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Abstract

We investigate products of finite abelian groups of bounded exponent as profinite structure
sense of Newelski. In such groups we describe orbits under the action of the standard structur
of automorphisms. Then we conclude that such groups are small,m-normal andm-stable. LetX be
a product of countably many finite abelian groups. We also investigate the influence of modific
of the standard structural group ofX on its smallness,m-normality andm-stability.
 2005 Elsevier Inc. All rights reserved.
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0. Introduction

A profinite structure is a profinite topological spaceX with a distinguished structura
groupAut∗(X) which is a closed subgroup of the group of all homeomorphisms ofX re-
specting the appropriate inverse system. A profinite group in this context is an invers
of finite groups with structural group preserving the group action. We say that a stru
group of a profinite structure (group)X is standard if it is the group of all homeomo
phisms (topological automorphisms) ofX respecting the appropriate inverse system.
say thatX is small if for every natural numbern > 0, on the setXn = X × · · · × X there
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are countably many orbits under the action ofAut∗(X). Profinite structures and groups
this sense have been introduced in [N2] and [N3]. Small profinite groups occur natur
model theory as profinite groups interpretable in small theories [N2]. Newelski has d
oped the model theory of small profinite structures. Many results from stable model t
have been proven in this context.m-normality andm-stability (see Definitions 1.2 and 1.3
play the prominent role in all these considerations.

Unfortunately, there have been very little explicit examples of small profinite grou
far. Wagner has proved [W] that every smallm-stable profinite group has an open abel
subgroup and has finite exponent. On the other hand, it is easy to see (Example 1)
every abelian profinite group (even with the standard structural group) of finite expon
small.

The main aim of this paper is to find new classes of examples of small profinite gr
The main result is a classification of small products of finite groups with the stan
structural group (Remark 1.4, Corollary 3.2.2 and Theorem 4.2).

More precisely, in this paper we deal with products of countably many finite gro
Such products can be naturally considered as profinite groups (see Section 1). Ne
has pointed out [N2] that if a productX = ∏

i∈ω Xi of finite groups is small, then almo
all Xi are abelian andX has finite exponent. In this paper we show the converse:X

is a product of finitely many finite groups and countably many finite abelian grou
bounded exponent with the standard structural group, thenX is small. This yields a new
class of examples of small profinite groups. We prove also that these groups arem-normal
andm-stable.

Let X be a product of countably many finite abelian groups of bounded exponent.
more examples of profinite groups we consider some modifications (by changing the
Aut∗(X)) of the profinite structure ofX. As a result we obtain a family of closed subgrou
of the standard structural group ofX such thatX with any group of this family as a new
structural group ism-normal andm-stable. We also prove that ifX is a product of finite
abelianp-groups (wherep is a prime number) of bounded exponent and we replace
standard structural group ofX by its Sylowp-subgroup, then the arising profinite structu
is still small,m-normal andm-stable. This is relevant to interpreting small profinite gro
in fields [K]. Finally we consider products of finite groups as inverse limits of arbit
inverse systems of finite subproducts. We describe when such products are small,
show that if such a product is small, then it is alsom-normal.

Our results yield new classes of examples of small profinite groups. Moreover
show that in all classes of groups which we consider (i.e. in products of finite groups
the standard structural group and with some non-standard structural groups) ther
small but notm-normal profinite group. This means that the answer to the open que
if there exists a small profinite group (structure) which is notm-normal (see [N2,N3]), is
negative in all these classes of groups.

1. Preliminaries

We present here all necessary definitions and basic facts on profinite structur

groups in the sense of Newelski. For the proofs and more details about profinite struc-
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tures and groups see [N2,N3,W]. We start from the general definition of profinite stru
A profinite space is an inverse limit of finite discrete spaces with topology inherited
the product of finite spaces of our inverse system.

Definition 1.1. A profinite structure is a profinite topological spaceX with a distinguished
structural groupAut∗(X) which is a closed subgroup of the group of all homeomorphi
of X respecting the inverse system definingX.

A profinite group in this context is an inverse limit of finite groups with a struct
group preserving the group action. We say that a structural group of a profinite str
(group) X is standard if it is the group of all homeomorphisms (topological autom
phisms) ofX respecting the appropriate inverse system. We denote a profinite str
by (X,Aut∗(X)). When it is clear what the structural group is we just writeX. It turns out
thatAut∗(X) is always a profinite group acting continuously onX.

The simplest examples of profinite groups are products of countably many finite g
Let X = ∏

i�ω Xi be such a product. We consider it as the inverse limit of finite gro
X � n = ∏

i<n Xi , n > 0, with the natural projections. The standard structural group
sists here of these automorphisms ofX which induce automorphisms of eachX � n for
n > 0. Any other structural group ofX can be chosen as a closed subgroup of the stan
one. In the whole paper, forη ∈ X, by η � n we denote the firstn coordinates ofη.

Let X be a profinite structure, e.g. a profinite group. LetA ⊆ X be finite. ByAut∗(X/A)

we denote the set of elements ofAut∗(X) fixing A pointwise. We say thatV ⊆ X is A-
invariant if f [V ] = V for everyf ∈ Aut∗(X/A). If V is additionally closed, then we sa
thatV is A-definable. Ana ∈ X is a name ofV when for everyf ∈ Aut∗(X) we have that
f [V ] = V iff f (a) = a. It is easy (see [N2]) that every definable setV has a canonica
name denoted by�V �. This name belongs not necessarily toX, but is of the forma/E,
wherea ∈ Xn andE is a∅-definable equivalence relation onXn.

For a ∈ Xn andA ⊆ X we defineo(a/A) = {f (a): f ∈ Aut∗(X/A)} (the orbit ofa
overA). Let On(A) = {o(a/A): a ∈ Xn}. Each orbit is always a closed subset ofX. From
now onA,B, . . . denote finite subsets ofX anda, b, . . . denote elements or finite tuples
elements ofX.

We say that a profinite structureX is small if |On(∅)| � ω for every natural numbe
n > 0. EquivalentlyO1(A) is countable for every finite setA ⊆ X.

Every small profinite structure can be enlarged toXeq by adding so called imaginar
elements, i.e. elements of the forma/E, wherea ∈ Xn andE is a ∅-definable equiva
lence relation onXn. Then, for every suchE, Xn/E is still a profinite structure, wher
the structural group is induced byAut∗(X) acting onX/E. Formally, Xeq is a disjoint
union of all spacesX/E, whereE is a∅-definable equivalence relation onXn, equipped
with the disjoint union topology. ThenAut∗(X) acts continuously onXeq and we conside
(Xeq,Aut∗(X)) in the same way as(X,Aut∗(X)). We see that canonical names belo
to Xeq. For more details see [N2].

Two profinite structures(X,Aut∗(X)) and (Y,Aut∗(Y )) are isomorphic if there is
a homeomorphismf :X → Y such that the pullback functionf ∗ mapsAut∗(Y ) onto
Aut∗(X). We say that a profinite structureX is interpretable in a profinite structureY if

there is a continuous 1–1 mappingf of X onto a setf (X) definable inY eq over some



K. Krupiński / Journal of Algebra 288 (2005) 556–582 559

f
also

e

e-

to

e-

l

ly
f small-

en
finite setA, such that the pullback function mapsAut∗(Y/A) onto a closed subgroup o
Aut∗(X). It is easy to see that any profinite structure interpretable in a small one is
small.

For a finiteA ⊆ X by acl(A) we denote the algebraic closure ofA, i.e. the set of thes
elements ofXeq which have finitely many conjugates underAut∗(X/A).

For every finiteA,B ⊆ X we have thato(a/AB) (AB denotesA ∪ B) is open or
nowhere dense ino(a/A). In the first case we say thata is m-independent ofB over A

and we writea
m

�| AB, otherwisea is m-dependent onB overA and we writea
m��| AB.

In small profinite structuresm-independence
m

�| has similar properties as forking ind
pendence in stable theories.

1. (Symmetry) For finiteA,B,C ⊆ X we have thatA
m

�| CB iff B
m

�| CA.
2. (Transitivity) For finiteA ⊆ B ⊆ C ⊆ X anda ⊆ X we have thata

m

�| AC iff a
m

�| BC

anda
m

�| AB.
3. (Extensions) For every finitea,A,B ⊆ X there is somea′ ∈ o(a/A) with a′ m

�| AB.
4. a ∈ acl(A) impliesa

m

�| AB for every finiteB ⊆ X.

Definition 1.2. The rankM is the function from the collection of orbits over finite sets
the ordinals together with∞ satisfying

M(a/A) � α + 1 iff there is aB ⊇ A with a
m��| AB andM(a/B) � α.

X is m-stable if every orbit has ordinalM-rank. Equivalently there is no infinite s
quenceA1 ⊆ A2 ⊆ · · · of finite subsets ofX anda ∈ X such thato(a/Ai+1) is nowhere
dense ino(a/Ai) for everyi. We say thatX hasM-rankn if the supremum ofM-ranks
of 1-orbits inX equalsn.

