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0. Introduction

Very briefly, the purpose of this paper is to explore multi-graded analogues of some results in the
algebra of modules, and particularly local cohomology modules, over a commutative Noetherian ring
that is graded by the additive semigroup Ny of non-negative integers.

To describe the results that we plan to generalize, let R = EB,,GNO Ry be such a ‘positively-graded’
commutative Noetherian ring. Any unexplained notation in this Introduction will be as in Chapters 12
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and 13 of our book [4]. In particular, the *injective envelope of a graded R-module M will be denoted
by *E(M) (see [4, §13.2]), and, for t € Z, the tth shift functor (on the category *C(R) of all graded
R-modules and homogeneous R-homomorphisms) will be denoted by (.)(t) (see [4, §12.1]).

Let N denote the set of positive integers; set Ry := D,y Ru, the irrelevant ideal of R. For a graded
R-module M and p € *Spec(R) (the set of homogeneous prime ideals of R), we use M, to denote
the homogeneous localization of M at p. For i € Ny, the ordinary Bass number pi(p, M) is equal to
the rank of the homogeneous localization (* Ext’k(R/p, M)) ) as a (free) module over Ry /pR(p) (see
R. Fossum and H.-B. Foxby [6, Corollary 4.9]).

Let i € Np, and consider a direct decomposition given by a homogeneous isomorphism

*E'M) = @D *E(R/pa)(—na).

ael;
for an appropriate family (py)aca; Of graded prime ideals of R and an appropriate family (ng)ge4; of
integers. (See [4, §13.2].)
Suppose that the graded prime ideal p contains the irrelevant ideal Ry. In this case, the graded

ring R(p)/PRp) is concentrated in degree 0, and its Oth component is a field isomorphic to kg, (po),
the residue field of the local ring (Ro)p,. Thus,

1 (p, M) = dimig ooy (* EXCR(R/P, M) ) = D dimig, o) ((* Extr (R/p, M)) ) -
teZ

In [15], it was shown that the graded R(y)/pRy)-module (* Ext’k(R/p, M))p) carries information about
the shifts ‘—n,’ for those a € A; for which p, = p. One has

*E(R/p)(n) Z*E(R/p)(m) in *C(R) for m,n € Z with m #n,
and, for a given t € Z, the cardinality of the set {« € A;: py =p and ny, =t} is equal to

dimkRO(Po) ((* EXtil (R/p, M))(p))[’

the dimension of the tth component of (* Ext’k(R/p, M))p)-
Let *Var(R4) :={q € *Spec(R): q 2 R.}. Let p € *Var(Ry), let i € Ny and let t € Z. We say that t
is an ith level anchor point of p for M if

(("Extg(R/p, M), ), # O;
the set of all ith level anchor points of p for M is denoted by anchi(p, M); also, we write

anch(p, M) = |_J anch/(p, M),
Jj€Np

and refer to this as the set of anchor points of p for M. Thus anch’(p, M) is the set of integers h for
which, when we decompose

“E'M) => @ *E(R/pa)(—1q)

aeA;

by means of a homogeneous isomorphism, there exists o € A; with py =p and ng = h. Note that
anch'(p, M) =@ if u'(p, M) =0, and that anch'(p, M) is a finite set when M is finitely generated.
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It was also shown in [15] that, when the graded R-module M is non-zero and finitely generated,
the Castelnuovo regularity reg(M) of M is an upper bound for the set

U anch(p, M)

pe*Var(Ry4)

of all anchor points of M. Consequently, for each i > 0, every *indecomposable *injective direct sum-
mand F of *E!(M) with associated prime containing R, must have Fj =0 for all j > reg(M).

In Sections 2, 3 we shall present an analogue of this theory for a standard multi-graded commu-
tative Noetherian ring S = @neNg Sn (where r € N with r > 2). There is a satisfactory generalization
of anchor point theory to the multi-graded case, but we must stress now that we have not un-
covered any links between our multi-graded anchor point theory and the fast-developing theory of
multi-graded Castelnuovo regularity (see, for example, Huy Tai Ha [9] and D. Maclagan and G.G. Smith
[12]). This may be because our multi-graded anchor point theory only yields information about multi-
graded local cohomology modules with respect to Nj-graded ideals of S that contain one of the
components S,....0,1,0,..,0, Whereas the ideal Sy := @,y Sn, Which is relevant to multi-graded
Castelnuovo regularity, normally does not have that property.

The short Section 4 provides some motivation for our work in Section 5, where we provide multi-
graded analogues of work of T. Marley [14] about finitely graded local cohomology modules. We say
that a graded R-module L =&, ; Ly is finitely graded precisely when L, # 0 for only finitely many
n € Z. In [14], Marley defined, for a finitely generated graded R-module M,

ga(M) :=supf{k € No: H% (M) is finitely graded for all i <k},

and he modified ideas of N.V. Trung and S. Ikeda in [16, Lemma 2.2] to prove that
ga(M) :=sup{k € No: Ry €,/(0:g H(M)) for all i <k};

he then used Faltings’ Annihilator Theorem for local cohomology (see [5] and [4, Theorem 9.5.1]). In
Section 5 below, we shall obtain some multi-graded analogues of some of Marley’s results in this area.

1. Background results in multi-graded commutative algebra

Let R = @gec Ry be a commutative Noetherian ring graded by a finitely generated, additively-
written, torsion-free Abelian group G. Some aspects of the G-graded analogue of the theory of Bass
numbers have been developed by S. Goto and K.-i. Watanabe [8, §§1.2, 1.3], and it is appropriate for
us to review some of those here.

We shall denote by *C®(R) (or sometimes by *C(R) when the grading group G is clear) the cate-
gory of all G-graded R-modules and G-homogeneous R-homomorphisms of degree Oc between them.
Projective (respectively injective) objects in the category *C(R) will be referred to as *projective (re-
spectively *injective) G-graded R-modules. Similarly, the attachment of “*’ to other concepts indicates
that they refer to the obvious interpretations of those concepts in the category *CC(R), although we
shall sometimes use ‘G’ instead of “*’ in order to emphasize the grading group. However, the following
comments about * Hompg and the * Ext’}2 (i > 0) may be helpful.

1.1. Reminders. Let M = P, Mg and N =P, Ng be G-graded R-modules.

(i) Let a € G. We say that an R-homomorphism f:M — N is G-homogeneous of degree a precisely
when f(Mg) € Ngyq for all g € G. Such a G-homogeneous homomorphism of degree Og is sim-
ply called G-homogeneous. We denote by *Homg(M, N)q the Rg.-submodule of Homg(M, N)
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consisting of all G-homogeneous R-homomorphisms from M to N of degree a. Then the sum
D aec “Homg(M, N), is direct, and we set

*Homg (M, N) := Z* Homg(M, N)q = @* Homg (M, N)g.

aeG aeG

This is an R-submodule of Homg (M, N), and the above direct decomposition provides it with a
structure as G-graded R-module. It is straightforward to check that

*Homg(s,+):*C%(R) x *C®(R) — *C®(R)

is a left exact, additive functor.

(ii) If M is finitely generated, then Homg (M, N) is actually equal to * Homg (M, N) with its G-grading
forgotten.

(iii) For i € Ny, the functor *Ext’k is the ith right derived functor in *C¢(R) of *Homg. We make
two comments here about the case where M is finitely generated. In that case Ext'k (M, N) is
actually equal to *Ext; (M, N) with its G-grading forgotten, and, second, one can calculate the
*Ext‘k(M, N) by applying the functor * Homg (M, .) to a (deleted) *injective resolution of N in
the category *C®(R) and then taking cohomology of the resulting complex.

For a € G, we shall denote the ath shift functor by (.)(a): *C%(R) — *CC®(R): thus, for a G-graded
R-module M = EBgec Mg, we have (M(a))g = Mg.q for all g € G; also, f(a)[ (M@); = f[ Mgy, fOr each
morphism f in *C¢(R) and all g € G.

1.2. Theorem. (See S. Goto and K.-i. Watanabe [8, §1.3].) Let M be a G-graded R-module, and denote by
*Spec(R) the set of G-graded prime ideals of R. We denote by *E(M) or *Egr(M) ‘the’ *injective envelope
of M, and by *E'(M) or *E% (M) ‘the’ ith term in ‘the’ minimal *injective resolution of M ( for each i > 0).

(i) Assg *Er(M) = Assg M.

(ii) We have that M is a *indecomposable *injective G-graded R-module if and only if M is isomorphic (in
the category *CC(R)) to *E(R/q)(a) for some q € * Spec(R) and a € G. In this case, Assg M = {q} and q
is uniquely determined by M.

(iii) Let (M))rea be a non-empty family of G-graded R-modules. Then @, . , M, is *injective if and only if
M, is *injective for all 1 € A.

(iv) Each *injective G-graded R-module M is a direct sum of *indecomposable *injective G-graded submod-
ules, and this decomposition is uniquely determined by M up to isomorphisms.

(v) Let i be a non-negative integer. In view of part (iv) above, there is a family (py)aea; of G-graded prime
ideals of R and a family (8« )ac a; of elements of G for which there is a G-homogeneous isomorphism

“E'(M) S @D “E(R/pa)(—2a).

aEA;

Let p € * Spec(R). Then the cardinality of the set {«x € A;: po = p} is equal to the ordinary Bass number
W' (p, M) (that is, to dimy,y Exty (R /PRy, My,), where k(p) denotes the residue field of the local ring R, ).

’

A significant part of Section 2 of this paper is concerned with the shifts ‘—g,’ in the statement
of part (v) of Theorem 1.2. (The minus signs are inserted for notational convenience.) In [15], the
second author obtained some results about such shifts in the special case in which R is graded by the
semigroup Ny of non-negative integers, and in Section 2 below, we shall establish some multi-graded
analogues.

We shall employ the following device used by Huy Tai Ha [9, §2].
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1.3. Definition. Let ¢ : G — H be a homomorphism of finitely generated torsion-free Abelian groups,
and let R =, R be a G-graded commutative Noetherian ring.

(8 .
For each h e H, set R, := @g€¢_1({h}) Rg; then

=P =B D &)

heH heH " gep—1({h})

provides an H-grading on R, and we denote R by R? when considering it as an H-graded ring in this
way.
Furthermore, for each G-graded R-module M = P, Mg, set MZ’ = @gep-1(ny Mg and M? .=

DBren Mﬁ; then M? is an H-graded R?-module. Also, if f:M — N is a G-homogeneous homomor-
phism of G-graded R-modules, then the same map f becomes an H-homogeneous homomorphism
of H-graded R?-modules f?:M?% — N%.

