/A) = M(a/AB). This also gives

the following remark.

Remark 1.8. The M-rank of (X, Aut*(X)) equals theM-rank of (X, Aut*(X/B)).

2. Themain technical lemma

The following group theoretic lemma is essential in the paper.
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Lemma2l LetX = Xg x X1 x --- x X, be afinite product of finite abelian groupsbe
the exponent ok andn < w. If we have finite subgroup$ and B of X, an isomorphism
f between them and € X, 8, € X | n such that

Yae A(YkeZ)Ym<w+1) (klalmek]|fa)]m)
and
(Ya € A)(Vk,l € Ze)(Ym <n) (k| (a[m—alm)&k|(IBy [m— f(a)]m)),
then there exists &,+1 € X | n + 1 extendings,,, such that
(Va € A)(Vk,l€Z) (k|(aln+1l—aln+1)&k|(Bus1— f(a) [n+1)).

Forn = 0 there is ng3p and then Lemma 2.1 says that there exisfis & X satisfying
the last condition.

Proof. At the beginning we reduce the lemma to the case whekK;adlre p-groups for a
prime numberp. So let us assume that the lemma is true in this case. We writeX¢ach
in the formY;1 & - -- @ Y;;;, whereY;; is a p;;-group for a prime numbep;; (p;j, # pij,
for ji1 # j2). Let P ={p1,..., pu} ={pij: i <w, j < j;}. Foreachi <w andp e P
let Y;;, be the p-group if such ani, < j; exists, otherwise we puk;;, = 0. Then for
eachp € P we use our lemma for the produﬁigw Y;;, and we get that the lemma is
true without any extra assumptions. More precisely, denoter byhe projection from
X onto Higw Yii,. Of course f induces an isomorphisnf, : 7,[A] — 7,[B] and we
easily see that,[X] = Higw Yii,, wplAL 7p[Bl, fp, 7wp(at) and the projection o8, onto
[li<n1Yii, satisfy the assumptions of our lemma. So we can figda , € [];, Vi
satisfying the conclusion of the lemma. N@, 1 := Zpep Bn+1,p does the job.
Assume tha¥ is a p-group for a prime numbes. ThenX,, = (§1) ® - - - ® (&), where
(i) =Z,;. Lete = p® be the exponent ok. Without loss of generality we can assume
thatn = w. ThenX [ n+ 1= X. We have to show that there i$fa, 1 2 8, in X such that

ip

(Vae A(Vs,r<g) (p"|(P'a—a)e p’|(p Bur1— f(@)).
So itis enough to show that
Vae A)(Vs,r<g) (p'| (P a—a)=p"| (P Bur1— f(@)) (A)
and
Vae A(¥s,r<g) (P | (pa—a)=p*| (P Brsr— f@)), (B)

wherep® || x means thap® is the highest power gb dividing x.
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First we will find ag,+1 satisfying (A), and then we will modify it to satisfy (B). For
n € X [ mandm’ <m by g we denote the:'th coordinate of;. Let

m; =max{m: m =s —r, wheres, r <l; andp® | (p"« — a) for somea € A}.

We chooser;, s; < [; such thatm; =s; — r; and p* | (p"ia — a;) for someq; € A. Of
course we have that; > 0, sor; < s;.

Claim 1. There exists &,+1 2 B, such thatp’ (B,+1) ) — f(ai)@w) € @j#i (&;) for all
i=1... k.

Proof. pS | (p"ia — a;) andr; <s;, SO p'i | a;. From the assumptions of the lemma we
getp’i | f(a;), so the existence of approprigdg, ;1 is obvious. O

Let 8,+1 be as in the above claim. Leti < k.

Claim 2. If p® | (p"a — a) for somea € A, then p"(Bu+D ) — f@w) € (P°&) +
@j;éi (&)

Proof. Without loss of generality we can assume that/;. There are three cases.

Case l.r > s. Then we have successively

ps |a - PS | f(a) - ps | (pr(ﬁn+1)(n) - f(a)(n))
and finally p" (B0 — £ (@) € (&) + @i (E))-

Case 2. r > r;. We have thap® | (p"ia — a;) and p* | (p"a — a), SO pMinG-r=ri+si) |
(p""ia; — a) and finally

PN | (5P (ap) — f(a)).

On the other hand, using the assumption alfut (Claim 1), we obtain

P BurDwy — 2" @)y € EPE).
J#i

From these two statements we get that

P By — F@w € (p™ g ) + DE)).
J#L

Sincer +s; —r; =r +m; > s we get what we need.
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Case 3. r < s andr; > r. Similarly as in the previous case we ggfinsi-7i—r+s) |
(p'i~"a — a;). We have also that; — r;, = m; > s — r. As a consequence we get
P (P a — ap), S0

P (P fla) — flap).

We know thatp® | (p"a« — a) andr < s, so p” | a, which implies thatp” | f(a). Hence
there is g8,  , 2 B, such that

P’ (ﬂr/z+l)(n) = f@w-

Combining the last two statements we get th&t’: " | (p”i (ﬂ1/1+1)<n) — fla)m)-
Using this we can find &5,/{+1)(n) satisfyingp®~" | ((/3,’[+1)(n> - (ﬁ,’l+1)(,1)) and

P (Brea) oy = f @) ()
Then we have also that
P (P (Byia) oy = f@aw)- (t1)

From () and the assumption that (8,+1) ) — f(ai)m) € @#i (€;) we obtain that
P ((Bu+D ) — By ) m) € D (€)). We know that; <1;, hence

BurDn = (Br1) oy € (P"78) + EDIE).
J#

Howeverl; —r; >s; —ri=m; >s —r, SO

B+ ) — (ﬂr/l,+l)(n) € (ps_r&') + 69(51)'
J#l

Using this together witlit 1) we end the proof of the claim.O

From Claim 2 we conclude that o@y, 1 satisfies conditiontA).

Now we take aB,1 satisfying condition(A) and we are going to modify it to sat-
isfy (B). When p* || (p"a — a) and p**1t (p"a [ n — a | n), then we have thap® ||
(p" Bns1 — f(a)) without any modifications 0B,.1. If p° || (p"« —a) andp**1 | (p"a |
n—a | n), then there is ah < k such that” e, — apy ¢ (p* &) + @D, (&) Then, of
courses < I;.