Definition 1.3. A profinite structureX is m-normal if for every finitea,A ⊆ X, there is a
clopenU � a, such thatU ∩ o(a/A) has finitely many conjugates underAut∗(X/a).

In the above definition we can choose asU a canonical open neighbourhood ofa, where
by a canonical open set in

X = lim←− Xi ⊆
∏

Xi

we mean the set of elements ofX with theith coordinate fixed (i is arbitrary). A canonica
open set inXn is a product of canonical open sets inX.

It is worth noticing thatm-normality andm-stability have been investigated so far on
under the assumption of smallness [N2,N3]. This is because under the assumption o
ness these notions have good model-theoretic properties.

We recall here the remark of Newelski [N2].

Remark 1.4. If a productX = ∏
i∈ω Xi of countably many finite groups is small, th
almost allXi are abelian andX has finite exponent.
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Denote byAut∗(X) the standard structural group of a profinite structureX. Let G1 and
G2 be closed subgroups ofAut∗(X). By a simple calculation we obtain

Remark 1.5. If G1 andG2 are conjugate inAut∗(X), then(X,G1) is small (m-normal,
m-stable) iff(X,G2) is small (m-normal,m-stable).

We end this general part by a remark thatm-normality is invariant under fixing finite
subsets ofX. More precisely, for a finite subsetB of a small profinite structureX (Aut∗(X)

is not necessarily standard), we have

Remark 1.6. (X,Aut∗(X)) is m-normal iff (X,Aut∗(X/B)) is m-normal.

Proof. (→) is trivial.
(←) In the proof we use properties of

m

�| listed earlier. Consider finitea,A ⊆ X as
in the definition ofm-normality. Without loss of generality we can assume thataA

m

�| B.
Now from the assumption we can choose a canonical open neighbourhood ofa in Xn such
that o(a/AB) ∩ U = o(a/A) ∩ U ando(a/AB) ∩ U has finitely many conjugates und
Aut∗(X/aB). So�o(a/AB) ∩ U� ∈ acl(aB).

To finish our proof it is enough to show that�o(a/A)∩U� ∈ acl(a). Suppose for a con
tradiction that�o(a/A) ∩ U� /∈ acl(a). Of course we have that�o(a/A) ∩ U� ∈ acl(aA).
Using this andA

m

�| aB we get�o(a/A) ∩ U�m

�| aB, so�o(a/A) ∩ U� /∈ acl(aB). This is a
contradiction. �

The same is true form-stability. Namely, for a small profinite structureX we have

Remark 1.7. (X,Aut∗(X)) is m-stable iff(X,Aut∗(X/B)) is m-stable.

Proof. (→) is trivial.
(←) Suppose for a contradiction that there are finite setsA0 ⊆ A1 ⊆ · · · ⊆ X anda ∈ X

such thata
m��| Ai

Ai+1 for all i ∈ ω. Using properties of
m

�| we can findB ′ ∈ o(B) such
that B ′ m

�| aA<i for all i ∈ ω. This implies thata
m��| B ′Ai

B ′Ai+1 for all i ∈ ω, so by the
automorphism we can find ana′ andA′

0 ⊆ A′
1 ⊆ · · · ⊆ X such thata′ m��| BA′

i
BA′

i+1 for all
i ∈ ω. This is a contradiction. �

Notice that Remark 1.7 follows directly from the standard fact thatM-rank is invariant
on m-independent extensions, i.e. ifa

m

�| AB, thenM(a/A) = M(a/AB). This also gives
the following remark.

Remark 1.8. TheM-rank of(X,Aut∗(X)) equals theM-rank of(X,Aut∗(X/B)).

2. The main technical lemma
The following group theoretic lemma is essential in the paper.
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Lemma 2.1. LetX = X0 ×X1 × · · ·×Xw be a finite product of finite abelian groups,e be
the exponent ofX andn � w. If we have finite subgroupsA andB of X, an isomorphism
f between them andα ∈ X, βn ∈ X � n such that

(∀a ∈ A)(∀k ∈ Ze)(∀m � w + 1)
(
k | a � m ⇔ k | f (a) � m

)
and

(∀a ∈ A)(∀k, l ∈ Ze)(∀m � n)
(
k | (lα � m − a � m) ⇔ k | (lβn � m − f (a) � m

))
,

then there exists aβn+1 ∈ X � n + 1 extendingβn, such that

(∀a ∈ A)(∀k, l ∈ Ze)
(
k | (lα � n + 1− a � n + 1) ⇔ k | (lβn+1 − f (a) � n + 1

))
.

Forn = 0 there is noβ0 and then Lemma 2.1 says that there exists aβ1 ∈ X0 satisfying
the last condition.

Proof. At the beginning we reduce the lemma to the case when allXi arep-groups for a
prime numberp. So let us assume that the lemma is true in this case. We write eaXi

in the formYi1 ⊕ · · · ⊕ Yiji
, whereYij is apij -group for a prime numberpij (pij1 �= pij2

for j1 �= j2). Let P = {p1, . . . , pu} = {pij : i � w, j � ji}. For eachi � w andp ∈ P

let Yiip be thep-group if such anip � ji exists, otherwise we putYiip = 0. Then for
eachp ∈ P we use our lemma for the product

∏
i�w Yiip and we get that the lemma

true without any extra assumptions. More precisely, denote byπp the projection from
X onto

∏
i�w Yiip . Of coursef induces an isomorphismfp :πp[A] → πp[B] and we

easily see thatπp[X] = ∏
i�w Yiip ,πp[A],πp[B], fp,πp(α) and the projection ofβn onto∏

i�n−1 Yiip satisfy the assumptions of our lemma. So we can find aβn+1,p ∈ ∏
i�n Yiip

satisfying the conclusion of the lemma. Nowβn+1 := ∑
p∈P βn+1,p does the job.

Assume thatX is ap-group for a prime numberp. ThenXn = 〈ξ1〉 ⊕ · · · ⊕ 〈ξk〉, where
〈ξi〉 ∼= Zpli . Let e = pg be the exponent ofX. Without loss of generality we can assum
thatn = w. ThenX � n + 1= X. We have to show that there is aβn+1 ⊇ βn in X such that

(∀a ∈ A)(∀s, r � g)
(
ps

∣∣ (
prα − a

) ⇔ ps
∣∣ (

prβn+1 − f (a)
))

.

So it is enough to show that

(∀a ∈ A)(∀s, r � g)
(
ps

∣∣ (
prα − a

) ⇒ ps
∣∣ (

prβn+1 − f (a)
))

(A)

and

(∀a ∈ A)(∀s, r � g)
(
ps

∥∥ (
prα − a

) ⇒ ps
∥∥ (

prβn+1 − f (a)
))

, (B)
whereps ‖ x means thatps is the highest power ofp dividing x.
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First we will find aβn+1 satisfying (A), and then we will modify it to satisfy (B). Fo
η ∈ X � m andm′ < m by η(m′) we denote them′th coordinate ofη. Let

mi = max
{
m: m = s − r, wheres, r � li andps

∣∣ (
prα − a

)
for somea ∈ A

}
.

We chooseri , si � li such thatmi = si − ri andpsi | (pri α − ai) for someai ∈ A. Of
course we have thatmi � 0, sori � si .

Claim 1. There exists aβn+1 ⊇ βn such thatpri (βn+1)(n) − f (ai)(n) ∈ ⊕
j �=i〈ξj 〉 for all

i = 1, . . . , k.

Proof. psi | (pri α − ai) andri � si , sopri | ai . From the assumptions of the lemma
getpri | f (ai), so the existence of appropriateβn+1 is obvious. �

Let βn+1 be as in the above claim. Let 1� i � k.

Claim 2. If ps | (prα − a) for somea ∈ A, then pr(βn+1)(n) − f (a)(n) ∈ 〈psξi〉 +⊕
j �=i〈ξj 〉.

Proof. Without loss of generality we can assume thats � li . There are three cases.

Case 1. r � s. Then we have successively

ps | a �⇒ ps | f (a) �⇒ ps
∣∣ (

pr(βn+1)(n) − f (a)(n)

)
and finallypr(βn+1)(n) − f (a)(n) ∈ 〈psξi〉 + ⊕

j �=i〈ξj 〉.

Case 2. r � ri . We have thatpsi | (pri α − ai) and ps | (prα − a), so pmin(s,r−ri+si ) |
(pr−ri ai − a) and finally

pmin(s,r−ri+si )
∣∣ (

pr−ri f (ai) − f (a)
)
.

On the other hand, using the assumption aboutβn+1 (Claim 1), we obtain

pr(βn+1)(n) − pr−ri f (ai)(n) ∈
⊕
j �=i

〈ξj 〉.

From these two statements we get that

pr(βn+1)(n) − f (a)(n) ∈ 〈
pmin(s,r−ri+si )ξi

〉 + ⊕
j �=i

〈ξj 〉.
Sincer + si − ri = r + mi � s we get what we need.
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Case 3. r < s and ri > r . Similarly as in the previous case we getpmin(si ,ri−r+s) |
(pri−ra − ai). We have also thatsi − ri = mi � s − r . As a consequence we g
ps+ri−r | (pri−ra − ai), so

ps+ri−r
∣∣ (

pri−rf (a) − f (ai)
)
.