In this way, (.)? becomes an exact additive covariant functor from *C¢(R) to *CH(R).

1.4. Notation. We shall use N and Ng to denote the sets of positive and non-negative integers,
respectively, and r will denote a fixed positive integer. Throughout the remainder of the paper,
R := @peyr Rn will denote a commutative Noetherian ring, graded by the additively-written finitely
generated free Abelian group Z" (with its usual addition). For n= (nq,...,n;), m=(my,...,my) € Z',
we shall write

n<m ifandonlyif n;<m; forali=1,...,r;

furthermore, n < m will mean that n < m and n # m. The zero element of Z" will be denoted
by 0, and, for each i =1,...,r, we shall use e; to denote the element of Z" which has 1 in the
ith spot and all other components zero. Also, 1 will denote (1,...,1) € Z". Thus 1=)"_, e;, and
Re,Re, ... Re, € Ry.

We shall sometimes denote the ith component of a general member w of Z" by w; without
additional explanation.

Comments made above that apply to the category *CZ" (R) will be used without further comment.
For example, we shall say that a graded ideal of R is *maximal if it is maximal among the set of
proper Z'-graded ideals of R, and that R is *local if it has a unique *maximal ideal. We shall use
*Max(R) to denote the set of *maximal ideals of R.

We shall use * Spec(R) to denote the set of Z'-graded prime ideals of R; for a Z"-graded ideal a
of R, we shall set *Var(a) := {p € *Spec(R): p D a}.

The next three lemmas are multi-graded analogues of preparatory results in [15, §1].

1.5.Lemma. Let p € * Spec(R) and let a be a Z"-homogeneous element of degree m in R \ p. Then multiplication
by a provides a Z'-homogeneous automorphism of degree n of *E(R/p). Also, each element of *E(R/p) is
annihilated by some power of p.

Consequently, if S is a multiplicatively closed subset of N;-homogeneous elements of R such that S Np # 4,

then S~ (*E(R/p)) = 0.
Proof. Multiplication by a provides a Z'-homogeneous R-homomorphism
Ma:"E(R/p) —> *E(R/p)(m).
Since Ker g has zero intersection with R/p, it follows that u, is injective. In view of Theorem 1.2(ii),

Im i, is a non-zero *injective Z'-graded submodule of the *indecomposable *injective Z'-graded
R-module *E(R/p)(n). Hence p, is surjective.
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The fact that each element of *E(R/p) is annihilated by some power of p follows from Theo-
rem 1.2(i), which shows that p is the only associated prime ideal of each non-zero cyclic submodule
of *E(R/p). The final claim is then immediate. O

The next two lemmas below can be proved by making obvious modifications to the proofs of the
(well-known) ‘ungraded’ analogues.

1.6. Lemma. Let f : L — M be a Z"-homogeneous homomorphism of Z' -graded R-modules such that M is a
*essential extension of Im f. Let S be a multiplicatively closed subset of 7" -homogeneous elements of R. Then
S~1M is a *essential extension of its Z -graded submodule Im(S~1 f).

Proof. Modify the proof of [4, 11.1.5] in the obvious way. O

1.7. Lemma. Let S be a multiplicatively closed subset of Z"-homogeneous elements of R, and let p € * Spec(R)
be such thatp N S = @. Then

(i) the natural map *Eg(R/p) — S™1(*ER(R/p)) is a Z"-homogeneous R-isomorphism, so that *Eg (R/p)
has a natural structure as a Z'-graded S~! R-module;
(i) there is a Z"-homogeneous isomorphism (in *C(S~'R))

"ER(R/p) = *Es-1p(ST'R/Sp):
(iii) *Eg-1x(S~1R/S™1p), when considered as a Z'-graded R-module by means of the natural homomor-

phism R — S~1R, is Z"-homogeneously isomorphic to *Eg (R/p);
(iv) for each n € Z7, there is a Z"-homogeneous isomorphism (in *C(S~!R))

STH("ER(R/p)(M) =*Eg-1p(S™'R/S™'p) (m);
(v) if I is a *injective Z" -graded R-module, then the Z' -graded S~!R-module S~11 is *injective.

Proof. (i) This is immediate from 1.5.

(ii) One can make the obvious modifications to the proof of [4, 10.1.11] to see that, as a Z"-graded
S~1R-module, *Er(R/p) is *injective; it is also Z'-homogeneously isomorphic, as a Z"-graded S~1R-
module, to S~1(*Egr(R/p)). One can use 1.6 to see that S™1(*Egr(R/p)) is a *essential extension of
S=1R/S~1p. The claim follows.

(iii), (iv) These are now easy.

(v) This can now be proved by making the obvious modifications to the proof of [4, 10.1.13(ii)]. O

2. A multi-graded analogue of anchor point theory

2.1. Definition. We shall say that R is positively graded precisely when Ry =0 for all n % 0. When that
is the case, we say that R (as in 1.4) is standard precisely when R = Rg[Re,, ..., Re,].

The main results of this paper will concern the case where R is positively graded and standard.

2.2. Lemma. Suppose that R := @neNg Rn is positively graded and standard. If a is an Nj-graded ideal of R
such that a D R¢ for some t € NI, then a D Ry, foreachn € NB withn>t.

Proof. Since R is standard, R, = R¢Rp_¢, and so is contained in a. O
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2.3. Definition. Suppose that R := EBneN'O Ry is positively graded and standard. Let p € * Spec(R). The

set {je{l,...,r}: Re; S p} will be called the set of p-directions and will be denoted by dir(p).
Observe that, if i € dir(p), then p D Rq by 2.2. Conversely, if p D Ry, then, since R1 = Re, ... Re,,
there exists i € {1,...,r} such that Re; € p, and i e dir(p). Thus dir(p) # @ if and only if p D Ry.
More generally, let b be an Njj-graded ideal of R. We define the set of b-directions to be

dir(b) :={j € {1,....r}: Re; SVb}.

The members of the set {1,...,r}\dir(b) are called the non-b-directions. It is easy to see that dir(b) =
ﬂpeMin(b) dir(p), where Min(b) denotes the set of minimal prime ideals of b.

2.4. Remark. It follows from Lemma 2.2 that, in the situation of Definition 2.3, each Nj-homogeneous
element of R\ p has degree with ith component 0 for all i € dir(p).

2.5. Proposition. Suppose that R := @“ENB Ry is positively graded and standard. Let p € * Var(RqR). For

notational convenience, suppose that dir(p) = {1, ..., m}, where 0 <m <r.Foreachi e {1,...,r}\ dir(p) =
{m+1,...,7}, select uj € Re; \ p.

Let a = (ay,...,am) € Z™. For ¢ = (Cm+1,---,Cr) € Z'™™, we shall denote by a|c the element
(@i,...,0m,Cm+1, - - -, Cr) of Z" obtained by juxtaposition.

(i) For all choices of ¢, d € Z'~™, there is an isomorphism of Ro-modules
(“ER(R/P)) ye = ("ER(R/P)), g

(Note that this does not say anything of interestif m =r.)

(ii) If "ER(R/p))ajc # 0 forany ce Z'~™, thena < 0.

(iii) Let T := R(p)/pR(p), where R(p) is the Z"-homogeneous localization of R at p. Then
(a) T is asimple Z"-graded ring in the sense of [8, Definition 1.1.1];
(b) Ty is a field;

(c) foreachc= (cm41,...,Cr) €Z™™,
70 _ ifa#0,
AT Tolmer /D1 . (u /DS ifa=0

(where 'is used to denote natural images of elements of Ry in T); and
(d) every Z"-graded T-module is free.
(iv) We have (0 :gg  (Rp) /R ) PR(9)) = R(p)/PRp)-
(v) Ifa,beZ™and c,d € Z'~™, and there is a Z"-homogeneous isomorphism

(*Er(R/p))(@lc) = (*ER(R/p))(b]d),
thena=Dh.
Note. The obvious interpretation of the above statement is to be made in the case where m =r.

Proof. It will be convenient to write v for a general member of Z™ and w for a general member
of Z'™™, and to use v|w to indicate the element of Z" obtained by juxtaposition.

(i) By Lemma 1.5, for each i =m +1, ..., r, multiplication by u; provides a Z"-homogeneous auto-
morphism of *Eg(R/p) of degree e;; the claim follows from this.
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(ii) Set A:={veZ™: v;>0 for someie{l,...,m}}. Since Re; Cp for all i =1,...,m, it follows
from Lemma 2.2 that the Z"-graded R-module R/p has (R/p)yjw =0 for all choices of vilw € Z" with
v € A. Therefore the Z"-graded submodule

B R/pvw

veA
wezm

of R/p is zero. Since *Er(R/p) is a *essential extension of R/p, it follows that

D CErRR/P)yw =0

wez—m

(iii) By Remark 2.4, each Nj-homogeneous element of R\ p has degree vlw with v =0. Also,
(R/p)yw =0 for all ve Z™ with v > 0. Now every non-zero Z"-homogeneous element of T is a unit
of T, so that T is a simple Z"-graded ring. Furthermore, the subgroup

G:={neZ" T, contains a unit of T}

is equal to {(ny,...,N0m,Nm41,...,M) € Z": Ny =--- =ny = 0}. The claims in parts (b), (c) and (d)
now follow from [8, Lemma 1.1.2, Corollary 1.1.3 and Theorem 1.1.4].
(iv) Recall that T = R(p)/pR(p). Now the Z'-graded T-module (0 FER ) (Rp)/PR(p)) pR(p)) contains

its Z"-graded T-submodule R(y)/pR(p), and cannot be strictly larger, by *essentiality and the fact (see
part (iii)) that every Z"-graded T-module is free.
(v) By Lemma 1.7(iv), there is a Z"-homogeneous isomorphism of Z'-graded R(;)-modules

(*ERrey, (Rp) /PR p)))@l€) = (“ER,,, (R(p)/PR(p))) (bId).

Abbreviate *Eg, (R(y)/PR(p)) by F. It follows from part (iv) that

T(alc) = (0:r pRpy)(@lc) = (0 :fqjc) PRp))
= (0:Fmjay PR(p)) = (0 :F pR(p)) (bld)
=T(bld),

where the isomorphism is Z"-homogeneous. But, for n= (ny,...,m, Nm41, ..., M) € Z", we have
T(@a|c)p #0 if and only if (nq,...,np)=-a
(by part (iii)). Therefore a=b. O

2.6. Remark. Suppose that R := EBneNg Rp is positively graded and standard, and let b be an Nj-
graded ideal of R for which dir(b) # @.