Claim 3. If we additionally assume that— r < m;, thenp® || (p" Bu+r1 — f(@)).

Proof. There are two cases.
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Case 1. r > r;. We havep® || (p"a —a), p" "™ | (p"a — p"ia;) andr +s; —r; =
r+m;>s,s0p* || (p""ia; —a). Thenp® || (p" 7" f(a;) — f(a)). On the other hand,
P (P Buyr — p" T f(a)). Finally we getp® || (p" Bui1 — f(a)).

Case 2. r < r;. From the assumptions we hapéo(,) — ap ¢ (p* &) + @D, (&) and
ri—r+s<r;+m; =s; <l;, S0 we get that

pria(}’l) _ pr,‘—ra(n) ¢ <pri_r+s+léi>+@<§j)~
J#

On the other hand, from® | (p"a — a) we getp”i~"*5 | (p"ia — p"i~"a). Hence
pr,-—r—s—s ” (pr,-a _ pr,-—ra)'

Using this and the assumptiopg’ | (p"ia — a;) ands; > r; —r + s we getp”its=" |
(p'"""a —aj), SO

P (P f@) = fan).
We know also thap® | (p"i B,+1 — f(a;)), therefore
P (P (P Burs — f(@)).
However,p* | (p" Bnt+1 — f(a)), hencep® || (p" But1— f(a)). O

Let B consist of thesér,s,a) € {0, 1,...,¢} x {0,1,..., g} x A for which

Lyl (e —a).
2. Y (P’ aln—aln).
3. Foreveryi <k, if p oy —am) ¢ (phLlé,') + @j;éi &), thens — r =m;.

From Claim 3 and the observations just before it, it is enough to majify to satisfy
condition(B) only for triples(r, s, @) € B and preserve conditioff) in its full generality.

We define an equivalence relatienon B as the transitive closure of the relation
defined as follows:

(r,s,a) NO (r/,s/,a/) <=>
3 <k plow —am ¢ (p*TE) + @) andp” ) —af, ¢ (P E) + @D E)).
J#i j#i

For i in the above definition we hawe s’ < I;. We presentB as the disjoint uniorB; U
---U By of ~-equivalence classes. Let

Cp= {&'3 (A, s,a) € Bh)(Pra(n) —am) ¢ (p”l&') + @(S,j))}
j#i
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for h < S. Then the set€),, h < S, are pairwise disjoint. From the definition &f and
relation~ we have thatvé;, , &, € Cy)(m;; = m;,). So let us denote by/;, this common
value ofm; for all §; € Cj,. Of course M, > 0.

For(r,s,a) € By, let

Risa= maX{R: pRrs H pRa(n) — pR_ra(n)}.
Forh < S let
R, = min{R,,S,a: (r,s,a) e Bh}.
Let us notice that for(r,s,a) € B, andr < R < R, 5, we have thattR,R — r + s,
pR_’a) € By,.

We defineT, ={a € A: (Ry, s, a) € By}, heres uniquely determined by = R, + Mj,.
For (Ry,s,a) € By, let

CRys,a = {Sii PRragy —aw ¢ (p*TE) + @@j)}-
JF#

Then, of course,

U CRh,S,l/l g CI’L (b)
(Rp,s,a)€By

and for eaci Ry, s, a) € B, we have that

Cry.s.a 9. (bb)

On the other hand, by the definition 8fwe have that all elements in the get,: a €
Ty} are equal module®X,,. This together with(b) and (bb) implies that in{a(,): a € T;}
there are less thapl#! elements modulg**1X,,. From the definition o8 we also know
that in the sefa | n: a € T;} all elements are equal moduld™1X | n. SoinTj, there are
less thanp!C:l elements modulg**t1X. Hence the same is true for the s&i7},]. This
gives us that

in the set{ f (a)(): a € Ty} there are less thapl“! elements modulg®t1X,,. (%)
Now we can already modif@,, 1. Fixanh < S.

If for every (ﬂr/z+l)(”) € X, satisfying(ﬁ;lJrl)(n) — (BntD ) € @iech (pMnrg;) we could
find (Ry, s, a) € By such that

PR (Brit) oy — f @y € (P E) + P &),

ieCy J¢Ch
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then we would get a contradiction with). Hence we conclude that there exisﬁégl 2 B
such that

(BY)1) oy = Brrd € D (™ &1) (©n)

ieCy

and

(V(Rh,s.a) € By)(3i € Cp) (pR'l (B oy — F @ # (P 8:) + EB(&,»). (O<n)
JF#

We choose such a(fjr)l for everyh < S. Let us define @, , 2 B, by

N
(ﬂ:;+1)(n) = (Bu+Dm) + Z((ﬂfl)l)(n) - ('3"+1)(n))-
h=1

Using (<) for all = < S we obtain

(Br41) ny = Br+Din) € @ @(thE,-). ©)

h<SieCy,

The setsCy, h < S, are pairwise disjoint, so usin@>,) and (<) for all A < S we
conclude that

(Vh < S)(Y(Rp, s,a) € By)@3i € Cp)

(pRh (Bre1) oy = @y ¢ (0 26:) + €B<s,,~>). (©0)
J#i

For such a choice Oﬁr/1+1 condition (A) is still satisfied. Indeed, assume thza‘f |
(p"a —a). Then

P | (P Bus1 — f(@)).

We have thap’ﬁjwl — fla) = p’(ﬁ,’l+l — Bui1) + (p"Bus1 — f(a)). Our aim is to show
that for alli < k we havep” (B)  )w) — f(@w) € (V&) + @D, i (&) Soleti <k. If
& € Cy, foranh < S, then applying the inequality+ Mj, = r 4+ m; > min(s’, ;) and (<)
we obtain thatpr(ﬁ,’lﬂ)(n) — f@m € (ps/éi) + @#i (€;). Otherwise the same conclu-
sion is obvious from<>).

Condition (A) for g, . , together with(<><>) imply that

Vh <) (YR s,a) € Br)  (p° | (P™ (Brya) oy — F @w))- (®)
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We have obtaine@,  , as a modification of, 1. Denoteg,  , once again by, 1.
We will show that this new,, . 1 is appropriate.

We have showed that our ngsy, 1 satisfies conditioriA), so it is enough to prove that
it satisfies conditior{B) for all triples (r, s", a) € B.