We know thatps | (prα − a) andr < s, sopr | a, which implies thatpr | f (a). Hence
there is aβ ′

n+1 ⊇ βn such that

pr
(
β ′

n+1

)
(n)

= f (a)(n).

Combining the last two statements we get thatps+ri−r | (pri (β ′
n+1)(n) − f (ai)(n)).

Using this we can find a(β ′′
n+1)(n) satisfyingps−r | ((β ′′

n+1)(n) − (β ′
n+1)(n)) and

pri
(
β ′′

n+1

)
(n)

= f (ai)(n). (†)

Then we have also that

ps
∣∣ (

pr
(
β ′′

n+1

)
(n)

− f (a)(n)

)
. (††)

From (†) and the assumption thatpri (βn+1)(n) − f (ai)(n) ∈ ⊕
j �=i〈ξj 〉 we obtain that

pri ((βn+1)(n) − (β ′′
n+1)(n)) ∈ ⊕

j �=i〈ξj 〉. We know thatri � li , hence

(βn+1)(n) − (
β ′′

n+1

)
(n)

∈ 〈
pli−ri ξi

〉 + ⊕
j �=i

〈ξj 〉.

However,li − ri � si − ri = mi � s − r , so

(βn+1)(n) − (
β ′′

n+1

)
(n)

∈ 〈
ps−r ξi

〉 + ⊕
j �=i

〈ξj 〉.

Using this together with(††) we end the proof of the claim.�
From Claim 2 we conclude that ourβn+1 satisfies condition(A).
Now we take aβn+1 satisfying condition(A) and we are going to modify it to sa

isfy (B). When ps ‖ (prα − a) and ps+1 � (prα � n − a � n), then we have thatps ‖
(prβn+1 − f (a)) without any modifications ofβn+1. If ps ‖ (prα − a) andps+1 | (prα �
n − a � n), then there is ani � k such thatprα(n) − a(n) /∈ 〈ps+1ξi〉 + ⊕

j �=i〈ξj 〉. Then, of
course,s < li .

Claim 3. If we additionally assume thats − r < mi , thenps ‖ (prβn+1 − f (a)).
Proof. There are two cases.
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Case 1. r > ri . We haveps ‖ (prα − a), pr−ri+si | (prα − pr−ri ai) and r + si − ri =
r + mi > s, so ps ‖ (pr−ri ai − a). Thenps ‖ (pr−ri f (ai) − f (a)). On the other hand
pr−ri+si | (prβn+1 − pr−ri f (ai)). Finally we getps ‖ (prβn+1 − f (a)).

Case 2. r � ri . From the assumptions we haveprα(n) − a(n) /∈ 〈ps+1ξi〉 + ⊕
j �=i〈ξj 〉 and

ri − r + s < ri + mi = si � li , so we get that

pri α(n) − pri−ra(n) /∈ 〈
pri−r+s+1ξi

〉 + ⊕
j �=i

〈ξj 〉.

On the other hand, fromps | (prα − a) we getpri−r+s | (pri α − pri−ra). Hence

pri−r+s
∥∥ (

pri α − pri−ra
)
.

Using this and the assumptionspsi | (pri α − ai) and si > ri − r + s we getpri+s−r ‖
(pri−ra − ai), so

pri+s−r
∥∥ (

pri−rf (a) − f (ai)
)
.

We know also thatpsi | (pri βn+1 − f (ai)), therefore

pri−r+s
∥∥ (

pri−r
(
prβn+1 − f (a)

))
.

However,ps | (prβn+1 − f (a)), henceps ‖ (prβn+1 − f (a)). �
Let B consist of these(r, s, a) ∈ {0,1, . . . , g} × {0,1, . . . , g} × A for which

1. ps ‖ (prα − a).
2. ps+1 | (prα � n − a � n).
3. For everyi � k, if prα(n) − a(n) /∈ 〈ps+1ξi〉 + ⊕

j �=i〈ξj 〉, thens − r = mi .

From Claim 3 and the observations just before it, it is enough to modifyβn+1 to satisfy
condition(B) only for triples(r, s, a) ∈ B and preserve condition(A) in its full generality.

We define an equivalence relation∼ on B as the transitive closure of the relation∼0
defined as follows:

(r, s, a) ∼0 (r ′, s′, a′) ⇐⇒
∃i � k: prα(n) − a(n) /∈ 〈

ps+1ξi

〉 + ⊕
j �=i

〈ξj 〉 andpr ′
α(n) − a′

(n) /∈ 〈
ps′+1ξi

〉 + ⊕
j �=i

〈ξj 〉.

For i in the above definition we haves, s′ < li . We presentB as the disjoint unionB1 ∪
· · · ∪ BS of ∼-equivalence classes. Let

Ch =
{
ξi :

(∃(r, s, a) ∈ Bh

)(
prα(n) − a(n) /∈ 〈

ps+1ξi

〉 + ⊕
〈ξj 〉

)}

j �=i
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for h � S. Then the setsCh,h � S, are pairwise disjoint. From the definition ofB and
relation∼ we have that(∀ξi1, ξi2 ∈ Ch)(mi1 = mi2). So let us denote byMh this common
value ofmi for all ξi ∈ Ch. Of course,Mh � 0.

For (r, s, a) ∈ Bh let

Rr,s,a = max
{
R: pR−r+s

∥∥ pRα(n) − pR−ra(n)

}
.

Forh � S let

Rh = min
{
Rr,s,a : (r, s, a) ∈ Bh

}
.

Let us notice that for(r, s, a) ∈ Bh and r � R � Rr,s,a we have that(R,R − r + s,

pR−ra) ∈ Bh.
We defineTh = {a ∈ A: (Rh, s, a) ∈ Bh}, heres uniquely determined bys = Rh + Mh.

For (Rh, s, a) ∈ Bh let

CRh,s,a =
{
ξi : pRhα(n) − a(n) /∈ 〈ps+1ξi〉 +

⊕
j �=i

〈ξj 〉
}
.

Then, of course,

⋃
(Rh,s,a)∈Bh

CRh,s,a ⊆ Ch (�)

and for each(Rh, s, a) ∈ Bh we have that

CRh,s,a �= ∅. (��)

On the other hand, by the definition ofB we have that all elements in the set{a(n): a ∈
Th} are equal modulopsXn. This together with(�) and(��) implies that in{a(n): a ∈ Th}
there are less thanp|Ch| elements modulops+1Xn. From the definition ofB we also know
that in the set{a � n: a ∈ Th} all elements are equal modulops+1X � n. So inTh there are
less thanp|Ch| elements modulops+1X. Hence the same is true for the setf [Th]. This
gives us that

in the set
{
f (a)(n): a ∈ Th

}
there are less thanp|Ch| elements modulops+1Xn. (∗)

Now we can already modifyβn+1. Fix anh � S.
If for every (β ′

n+1)(n) ∈ Xn satisfying(β ′
n+1)(n) − (βn+1)(n) ∈ ⊕

i∈Ch
〈pMhξi〉 we could

find (Rh, s, a) ∈ Bh such that

pRh
(
β ′

n+1

) − f (a)(n) ∈
⊕〈

ps+1ξi

〉 + ⊕
〈ξj 〉,
(n)

i∈Ch j /∈Ch
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u-
then we would get a contradiction with(∗). Hence we conclude that there existsβ
(h)
n+1 ⊇ βn

such that

(
β

(h)
n+1

)
(n)

− (βn+1)(n) ∈
⊕
i∈Ch

〈
pMhξi

〉
(♦h)

and

(∀(Rh, s, a) ∈ Bh

)
(∃i ∈ Ch)

(
pRh

(
β

(h)
n+1

)
(n)

− f (a)(n) /∈ 〈
ps+1ξi

〉 + ⊕
j �=i

〈ξj 〉
)

. (♦♦h)

We choose such aβ(h)
n+1 for everyh � S. Let us define aβ ′

n+1 ⊇ βn by

(
β ′

n+1

)
(n)

= (βn+1)(n) +
S∑

h=1

((
β

(h)
n+1

)
(n)

− (βn+1)(n)

)
.

Using(♦h) for all h � S we obtain

(
β ′

n+1

)
(n)

− (βn+1)(n) ∈
⊕
h�S

⊕
i∈Ch

〈
pMhξi

〉
. (♦)

The setsCh,h � S, are pairwise disjoint, so using(♦h) and (♦♦h) for all h � S we
conclude that

(∀h � S)
(∀(Rh, s, a) ∈ Bh

)
(∃i ∈ Ch)(

pRh
(
β ′

n+1

)
(n)

− f (a)(n) /∈ 〈
ps+1ξi

〉 + ⊕
j �=i

〈ξj 〉
)

. (♦♦)

For such a choice ofβ ′
n+1 condition (A) is still satisfied. Indeed, assume thatps′ |

(prα − a). Then

ps′ ∣∣ (
prβn+1 − f (a)

)
.