Write dir(b) = {i1,...,im}, where 0 <m <r and iy <--- <ip. Let ¢(b):Z" — Z™ be the epimor-
phism of Abelian groups defined by

d)((n1,...,np)) = Ny, ...,n;,) forall (ny,...,n;)eZ.

We can think of ¢ (b):Z" — Z™ as the homomorphism which ‘forgets the co-ordinates in the non-b-
directions’.

Now let p € *Var(R1R). The above defines an Abelian group homomorphism ¢ (p) : Z" — Z#dir(p)
(For a finite set Y, the notation #Y denotes the cardinality of the set Y.) In the case where b C p, we
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have dir(b) C dir(p), and we define the Abelian group homomorphism ¢ (p; b) : Z#4dir®) _ Z#dir(6) ¢
be the unique Z-homomorphism such that ¢ (p; b) o ¢ (p) = ¢ (b).

Now let p € *Var(Rq1R) and #dir(p) =m; we use the notation of 1.3. Let T := R(y)/pR(y), and let
L be a Z'-graded T-module.

(i) By Proposition 2.5(iii), for each a € Z™ and each n € Z',

0 if p(p)(m) #a,
(T(_n)¢(P))a = { (TP, lfﬁ(z)(n) ia.

In particular, the Z™-graded ring T¢® is concentrated in degree 0 € Z™.
(ii) Each component of the Z™-graded T#® -module L?® is a free (T?®))9-submodule of L9®,
(iii) If L is finitely generated, then

rankyeq) L?®) = Z rank o), (L"’(p))a;
aezZmn

since the left-hand side of the above equation is finite, all except finitely many of the terms on
the right-hand side are zero.

2.7. Theorem. Suppose that R := EBneNg Ry, is positively graded and standard. Let M be a Z'-graded R-
module, and let

1°:0 —> *EO(M) L5 *EV(M) —> - —> *EI(M) L5 *EHF (M) —> -
be the minimal *injective resolution of M. For each i € Ny, let

0i:*E' (M) = @D "E(R/pa)(—1e)

aeA;

be a Z"-homogeneous isomorphism, where py € * Spec(R) and ny, € Z' for all @ € A;.

Let p € *Var(RqR) and use the notation ¢ (p) : Z" — Z™ and T := R()/pR ) of Remark 2.6, where m is
the number of p-directions.

Leti € Ng and let a € Z™. Then the cardinality of the set {ot € Aj: py = p and ¢ (p)(ny) = a} is equal to

rank oo (((“Exth (R /8Rep). M) *™),)-

Proof. By Lemmas 1.5, 1.6 and 1.7, there are Z'-homogeneous isomorphisms of graded R,)-modules

*Ek gy Mp) = (FER(M) ) = D “ERep)/PaR(p)(—a).
aeA;
Pa P

One can calculate *Extk(p)(R(p)/pR(p), M) (up to isomorphism in the category *C% (R(y))) by

taking the ith cohomology module of the complex (0:(+),,, PR(p)). Note that, by Lemma 1.6, for each

j € Np, the inclusion I(er(d{p)) C *Ef(M)(p) is *essential, so that the inclusion

j . .
Ker(d{y)) N (O +gjay,, PR@) S O iy, PR
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is also *essential. Because, by Proposition 2.5(iii)(d), each Z"-graded T-module is free, it follows that

all the ‘differentiation’ maps in the complex (0 :(e),, PR(p)) are zero. Hence

i ~ . : Y/
“Extr (Rp) /PRy Mp) = @D (0146 R ) /paRepy) () PRp)) 10 *C7 (Rey)).
ae;
PaCPp

For o € A; such that p, C p (the symbol ‘C’ is reserved to denote strict inclusion), there exists an
Nj-homogeneous element u € p \ py, and the fact (see Lemma 1.5) that multiplication by u/1 € Ry
provides an automorphism of *E(R(y)/p«R(p)) ensures that

(0 = E(R(p) /pa R(p))(—00) PR(p)) = 0.
If @ € A; is such that py = p, then, by Proposition 2.5(iv),
(OEg ) Rep)/PR(p)) (—0) PR(p) = (Rep) /PR (p)) (=)

and, by Proposition 2.5(iii)(d), this is a free Z"-graded T-module.
Therefore there is a Z™-homogeneous isomorphism of Z"-graded T-modules

“Extg,, (R /PRy Mp) = @D (Rip)/PR ) (—1a).

aeA;
Pa=p

Now apply the functor (.)?® to obtain a Z™-homogeneous isomorphism of Z™-graded T®®)-
modules

: o) o o)
(" Exti,,, (Rip) /PR Mp)™ " = @D ((Rep/pR ) (—110)) .

ael;
Pa=p
But, by Remark 2.6(i), for an o € A;,
ey _ |0 if ¢(p)(ne) #a,
((T=ma)™), = { (T if () (ne) =a.

The desired result now follows from Remark 2.6(iii). O
2.8. Definitions. Let the situation and notation be as in Theorem 2.7, so that, in particular, p €

*Var(R1R) and m denotes the number of p-directions.
Let i € Ng. We say that a € Z™ is an ith level anchor point of p for M if

i (»)
((“Exth,, (Rp) /PRy, Mcp)* ™), #0;
the set of all ith level anchor points of p for M is denoted by anch!(p, M); also, we write

anch(p, M) = U anch/(p, M),
jeNo

and refer to this as the set of anchor points of p for M.
Thus anch'(p, M) is the set of m-tuples a € Z™ for which, when we decompose

“E'(M) = @D *E(R/pe) (—1a)

aEA;
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by means of a Zr—homoge'neous isomorphism, there exists « € A; with py =p and ¢ (p)(ny) = a. Note
that anch'(p, M) =@ if u!(p, M) =0, and that, if M is finitely generated, then anch'(p, M) is a finite
set, by Remark 2.6(iii).

The details in our present multi-graded situation are more complicated (and therefore more inter-
esting!) than in the singly-graded situation studied in [15] because there might exist a p € *Var(Rq1R)
for which the set of p-directions is a proper subset of {1,...,r}. This cannot happen when r = 1. It
is worthwhile for us to draw attention to the simplifications that occur in the above theory when
dir(p) ={1,...,r}, for that case provides a more-or-less exact analogue of the anchor point theory for
the singly-graded case developed in [15].

2.9. Example. Suppose that R := @neNg Rn is positively graded and standard. Let M be a Z'-graded
R-module, and let

1°:0 — *EO(M) L5 *EV (M) —> - —> *Ei(M) L *EFT (M) —> .
be the minimal *injective resolution of M. For each i € Ny, let

6" E'(M) => P "E(R/pa)(—ng)

aeA;

be a Z"'-homogeneous isomorphism, where py € * Spec(R) and ny € Z" for all o € A;.
Let p € *Spec(R) be such that p D R, for all n > 0, so that dir(p) = {1,...,r}. In this case, T :=
R(p)/pR(p) is concentrated in degree 0, and Ty is a field isomorphic to kg, (po).

Let i € Ng. Then anchi(p, M) is the set of r-tuples a € Z" for which there exists & € A; with py =p
and ny = a. The cardinality of the set of such «s is

dimy, (po) ((“Exty ) (Rp)/PRp). Mp)),)-

and we have

Y dimig o) ((*Exty  (Rp) /PRy Miy))),) = 14! (b, M).

acZ’

In particular, if M is finitely generated, then there are only finitely many ith level anchor points of p
for M.
This reflects rather well the singly-graded anchor point theory studied in [15].

Our next aim is to extend (in a sense) the final result in Example 2.9 (namely that, when M (as
in the example) is a finitely generated Z"-graded R-module and p € * Spec(R) is such that p D R, for
all n > 0, then, for each i € Ny, there are only finitely many ith level anchor points of p for M) to all
Nj-graded primes of R that contain Rj.

2.10. Remark. Let S be a multiplicatively closed set of Z"-homogeneous elements of R, and let M, N
be Z"-graded R-modules with M finitely generated. Then, for each i € Ny, there is a Z"-homogeneous
S~1R-isomorphism

STV (*Exth (M, N)) = *Extl_, . (S'M,S7'N).

2.11. Theorem. Assume that R = @neNg Rn is positively graded and standard, and let M be a Z"-graded
R-module. Let i € Ny, and let p € *Var(RqR). Then
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anchi(p, M) = anch! (p¢(”), qu(p))’
and so is finite if M is finitely generated.

Proof. Suppose, for ease of notation, that dir(p) = {1,...,m}, where 0 < m <r. Note that p?® is a
ZM-graded prime ideal of the Z™-graded ring R?®, and that dir(p?®) ={1,...,m} (by Lemma 2.2).

Set E:=* Ext’k(R/p, M). Let a € Z™. In view of 2.10, the m-tuple a is an ith level anchor point of p
for M if and only if ((E(y))?®)a # 0. Our initial task in this proof is to show that this is the case if
and only if

((* EXt;w(p) (R¢>(P)/p¢(|3)’ M¢(p)))(p¢(’ﬂ)))a #0.

Now the Z'-graded R-module E can be constructed by application of the functor * Homg (., M)
to a (deleted) *free resolution of R/p by finitely generated *free Z'-graded modules in the cate-
gory *CZ'(R) and then taking cohomology of the resulting complex. It follows that there is a Z™-
homogeneous isomorphism of Z™-graded R?® -modules

EO(P) = * EthRas(p) (R¢(P)/p¢(P)’ M¢(P)).

Suppose that ((E(y))?®))a # 0. Thus there exists n € Z" such that ¢(p)(n) =a and & € (E))n
such that & # 0. By Remark 2.4, there exists n’ € Z" such that ¢(p)(n’) =a and e € Ey which is
not annihilated by any Z'-homogeneous element of R \ p. Now any Z™-homogeneous element of
R®) \ p®®) will, when written as a sum of Z'-homogeneous elements of R, have at least one com-
ponent outside p, and so 0 e/1 € (E?®) o). Hence ((E®™),4(m))a #0, so that

((* Exthop) (RO®/p7 P, M¢(p)))(p¢(¥’)))a #0.

Now suppose that ((* Ext'}e(z)“,)(R¢(")/p"’(”),M¢(‘g)))(’g¢(p)))a # 0. Then ((E¢<P))(p¢(p)))a # 0. Since
every Z™-homogeneous element of R?® \ p?® has degree 0 € Z™, it follows that there exists e €
(E?®)), that is not annihilated by any Z™-homogeneous element of R?® \ p®®_ In particular, e is
not annihilated by any Z'-homogeneous element of R \ p. Therefore 0 # e/1 € ((E¢,))?™)a.