Let (r,s’,a) € B, ands = R, + M, foranh < S. Thens’ —r =s — R, = M. There
are two cases.

Casel.r <Ry.

By the definition ofR, we haver < R, < R,y 4, SO(Ry, Ry —r +s', pRi="a) € By,.
From (1) we getp® || (pRnBn41 — pR»~" f(a)). Using condition (A) and = s’ + R, — r
we obtainp®’ || (p" Bui1 — f(@)).

Case2.r > Ry,.

By the definition ofR; we can find a(r1, s1,a1) € By such thatR, = Ry, 5;.4;- SO
(Rn, Ry, — r1 + s1, p®"1a) € B,. ThenR, — r1 + s1 = s and letb = pR~"14. From
the definition ofR,, s, ,, we getp” ~Rits+l | (pra — pr=Ripy. Butr — R, +s +1=
r+ My +1, so

prJrMthl | (pra _ prthb)' (,)
We have also that*' || (p"« — a), S0 p" M || (a — p"~Rub), hence
P (f@) = p" R B)). ()

Suppose for a contradiction that +1 | (p” 8,11 — f(a)). Then using!!) we getp” ¥ ||
(p" But1 — p"~Ruf(b)). On the other hand, froni!) we get p"tMi*1 | (p" B, 11 —
p"~Ru £(b)). This is a contradiction. O

3. Productsasinverselimits of initial subproducts

In this section we consider products of countably many finite groups as profinite groups
as it was described in Section 1, i.e. as inverse limits of the systems of all initial subproducts
with the natural projections.

3.1. Description of orbits

Using Lemma 2.1 we will describe orbits in products of finite abelian groups under the
action of the standard structural group.

Let X =[], Xi, where allX; are finite abelian groups and let the exponewf X
be finite. SoX is a module ove?Z, =7Z/eZ. Leta = (a1, ..., ) be a tuple fromX and
A be a finite subset oK. We are going to investigate orbits ov&rin the profinite group
X with the standard structural group. It is easy to seedli@tA) = o(«/Lin(A)), where
Lin(A) denotes the submodule &fgenerated byl. So without loss of generality we can
assume thatl is a submodule oX. From now on, every time when we investigate orbits
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over a finite sed we can and do assume thais a submodule ok . Recall that fom € X,
by n [ n we denote the first coordinates ofj.

Lemma 3.1.1 (Description of orbits)o(a/A) = U, whereU consists of elemense X™
suchthatforalla € A,k € Z., 11, ...,1,, € Z. andn > 1 we have

k‘ (iliai [n—a [n) — k‘ (iliﬂi [n—a [n)
i=1

i=1

The above lemma is enough to prove that products of finite abelian groups of bounded
exponent, considered with the standard structural group, are smalgrmal andm-
stable (see Theorem 3.2.1). However, to get similar results for products with some non-
standard structural groups we need a more general description of orbits. Namely, let
a = (o1, ...,q,) be atuple fromX [ m1 x --- x X [ m,, for somems, ..., m, € o U {w}
and A be a subset of J, ., X [ 7. Since we are going to investigate orbits ovein
the profinite groupX with the standard structural group, we can assumeahiatclosed
on restrictions (i.,eANX [n={n [ n: ne A}, forn e w)andA N X | n is a submodule
of X | n for everyn € w U {w}.

Lemma 3.1.2 (Generalized description of orbits)(«/A) = U, whereU consists of el-
ementsp € X [ my x --- x X | my, such that for alln > 1, ae ANX | n, k € Z,
I1,...,ln, € Z we have

k’(iliai[n—a) — k‘(ilﬁﬂn—a),
i=1 i=1

where in the case of > m; we do not have theth summand in both sun}s’_ ; /i [ n
and Z;»n:lliﬁi [I’L

Proof. Only the inclusioro(a/A) 2 U requires an explanation.
Take aB € U. It is enough to show that for eaah > 1 there exists an automorphism
f € Aut*(X [ w) such that

(1) Foreveryj <w,if j <m;, thenf(a; [ j)=pg; [ jfori=1,..., m.
(2) Vi<w)(Vne ANX i) (f(n)=mn).

We prove this by induction ow.

Assume that for av > 0 we have anf € Aut*(X | w) satisfying (1) and (2). We will
show that there is aft’ € Aut*(X | w + 1) satisfying (1) and (2) (fow + 1 instead ofw),
such thatf’ | w = f (if w =0, then we do not havg¢ and we just want to find aff’ €
Aut*(X [ 1) satisfying(1) and(2)).
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The assumption that € U implies that there is an isomorphisfa between submodules
CoandDgof X Jw+1generatedbyAN X [w+ 1D Uf{ar [w+1,...,a, [ w+1}and
ANXJTw+DHU{B1lw+1,...,8, | w+ 1}, respectively, which is defined by

fo<Zli(ai rw+1>—(arw+1)>=21,-(ﬁi fw+1)— (@] w+1),

i=1 i=1

forac ANX Tw+1,0h,...,0L, € Z(if m; <w+ 1, then we do not have thigh summand
in both sumsy"7" 4 li (i | w+1) andd /" ;i (B [ w+ 1)). Then

(VaeCo)(VkeZ)Vi<w+1) (klali < k| fola) [i).

We have also thafp | (X [ w) coincides withf, wherever the former function is defined.

If fois anautomorphism aX [ w + 1, then using the definition ofy and properties of
f we are done. Otherwise there is@nc X | w + 1 outsideCy. In virtue of Lemma 2.1
we have that there exisfs € X [ w + 1 suchthap’ [ w = f (¢’ | w) and

(Va € Co)(Vk,1 € Z)(Vi <w+1) (k| [i—ali) & k|UB Ti— fola) D).

As above the isomorphistfy has an extension to isomorphisfnbetween submodules
Ci1, D1 of X [ w + 1 generated b¢oa’ and DB’ respectively, such that

VaeC)(VkeZ)(Vi<w+1) (klali & k| fi(a)]i)

and f1 | (X [ w) coincides withf, wherever the former function is defined. ff is an
automorphism ofX | w + 1, then we are done. Otherwise we continue this process until
we get an automorphisrnfi’ of X | w + 1 extendingfo, satisfying

VaeXw+D(VkeZ)(Vi<w+1) (klali < k| f'(a) i)

and such thatf’ | (X [ w) = f. So f/ € Aut"(X | w + 1). By the definition of fp and
properties off we get thatf’ satisfies (1) and (2). O

Of course, Lemma 3.1.2 implies Lemma 3.1.1. Let us notice that Lemma 3.1.2 easily
implies Lemma 2.1.