We have thatprβ ′
n+1 − f (a) = pr(β ′

n+1 − βn+1) + (prβn+1 − f (a)). Our aim is to show

that for all i � k we havepr(β ′
n+1)(n) − f (a)(n) ∈ 〈ps′

ξi〉 + ⊕
j �=i〈ξj 〉. So let i � k. If

ξi ∈ Ch for anh � S, then applying the inequalityr + Mh = r + mi � min(s′, li) and(♦)

we obtain thatpr(β ′
n+1)(n) − f (a)(n) ∈ 〈ps′

ξi〉 + ⊕
j �=i〈ξj 〉. Otherwise the same concl

sion is obvious from(♦).
Condition (A) forβ ′

n+1 together with(♦♦) imply that

( ) ( ∥ ( ( ) ))

(∀h � S) ∀(Rh, s, a) ∈ Bh ps ∥ pRh β ′

n+1 (n)
− f (a)(n) . (	)
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We have obtainedβ ′
n+1 as a modification ofβn+1. Denoteβ ′

n+1 once again byβn+1.
We will show that this newβn+1 is appropriate.

We have showed that our newβn+1 satisfies condition(A), so it is enough to prove tha
it satisfies condition(B) for all triples(r, s′, a) ∈ B.

Let (r, s′, a) ∈ Bh ands = Rh + Mh for anh � S. Thens′ − r = s − Rh = Mh. There
are two cases.

Case 1. r � Rh.
By the definition ofRh we haver � Rh � Rr,s′,a , so(Rh,Rh − r + s′,pRh−ra) ∈ Bh.

From (	) we getps ‖ (pRhβn+1 − pRh−rf (a)). Using condition (A) ands = s′ + Rh − r

we obtainps′ ‖ (prβn+1 − f (a)).

Case 2. r > Rh.
By the definition ofRh we can find a(r1, s1, a1) ∈ Bh such thatRh = Rr1,s1,a1. So

(Rh,Rh − r1 + s1,p
Rh−r1a) ∈ Bh. ThenRh − r1 + s1 = s and letb = pRh−r1a. From

the definition ofRr1,s1,a1 we getpr−Rh+s+1 | (prα − pr−Rhb). But r − Rh + s + 1 =
r + Mh + 1, so

pr+Mh+1
∣∣ (

prα − pr−Rhb
)
. (!)

We have also thatps′ ‖ (prα − a), sopr+Mh ‖ (a − pr−Rhb), hence

pr+Mh
∥∥ (

f (a) − pr−Rhf (b)
)
. (!!)

Suppose for a contradiction thatps′+1 | (prβn+1 − f (a)). Then using(!!) we getpr+Mh ‖
(prβn+1 − pr−Rhf (b)). On the other hand, from(!) we get pr+Mh+1 | (prβn+1 −
pr−Rhf (b)). This is a contradiction. �

3. Products as inverse limits of initial subproducts

In this section we consider products of countably many finite groups as profinite g
as it was described in Section 1, i.e. as inverse limits of the systems of all initial subpro
with the natural projections.

3.1. Description of orbits

Using Lemma 2.1 we will describe orbits in products of finite abelian groups unde
action of the standard structural group.

Let X = ∏
i∈ω Xi , where allXi are finite abelian groups and let the exponente of X

be finite. SoX is a module overZe = Z/eZ. Let α = (α1, . . . , αm) be a tuple fromX and
A be a finite subset ofX. We are going to investigate orbits overA in the profinite group
X with the standard structural group. It is easy to see thato(α/A) = o(α/Lin(A)), where
Lin(A) denotes the submodule ofX generated byA. So without loss of generality we ca

assume thatA is a submodule ofX. From now on, every time when we investigate orbits
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over a finite setA we can and do assume thatA is a submodule ofX. Recall that forη ∈ X,
by η � n we denote the firstn coordinates ofη.

Lemma 3.1.1 (Description of orbits). o(α/A) = U , whereU consists of elementsβ ∈ Xm

such that for alla ∈ A,k ∈ Ze, l1, . . . , lm ∈ Ze andn � 1 we have

k

∣∣∣
(

m∑
i=1

liαi � n − a � n

)
⇐⇒ k

∣∣∣
(

m∑
i=1

liβi � n − a � n

)
.

The above lemma is enough to prove that products of finite abelian groups of bo
exponent, considered with the standard structural group, are small,m-normal andm-
stable (see Theorem 3.2.1). However, to get similar results for products with some
standard structural groups we need a more general description of orbits. Name
α = (α1, . . . , αm) be a tuple fromX � m1 × · · · × X � mm for somem1, . . . ,mm ∈ ω ∪ {ω}
andA be a subset of

⋃
n∈ω∪{ω} X � n. Since we are going to investigate orbits overA in

the profinite groupX with the standard structural group, we can assume thatA is closed
on restrictions (i.e.A ∩ X � n = {η � n: η ∈ A}, for n ∈ ω) andA ∩ X � n is a submodule
of X � n for everyn ∈ ω ∪ {ω}.

Lemma 3.1.2 (Generalized description of orbits). o(α/A) = U , whereU consists of el-
ementsβ ∈ X � m1 × · · · × X � mm such that for alln � 1, a ∈ A ∩ X � n, k ∈ Z,
l1, . . . , lm ∈ Z we have

k

∣∣∣
(

m∑
i=1

liαi � n − a

)
⇐⇒ k

∣∣∣
(

m∑
i=1

liβi � n − a

)
,

where in the case ofn > mi we do not have theith summand in both sums
∑m

i=1 liαi � n

and
∑m

i=1 liβi � n.

Proof. Only the inclusiono(α/A) ⊇ U requires an explanation.
Take aβ ∈ U . It is enough to show that for eachw � 1 there exists an automorphis

f ∈ Aut∗(X � w) such that

(1) For everyj � w, if j � mi , thenf (αi � j) = βi � j for i = 1, . . . ,m.
(2) (∀i � w)(∀η ∈ A ∩ X � i) (f (η) = η).

We prove this by induction onw.
Assume that for aw � 0 we have anf ∈ Aut∗(X � w) satisfying (1) and (2). We wil

show that there is anf ′ ∈ Aut∗(X � w + 1) satisfying (1) and (2) (forw + 1 instead ofw),
such thatf ′ � w = f (if w = 0, then we do not havef and we just want to find anf ′ ∈

Aut∗(X � 1) satisfying(1) and(2)).
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The assumption thatβ ∈ U implies that there is an isomorphismf0 between submodule
C0 andD0 of X � w + 1 generated by(A ∩ X � w + 1) ∪ {α1 � w + 1, . . . , αm � w + 1} and
(A ∩ X � w + 1) ∪ {β1 � w + 1, . . . , βm � w + 1}, respectively, which is defined by

f0

(
m∑

i=1

li (αi � w + 1) − (a � w + 1)

)
=

m∑
i=1

li (βi � w + 1) − (a � w + 1),

for a ∈ A∩X � w +1, l1, . . . , lm ∈ Z (if mi < w +1, then we do not have theith summand
in both sums

∑m
i=1 li (αi � w + 1) and

∑m
i=1 li (βi � w + 1)). Then

(∀a ∈ C0)(∀k ∈ Z)(∀i � w + 1)
(
k | a � i ⇔ k | f0(a) � i

)
.

We have also thatf0 � (X � w) coincides withf , wherever the former function is define
If f0 is an automorphism ofX � w + 1, then using the definition off0 and properties o

f we are done. Otherwise there is anα′ ∈ X � w + 1 outsideC0. In virtue of Lemma 2.1
we have that there existsβ ′ ∈ X � w + 1 such thatβ ′ � w = f (α′ � w) and

(∀a ∈ C0)(∀k, l ∈ Z)(∀i � w + 1)
(
k | (lα′ � i − a � i) ⇔ k | (lβ ′ � i − f0(a) � i)

)
.

As above the isomorphismf0 has an extension to isomorphismf1 between submodule
C1,D1 of X � w + 1 generated byC0α

′ andD0β
′ respectively, such that

(∀a ∈ C1)(∀k ∈ Z)(∀i � w + 1)
(
k | a � i ⇔ k | f1(a) � i

)
andf1 � (X � w) coincides withf , wherever the former function is defined. Iff1 is an
automorphism ofX � w + 1, then we are done. Otherwise we continue this process
we get an automorphismf ′ of X � w + 1 extendingf0, satisfying

(∀a ∈ X � w + 1)(∀k ∈ Z)(∀i � w + 1)
(
k | a � i ⇔ k | f ′(a) � i

)
and such thatf ′ � (X � w) = f . So f ′ ∈ Aut∗(X � w + 1). By the definition off0 and
properties off we get thatf ′ satisfies (1) and (2). �

Of course, Lemma 3.1.2 implies Lemma 3.1.1. Let us notice that Lemma 3.1.2
implies Lemma 2.1.