This proves that anch’(p, M) = anch’ (p?®, M¢®). Finally, since dir(p?®) = {1,...,m}, it follows
from Example 2.9 that anch’(p?®, M?®) is finite when M is finitely generated. O

The aim of the remainder of this section is to establish a multi-graded analogue of a result of
Bass [1, Lemma 3.1]. However, there are some subtleties which mean that our generalization of [15,
Lemma 1.8] is not completely straightforward.

2.12. Theorem. Assume that R = EBneNg Ry, is positively graded and standard, and let M be a finitely gen-
erated 7' -graded R-module. Let p,q € *Spec(R) be such that R4{R C p C q (we reserve the symbol ‘C’
to denote strict inclusion) and that there is no Z"-graded prime ideal strictly between p and q. Note that
dir(p) C dir(q): suppose, for ease of notation, that dir(p) = {1, ..., m}and dir(q) ={1,...,m,m+1, ..., h},
where0 <m<h<r. )

Let i € Ng. Then, for each a= (ay, ..., an) € anch'(p, M), there exists

b=(b1.....bm. bmy1.....by) € anchi*!(q, M)
such that (by,...,bpn) = (ai,...,am) =a.
Proof. There exists an Nj-homogeneous element b € q \ p. By Remark 2.4, each Nj-homogeneous

element of R\ p has degree with first m components 0. In particular, deg(b) =0|ve Z™ x Z'~™ for
some veZ ™.
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Since a € anch'(p, M), there exists w € Z'~™ such that (* Ext'R(p)(R(p)/pR(p),M(p)))a‘w # 0. Set

E.=* Ext’k(R/p, M). In view of Remark 2.10, we must have (E,))aw # 0. Since each Nj-homogeneous
element of R\ p has degree with first m components O, this means that there exists a homo-
geneous element e € E, with deg(e) = a|w’ for some w' € Z'~™, that is not annihilated by any
Nj-homogeneous element of R\p. But R\ q S R\p, and so it follpws that (E(q))aw 7# 0. By Re-
mark 2.10 again, (* Ext'Rm (R(q)/PR(q)» M(q)))ajw # 0. Write F :=* Ext’R(q)(R(q)/pR(q), Mq)).

There is an exact sequence

b/1
0 —> (R()/PR (@) (= (OIV) 225 Rigy/pR(q) — Rig/(PR(q) + (b/1DR(g)) — 0

in *C% (R(q)), and this induces an exact sequence

b/1 i
F 225 FOW) — “Ext! (R /(bR + B0/ DR @), Mg)).

Recall that deg(b) = 0|v. We claim that there exists y € Z'~™ such that Fajy # (b/1)Fayy—v. To see this,
note that b/1 € qR(q), the unique *maximal ideal of the homogeneous localization R(q), and if we
had Fajy = (b/1)Fayy—v for every y € Z'~™, then we should have Faw € (,en(b/D™F, which is zero
by the multi-graded version of Krull's Intersection Theorem. (One can show that G := (),cy(b/D"F
satisfies G = (b/1)G, and then use the multi-graded version of Nakayama’s Lemma.) Thus there exists
y € Z'™™ such that Fajy # (b/1)Fay—v, and therefore, in view of the last exact sequence,

(*Exty} (R /(PR@@) + (/DR () M(g))) g #O-

Now R(q)/(PR(q) + (b/1)R(q)) is concentrated in Z"-degrees whose first m components are all
zero. Therefore all its Z'-graded R-homomorphic images and all its Z™-graded submodules are also
concentrated in Z"-degrees whose first m components are all zero.

The only Z'-graded prime ideal of R(q that contains the ideal pR(q) + (b/1)R(q) is qR(q), and
so pR(q) + (b/1)R(q) is qR(q)-primary. It follows that there is a chain of Z'-graded ideals of R(g)
from qR(q) to pR(q + (b/1)R(q) with the property that each subquotient is Rq)-isomorphic to

(R(q)/9R(q))(0]z) for some z € Z'~™. It therefore follows from the half-exactness of *Ext;’:) that
there exists y' € Z'~™ such that

i+1
("Exty, (Rig)/daR(@). M(g))) 5y # 0.
The claim then follows from Theorem 2.7. O

2.13. Corollary. Assume that R = @neNg Ry, is positively graded and standard, and let M be a finitely gener-

ated 7' -graded R-module. Let p € *Var(R1R), and suppose, for ease of notation, that dir(p) = {1, ..., m}.
Let a € anch(p, M). Then there exists q € * Spec(R) such that q 2 Ry for all n € Nj withn > 0 and b =
(b1,...,bm,bm+1, ..., br) € anch(q, M) such thata = (b1, ..., bn).

Proof. There exists a saturated chain p =pg C p1 C--- C pr = q of Z'-graded prime ideals of R such
that q is *maximal. Since q is contained in the Z"-graded prime ideal

@ N Ro) P EP Ra.

n>0

these two Z'-graded prime ideals must be the same; we therefore see that ¢ O Ry for all n e N6 with
n > 0. The claim is now immediate from Theorem 2.12. O
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3. The ends of certain multi-graded local cohomology modules

We begin with a combinatorial lemma.

3.1.Lemma. Leta:= (ay,...,a;) € Z" and let X be a non-empty subset of Z" such thatn < aforalln e X.
Then X has only finitely many maximal elements.

Note. We are grateful to the referee for drawing our attention to the following proof, which is shorter
than our original.

Proof. The set A:=a— X :={a—mn: ne X} is a non-empty subset of Nj. Now Nj is a Noetherian
monoid with respect to addition, by [11, Proposition 1.3.5], for example. (All terminology concerning
monoids in this proof is as in [11, Chapter 1].) Therefore the monoideal (A) of Njj generated by A
can be generated by finitely many elements of A, say by m", ..., m® e A. Therefore

Ac(A)=mV+Np)U---U(m® +Np),

from which it follows that any minimal member of A must belong to the set {m‘", ..., m®}. There-
fore any maximal member of X must belong to the set a—m",...,a—m®}. O

3.2. Notation. Let X, A C Z'. We shall denote by max(X) the set of maximal members of X. (If X
has no maximal member, then we interpret max(X') as the empty set.)

We shall write ¥ < A to indicate that, for each n € X, there exists m € A such that n < m;
moreover, we shall describe this situation by the terminology ‘A dominates X’. We shall use obvious
variants of this terminology. Observe that, if ¥ < A and A < ¥, then max(X) = max(A), and ¥ <
max(X) if and only if A < max(A).

3.3. Remark. (See Huy Tai Ha [9, §2].) Let ¢:Z" — Z™, where m is a positive integer, be a homo-
morphism of Abelian groups. We use the notation R?, etcetera, of Definition 1.3. Let a be a Z"-graded
ideal of R. Then ((H;(.))‘P)ieNo and ((H;‘,ﬁ(.q’))),-eN(J are both negative strongly connected sequences
of covariant functors from *CZr(R) to *sz(R¢); moreover, the 0th members of these two connected
sequences are the same functor, and, whenever, [ is a *injective Z'-graded R-module and i > 0, we
have H{ (I) =0 when all gradings are forgotten, so that (Hla(l))¢ =0 and H‘ad,(l‘i’) = 0. Consequently,
the two above-mentioned connected sequences are isomorphic. Hence, for each Z'-graded R-module
M, there is a Z™-homogeneous isomorphism of Z™-graded R?-modules

(Hia(M))¢ =H!,(M?) for each i € No.

3.4. Notation. Throughout this section, we shall be concerned with the situation where

R:@Rn

-
neNj

is positively graded; we shall only assume that R is standard when this is explicitly stated.
We shall be greatly concerned with the Nj-graded ideal

c:=c¢(R):= @ Rnq.

-
neNj
n>0
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We shall accord R its usual meaning (see E. Hyry [10, p. 2215]), so that

Ri:= D Ra=EP Ra.

neNj neN’
n>1

Observe that, when r =1, we have ¢ = R;. However, in general this is not the case when r > 1.

3.5. Definition. Suppose that R = @MNB Rn is positively graded and standard; let M = @, ;- Ma be

a finitely generated Z"-graded R-module, and let j € Ny.

Let b be an Nj-graded ideal such that dir(b) # , and let i € dir(b); consider the Abelian group
homomorphism ¢; : Z" — Z for which ¢;((n1,...,n;)) =n; for all (nq,...,n;) € Z", which is just the
ith co-ordinate function.

By Lemma 2.2, since Re, C +/b, we have

(R*), = P Rac V6"
nelj
n;>0

It therefore follows from [15, Corollary 2.5], with the notation of that paper, that the No-graded R%i-
module (H{(M))? = Hi(pi (M®), if non-zero, has finite end satisfying

j o i\ i) - _ i -
end((H{,(M)) )ga*(Md’ ) _sup{end(H’(‘R(,,i)Jr (M?%)): k € No} _sup{a’(‘RmH(M"’). ke No}.

(Note that, in these circumstances, the invariant a* (M%) is an integer.) Thus, if n:= (nq,...,n;) € Z"
is such that H{ (M) # 0, then n; < a*(M%). Thus there exists a € Z#%® such that, for all n:=
(n1,...,n;) € Z" with Hj (M)n # 0, we have ¢ (b)(n) < a. We define the end of H{,(M) by

end(H} (M)) := max{¢(b)(n): neZ" and H](M)n #0}.

By Lemma 3.1, if H{;(M) # 0 and dir(b) # @, then this end is a non-empty finite set of points of
Z#4(®_Note that the end of H{ (M) dominates ¢ (b)(n) for every n e Z" for which H{ (M)q # 0.

We draw the reader’s attention to the fact that, when r > 1 and Re; #0 for all i € {1,...,r}, the
ideal R4 = EB,,eNrO Rn has empty set of directions; consequently, we have not defined the end of

n>1 )

the ith local cohomology module H’R+ (M) of M with respect to Ry. Thus we are not, in this pa-
per, making any contribution to the theory of multi-graded Castelnuovo regularity, and, in particular,
we are not proposing an alternative definition of a-invariant or a*-invariant (see [9, Definitions 3.1.1
and 3.1.2]).

With this definition of the ends of (certain) multi-graded local cohomology modules, we can now
establish multi-graded analogues of some results in [15, §2].