Proof of Lemma 2.1 from Lemma 3.1.2. By Lemma 3.1.2 we get that there is a standard
structural automorphisrh of X extendingf and mappingr [ n on 8,. S08,4+1:=h(a |
n + 1) is appropriate. O

At the end we would like to say that descriptions of orbits in products of finite abelian
groups can also be obtained by means of model theory of suitable abelian structures. We
will use this approach in another paper, in which we are going to deal with arbitrary abelian
profinite groups.
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3.2. Consequences of the description of orbits

First we work with products with the standard structural group. Theorem 3.2.1 or rather
Corollary 3.2.2 is the main result of Section 3.

Let X be a product of countably many finite abelian groups and assum# tie finite
exponenk. Let A be a finiteZ.-submodule ofX anda = (a1, ..., a,) € X™. Fork € Z,,
I=(1,...,ln) € Z) anda € A we define

m

maxi n € w: k ‘ Zli“i [n—aln]t, whensuchamaximalexists

nkl,a = i—1
0, otherwise

Finally we define the natural number
Nea =maX{ngq: (k,l,a) € Ze x Z)' x A} +1,
which will be useful in several proofs below.

Theorem 3.2.1. Let X be a product of countably many finite abelian groups of bounded
exponent with the standard structural group. Théis small,m-normal andm-stable.

Proof. (1) Smallness. Lef be a finite subset af. We have to show tha®1(A) is count-
able. Without loss of generality is a submodule oX. Fora € X we define

Aa={(k,l,a,n)engZg X A X (a)U{oo}):

n:max{mea)u{oo}: m=0ork|(am-—a [m)}}.

By Lemma 3.1.1 we have thalla/A) = o(B/A) & A, = Ag. Since there are only
countably many possibilities for th&,, we get smallness.

(2) m-normality. LetA be as above and be a finite tuple of elements &f. For sim-
plicity we assume that is a single element.

Letn =Ny 4 andU ={ne X: n[n=a [ n}. ThenU No(a/A) = o(x/Ax | n). By
Lemma 3.1.1 and by the choice mfve have that

o(a/Aa [n):{,BGX: anCpBand
(Va € A)(Vk,l € Z)(k | (la —a) = k|(l/3—a))}. (%)

To complete our proof it is enough to show the following claim.

Claim. The setU No(a/A) is fixed setwise by any € Aut" (X /).
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Proof. Let f € Aut"(X/a). We need to show that for eaghe o(a/Ax | n) we have
that f(B) € o(a/Aa [ n). Letk | la —a). Thenk | la — f(a)), SOk | (a — f(a)). Now
B e€o(a/Aa | n), sok | (B —a), hencek | (If (B) — f(a)) and finallyk | (If(B) — a).
Using (x) we end our proof. O

(3) m-stability. We have to show that there is no sequeAgeC A1 C --- of finite
subsets o and no element € X such thab(a/A;11) is nowhere dense in(a/A;) for
everyi. Suppose that such a sequence exists. Without loss of generality we can assume that
eachA; is submodule ok . LetC; = {(k,]) € ZE: (Fa € A))(k | la—a))} andn; = Ny 4, -
We have that; ;1 > n; for i € w. Then for every:; > n; we have

o(a/Aja In})={BeX: an;<pand
(Ya € A vk, € Zo)(k | (e —a) = k| (B —a))).

From the assumption thai(a/A;+1) is nowhere dense in(a/A;) we get that
o(a/A;y1a | niy1) is nowhere dense in(a/A;a | njy1).

Claim. C; & Cj41 for eachi € w.

Proof. Suppose for a contradiction thé@t = C;;1. We will showo(a/A;11a | nit1) =
o(a/A;a | n;j+1), which is an obvious contradiction.
Take aB € o(a/A;a | n;+1). Suppose that

klla—a, (1)

for somek, ! € Z, anda € A; ;1. We have to show that| I8 — a.
By the equalityC; = C;11 we can find am’ € A; so thatk | la —a’. Thenk | I8 —d/,
hencek | I8 —la. So by(T) we getk | (B —a. O

SoC1 G Co & --- CZ, x Z,. This is a contradiction. O

The next corollary is the converse to Remark 1.4 for products with the standard struc-
tural group.

Corollary 3.2.2. LetX =[];.,, X; be a product of finite groups such that almostéjlare
abelian and assume that has finite exponent. Then, with its standard structural group,
is small,m-normal andm-stable.

Proof. We can presenX asY_1 x [];., Yi, where every; is abelian and finite antl_,
is finite. More precisely, there iskac w such thatt_1 = Xg x --- x X;_1 andY; = X; 1«
fori € w. It is easy to see thaX is interpretable inv =[], ., ¥i, SO using the previous
theorem forY we obtain the smallness &f.

The situation is a little bit more complicated fer-normality andm-stability. Let
A={neX: (Vi > k)(n@i) =0)}. This set is, of course, finite. It is easy to see that

icw
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(X,Aut*(X/A)) = (JA| x Y, Aut*(Y)), where|A| x Y is considered as a disjoint union
of |A|-many copies offY and Aut*(Y) acts on each summand of this union as ¥on
So once again using the previous theorem we obtainormality andm-stability of
(X, Aut*(X/A)). The last step in the proof is getting rid of the skt For m-normality
we use Remark 1.6, fon-stability Remark 1.7. O

Let X be a product of countably many finite abelian groups of bounded exponent. By
Theorem 3.2.1 we know th& is m-stable and, moreover, from the proof mtstability
we see thaM (X) < w.

Proposition 3.2.3. Let X be a product of countably many finite abelian groups of bounded
exponent an@ be the exponent of. ThenM(X) = M — 1, whereM is the maximum

of lengths of all descending sequenégs> H1 > --- > H, of subgroups o¥, which are
defined by conjunctions of formulas of the fariix, wherek, I € Z., and such tha#; 1

is nowhere dense iH; for every0 <i < n.