Proof of Lemma 2.1 from Lemma 3.1.2. By Lemma 3.1.2 we get that there is a stand
structural automorphismh of X extendingf and mappingα � n on βn. Soβn+1 := h(α �
n + 1) is appropriate. �

At the end we would like to say that descriptions of orbits in products of finite ab
groups can also be obtained by means of model theory of suitable abelian structur
will use this approach in another paper, in which we are going to deal with arbitrary ab

profinite groups.
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3.2. Consequences of the description of orbits

First we work with products with the standard structural group. Theorem 3.2.1 or r
Corollary 3.2.2 is the main result of Section 3.

Let X be a product of countably many finite abelian groups and assume thatX has finite
exponente. Let A be a finiteZe-submodule ofX andα = (α1, . . . , αm) ∈ Xm. Fork ∈ Ze,
l = (l1, . . . , lm) ∈ Zm

e anda ∈ A we define

nk,l,a =




max

{
n ∈ ω: k

∣∣∣
(

m∑
i=1

liαi � n − a � n

)}
, when such a maximaln exists,

0, otherwise.

Finally we define the natural number

Nα,A = max
{
nk,l,a : (k, l, a) ∈ Ze × Zm

e × A
} + 1,

which will be useful in several proofs below.

Theorem 3.2.1. Let X be a product of countably many finite abelian groups of boun
exponent with the standard structural group. ThenX is small,m-normal andm-stable.

Proof. (1) Smallness. LetA be a finite subset ofX. We have to show thatO1(A) is count-
able. Without loss of generalityA is a submodule ofX. Forα ∈ X we define

Aα =
{
(k, l, a, n) ∈ Ze × Ze × A × (

ω ∪ {∞}):
n = max

{
m ∈ ω ∪ {∞}: m = 0 ork | (lα � m − a � m)

}}
.

By Lemma 3.1.1 we have thato(α/A) = o(β/A) ⇔ Aα = Aβ . Since there are onl
countably many possibilities for theAα , we get smallness.

(2) m-normality. LetA be as above andα be a finite tuple of elements ofX. For sim-
plicity we assume thatα is a single element.

Let n = Nα,A andU = {η ∈ X: η � n = α � n}. ThenU ∩ o(α/A) = o(α/Aα � n). By
Lemma 3.1.1 and by the choice ofn we have that

o(α/Aα � n) = {
β ∈ X: α � n ⊆ β and

(∀a ∈ A)(∀k, l ∈ Ze)
(
k | (lα − a) ⇒ k | (lβ − a)

)}
. (∗)

To complete our proof it is enough to show the following claim.
Claim. The setU ∩ o(α/A) is fixed setwise by anyf ∈ Aut∗(X/α).
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Proof. Let f ∈ Aut∗(X/α). We need to show that for eachβ ∈ o(α/Aα � n) we have
thatf (β) ∈ o(α/Aα � n). Let k | (lα − a). Thenk | (lα − f (a)), sok | (a − f (a)). Now
β ∈ o(α/Aα � n), so k | (lβ − a), hencek | (lf (β) − f (a)) and finallyk | (lf (β) − a).
Using(∗) we end our proof. �

(3) m-stability. We have to show that there is no sequenceA0 ⊆ A1 ⊆ · · · of finite
subsets ofX and no elementα ∈ X such thato(α/Ai+1) is nowhere dense ino(α/Ai) for
everyi. Suppose that such a sequence exists. Without loss of generality we can assu
eachAi is submodule ofX. LetCi = {(k, l) ∈ Z2

e : (∃a ∈ Ai)(k | (lα−a))} andni = Nα,Ai
.

We have thatni+1 � ni for i ∈ ω. Then for everyn′
i � ni we have

o
(
α/Aiα � n′

i

) = {
β ∈ X: α � n′

i ⊆ β and

(∀a ∈ Ai)(∀k, l ∈ Ze)
(
k | (lα − a) ⇒ k | (lβ − a)

)}
.

From the assumption thato(α/Ai+1) is nowhere dense ino(α/Ai) we get that
o(α/Ai+1α � ni+1) is nowhere dense ino(α/Aiα � ni+1).

Claim. Ci � Ci+1 for eachi ∈ ω.

Proof. Suppose for a contradiction thatCi = Ci+1. We will showo(α/Ai+1α � ni+1) =
o(α/Aiα � ni+1), which is an obvious contradiction.

Take aβ ∈ o(α/Aiα � ni+1). Suppose that

k | lα − a, (†)

for somek, l ∈ Ze anda ∈ Ai+1. We have to show thatk | lβ − a.
By the equalityCi = Ci+1 we can find ana′ ∈ Ai so thatk | lα − a′. Thenk | lβ − a′,

hencek | lβ − lα. So by(†) we getk | lβ − a. �
SoC1 � C2 � · · · ⊆ Ze × Ze. This is a contradiction. �
The next corollary is the converse to Remark 1.4 for products with the standard

tural group.

Corollary 3.2.2. LetX = ∏
i∈ω Xi be a product of finite groups such that almost allXi are

abelian and assume thatX has finite exponent. ThenX, with its standard structural group
is small,m-normal andm-stable.

Proof. We can presentX asY−1 × ∏
i∈ω Yi , where everyYi is abelian and finite andY−1

is finite. More precisely, there is ak ∈ ω such thatY−1 = X0 × · · · × Xk−1 andYi = Xi+k

for i ∈ ω. It is easy to see thatX is interpretable inY = ∏
i∈ω Yi , so using the previou

theorem forY we obtain the smallness ofX.
The situation is a little bit more complicated form-normality andm-stability. Let
A = {η ∈ X: (∀i � k)(η(i) = 0)}. This set is, of course, finite. It is easy to see that
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(X,Aut∗(X/A)) ∼= (|A| × Y,Aut∗(Y )), where|A| × Y is considered as a disjoint unio
of |A|-many copies ofY and Aut∗(Y ) acts on each summand of this union as onY .
So once again using the previous theorem we obtainm-normality andm-stability of
(X,Aut∗(X/A)). The last step in the proof is getting rid of the setA. For m-normality
we use Remark 1.6, form-stability Remark 1.7. �

Let X be a product of countably many finite abelian groups of bounded exponen
Theorem 3.2.1 we know thatX is m-stable and, moreover, from the proof ofm-stability
we see thatM(X) < ω.

Proposition 3.2.3. LetX be a product of countably many finite abelian groups of boun
exponent ande be the exponent ofX. ThenM(X) = M − 1, whereM is the maximum
of lengths of all descending sequencesH0 > H1 > · · · > Hn of subgroups ofX, which are
defined by conjunctions of formulas of the formk | lx, wherek, l ∈ Ze, and such thatHi+1
is nowhere dense inHi for every0� i < n.

Proof. We have to proveM(X) = M − 1.
(�) LetM(X) = m. There is a sequenceA0 ⊆ · · · ⊆ Am of finite submodules ofX and

an elementα ∈ X such thato(α/Ai+1) is nowhere dense ino(α/Ai) for every 0� i < m.
Let

Ci = {
(k, l) ∈ Z2

e : (∃a ∈ Ai)
(
k | (lα − a)

)}
and

Gi = {
x ∈ X:

(∀(k, l) ∈ Ci

)
(k | lx)

}
< X.

Now we takeni = Nα,Ai
, 0 � i � m. Let n = max{ni : 0 � i � m} and letU = {η ∈ X:

η � n = α � n}. By the description of orbits we get

o(α/Aiα � n) = {
β ∈ X: α � n ⊆ β and

(∀a ∈ Ai)(∀k, l ∈ Ze)
(
k | (lα − a) ⇒ k | (lβ − a)

)}
.

As a consequence we get that

o(α/Aiα � n) = U ∩ (α + Gi),

for 0� i � m. SoG0 > G1 > · · · > Gm is a descending sequence of subgroups ofX, each
Gi is defined by a conjunction of formulas of the formk | lx, wherek, l ∈ Ze, andGi+1 is
nowhere dense inGi for every 0� i < m. Hencem � M − 1.

(�) It follows from the fact (see [N2, Lemma 2.6]) that ifH1 < H2 are groups definabl
in a smallm-stable profinite structure andH1 is nowhere dense inH2, thenM(H1) <

M(H2). �

Corollary 3.2.4. Letn ∈ ω andp be a prime number. ThenM(Zω

pn) = n.
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If we want to calculateM(X) for X = ∏
i∈ω Xi being a product of countably many fi

nite groups of bounded exponent such that almost allXi are abelian, then arguing similar
as in the proof of Corollary 3.2.2 and using Remark 1.8 we see that it is enough to c
ann ∈ ω such thatXi is abelian fori > n and to calculateM(

∏
i>n Xi).

Let X = ∏
i�ω Xi be a product of finite groups. Then any permutation or group

of Xi , i ∈ ω, changes the profinite structure ofX, i.e. it changes the standard structu
group ofX. So the question arises if permutations or grouping ofXi have an effect on
smallness,m-normality andm-stability of X. Using Corollary 3.2.2 and Remark 1.4 w
get the following answer to this question.