3.6. Theorem. Suppose that R := @neNg Ry, is positively graded and standard. Let M be a finitely generated
7" -graded R-module, and let

1°:0 — *EO(M) L% *ET (M) —> .. —> *Ei(M) 45 *EH (M) —> ...

be the minimal *injective resolution of M.
Let b be an Nj,-graded ideal such that dir(b) ¢, and let j € No. Then
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J ) )
max(Uend(H{)(M))) =max{¢(b)(m): ne Z" and (I, (*E'(M))),, # 0 for some i € {0, ..., j}}
i=0

j
:max(U U ¢(p;b)(anchi(p,M))>.

i=0 pe* Var(b)
Proof. Let i € Ny and set

Aj:={¢()(m): neZ and HL (M)n # 0}, Zi:={¢()(m): neZ and (I (*Ef(M)))n #0}
and

= |J @b (anch’(p, M)).

pe*Var(b)

Also, let
6;: *E\(M) => @D *E(R/pa)(—Dg)

acA;

be a Z"'-homogeneous isomorphism, where p, € * Spec(R) and ny € Z' for all @ € A;.
We shall first show that A; < X < @;. Now H{ (M) is a homomorphic image, by a Z'-
homogeneous epimorphism, of

Ker(Ip(d"): Iy (*E'(M)) —> e (*ETF1(M))).

Therefore, if n € Z" is such that HL(M),, #0, then (I'y *E!(M)))n # 0. This proves that A; € X, so
that A; < X,

Furthermore, given n € Z" such that (I'y (*E!(M)))a # 0, we can see from the isomorphism 6; that
there must exist & € A; such that b C py and (*E(R/pg)(—ng))n # 0. It now follows from Proposi-
tion 2.5(ii) that ¢ (py)(M) < ¢ (py)(Ngy), so that

¢ (Pas 0) (¢ (Po) (M) < B (Pa; b) (6 (Par) (M)

Now ¢ (py)(ny) is an ith level anchor point of p, for M, and ¢ (py; b) o ¢ (pe) = ¢ (b). This is enough
to prove that X; < &;.

In particular, we have proved that Ag < Yo < @¢. We shall prove the desired result by induction
on j. We show next that &g < Ag, and this, together with the above, will prove the claim in the
case where j=0. Let m € @;. Thus m € Z#4"(®) and there exists « € Ag such that py € * Var(b) and
m = ¢(py; b)(¢(pa) (Ny)). Now the image of

P (*E(R/pa)(—1a)),,

neZ’
¢ (pa) (M) 29 (por) (Mg )

under 90’1 is a non-zero Z"-graded submodule of I', (*E®(M)); as the latter is a *essential extension
of I'y(M), it follows that there exists n € Z" with ¢ (py)(n) > ¢ (py)(ny) such that (Iy(M))n # 0.
Moreover,

¢ (0)(M) = § (par; b) (¢ (Par) (M) = ¢ (P b) (¢ (Pa) (Mg)) = m.
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It follows that &g < Agp, so that max(Ag) = max(Xy) = max(®Pg), and the desired result has been
proved when j=0.

Now suppose that j > 0 and make the obvious inductive assumption. As we have already proved
that A; < X and X < &; for all i =0,..., j, it will be enough, in order to complete the inductive

step, for us to prove that @; < U,](:O Ag. So consider o € Aj such that p, € *Var(b); we shall show
that ¢ (py; b)(¢(pe) (Ng)) is dominated by a member of AgUA;U---UA;_1UA;.
Now the image of

b (*E(R/pa)(—0a)),,
neZ’
@ (Pa)(M) 2 (po)(Ng)

under 9]71 is a non-zero Z"-graded submodule of Iy (*E/(M)); as the latter is a *essential extension of

Ker I', (d7), it follows that there exists n € Z" with ¢ (Ppe)(M) = ¢ (po)(ny) such that (Ker Iy (d))n #0.
There is an exact sequence

0 —> Im Iy (d/~") — Ker 'y (¢/) — HI (M) — 0
of graded Z"-modules and homogeneous homomorphisms. Therefore either H{,(M)Il #0 or

(Im Iy (d'7)),, #0.

In the first case, ¢(py;b)(¢(pe)(M)) = ¢p(b)(n) € Aj. In the second case, (T (*EI"Y (M) # 0,
whence ¢ (b)(n) € ¥j_1, so that, by the inductive hypothesis, ¢ (b)(n) is dominated by an element of
AgU A1 U---UAj_q; thus, in this case also, ¢(py; b)(¢(po)(Ny)) is dominated by an element of

Ul{=0 Ay. This is enough to complete the inductive step. O

3.7. Notation. Suppose that R := @neN{) Ry is positively graded and standard, and let M be a finitely

generated Z'-graded R-module. Let Q be a non-empty subset of {1,...,r}. Define ¢< := > ico ReR.

Then dir(¢2) D Q, and ¢< is the smallest ideal (up to radical) with set of directions containing Q.
We also define the Q-bound bndQ(M) of M by

bnd2 (M) := max( U end(HiQ(M)))

iGNU

Observe that bnd2 (M) is a finite set of points in Z*4ir¢?) because H’;Q(M) =0 whenever i exceeds

the arithmetic rank of ¢<.
For consistency with our earlier notation in 3.4, we abbreviate ¢!+ =" Ry by ¢. Note that

The following corollaries, which are multi-graded analogues of [15, Corollaries 2.5, 2.6], can now
be deduced immediately from Theorem 3.6.

3.8. Corollary. Suppose that R := @neNg Ry is positively graded and standard. Let M be a finitely generated
7" -graded R-module, and let

1°:0 — *EOM) 5 *E' (M) — - — *Ei M) L B (M) —

be the minimal *injective resolution of M.
Let b be an Nj,-graded ideal of R such that dir(b) # @, and let j € No. Then
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max(Uend H] (M) ) max(U U é(p: cdir(b>)(anchi(p,M)))

i=0 i=0 pe*Var(cdlf(h))

=max{¢(b)(m): n € Z" and (i) (*Ei(M)))n #0foranie(0,..., j}}

J ) '
= max(U end(Hidir(b) (M))) < bnddir® ().

i=0
3.9. Corollary. Suppose that R := @neNg Ry is positively graded and standard. Let M be a finitely generated

7" -graded R-module.
Let b be an Nj-graded ideal of R of arithmetic rank t such that dir(b) # @, and let k € N with k > t. Then

max(LtJ U ¢ (p; b)(anch(p, M))) = max(Oend(HL(M))) = max(LkJend(HL(M)))

i=0 pe*Var(b) i=0 i=0

k
:max(U U o b)(anch"(p,M))).

i=0 pe*Var(b)
Consequently, for a p € * Var(b) and a € anch(p, M), we can conclude that ¢ (p; b)(a) is dominated by
t .
max(U U ¢ (p; b)(anch' (p, M))),
i=0 pe*Var(b)

a set of points of Z*4ir(®) which arises from consideration of just the Oth, 1st, ..., (t — 1)th and tth terms of
the minimal *injective resolution of M.

Our next aim is the establishment of multi-graded analogues of [15, Corollaries 3.1 and 3.2].

3.10. Lemma. Suppose that R := @neNg Ry is positively graded, and let m be a *maximal ideal of R. Then
mg :=mN Rg is a maximal ideal of Rg and m = mg & ¢, where ¢ is as defined in Notation 3.4.

Proof. Recall that

c:i= @ Rpq.

neNj
n>0

Since mg € Spec(Ryg), it follows that R D mg @& ¢ 2 m, so that m = mg @ ¢. Furthermore, mg must be a
maximal ideal of Rg. O

3.11. Corollary. Suppose that R := @neNg Ry is positively graded and standard. Let M be a finitely generated
Z"-graded R-module; let b be an Nj-graded ideal of R such that dir(b)  ¢. Then

max< U end(HL(M))) = max( U U ¢(m; b) end(Hin(M))).

ieNp me* Var(b)N* Max(R) ieNp
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Proof. Let m € *\{ar(b) N *Max(R). By Lemma 3.10, dir(m) = {1, ...,r}; therefore, by Theorem 3.6,
max(uieNo end(H}, (M))) = max(uieNo anch'(m, M)). Another use of Theorem 3.6 therefore shows
that

max( L o(m: b)(end(Hin(M)))) = max( J #(m: b)(anch’ (m, M)))

iENo iENO

4max<U U ¢<p:b>(anch"(p,M>))

ieNg pe*Var(b)

= max( U end(HL(M))).

iENO
We have thus proved that

max( U end(HL(M))) = max( U U d(m; b)(end(H&(M)))),

ieNg me* Var(b)N* Max(R) ieNp

Now let n € Z*4"® be a maximal member of  J;.y, end(H}, (M)). By Theorem 3.6, there exist
s € Ng and p € *Var(b) such that n = ¢(p; b)(w) for some sth level anchor point w of p for M.
Now use Theorem 2.12 repeatedly, in conjunction with a saturated chain (of length t say) of Nj-
graded prime ideals of R with p as its smallest term and a *maximal ideal m as its largest term: the
conclusion is that there exists v € anch®*(m, M) such that ¢ (m; p)(v) =w. Now

n=¢(p; b)(W) = p(p; b)(d(m; p)(V)) = ¢ (m; b) (V).
But, by Theorem 3.6 again, v is dominated by max(UiENO end(an(M))); it follows that
max( U end(HL(M))) < max( U U ¢ (m; b)(end(H&(M)))).
ieNp me* Var(b)N* Max(R) ieNg

The desired conclusion follows. O

3.12. Corollary. Let the situation be as in Corollary 3.11, but assume in addition that (Rg, mp) is local and that
b is proper; set m := mg @ ¢, where c is as defined in Notation 3.4. Then

max( U end(HL(M))) :max( U ¢ (m; b)(end(H%(M)))).
ieNg ieNp
In particular,
max( U end(Hi(M))) :max( U end(Hin(M))).
ieNg ieNp
4. Some vanishing results for multi-graded components of local cohomology modules

It is well known that, when r =1, if M is a finitely generated Z-graded R-module, then there
exists t € Z such that H1R+(M)n =0 for all i € Ng and all n > t; it then follows from [15, Corollary 2.5]

that, if b is any graded ideal of R with b D R, then HL(M),1 =0 for all i € Ng and all n >t. One of
the aims of this section is to establish a multi-graded analogue of this result.
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4.1. Notation. Throughout this section, we shall be concerned with the situation where

R=Q9Rn

.
neNj

is positively graded; we shall only assume that R is standard when this is explicitly stated.
We shall be concerned with the Nj-graded ideal R of R given (see Notation 3.4) by

Ry:= P Ra.

neNj
n>1

Although it is well known (see Hyry [10, Theorem 1.6]) that, if M is a finitely generated Z"-graded
R-module, then HL(M)(MMM) =0 for all ny,...,n- > 0, we have not been able to find in the

literature a proof of the corresponding statement with R, replaced by an Nj-graded ideal b that
contains R,. We present such a proof below, because we think it is of interest in its own right.