Proof. We have to proveI(X) =M — 1.

(<) Let M(X) =m. There is a sequenck C - - - C A, of finite submodules ok and
an elementr € X such thab(«/A; 1) is nowhere dense in(«/A;) for every 0<i < m.
Let

Ci={(k,1) €22 Fae A)(k|(a—a)}
and
Gi={xeX: (VkDeC)k|in}<X.

Now we taken; = Ny 4,, 0<i <m. Letn =max{n;: 0<i <m} and letU ={n € X:
n I n =« [ n}. By the description of orbits we get
o(a/Aja [ n) = {/3 eX:ancCpBand
(Va € A))(Yk, 1 € Ze) (k| la —a) = k| (B —a))}.

As a consequence we get that
o(@/Aja [n)=UN(x+G),

for0<i <m.SoGg> G1> --- > G, is adescending sequence of subgroup¥ oéach
G, is defined by a conjunction of formulas of the fokmix, wherek, [ € Z., andG; 1 is
nowhere dense itv; for every 0<i <m. Hencem < M — 1.

(>) It follows from the fact (see [N2, Lemma 2.6]) thatAf; < H» are groups definable
in a smallm-stable profinite structure an#l; is nowhere dense i#l,, then M(H1) <
M(H). O

Corollary 3.2.4. Letn € w and p be a prime number. TheM(Z‘;,’n) =n.
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If we want to calculateM (X) for X =[], X; being a product of countably many fi-
nite groups of bounded exponent such that almost aire abelian, then arguing similarly
as in the proof of Corollary 3.2.2 and using Remark 1.8 we see that it is enough to choose
ann € w such thatX; is abelian fori > n and to calculateM ([ ],.,, X;).

Let X = Higw X; be a product of finite groups. Then any permutation or grouping
of X;, i € w, changes the profinite structure &f, i.e. it changes the standard structural
group of X. So the question arises if permutations or groupingpthave an effect on
smallnessm-normality andm-stability of X. Using Corollary 3.2.2 and Remark 1.4 we
get the following answer to this question.

Corollary 3.2.5. Smallness ok =[], ., X; (with the standard structural groymloes not
depend on permutation and groupingXf. If such a product is small, then it is-normal
andm-stable and remains such after any permutation and groupirnxj; of

When we have a profinite topological space (group) we can treat it as the inverse limit
of different inverse systems. We give now an example showing that smallness of a profinite
group depends on its presentation as an inverse limit of finite groups.

Example 1. Let X = Z5. We considerX as the inverse limit of all its finite subproducts
with natural projections. This induces a profinite structureXowith the trivial standard
structural group. Henc¥ is not small.

On the other hand, if we consid&ras the inverse limit of the system

Zip <— Dip X Lig <— Zp X Lig X Lip <— « -+

of initial finite subproducts o with natural projections, then by Theorem 3.2.1 we get
that X is small.

We investigate the above phenomenon in Section 4. Now we are going to consider
products of countably many finite groups with some non-standard structural groups. This
is the place where we need the generalized description of orbits given in Lemma 3.1.2.
The results of this part of Section 3 yield new examples of small profinite groups, also
interpretable in fields [K].

Proposition 3.2.6. Let p be a prime number and =[], X;, where each¥; is a finite
abelian p-group. LetX have finite exponert= p$ and S be a Sylowp-subgroup of the
standard structural group AtitX). Then(X, S) is still small,m-normal andm-stable.
Proof. We defineG = Aut*(X/Agp), where

Ao:{neX n:n>1 n [n—l:(O,...,O)}.
ThenG is a closed subgroup dfut*(X). Leta € X and A be a finite submodule oX.

Everywhere below we consider orbits under the actioAutf (X).
By Lemma 3.1.2 we have that for every o
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o(a/AoAx | n)
= {,3 eX:alnCBand(Vi ew)(Vaec A)(Vne AoN X [i)(Vk,l € Z,)

(kldali—ali=n & k|(Bli—ali-m)} (1)
Letn ZNQVA.
Claim. o(a/Aa [ n) = o(a/ApgAa | n).

Proof. (2) is obvious.

(©) Let us take 83 € o(a/Ax | n). Suppose for a contradiction that¢ o(a/AgAax |
n). From (1) we get that there is aim € Ag (more preciselyg € X [ m for somem > n),
a € A andk, [ € Z, such that one of the two following cases holds.

Casel.k|(lam—a|m—ag)andkt (B [m—a|m— ag).
Case2.kt(la|m—a|m—ag)andk| (B m—a|m— ap).

We will show how to get a contradiction in the first case. The second case can be checked
similarly. Sinceag | n = (0, ..., 0), the assumption of the first case gives that(/« |
n —a | n). This together with the definition of gives that | (l« — a). As a consequence
k|(a|m—alm),sok|agandk | (B [m—a |m).Finallyk | (B [m—a|m—ag). O

By the claim and Theorem 3.2.1 one can conclude that forfany G, the structure
(X, H) is small,m-normal andn-stable.

If we show thatG is a prop-group, then we will get that there is a Sylgwsubgroup
G, of Aut*(X) containingG. So we will obtain that(X, G ) is small, m-normal and
m-stable. Using Remark 1.5 and the fact that all Sylevwwubgroups ofut*(X) are con-
jugate our proof will be done.

So let us show that is a prop-group. LetG; =G [ (X i) fori > 1. Then

G=Ii

Im G;,
so we have to show that evegy; is a p-group. We do this by induction an

Fori =1 there is nothing to do, becauge;| = 1.

Assume thaG; is a p-group. Let us considefl; 11 ={g € Gi+1: g [ (X [i) =idx;}.
ThenG;;+1/H;+1 = G;, soitis enough to show théf; ;1 is a p-group. For everg <i we
can writeX; = (&1) @ - - - @ (&x, ), where eachi;;) is a cyclic p-group. LetE consist of
these elementse X [ i + 1 which have only one non-zero coordinate and this coordinate
has a forme (k) = &; for somej <. Fore € E let E; be the set of elements &f; with
the exponent less or equal to the exponent.&le will show that

e, whene (i) # 0,

feHi = (Veck) fleo)= { (e 1i)"6 for somed € E,, otherwise (+)
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and when we choosg € E, for eache € E, then

e, whene (i) # 0,

@ €Hir)(ve € ) fle)= { (e [i)"6., otherwise.