Corollary 3.2.5. Smallness ofX = ∏
i∈ω Xi (with the standard structural group) does not

depend on permutation and grouping ofXi . If such a product is small, then it ism-normal
andm-stable and remains such after any permutation and grouping ofXi .

When we have a profinite topological space (group) we can treat it as the invers
of different inverse systems. We give now an example showing that smallness of a pr
group depends on its presentation as an inverse limit of finite groups.

Example 1. Let X = Zω
2 . We considerX as the inverse limit of all its finite subproduc

with natural projections. This induces a profinite structure onX with the trivial standard
structural group. HenceX is not small.

On the other hand, if we considerX as the inverse limit of the system

Z2 ←− Z2 × Z2 ←− Z2 × Z2 × Z2 ←− · · ·

of initial finite subproducts ofX with natural projections, then by Theorem 3.2.1 we
thatX is small.

We investigate the above phenomenon in Section 4. Now we are going to co
products of countably many finite groups with some non-standard structural groups
is the place where we need the generalized description of orbits given in Lemma
The results of this part of Section 3 yield new examples of small profinite groups
interpretable in fields [K].

Proposition 3.2.6. Let p be a prime number andX = ∏
i∈ω Xi , where eachXi is a finite

abelianp-group. LetX have finite exponente = pg andS be a Sylowp-subgroup of the
standard structural group Aut∗(X). Then(X,S) is still small,m-normal andm-stable.

Proof. We defineG = Aut∗(X/A0), where

A0 = {
η ∈ X � n: n � 1, η � n − 1= (0, . . . ,0)

}
.

ThenG is a closed subgroup ofAut∗(X). Let α ∈ X andA be a finite submodule ofX.
Everywhere below we consider orbits under the action ofAut∗(X).
By Lemma 3.1.2 we have that for everyn ∈ ω
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o(α/A0Aα � n)

= {
β ∈ X: α � n ⊆ β and(∀i ∈ ω)(∀a ∈ A)(∀η ∈ A0 ∩ X � i)(∀k, l ∈ Ze)(

k | (lα � i − a � i − η) ⇔ k | (lβ � i − a � i − η)
)}

. (†)

Let n = Nα,A.

Claim. o(α/Aα � n) = o(α/A0Aα � n).

Proof. (⊇) is obvious.
(⊆) Let us take aβ ∈ o(α/Aα � n). Suppose for a contradiction thatβ /∈ o(α/A0Aα �

n). From(†) we get that there is ana0 ∈ A0 (more preciselya0 ∈ X � m for somem > n),
a ∈ A andk, l ∈ Ze such that one of the two following cases holds.

Case 1. k | (lα � m − a � m − a0) andk � (lβ � m − a � m − a0).

Case 2. k � (lα � m − a � m − a0) andk | (lβ � m − a � m − a0).

We will show how to get a contradiction in the first case. The second case can be ch
similarly. Sincea0 � n = (0, . . . ,0), the assumption of the first case gives thatk | (lα �
n − a � n). This together with the definition ofn gives thatk | (lα − a). As a consequenc
k | (lα � m−a � m), sok | a0 andk | (lβ � m−a � m). Finallyk | (lβ � m−a � m−a0). �

By the claim and Theorem 3.2.1 one can conclude that for anyH � G, the structure
(X,H) is small,m-normal andm-stable.

If we show thatG is a pro-p-group, then we will get that there is a Sylowp-subgroup
Gp of Aut∗(X) containingG. So we will obtain that(X,Gp) is small, m-normal and
m-stable. Using Remark 1.5 and the fact that all Sylowp-subgroups ofAut∗(X) are con-
jugate our proof will be done.

So let us show thatG is a pro-p-group. LetGi = G � (X � i) for i � 1. Then

G = lim←− Gi,

so we have to show that everyGi is ap-group. We do this by induction oni.
For i = 1 there is nothing to do, because|G1| = 1.
Assume thatGi is ap-group. Let us considerHi+1 = {g ∈ Gi+1: g � (X � i) = idX�i}.

ThenGi+1/Hi+1 ∼= Gi , so it is enough to show thatHi+1 is ap-group. For everyk � i we
can writeXk = 〈ξk1〉 ⊕ · · · ⊕ 〈ξklk 〉, where each〈ξkj 〉 is a cyclicp-group. LetE consist of
these elementsε ∈ X � i + 1 which have only one non-zero coordinate and this coordi
has a formε(k) = ξkj for somej � lk . For ε ∈ E let Eε be the set of elements ofXi with
the exponent less or equal to the exponent ofε. We will show that

{
ε, whenε(i) �= 0,
f ∈ Hi+1 �⇒ (∀ε ∈ E) f (ε) =
(ε � i)�θ for someθ ∈ Eε, otherwise,

(∗)
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and when we chooseθε ∈ Eε for eachε ∈ E, then

(∃!f ∈ Hi+1)(∀ε ∈ E) f (ε) =
{

ε, whenε(i) �= 0,

(ε � i)�θε, otherwise.
(∗∗)

Condition(∗) is obvious.
To show(∗∗) let us point thatE generatesX � i +1, hence the uniqueness is clear. N

we have to find an appropriatef . We define it by

f

(∑
ε∈E

lεε

)
=

∑
ε∈E

lε(ε � i)�θε

(for ε such thatε(i) �= 0 we assume thatθε = ε(i)). To complete the proof of(∗∗) it is
enough to check that this definition does not depend on the presentation of an elem
X � i + 1 as a combination of elementsε ∈ E and thatf is 1− 1. Both things are easy
so we check only the first one. Let

∑
ε∈E lεε = ∑

ε∈E l′εε. For η ∈ X � i + 1 by e(η) we
denote the exponent ofη. Then forε ∈ E we havee(ε) | lε − l′ε, so

∑
ε∈E lε(ε � i)�θε =∑

ε∈E l′ε(ε � i)�θε.
Finally, each|Eε| is some power ofp, so using(∗) and (∗∗) we get thatHi+1 is a

p-group. �
Corollary 3.2.7. Letp be a prime number. LetX = ∏

i∈ω Xi be a product of finitep-groups
such that almost allXi are abelian and assume thatX has finite exponent. LetS be a Sylow
p-subgroup of the standard structural group Aut∗(X). Then(X,S) is small,m-normal and
m-stable.

Proof. Similarly as in the proof of Corollary 3.2.2 we can find ak ∈ ω and presentX as
Y−1 × ∏

i∈ω Yi , whereY−1 := X0 × · · · × Xk−1 and for everyi ∈ ω, Yi := Xi+k is abelian.
Let A = {η ∈ X: (∀i � k)(η(i) = 0)}. In the proof of Corollary 3.2.2 we noticed th

(X,Aut∗(X/A)) ∼= (|A| × Y,Aut∗(Y )), where|A| × Y is considered as a disjoint union
|A|-many copies ofY andAut∗(Y ) acts on each summand of this union as onY . We can
identify Aut∗(X/A) with Aut∗(Y ). Let SY be a Sylowp-subgroup ofAut∗(Y ). It can be
enlarged to a Sylowp-subgroupSX of Aut∗(X). ThenSX ∩ Aut∗(X/A) = SY .

From Proposition 3.2.6 we obtain that(X,SY ) is small,m-normal andm-stable. Hence
(X,SX) is small. To showm-normality andm-stability of (X,SX) we use Remarks 1.
and 1.7, respectively.

By Remark 1.5 and since every Sylowp-subgroup ofAut∗(X) is conjugate withSX , the
proof is completed. �

It is worth noticing that ifX is not necessarily a pro-p-group and if we defineG in the
same way as it was defined in the proof of Proposition 3.2.6, then the claim appea
this proof is still true and as a consequence(X,G) is small,m-normal andm-stable. Even
more generally, we can defineG as a closed subgroup ofAut∗(X) fixing pointwise only a
subset ofA0 (A0 is defined in the same way as in the proof of Proposition 3.2.6) to ge

same result. Considering onlym-normality andm-stability we can show even more.
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Proposition 3.2.8. Let X = ∏
i∈ω Xi be a product of finite abelian groups and letX have

finite exponente. Aut∗(X) denotes the standard structural group ofX.

(i) If A0 is any family of canonical open sets inX, then(X,Aut∗(X/A0)) is m-normal
andm-stable.

(ii) If A0 is any subset ofX ∪ ⋃
i�1 X � i, then (X,Aut∗(X/A0)) is m-normal and

m-stable.
(iii) Under the weaker assumption that almost allXi are abelian we have that ifA0 is

the same as in(i) or (ii) and if (X,Aut∗(X/A0)) is small, then it ism-normal and
m-stable.

Recall that in the case of productX = ∏
i∈ω Xi , a canonical open set consists of e

ments with fixed firsti coordinates (i � 1).

Proof. (i) We identify canonical open sets inX with elements fromX � i for i � 1. With-
out loss of generality we can assume that for everyi � 1 we have that{η � i: η ∈ A0} is a
submodule ofX � i andA0 ∩ X � i = {η � i: η ∈ A0}.