4.2. Theorem. Suppose that R = @neNg Ry is positively graded; let M be a finitely generated Z-graded
R-module. Let b be an Nj-graded ideal of R such that b 2 R . Then there exists t € Z such that

HL(M),I:O forallie Ngandalln > (t,t,...,¢t).

Proof. We shall prove this by induction on r. In the case where r =1 the result follows from [15,
Corollary 2.5], as was explained in the introduction to this section.

Now suppose that r > 1 and that the claim has been proved for smaller values of r. We define
three more N{-graded ideals a, ¢ and d of R, as follows. Set

- _ by ifn. =0,
a= @ an where an = { Rp ifn > 0;
n=(ny,...,ny)eN
bn if (n1,...,m—1) £ (1,...,1)
= h — n . ) s Ir ) ) k]
‘ D o wherew {Rn if (1) > (1)
n=(ny,...,nr)eNg
and 0 :=a+c.
Consider aN¢: for each n= (ny,...,n;) € NI, the nth component (aNc¢), satisfies

_ _Jbn ifn.=00r (n,....n—1) 2(1,..., 1),
(am)“_a“m“_{Rn ifn, > 0and (nq,....n_1)=(1,....1).
Since b D Ry, we see that aNc=b.

Let o : Z" — Z"~1 be the group homomorphism defined by

o((ny,...,n))=m1+np,...,np_14+n;) foral (ny,...,n;)eZ.
Note that, for (ni,...,n;) € N\, we have (n; +ny,...,nr—1 +n;) >1in Z"~! if and only if n, > 1 or
(n1,...,n._1) > 1; furthermore, if n, > 1, then ay, = Ry, and if (nq,...,n.—1) > 1, then ¢y = Ry. Let

m € Z'~! with m > 1. Therefore, in the Ng’l—graded ring R, we have

(07)y = @ (an +cn) = @ Rn=(R%),

neZ" neZ"
o (n)=m o (n)=m
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Thus 2° 2 Pp>1(R)m = (R%)4.
It therefore follows from the inductive hypothesis that there exists f € Z such that (Hg(, (M°)p=0

for all jeNp and all h > (f,...,) in Z'~'. In view of Remark 3.3, this means that ((H}(M))?)p =0
for all jeNg and all h > (¢,...,t) in Z'1, so that, for all j € Ny,

ny =0 whenever (ny,....n—1,n,) > (3E..... 38, 1) in Z".

We now give two similar, but simpler, arguments. Let 7 : Z" — Z be the group homomorphism
given by projection onto the rth co-ordinate. Note that, for n € NJ, if 7 (n) > 1, then ay = Ry. There-
fore a 2 (R™)4. It therefore follows from the case where r =1 that there exists er such that

(Hlz(M™)), =0 for all j €N and all n > &. In view of Remark 3.3, this means that ((Hg(M))™), =0
for all j € Ng and all n > ¢, that is,

Next, let 8 :Z" — Z'~! be the group homomorphism defined by
o((n1,...,n))=@my,...,n—1) forall (n,...,n,)eZ.

Note that, if n € Z" has 6(n) >1 in Z'~!, then ¢, = Ry. Therefore, for m € Z'~! with m > 1, we have
(<!)m = (R”)m. This means that, in the Nj '-graded ring R’, we have ¢/ 2 Bmz1(R)m = (R),.

It therefore follows from the inductive hypothesis that there exists f € Z such that (H 59 (M) =0

for all jeNo and all h >, ..., in Z"~. In view of Remark 3.3, this means that ((H!(M))?)p =0
for all jeNg and all h> (,...,t) in Z'1, so that

n) =0 whenever jeNg and (n1,...,m—1) =, ...,0).

,,,,,

We recall that a N ¢ = b. There is an exact Mayer-Vietoris sequence (in the category *C% (R))

0 — HY(M) — HY(M) ® HY(M) — H)(M)
— HY(M) — HI(M) ® HL (M) — H{ (M)
— H\ (M) — HL(M) ® H,(M) — H} (M)

— HPY(M) — -+,
It now follows from this Mayer-Vietoris sequence that, if we set t := max{%f, £, £}, then
(M)@,,...n,y =0 whenever jeNp and (ny,...,n) > (¢,...,°0).
This completes the inductive step, and the proof. O

We can deduce from the above Theorem 4.2 a vanishing result for multi-graded components of
local cohomology modules with respect to a multi-graded ideal that has both directions and non-
directions.

4.3. Corollary. Suppose that R = @neNg Ry is positively graded and standard; let M be a finitely generated
7" -graded R-module. Let b be an Njj-graded ideal of R that has some directions and some non-directions: to be
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precise, and for ease of notation, suppose that dir(b) = {m+1, ..., r}, where 1 <m < r. Then there existst € 7
such that, forall j € No, and forallm= (nq,...,ny) € Z" forwhich (n1, ..., Nm, my1 +---+n) = (¢, ..., 0)
in Z™*1, we have Hj (M)n = 0.

Note. As b has some directions and R is standard, it follows from Lemma 2.2 that R4 C b, so that
Theorem 4.2 yields a t’' € Z such that Hy (M)p =0 for all n> (', ..., t"). Thus, when m=r — 1, the
conclusion of Corollary 4.3 already follows from Theorem 4.2.

Proof. Without loss of generality, we can, and do, assume that b = +/b.
Let ¢:Z" — Z™*! be the group homomorphism defined by

o ((M1,...,n)) =1, ..., M, Npmy1 +---+ny) forall (ng,...,n;)eZ.
Let n= (n1,...,n;) € Njj be such that ¢(n) > 1 in Z™+1, Then g1 +--- +ny > 1, so that one of
Nm+1, ..., N is positive. Now Re; € Vo=bforalli=m+1,...,r, and since n > e; for one of these

is, it follows from Lemma 2.2 that b D Ry. It therefore follows that, in the Ng”]-graded ring R?, we
have b?¢ D 69,1,21(1%1’)m =(R?),.
We can now appeal to Theorem 4.2 to deduce that there exists t € Z such that (H{)d, (M®)p =0

for all j €Ng and all h> (t,...,t) in Z™1. In view of Remark 3.3, this means that ((H,(M))?)p =0
for all jeNg and all h> (t,...,t) in Z™*1, so that

,,,,, n) =0 whenever jeNgand (ny,...,nm, 1 +---+np) 2 (¢, ..., 0). m]

One of the reasons why we consider that Theorem 4.2 is of interest in its own right concerns the
structure of the (multi-)graded components HL (M)n (m e Z") as modules over Rg (the hypotheses
and notation here are as in Theorem 4.2). The example in [4, Exercise 15.1.7] shows that these graded
components need not be finitely generated Ro-modules; however, it is always the case that (for a
finitely generated Z"-graded R-module M) the (multi-)graded components HL(M)n meZ) of the
ith local cohomology module of M with respect to R, are finitely generated Ro-modules (for all
i € Np), as we now show.

4.4. Theorem. Suppose that R = @neNg Ry is positively graded; let M be a finitely generated Z'-graded
R-module. Then Hi2+ (M) is a finitely generated Ro-module, foralli € Ng and allm € Z'.

Note. In the case where r =1, this result is well known: see [4, Proposition 15.1.5].

Proof. We use induction on i. When i = 0, the claim is immediate from the fact that Hg+(M) is
isomorphic to a submodule of M, and so is finitely generated. So suppose that i > 0 and that the
claim has been proved for smaller values of i, for all finitely generated Z"-graded R-modules.

Recall that all the associated prime ideals of M are N{j-graded. Set B(M) := Assg(M) \ *Var(R,.),
and denote #B(M) by b(M); we shall argue by induction on b(M). If b(M) =0, then M is R, -torsion,
so that HL (M) =0 and the desired result is clear in this case.

Now suppose that b(M) = 1: let p be the unique member of B(M). Set M := M/I'g, (M). We can
use the long exact sequence of local cohomology modules induced by the exact sequence

0— Ik, (M) — M — M —> 0,

together with the fact that H£+(FR+(M)) =0 for all j € N, to see that, in order to complete the

proof in this case, it is sufficient for us to prove the result for M. Now M is R, -torsion-free, and
Ass(M) = {p}. (See [4, Exercise 2.1.12].) There exists a Z'-homogeneous element a € R \ p; note that
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a is a non-zero-divisor on M. Let the degree of a be v= (v1,...,V,), and note that vj >0 for all
j=1,...,r. By Theorem 4.2, there exists t € Z such that Hfu(m)n =0 for all n > (t,t,...,t).

Letn=(ny,...,n;) € Z". Since vj >0 forall j=1,...,r, there exists w € N such that nj+v;w >t
for all j=1,...,r. The exact sequence

0— M -2 M(wv) — (M/a¥M)(wv) — 0
induces an exact sequence of Rg-modules

Hg ! (M/a" M), ., — Hk, (M)n —> Hi, (M)nswy,

and since w was chosen to ensure that the rightmost term in this sequence is zero, it follows from
the inductive hypothesis that H;h (M)p is a finitely generated Rg-module. This completes the proof
in the case where b(M) =1.

Now suppose that b(M) =b > 1 and that it has been proved that all the graded components
of H'R+(L) are finitely generated Rg-modules for all choices of finitely generated Z"-graded R-module
L with b(L) <b. Let p, q € B(M) with p # q: suppose, for the sake of argument, that p Z q. Consider
the p-torsion submodule I',(M) of M. By [4, Exercise 2.1.12], Ass(I;(M)) and Ass(M/I,(M)) are
disjoint and AssM = Ass(I',(M)) U Ass(M /I, (M)). Now p € Ass(I,(M)) and q ¢ Ass(I,(M)); hence
b(I'y(M)) <b and b(M/I,(M)) < b. Therefore, by the inductive hypothesis, both Hih(l“p (M))n and
Hl;h (M/T'y(M))y are finitely generated Ro-modules, for all n € Z'. We can now use the long exact
sequence of local cohomology modules (with respect to R, ) induced from the exact sequence

0— Iy(M)— M — M/T},(M)— 0
to deduce that Hi, (M) is a finitely generated Ro-module for all n € Z'. The result follows. O
Ry

5. A multi-graded analogue of Marley’s work on finitely graded local cohomology modules

As was mentioned in the Introduction, the purpose of this section is to obtain some multi-graded
analogues of results about finitely graded local cohomology modules that were proved, in the case
where r =1, by Marley in [14]. We shall present a multi-graded analogue of one of Marley’s results
and some extensions of that analogue.