()
Condition(x) is obvious.

To show(xx) let us point that generateX [ i + 1, hence the uniqueness is clear. Now
we have to find an appropriae We define it by

f(lea> =Y (e [D)70;

eeE eeE

(for & such thats(i) # 0 we assume thal, = ¢(i)). To complete the proof ofxx) it is
enough to check that this definition does not depend on the presentation of an element of
X |'i + 1 as a combination of elements= E and thatf is 1 — 1. Both things are easy,
so we check only the first one. LT, plee =), plie. Forne X [ i+ 1 bye(n) we
denote the exponent gf Then fore € E we havee(e) | I, — 1}, S0, ple(e [ )76 =
Yeeplt(e 1) 6s.

Finally, each|E.| is some power ofp, so using(x) and (xx) we get thatH;,1 is a

p-group. O

Corollary 3.2.7. Let p be a prime number. Let =[], ., X; be a product of finitg-groups
such that almost alk; are abelian and assume th&thas finite exponent. Létbe a Sylow
p-subgroup of the standard structural group AGX). Then(X, S) is small,,z-normal and
m-stable.

Proof. Similarly as in the proof of Corollary 3.2.2 we can find & » and presenk as
Y_1 x[];e, Yi, whereY_y := Xg x --- x X;_1 and for every € o, Y; := X, is abelian.

Let A={ne X: (Vi > k)(n(i) =0)}. In the proof of Corollary 3.2.2 we noticed that
(X,Aut"(X/A)) = (|A| x Y, Aut*(Y)), where|A| x Y is considered as a disjoint union of
|A|-many copies o andAut*(Y) acts on each summand of this union asfonVe can
identify Aut*(X/A) with Aut*(Y). Let Sy be a Sylowp-subgroup ofAut*(Y). It can be
enlarged to a Sylow-subgroupSy of Aut*(X). ThenSx N Aut*(X/A) = Sy.

From Proposition 3.2.6 we obtain th@, Sy) is small,m-normal andn-stable. Hence
(X, Sx) is small. To shown-normality andm-stability of (X, Sx) we use Remarks 1.6
and 1.7, respectively.

By Remark 1.5 and since every Sylgwsubgroup ofAut*(X) is conjugate withSy, the
proof is completed. O

It is worth noticing that ifX is not necessarily a prp-group and if we defin& in the
same way as it was defined in the proof of Proposition 3.2.6, then the claim appearing in
this proof is still true and as a consequeii&e G) is small,;m-normal andn-stable. Even
more generally, we can defing as a closed subgroup 8lt*(X) fixing pointwise only a
subset ofdg (Ag is defined in the same way as in the proof of Proposition 3.2.6) to get the
same result. Considering only-normality andm-stability we can show even more.
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Proposition 3.2.8. Let X =[], X; be a product of finite abelian groups and lEthave
finite exponené. Aut*(X) denotes the standard structural groupXf

(i) If Agis any family of canonical open sets ¥y then(X, Aut*(X/Ap)) is m-normal
andm-stable.
(i) If Ap is any subset ofX U Ui>1X I i, then (X, Aut*(X/Ao)) is m-normal and
m-stable.
(i) Under the weaker assumption that almost %l are abelian we have that ifg is
the same as irfi) or (ii) and if (X, Aut*(X/Agp)) is small, then it isn-normal and
m-stable.

Recall that in the case of produst=[]
ments with fixed firsi coordinatesi(> 1).

X;, a canonical open set consists of ele-

icew

Proof. (i) We identify canonical open sets i with elements fromX [ i for i > 1. With-
out loss of generality we can assume that for everyl we have thatn [ i: n € Ag} is a
submodule ofX [i andAgN X [i={n[i: ne€ Ag}.

The proof is an elaboration of the proofs mfnormality andm-stability in Theo-
rem 3.2.1.

Let A be a finite submodule o and« € X. We consider orbits under the action of
Aut*(X). By Lemma 3.1.2 we obtain that for everye

o(a/ApAa [ n)
={BeX: alncCpand(Vi e w)(Va € A)(¥ne AoN X | i)(Vk,I € Z,)
(kldali—ali—n & k|@Bli—ali-mn)} ()

(1) m-normality. Let A be a finite submodule of anda be a finite tuple of elements
of X. We assume for simplicity that is a single element. Fat,/ € Z, anda € A we
define

Nk la= max{n cew: (Ane AgNX [n)(k |l [n—aln— n))},
when such a maximad exists, omy ; , = 0, otherwise. Finally we define
No,a, Ao =MaX{niq: (k,1,a) € Ze X Le x A} + 1.

Letn = Ny a4, andU ={n e X: n[n=a [ n}. SOU No(a/AgA) = o(a/AoAwx | n).
From (x) and the choice of we get

o(a/AoAx | n)
= {,8 eX:alnCBand(Vi ew)(Vae A)(Vne AoN X [i)(Vk,l € Z,.)

(kldali—ali—n = k[UBli—ali—mn)}. (%)
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To show(xx) choose & in the right-hand side of«*). Assume thak | (B [i —a |
i —n). Invirtue of (x) we have to show that | (la [i —a [i —n). If i <n,thena [i =
Bli,sok|(ali—ali—n). Otherwise,wehave| (B8 [n—a|n—nln),sok|la|
n—a | n—nln). From the definition of: we conclude that there is afie AgN X |i
suchthatk | (e [i —a | i —n'). Hencek | (I8 | i —a [ i — n'). By the assumption, this
implies thatk | (n” — n). Finally we havek | (la [ i —a | i — 1) and this showsxx).

The proof ofm-normality boils down to the following claim, whose proof uses)
and is an obvious generalization of the proof of the claim formulated in the proaf of
normality in Theorem 3.2.1.

Claim. The setU No(x/ApA) is fixed setwise by any € Aut*(X/Aow).

(2) m-stability. Suppose for a contradiction that there is a sequencg A, C --- of
finite submodules oK and an element € X such thab(«/AgA;+1) is nowhere dense in
o(a/ApA;) foreveryi > 1.