The proof is an elaboration of the proofs ofm-normality andm-stability in Theo-
rem 3.2.1.

Let A be a finite submodule ofX andα ∈ X. We consider orbits under the action
Aut∗(X). By Lemma 3.1.2 we obtain that for everyn ∈ ω

o(α/A0Aα � n)

= {
β ∈ X: α � n ⊆ β and(∀i ∈ ω)(∀a ∈ A)(∀η ∈ A0 ∩ X � i)(∀k, l ∈ Ze)(

k | (lα � i − a � i − η) ⇔ k | (lβ � i − a � i − η)
)}

. (∗)

(1) m-normality. Let A be a finite submodule ofX andα be a finite tuple of element
of X. We assume for simplicity thatα is a single element. Fork, l ∈ Ze anda ∈ A we
define

nk,l,a = max
{
n ∈ ω: (∃η ∈ A0 ∩ X � n)

(
k | (lα � n − a � n − η)

)}
,

when such a maximaln exists, ornk,l,a = 0, otherwise. Finally we define

Nα,A,A0 = max
{
nk,l,a : (k, l, a) ∈ Ze × Ze × A

} + 1.

Let n = Nα,A,A0 andU = {η ∈ X: η � n = α � n}. SoU ∩ o(α/A0A) = o(α/A0Aα � n).
From(∗) and the choice ofn we get

o(α/A0Aα � n)

= {
β ∈ X: α � n ⊆ β and(∀i ∈ ω)(∀a ∈ A)(∀η ∈ A0 ∩ X � i)(∀k, l ∈ Ze)(

k | (lα � i − a � i − η) ⇒ k | (lβ � i − a � i − η)
)}

. (∗∗)
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To show(∗∗) choose aβ in the right-hand side of(∗∗). Assume thatk | (lβ � i − a �
i − η). In virtue of (∗) we have to show thatk | (lα � i − a � i − η). If i � n, thenα � i =
β � i, sok | (lα � i − a � i − η). Otherwise, we havek | (lβ � n − a � n − η � n), sok | (lα �
n − a � n − η � n). From the definition ofn we conclude that there is anη′ ∈ A0 ∩ X � i

such thatk | (lα � i − a � i − η′). Hencek | (lβ � i − a � i − η′). By the assumption, thi
implies thatk | (η′ − η). Finally we havek | (lα � i − a � i − η) and this shows(∗∗).

The proof ofm-normality boils down to the following claim, whose proof uses(∗∗)

and is an obvious generalization of the proof of the claim formulated in the proof om-
normality in Theorem 3.2.1.

Claim. The setU ∩ o(α/A0A) is fixed setwise by anyf ∈ Aut∗(X/A0α).

(2) m-stability. Suppose for a contradiction that there is a sequenceA1 ⊆ A2 ⊆ · · · of
finite submodules ofX and an elementα ∈ X such thato(α/A0Ai+1) is nowhere dense i
o(α/A0Ai) for everyi � 1.

Let ni = Nα,Ai,A0. Thenni+1 � ni for i � 1. Let

Ci = {
(k, l) ∈ Z2

e : (∃a ∈ Ai)(∃η ∈ A0 ∩ X � ni)
(
k | (lα � ni − a � ni − η)

)}
.

From(∗) and the choice ofni we get that for anyn′
i � ni

o
(
α/A0Aiα � n′

i

)
= {

β ∈ X: α � n′
i ⊆ β and(∀j ∈ ω)(∀a ∈ Ai)(∀η ∈ A0 ∩ X � j)(∀k, l ∈ Ze)(

k | (lα � j − a � j − η) ⇒ k | (lβ � j − a � j − η)
)}

.

By the assumption thato(α/A0Ai+1) is nowhere dense ino(α/A0Ai) we have that
o(α/A0Ai+1α � ni+1) is nowhere dense ino(α/A0Aiα � ni+1). One can check that the
we haveCi � Ci+1. SoC1 � C2 � · · · ⊆ Ze × Ze. This is a contradiction.

(ii) This follows from (i).
(iii) The proof is analogous to the proof of Corollary 3.2.2. It uses (i) and Remark

and 1.7. �
Let X be a product of countably many finite abelian groups of bounded exponen

G be the family of all groups of the formAut∗(X/A0), whereA0 is an arbitrary family of
canonical open sets inX. Then(X,G) is m-normal for anyG ∈ G. So the question arise
whether each such product with an arbitrary structural group ism-normal (and small o
not). The example below yields the negative answer to this question.

Example 2. We treatY = Z3 × Z3 as the inverse limit of the systemZ3 ← Z3 × Z3 with
the natural projection on the first coordinate. LetAut∗(Y ) be the standard structural grou
of Y . We consider orbits onY under the action ofAut∗(Y ). For α0 = 〈1,0〉, α1 = 〈1,1〉,

α2 = 〈1,2〉 andβ = 〈2,0〉 we haveo(α1/β) = {α1, α2} ando(α2/α1) = {α2, α0}.
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Let X = Yω. We takeAut∗(X) = Aut∗(Y )ω as a structural group ofX, where forf =
(f0, f1, . . .) ∈ Aut∗(Y )ω andη = (η0, η1, . . .) ∈ X we definef (η) = (f0(η0), f1(η1), . . .).
Let a1 = (α1, α1, . . .) andb = (β,β, . . .). Then

o(a1/b) = {
η ∈ X: (∀i ∈ ω)

(
η(i) = α1 or η(i) = α2

)}
.

For ann ∈ ω let U = {η ∈ X: a1 � n ⊆ η} be a canonical open neighbourhood ofa1. For
everyA ⊆ ω \ {0, . . . , n − 1} we can find an automorphismfA ∈ Aut∗(X/a1) such that for
eachη ∈ o(a1/b) andi ∈ ω we have

fA(η)(i) =
{

α1, whenη(i) = α1,

η(i), wheni /∈ A,

α0, whenη(i) = α2 andi ∈ A.

Then for all A �= A′ we havefA[U ∩ o(a1/b)] �= fA′ [U ∩ o(a1/b)] and we get tha
(X,Aut∗(X)) is notm-normal. One can check that(X,Aut∗(X)) is not small and notm-
stable.

4. Changing the inverse system

Now we are going to consider a productX = ∏
i∈ω Xi of countably many finite group

with structural groups arising in some another special way. Namely, for a directed seS ⊆
[ω]<ω such that

⋃
S = ω we consider the profinite group(XS ,Aut∗S(X)), which is just the

groupX regarded as the inverse limit of the system{XS : S ∈ S}, whereXS = ∏
i∈S Xi ,

S ∈ S , with the standard structural group (denoted byAut∗S(X)). So the universeXS of
our profinite group can be identified withX. For simplicity, from now on we will writeXS
instead of(XS ,Aut∗S(X)).

In this section we will characterize these directed setsS ⊆ [ω]<ω for whichXS is small,
and we will show that ifXS is small, then it is alsom-normal.

First of all without loss of generality we can assume thatS satisfies

(i) S1 ∈ S andS2 ∈ S ⇒ S1 ∪ S2 ∈ S andS1 ∩ S2 ∈ S .

For eachS0 ∈ S we can considerXS0 = ∏
i∈S0

Xi as the inverse limit of the syste
{XS : S ∈ S andS ⊆ S0}. LetS � S0 = {S ∈ S: S ⊆ S0}. ThenAut∗S�S0

(XS0) is the standard
structural group ofXS0 regarded as the inverse limit as above.

Now we give the description of orbits inXS under the assumption that allXi are abelian
So letα = (α1, . . . , αm) ∈ Xm andA be a submodule (overZ) of X.

Lemma 4.1 (Description of orbits). o(α/A) = U , whereU consists of elementsβ ∈ Xm

such that for alla ∈ A, k ∈ Z, l1, . . . , lm ∈ Z andS ∈ S we have

k

∣∣∣
(

m∑
liαi � S − a � S

)
⇐⇒ k

∣∣∣
(

m∑
liβi � S − a � S

)
.

i=1 i=1
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Proof. (⊆) is obvious.
(⊇) Take aβ ∈ U . We have to show thatβ ∈ o(α/A). Let T0 ⊆ T1 ⊆ · · · ⊆ ω be a

sequence of sets fromS cofinal inω. We will construct sequencesS0 ⊆ S1 ⊆ · · · ⊆ ω and
f0, f1, . . . such that for alli ∈ ω we have:

(1) Si ∈ S andSi+1 is a minimal set inS containing properlySi and contained inTji
,

whereji is the minimal natural number such thatSi � Tji
.

(2) fi ∈ Aut∗S�Si
(XSi

/A � Si).
(3) fi+1 � XSi

= fi .
(4) fi(α � Si) = β � Si .

We defineS0 as a minimal non-empty set fromS . By the assumption thatβ ∈ U and
a simple application of Lemma 2.1, there is an automorphism ofXS0 fixing the setA � S0
pointwise and satisfying (4). Asf0 we choose an arbitrary such automorphism.