5.1. Notation. Throughout this section, we shall be concerned with the situation where R = @neNg Ra

is positively graded and standard, and we shall let M = @,,.;r Mn be a Z'-graded R-module. Also, b
will always denote an Nj-graded ideal of R.
For n= (ny,...,n;) € N7, we shall denote {i € {1,...,r}: n; #0} by P(n).

5.2. Definition. An r-tuple n € Z' is called a supporting degree of M precisely when My # 0; we denote
the set of all supporting degrees of M by S(M).

Note that Theorem 4.2 imposes substantial restrictions on S(HL(M)) when (i € Ng and) b D Ry.
The example below is included as motivation for the introduction of some notation.

5.3. Example. Let k be an algebraically closed field and let
A=k®A1® - - DAL ®--- and B=k®B1®---®B,PH---

be two normal Noetherian standard Np-graded k-algebra domains with w :=dimA > 1 and v :=
dim B > 1. We consider the N%—graded k-algebra
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o 0o 00

o 0o 00

o 0o 00

o 0o 00

—_— 000 0>

e o 00
o 0o 00
e o 00
® 0o 00

Fig. 1. S(Hih (R)) for i =2,3,4,5 respectively.

R:=A®cB= P An®Bn.

2
(m,n)eNg

Clearly R =k[R(1,0), Ro,1)] is positively graded and standard, and, as a finitely generated k-algebra,
is Noetherian. By [17, Chapter III, §15, Theorem 40, Corollary 1], R is again an integral domain. Ob-
serve that Ry = R, 1))R = AL ®¢ B+. As A and B are normal and their dimensions exceed 1, we
have HL(A) = Hg+ (B) =0 for i =0, 1. The Kiinneth relations for tensor products (see [7] or [13,

Theorem 10.1]) yield, for each i € Ny, an isomorphism of Z?-graded R modules

Hg, (R) = (A @ Hp, (B)) & (H}y, (A) ® B)@( P (Hy, A e H’B+<B>)).
JleN\{1}
jH=i+1

As S(A) = S(B) =Ny, it follows that, for each i € Ny,

S(Hi (R)) = (No x S(Hly, (B))) U (S(Hiy, (A)) x No) U ( U (S, ) x S(HIB+(B)))>.
j,leN\{1}
T H=it1

Observe, in particular, that H;z+ (R)=0fori=0,1and foralli>w+v.

Appropriate choices for A and B yield many examples for R. We shall just concentrate on a class of
examples obtained by this procedure when A and B are chosen in a particular way, which we now de-
scribe. We can use [2, Proposition (2.13)], in conjunction with the Serre-Grothendieck correspondence
(see [4, 20.4.4]), to choose the algebra A (as above) so that, for a prescribed set W C {2,...,w — 1},
we have

_ @ for all i e No \ (W U {w}),
S(Hy, (M) =1 {0} for all i e W,
{keZ: k<0} fori=w.
Similarly, for a prescribed set V € {2,...,v — 1}, we choose B (as above) so that
) @ for all i e No \ (V U {v}),
i _ :
S(Hj, (B)) = 1 {0} forallieV,

{(keZ: k<0} fori=v.

With such a choice of A for w =5 and W = {2}, and such a choice of B for v=>5 and V = {3}, the
sets of supporting degrees S(HL(R)) fori=2,3,4,5 are as in Fig. 1.

In view of Theorem 4.2, the supporting set S (H?h(R)) seems unremarkable. The local cohomology
module H;‘Q+ (R) is finitely graded. Although neither H13Q+(R) nor H§+(R) is finitely graded, both have
sets of supporting degrees that are quite restricted.
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Fig. 2. The set X((—2, 1), (0,2)) in Z2.

We now return to the general situation described in Notation 5.1. In the case where r =1, one
way of recording that a local cohomology module Hy (M) is finitely graded is to state that there exist
s,t € Z with s <t such that

S(HL(M)) = {neZ: HL(M), #£0} C{neZ: s<n<t

One might expect the natural generalization to our multi-graded situation to involve conditions such
as

S(HL(M))={neZ H{(Mn#0}S{n=(,....,n) €Z": si<nj <t foralli=1,....r},

where s = (s1,...,8;), t=(t1,...,t;) € Z" satisfy s <t. However, in the light of evidence like that
provided by Example 5.3 above, and other examples, we introduce the following.

5.4. Notation. Let s = (s1,...,5;), t=(t1,...,t;) € Z" with s <t. We set
X(s,t):={n=(ny,...,n;) € Z': there exists i € {1,...,r} such that s; <n; <t;}.
5.5. Example. Fig. 2 illustrates, in the case where r = 2, the set X((—2, 1), (0, 2)).

5.6.Remark. Let s,s’,s”. t,t',t" € Z" with s<t, s’ <t and s” <t”. Let m e N\ {0}.

(i) Clearly (s 4 Np) \ (t+ Np) S X(s, t).
(ii) Suppose that P(t —s) C P(m). Let w € Z" be such that P(w) C {1,...,r}\ P(m). Then

X(s+w, t+w)=X(s,t) = {neZ": there exists i € P(m) such that s; <n; <t;}.

(iii) Clearly X(s', t') UX(s”,t") € X((min{s}, s{}, ..., min{s;, s/'}), (max{t], t}}, ..., max{t;, t/})).
(iv) Assume that P(t' —s’) € P(m) and P(t” —s”) € P(m). For each i € {1,...,r}, set

I S - ) max{t,,t’} ifieP(m),
Siz=min{s;. s/} and t"—{ai S ifie(n...r\ Pm).

Set §:=(51,...,5) and t:= (f1, ..., ;). Then
s<t, Pt—8) CcPm) and X(s,t)UX(s’, t") CXG,b).

The next lemma provides a small hint about the importance of the sets X(s, t) of Notation 5.4 for
our work.
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5.7.Lemma. Let m € N{, \ {0}. Assume that M is finitely generated and that Ry € /(0 :g M). Then there exist
s,teZ suchthats <t, P(t—s) S P(m) and S(M) C (s + Nj) \ (t+ Np), so that S(M) < X(s, t) in view
of Remark 5.6(i).

Proof. As M is finitely generated, there exist s,w € Z" such that s<w and M = ngngwRMn. In
particular, S(M) < s + Nj,.

Moreover, there exists u € N such that (Rym)¥ € (0 :g M); since R is standard, (Rm)* = Rym; hence
RymMp =0 for all ne Z'".

Lett=s-+ Zie'P(m)(Wi —si+um;)e;. Now, let h= (hy, ..., hy) € t+Nj. Our proof will be complete
once we have shown that My = 0. For each i € P(m), we have h; > t; = w; + um;. Moreover,

Mp = ZRh_nMn, where 7 ={neZ": s<n<w, n<h}.
ne7

Let n= (ny,...,n,) € 7. If i € P(m), then n; + um; < w; +um; < h;; if i € {1,...,r} \ P(m), then
n; +um; = n; < h;. Consequently n + um < h. Therefore um < h —n for all n € 7, and hence

My = Z Rh—nMn = Z Rh—n-umRumMn = 0. |
ne7 ne7

5.8. Definition. Let Q C {1,...,r}. By a Q-domain in Z" we mean a set of the form
X(s,t) withs,teZ", s<tand P(t—s)C Q.
5.9. Remarks. The following statements are immediate from the definition.

(i) A #-domain in Z" is empty.

(i) f Q€ Q' C({1,...,r} and if X is a Q-domain in Z', then X is a Q'-domain in Z'.

(iii) If X is a Q-domain in Z" and w e Z', then w+ X:= {w+n: ne€ X} is a Q-domain in Z'.

(iv) If s,t e Z" with s <t and P(t—s) C Q, then (s+Np) \ (t+Nj) is contained in a Q-domain in Z',
by Remark 5.6(i).

(v) If X is a Q-domain in Z" and w € Z" is such that P(w) N Q@ =, then X =w + X, by Re-
mark 5.6(ii).

(vi) By Remark 5.6(iv), the union of finitely many Q-domains in Z" is contained in a Q-domain in Z'.

5.0. Lemma. Let m, k € Nj \ {0}, and let T be a Z"-graded R-module such that RnT = 0. Let y € Ry, and
let K denote the kernel of the homogeneous R-homomorphism T — T (K) given by multiplication by y.

(i) If P(m) C P(K), then there exists v € Ng such that S(T) C U}fzo(S(K) — jk).

(ii) If P(m) € P(Kk), if multiplication by y provides an isomorphism T = T(K), and if T considered as an
Ry-module is finitely generated, then S(T) is contained in a (P (m) \ P(K))-domain in Z'.

Proof. Write m = (my,...,m;) and k= (k1,...,k;). Let u € N be such that m; < uk; for all i € P(K).
Set h := Zié{] PPk i€ Then, if i € P(k), we have (uk + h); = uk; > m;, whereas, if
ie{l,...,r}\ P(k), we have (uk+ h); = uk; + m; > m;. Therefore m < uk+ h.

Now, let z € Ry,. Then, because R is standard, ¥z € Ryk+h = Ruk+h—-mRm- As RmT =0, it follows
that y“zT = 0. Therefore y“R,T = 0.

(i) Assume that P(m) € P(k). Then P(h) = P@m) \ P(k) = @, so that h = 0. Hence y!'T =
yURoT = 0.

Now let K := U;‘;& (S(K) — jk), and let n € Z" \ K. If we show that T, = 0, then we shall have
proved part (i). Now n+ jk ¢ S(K) for all j€{0,...,u— 1}, and so the Rg-homomorphism y":Tp —
Thuk, Which is the composition of the Ro-homomorphisms y: Ty jk = Ta¢jt+)k for j=0,...,u—1,
is injective. But y*Tn =0, and so T, =0.
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(ii) Now assume that 7(m) Z P(k), that multiplication by y provides an isomorphism T = T(k),
and that T considered as an Ry,-module is finitely generated. As y*RnT =0, it follows that R,T =0.

As T is finitely generated over Ry, there are finitely many r-tuples g, ..., g@ e Z" such that
T=39_,RyTgp. Now, for i e {1,....r}, set

0
S,‘::{min{g(j):j:],.”,q} if i e P(h), =

i

max{gfj) cj=1,...,q}+h; ifiePh),

ifi¢ P(h), ) {O ifi¢ P(h),
and put s = (S1,...,Sr), t = (t1,...,tr). Then s <t and Pt —s) = Pth) = P(m) \ P(k). Let
n e Z" \ X(s, t). If we show that T, = 0, then we shall have proved part (ii). Let & € Ty. There ex-
ist integers v, ..., vq such that o € Z‘}:l YRy y g Tgi-
Note that, for each i € P(h) =P(@m) \ P(k), we have either n; <s; or t; <n; (because n ¢ X(s, t)).
Assume first that there is some i € P(h) with n; < s;. As i ¢ P(K), it follows that

(m—vik—g?), =ni—viki—g” =n— g’ <si— g’ <o,

forall je{1,...,q}, so that Rn_vjk_g(j) =0and o =0.
Therefore, we can, and do, assume that t; <n; for all i € P(h). In this case, for each i € P(h) and
each je{l1,...,q}, we have

(m—vik—g") =ni—viki—g” =n—g” >t; — g > h;.