Letn; = Ny a;,40- Thenn; 41 > n; fori > 1. Let

Ci={(k,)eZ2 BFaeA)@EneAonX [n)(k|la [n;—aln—mn)}

From () and the choice of; we get that for any:; > n;

o(a/AoAia | n})
={BeX:aln;CBand(Vjcw)(Vac A)(Vne AoNX | j)(Vk,l € L)
(kldalj—alj—n = klBlj—alj—mn)}

By the assumption that(«e/AgA;+1) IS nowhere dense in(a/AgA;) we have that
o(a/ApAir1a | niy1) is nowhere dense in(a/AgA;a [ n;11). One can check that then
we haveC; & Ciy1. S0C1 & C2 & --- € Z, x Z,. This is a contradiction.

(i) This follows from (i).

(i) The proof is analogous to the proof of Corollary 3.2.2. It uses (i) and Remarks 1.6
and1.7. O

Let X be a product of countably many finite abelian groups of bounded exponent and
G be the family of all groups of the forrAut*(X/Ap), whereAq is an arbitrary family of
canonical open sets iki. Then(X, G) is m-normal for anyG € G. So the question arises,
whether each such product with an arbitrary structural group-ieormal (and small or
not). The example below yields the negative answer to this question.

Example 2. We treatY = Z3 x Zs3 as the inverse limit of the systeliy < Z3 x Z3 with
the natural projection on the first coordinate. Leit*(Y) be the standard structural group
of Y. We consider orbits of¥ under the action ofAut*(Y). Forag = (1,0), a1 = (1, 1),

a2 =(1,2) andg = (2, 0) we haveo(a1/B) = {a1, a2} ando(az/a1) = {a2, ag}.
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Let X = Y. We takeAut*(X) = Aut*(Y)® as a structural group of, where for f =

(fo, f1,...) € Aut"(Y)” andn = (no, n1, ...) € X we definef (n) = (fo(no), f1(nw),...).
Letai = (a1, a1,...) andb = (B, B,...). Then

o(a1/b)={n e X: (Vi e w)(n(i) = a1 o n(i) = az)}.

Forann e wletU = {n € X: a1 | n C n} be a canonical open neighbourhood:9f For
everyA Cw)\ {0, ...,n — 1} we can find an automorphisify € Aut*(X/a1) such that for
eachn € o(a1/b) andi € w we have

o1, whenn (i) = a1,

fa@m@@) = n@), whenig¢A,
a0, whenn(i) =az andi € A.

Then for all A # A’ we have fAa[U N o(a1/b)] # fa[U N o(a1/b)] and we get that
(X, Aut*(X)) is notm-normal. One can check théak, Aut*(X)) is not small and noi:-
stable.

4. Changing theinver se system

Now we are going to consider a produ¢t= [ [, X; of countably many finite groups
with structural groups arising in some another special way. Namely, for a direct§d<set
[w]= such that J S = w we consider the profinite grouiX s, Auts (X)), which is just the
group X regarded as the inverse limit of the syst¢kx: S € S}, whereXs =[], Xi,

S € §, with the standard structural group (denotedAwts(X)). So the univers& s of
our profinite group can be identified with. For simplicity, from now on we will writeX g
instead of(X s, Auts (X)).

In this section we will characterize these directed §ets[w] < for which X s is small,
and we will show that ifX s is small, then it is als@-normal.

First of all without loss of generality we can assume thiaatisfies

(i) S1eSandSeS = S1USeSandS1NS2eS.

For eachSp € S we can consideX 5, = nieSo X; as the inverse limit of the system
{Xs: SeSandS C Sp}. LetS [ So={Se€S: S C So}. ThenAut:“SrSO(XSO) is the standard
structural group oX s, regarded as the inverse limit as above.

Now we give the description of orbits iXis under the assumption that &} are abelian.
So leta = (a1, ..., a;;) € X™ and A be a submodule (oveéf) of X.

Lemma 4.1 (Description of orbits)o(«/A) = U, whereU consists of elemenig e X™
suchthatforalli e A,ke€Z,11,...,l, €ZandS € S we have

k’ <zm:zia,- rs-ms) — k‘ (iliﬂi [S—a[S).
i=1 i=1
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Proof. (<) is obvious.

(D) Take aB € U. We have to show thgt € o(x/A). LetTp C T1 C---Cw be a
sequence of sets froi cofinal inw. We will construct sequencefy C 51 C--- Cw and
fo, f1, ... such that for ali € w we have:

(1) S; € S and S;41 is a minimal set inS containing properlyS; and contained ir¥,,
wherej; is the minimal natural number such th&tg 7, .

(2) f; € Auts, (X5, /A T S0).

(3) Ji+1 FXS,‘ = fi.

@) fila[S)=pBTS.

We defineSp as a minimal non-empty set frol. By the assumption thagt € U and
a simple application of Lemma 2.1, there is an automorphisiXisffixing the setA [ Sp
pointwise and satisfying (4). Afo we choose an arbitrary such automorphism.

Now assume that we have chosgh); <, and(f;);<,. We defineS, 1 as a minimal
set fromS containing properlys, and contained irT;,, where j, is the minimal natural
number such thas, ¢ 7;,. Let S’ be the smallest set frod such thatS, 1\ S, €5’ €
Snt1. Of course,f, | Xs.ns € Au%rsnmS/(XSnﬂS’/A 'S, N'S"). So by the assumption
that 8 € U and by Lemma 2.1 we get that there is Ane Aut‘*STS,(XS//A I ") such that
fol Xs,ns = fu | Xs,ns and f(a [ §) = B | S'. Now we can already defing,,1 €
Autg g (X501 /A T Snt1) bY fura((Kidies,sa) = (iies,,1 Wherey; is the projection
of f,((x)ies,) on thejth coordinate, wheni € S, y; is the projection off, ((x;);cs) on
the jth coordinate, wherj € §'.

One can easily check that fgre §’ N S,, both lines above agree and that, 1 satisfies
(2)—~(4). Now item (1) implies that J;_,, Si = w, so automorphismgo, f1, ... yield an
automorphismyf e Auts(X/A) for which f(a) = 8. O

We say thaZ C Sis an ideal inS if:

e 1eZTandlhbeZ = UL eT,
elcZ,JClandJeS = Jel.

By Remark 1.4 we know that ik s is small, then almost alk; are abelian and has
finite exponente. So assume this in the next theorem and, moreover, that ¥ach a
non-trivial group.