Now assume that we have chosen(Si)i�n and(fi)i�n. We defineSn+1 as a minimal
set fromS containing properlySn and contained inTjn , wherejn is the minimal natura
number such thatSn � Tjn . Let S′ be the smallest set fromS such thatSn+1 \ Sn ⊆ S′ ⊆
Sn+1. Of course,fn � XSn∩S′ ∈ Aut∗S�Sn∩S′(XSn∩S′/A � Sn ∩ S′). So by the assumptio
thatβ ∈ U and by Lemma 2.1 we get that there is anf ′

n ∈ Aut∗S�S′(XS′/A � S′) such that
f ′

n � XSn∩S′ = fn � XSn∩S′ andf ′
n(α � S′) = β � S′. Now we can already definefn+1 ∈

Aut∗S�Sn+1
(XSn+1/A � Sn+1) by fn+1((xi)i∈Sn+1) = (yi)i∈Sn+1, whereyj is the projection

of fn((xi)i∈Sn) on thej th coordinate, whenj ∈ Sn, yj is the projection off ′
n((xi)i∈S′) on

thej th coordinate, whenj ∈ S′.
One can easily check that forj ∈ S′ ∩ Sn both lines above agree and thatfn+1 satisfies

(2)–(4). Now item (1) implies that
⋃

i∈ω Si = ω, so automorphismsf0, f1, . . . yield an
automorphismf ∈ Aut∗S(X/A) for whichf (α) = β. �

We say thatI ⊆ S is an ideal inS if:

• I1 ∈ I andI2 ∈ I ⇒ I1 ∪ I2 ∈ I,
• I ∈ I, J ⊆ I andJ ∈ S ⇒ J ∈ I.

By Remark 1.4 we know that ifXS is small, then almost allXi are abelian andX has
finite exponente. So assume this in the next theorem and, moreover, that eachXi is a
non-trivial group.

Theorem 4.2. XS is small iff there are only countably many ideals inS .

Proof. First we show the theorem in the case when allXi are abelian. LetA be a finite
submodule ofX. Forα ∈ X, a ∈ A, k, l ∈ Ze we define the ideal

I(α, a, k, l) = {
S ∈ S: k | (lα � S − a � S)

}
.

By Lemma 4.1 we see that an elementβ ∈ X belongs too(α/A) iff I(α, a, k, l) =

I(β, a, k, l) for all k, l ∈ Ze anda ∈ A. Hence we get (←) in Theorem 4.2. On the other
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hand, for an arbitrary idealI of S we can find anα ∈ X for which I(α,0,0,1) = I. So
the number of 1-orbits over∅ is not less than the number of ideals inS .

To finish the proof we have to consider the case when not allXi are abelian. LetS0 ∈ S
be such that eachXi , i /∈ S0, is abelian. LetS ′ = {S \ S0: S ∈ S}. It is easy to see tha
XS is interpretable in(

∏
i∈ω\S0

Xi)S ′ . On the other hand,(
∏

i∈ω\S0
Xi)S ′ is a∅-definable

subgroup ofXS . Hence

XS is small iff

( ∏
i∈ω\S0

Xi

)
S ′

is small. (∗)

Let λ andλ′ be the number of ideals inS andS ′, respectively. One can check that

λ � ω iff λ′ � ω. (∗∗)

Now (∗), (∗∗) and the fact that the theorem is true for(
∏

i∈ω\S0
Xi)S ′ finish the proof. �

Proposition 4.3. If XS is small, then it is alsom-normal.

Proof. Assume thatXS is small. Then we have that almost allXi are abelian andX
has finite exponente. Arguing similarly as in the proof of Corollary 3.2.2 without lo
of generality we can assume that allXi are non-trivial and abelian. Now suppose fo
contradiction thatXS is notm-normal. Hence there is a finite tupleα from X and a finite
submoduleA of X such that for an arbitrary canonical open neighbourhoodU of α we
have that the set{f [o(α/A) ∩ U ]: f ∈ Aut∗S(X/α)} has at least two elements. In oth
words for an arbitrary canonical open neighbourhoodU of α

(∃β ∈ o(α/A) ∩ U
)(∃f ∈ Aut∗S(X/α)

) (
f (β) /∈ o(α/A)

)
. (∗)

For simplicity assume thatα is a single element.

Claim 1. For allβ ∈ o(α/A), a ∈ A, k, l ∈ Ze, S ∈ S andf ∈ Aut∗S(X/α) we have

k | (lα � S − a � S) �⇒ k | (lf (β) � S − a � S
)
.

Proof. Let k | (lα � S − a � S). Thenk | (lα � S − f (a) � S), so k | (a � S − f (a) � S).
Now β ∈ o(α/A), so k | (lβ � S − a � S), hencek | (lf (β) � S − f (a) � S) and, finally,
k | (lf (β) � S − a � S). �
Claim 2. There are setsS1, S2, . . . ∈ S such thatSi \ ⋃

j �=i Sj �= ∅ for everyi ∈ ω.

Proof. In the proof of Theorem 4.2 we defined idealsI(η, a, k, l) for η ∈ X, a ∈ A and

k, l ∈ Ze. LetA = A × Ze × Ze.
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We constructri ∈ A, βi ∈ X, Siri ∈ S andfi ∈ Aut∗S(X/α), i ∈ ω, such that for alli we
have:

(1) βi ∈ o(α/A) ∩ Ui , whereUi = {η ∈ X: η �
⋃

j<i Sjrj = α �
⋃

j<i Sjrj }.
(2) Siri ∈ I(fi(βi), ri) butSiri /∈ I(α, ri).

The fact that orbits are determined by ideals (see the proof of Theorem 4.2) to
with Claim 1 and(∗) show that this construction is possible.

There is anr ∈ A such that there are infinitely many indicesi ∈ ω for which ri = r .
Choose such anr and let(Si)i∈ω be the subsequence of the sequence(Siri )i∈ω consisting
of elementsSiri for which ri = r .

We will show that the sequence(Si)i∈ω satisfies our demands. Of course,r = (a, k, l)

for somea ∈ A andk, l ∈ Ze. Let

T = {
i ∈ ω: k | (lα(i) − a(i)

)}
.

To finish the proof it is enough to show the following statement.

The family of sets{Si \ T : i ∈ ω} consists of nonempty pairwise disjoint sets. (∗∗)

By induction onn we will show that the setsS0 \ T , . . . , Sn \ T are nonempty and
pairwise disjoint. Forn = 0, if we hadS0 ⊆ T , then we would get thatS0 ∈ I(α, r),
a contradiction with (2). Suppose now thatS0 \ T , . . . , Sn \ T satisfy our demands. Th
fact thatSn+1 \ T is nonempty follows as above. So suppose for a contradiction
(Sn+1 \ T ) ∩ (Sk \ T ) is nonempty for some 0� k � n. Let i ∈ (Sn+1 \ T ) ∩ (Sk \ T ).
We haveSk = Sjrj andSn+1 = Sj ′rj ′ for somej < j ′. By the construction we have th
βj ′ � Sk = α � Sk , hencefj ′(βj ′) � Sk = α � Sk . But i ∈ (Sk \ T ) ∩ Sn+1, sok � (lf (βj ′) �
Sn+1 − a � Sn+1) and finallySn+1 /∈ I(f (βj ′), rj ′), a contradiction. �

From Claim 2 we obtain uncountably many ideals inS , a contradiction with Theo
rem 4.2. �

At the beginning of [N1] there is an example of a small but notm-stable first order
theory. Here we recall it in the context of profinite groups. The example is of the formXS
for someS ⊆ ω andX = Zω

2 . This example shows that the counterpart of Proposition
with m-normality replaced bym-stability does not hold.

Example 3. Let X = Zω×ω
2 (before we were considering countable products indexed bω,

here we index it byω × ω for convenience). We define

S ′ = {{
(i, j) ∈ ω × ω: i � n, j � m

}
: n � m < ω

}
.

To satisfy condition (i) from the beginning of Section 4 we defineS as the closure ofS ′

on finite unions.
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all

form

ion.
It is easy to see that there are countably many ideals inS , hence by Theorem 4.2 an
Proposition 4.3 we get thatXS is small andm-normal.

Let Hn = {η ∈ X: η � n × ω = 0} andHn,m = {η ∈ X: η � n × m = 0} for n � m ∈ ω.
SinceHn = ⋂

m�n Hn,m, we get thatHn is a definable subgroup ofXS . Moreover,Hn+1 is
nowhere dense inHn for everyn ∈ ω. So by the fact (see [N2, Lemma 2.6]) that in a sm
m-stable profinite group there is no descending sequence of definable subgroups(Gn)n∈ω

such thatGn+1 is nowhere dense inGn, n ∈ ω, we get thatXS is notm-stable.
We see that the profinite group from Example 2 is also of the formXS for X = Zω

3 and
someS ⊆ ω. So we see that abelian profinite groups of finite exponent and of the formXS
can have very different model theoretic properties. However, there is no group of the
XS which is small but notm-normal.
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