Theorem 4.2. X is small iff there are only countably many idealsSn

Proof. First we show the theorem in the case whenXllare abelian. LeA be a finite
submodule ofX. Fora € X, a € A, k,l € Z. we define the ideal

T(a.a,k,)={SeS: k|la]S—al S}

By Lemma 4.1 we see that an elemeghte X belongs too(a/A) iff Z(«,a,k, 1) =
Z(B,a,k,l) forallk,l €Z, anda € A. Hence we get{) in Theorem 4.2. On the other
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hand, for an arbitrary ided of S we can find arw € X for whichZ(«,0,0,1) =Z. So
the number of 1-orbits ovéf is not less than the number of idealsSn

To finish the proof we have to consider the case when nd{adlre abelian. Lefg € S
be such that eacl(;, i ¢ Sp, is abelian. LetS’ = {S \ So: S € S}. Itis easy to see that
X is interpretable ir(]_[iew\s0 X;)s'. On the other hanc{,]_[iew\s0 X)s is ap-definable
subgroup ofX s. Hence

Xsis small iff (]‘[ X,-) is small (%)
icw\So s

Let 2 and)’ be the number of ideals i andS’, respectively. One can check that

A< iff V<o ()
Now (%), (x*) and the fact that the theorem is true fﬂiew\so X;)s finish the proof. O
Proposition 4.3. If Xs is small, then it is als@-normal.

Proof. Assume thatXs is small. Then we have that almost al are abelian and
has finite exponent. Arguing similarly as in the proof of Corollary 3.2.2 without loss
of generality we can assume that Al] are non-trivial and abelian. Now suppose for a
contradiction thaiX s is notm-normal. Hence there is a finite tuplefrom X and a finite
submoduleA of X such that for an arbitrary canonical open neighbourhbodf o we
have that the seff[o(e/A) NU]: f € Auts(X/a)} has at least two elements. In other
words for an arbitrary canonical open neighbourhébdf o

(3B € o(@/A)NU)(Ef e Auts(X/a))  (f(B) & o(a/A)). (+)
For simplicity assume that is a single element.
Claim 1. Forallg co(a/A),a€ A, k,l €Z,, S €S and f € Autg(X/a) we have
kldaS—alS) = k|(fBIS—alSs).
Proof. Letk | (la | S—a | S). Thenk | (a|S— f(a)]S),sok|(@!]S— f(a)]S).
Now B8 € o(a/A), SOk | (B[S —a Tl S), hencek | (If(B) [ S — f(a) [ S) and, finally,
kIAfB)IS—all). O

Claim 2. There are set$s, So, ... € S such thats; \ Uj# S; # 0 for everyi € w.

Proof. In the proof of Theorem 4.2 we defined idedl&;, a, k,1) for n € X, a € A and
k,l€Ze,. LetA=A xZ, X Le.
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We construct; € A, i € X, Siy, € S and f; € Auts(X/a), i € w, such that for alf we
have:

(l) Bi€o(x/A)NU;, whereU; = nheX:.n ij<l- Sjrj =« FUj<i Sjrj}-
(2) Sir, €Z(fi(B),ri) butS;, & T(ax,1;).

The fact that orbits are determined by ideals (see the proof of Theorem 4.2) together
with Claim 1 and(x) show that this construction is possible.

There is arr € A such that there are infinitely many indiceg » for which r; =r.
Choose such anand let(S;);, be the subsequence of the sequeg); <., consisting
of elementss;,, for whichr; =r.

We will show that the sequends;); <., satisfies our demands. Of coursesr (a, k, 1)
for somea € A andk, ! € Z.. Let

T={icw k|(lai)—a())}.
To finish the proof it is enough to show the following statement.
The family of setdS; \ T: i € w} consists of nonempty pairwise disjoint setéxx)

By induction onn we will show that the set§g\ 7,..., S, \ T are nonempty and
pairwise disjoint. Fom = 0, if we had Sg C T, then we would get thag € Z(«, r),
a contradiction with (2). Suppose now theg\ 7, ..., S, \ T satisfy our demands. The
fact that S,+1 \ T is nonempty follows as above. So suppose for a contradiction that
(Su+2\ T) N (S \ T) is nonempty for some & k < n. Leti € (S;41\T) N (S \ T).
We haveSy = S;,; and S,+1 = Sitry for somej < j’. By the construction we have that
Bjr I Sk =a [ Sk, hencef(Bj) | Sk = o | Sk. Buti € (Sg\ T) N Syt1, SOk{ (ALf(Bj) |
Sp+1—a | Spr1) and finallyS, 1 ¢ Z(f(B,), rjr), a contradiction. O

From Claim 2 we obtain uncountably many ideals9na contradiction with Theo-
rem4.2. O

At the beginning of [N1] there is an example of a small but mestable first order
theory. Here we recall it in the context of profinite groups. The example is of the Xgrm
for someS C w and X = Z3. This example shows that the counterpart of Proposition 4.3
with m-normality replaced byr-stability does not hold.

Example3. Let X = Z5™“ (before we were considering countable products indexad, by
here we index it by» x w for convenience). We define

S’:{{(i,j)ea)xa): ién,jgm}:n<m<w}.

To satisfy condition (i) from the beginning of Section 4 we deffhas the closure of’
on finite unions.



582 K. Krupihski / Journal of Algebra 288 (2005) 556-582

It is easy to see that there are countably many ideas inence by Theorem 4.2 and
Proposition 4.3 we get th& s is small andn-normal.

LetH,=neX:nnxw=0andH,,={neX: n[nxm=0}forn<me w.
SinceH,, = ﬂm>n H, »,we getthaiH, is a definable subgroup &fs. Moreover,H,, 1 is
nowhere dense i/, for everyn € w. So by the fact (see [N2, Lemma 2.6]) that in a small
m-stable profinite group there is no descending sequence of definable subgiaups,
such thatG, 11 is nowhere dense i6,,, n € w, we get thatX s is notm-stable.

We see that the profinite group from Example 2 is also of the f&igfor X =Zg and
someS C w. So we see that abelian profinite groups of finite exponent and of theXgrm
can have very different model theoretic properties. However, there is no group of the form
X s which is small but notz-normal.
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