Therefore, for each j € {1,...,q}, either n—v;k—g" > h, or n—v;k—g" has a negative component
and Ry, g = 0. This means that

q q
vj T vj ) L
ae E YRy y kg Tgi) = Z YRy yk-gi-nRnTgi =0.
=1 =
n-vk-g’ >0

It follows that Ty =0, as required. O

5.11. Lemma. Let m € Nj \ {0} and k € Nj. Assume that M is finitely generated and that Rm C /(0 :x M).
Let y € Ri. Then there exists a (P(m) \ P(Kk))-domain X in Z' such that S(H},R (M)) <X

Proof. Assume first that k = 0. Then P(k) = @ and, by the multi-graded analogue of [4, Lem-
ma 13.1.10], there are Rg-isomorphisms HlR(M)n = H},RO (Mp) for all n € Z". Therefore S(H},R(M)) -
S(M), and the claim follows in this case from Lemma 5.7.

We now deal with the remaining case, where k # 0. Since (by the multi-graded analogue of [4,
12.4.2]) there is a Z'-homogeneous epimorphism of Z"-graded R-modules D,z (M) — H},R(M), it
suffices for us to show that S(Dyr(M)) is contained in a (P(m) \ P(k))-domain in Z'.

Recall that there is a homogeneous isomorphism Dygr(M) = My, and so the multiplication
map y:Dyr(M) — Dyr(M)(K) is an isomorphism, and Dyg(M) is finitely generated as an Ry-
module. Since Rm € +/(0:g M), there exists u € N such that RymM =0, so that RymM, =0 and
RymDyr(M) = 0. Observe that P(um) = P(m). We now apply Lemma 5.10, with Dyr(M) as the
module T and um in the réle of m: if P(um) =P (@m) C P(K), then part (i) of Lemma 5.10 yields that
S(Dyr(M)) =@, while if P(um) = P(@m) € P(k), then it follows from part (ii) of Lemma 5.10 that
S(Dyr(M)) is contained in a (P(m) \ P(k))-domain in Z'. O

5.12. Lemma. Let m € Nj \ {0}. Assume that'M is finitely generated and that Ry C /(0 :g M). Then there
exists a P (m)-domain X in Z" such that S(H'b (M)) S X foralli € Np.
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Proof. Since HL (M) =0 for all i > ara(b), it follows from Remark 5.9(vi) that it is sufficient for us to
show that, for each i € Ny, there exists a 7(m)-domain X; in Z" such that S(HL(M)) CX. Fori=0,
this is immediate from Lemma 5.7.

Let y1,...,ys be Nj-homogeneous elements of R that generate b. We argue by induction on s.
When s =1 and i =1, the desired result follows from Lemma 5.11; as we have already dealt, in the
preceding paragraph, with the case where i =0, and as H;,lR(M) =0 for all i > 1, we have established
the desired result in all cases when s = 1.

So suppose now that s > 1 and that the desired result has been proved in all cases where b can
be generated by fewer than s Nj-homogeneous elements. Again, we have already dealt with the case

where i = 0. For i € N, there is an exact Mayer-Vietoris sequence (in the category *C% (R))

NN (. < (M) —> HL (M) —> Hiy]“

(V1¥s1eYs—1Ys) r(M) © HYy g (M) —> -

2 Ys—1)

By the inductive hypothesis, there exist 7P(m)-domains X/, X!, X! in Z" such that

S(Hi;! an)cxi.  S(H,

(V1YssensYs—1¥)R (M) <X/ and S( ;SR(M)) cxy.

- Ys—1)R
Therefore S(HL(M)) CX{UX/UX!, and so the desired result follows from Remark 5.9(vi). O

5.13. Lemma. Let m € N \ {0}. Let p1, ..., pn be prime ideals of R such that Ry Z p; foreachi=1,...,n.
Then there exists u € N such that Rym |7 pi-

Proof. Consider the (Noetherian) Ng-graded ring Ro[Rm] = @jeNO Rjm (in which Rjpy is the compo-
nent of degree j, for all j € Np). Apply the ordinary Homogeneous Prime Avoidance Lemma (see [4,
Lemma 15.1.2]) to the graded ideal RpRo[Rm] = @jeN Rjm and the prime ideals p; N Ro[Rm] (i =
1,...,n). O

5.14. Lemma. Let m € N \ {0} and let X be a P (m)-domain in Z'. Then there exists u € N such that, for each
w € Z', there is some j € {0, ..., #P(m)} with w + jum ¢ X,

Proof. There exist s,t € Z" with s <t and P(t —s) € P(m) for which X = X(s, t). Choose u € N such
that um >t —s.

For an arbitrary w e Z", set Z(w) ={i € {1,...,r}: s; < w; < t;}, and observe that Z(w) C P(m),
and that w € X if and only if Z(w) # . Note also that, for i € Z(w) and j € N, we have

(W+ jum); = w; + jum; > s; +um; > s +t; — s; =t;,
so that i ¢ Z(w + jum). So, for each i € P(m), if there is a j’ € Ny with i € Z(w + j'um), then
i ¢ Z(w+ jum) for all j > j'. This means that, for each i € P(m), there is at most one j’ € Ng with
i € Z(w+ j'um). By the pigeon-hole principle, it is therefore possible to choose a j € {0, ..., #P(m)}
for which Z(w + jum) NP(m) =@, and then w+ jum ¢ X. O

The concept introduced in the next definition can be regarded as a multi-graded analogue of one
defined by Marley in [14, §2].

5.15. Definition. Let Q C {1,...,r}, and let b be an Nj-graded ideal of R. We define the Q-finiteness
dimension ng(M) of M with respect to b by

ng(M) :=supf{k € No: for all i <k, there exists a Q-domain X; in Z" with S(H},(M)) C X},

if this supremum exists, and oo otherwise.
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5.16. Example. For R as in Example 5.3, we have
J 1 2 1,2
g®=2  gl®=3 gl®=2 g ®=5

5.17. Remarks. The first three of the statements below are immediate from Remarks 5.9(i)-(iii) re-
spectively.

(i) In the case where Q = (), we have g%(M) =inf{i € Np: HL(M) # 0} (with the usual convention
that the infimum of the empty set of integers is interpreted as co).
(i) If QC Q' C(1,....7}, then g2 (M) < g (M).
(iii) For ne Z', we have g2(M(n)) = g2(M).
(iv) Let (Q)rca be a family of subsets of {1,...,r}. Set

Q= { ()Xo X is a Q;-domain in Z" for all A A}.
reA

It is straightforward to check that
inf{gbg*(M): L e A} =sup{k € No: for all i <k, there exists Y; € £ with S(HL(M)) € Yi}.

(v) Since a subset of Z is finite if and only if it is contained in a set of the form ﬂr»zl X, where X
is a {j}-domain in Z" for all j € {1,...,r}, it therefore follows from part (iv) that

min{gél}(M), e gér](M)} = sup{k € No: S(HL(M)) is finite for all i <k}.

Thus we can say that min{gL”(M), e, gg}(M)} identifies the smallest integer i (if there be any)

for which H{ (M) is not finitely graded.

5.18. Proposition. Let m € N \ {0}, and let f € N. Assume that M is finitely generated. The following state-
ments are equivalent:

(i) Rm S,/(0:f HL(M))forall integersi < f;
(ii) for each integer i < f, there is a P(m)-domain X; in Z" such that S(HL(M)) C X, that is f <
gl ™ m); '
(iii) thereis a P(m)-domain X in Z" such that S(H{ (M)) C X for all integers i < f.
Proof. (ii) < (iii) This is immediate from Remark 5.9(vi).
(iii) = (i) Assume that statement (iii) holds. By Lemma 5.14, there exist u, v :=#P(@m) € N such

that, for each ne 7', there exists j(m) € {0, ..., v} with n+ j(m)um ¢ X. So, for each n € 7' and each
integer i < f, we have H{ (M)n4 jmyum = 0 and

RyumHYy (M)n = Ryum—jmyum R jmumHs (M)n S Ryum—jmumHy (M)njmum = 0.
Therefore RvumHL(M) =0 for all integers i < f, and hence
(Rm)"™ € Ryum C (0:g Hy(M)) foralli< f.

(i) = (ii) Assume that statement (i) holds. We argue by induction on f. When f =1, the desired
conclusion is immediate from Lemma 5.7 (applied to Hg(M)).
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So assume now that f > 1 and that statement (ii) has been proved for smaller values of f.
This inductive hypothesis implies that there exist 7(m)-domains Xo,...,X;_, in Z" such that
S(HL(M)) CX; for all i €{0,..., f — 2}. It thus remains to find a P(m)-domain X;_; in Z" such
that SCH{'(M)) € X5 _;.

Set M := M/Ik,r(M), and observe that Rm C \/(0:g I'rur(M)). It therefore follows from

Lemma 5.12 that there is a P(m)-domain X’ in Z" such that S(H{fl(FRmR(M))) C X'. In view of
the exact sequence of Z"-graded R-modules

1

H ™ (Trpr(M)) —> HI ™' (M) — HI 1 (M)

and Remark 5.9(vi), it is now enough for us to show that S(H£_1 (M)) is contained in a 7 (m)-domain

in Z'".
As Rm C \/(O ‘R H{;(I’RmR(M))) for all j € Ny, the exact sequence

HL (M) — HL (M) — H{H (Trppr (M)

shows that Rm S ,/(0:g Hi(M)) for all integers i < f. Set Assg(M) =: {p1,...,px}. As RmR does
not consist entirely of zero-divisors on M, we have Ry Z p; for each i = 1,...,k. Therefore, by
Lemma 5.13, there exists u’ € N such that Rym & Ui-‘ﬂ pi, and hence there exists y’ € Rym wWhich
is not a zero-divisor on M. We can now take a sufficiently high power y of y’ to find u € N and

¥y € Rym such that RumH£_1 (M) =0 and y is a non-zero-divisor on M, so that there is a short exact
sequence of Z"-graded R-modules

0 —> M(—um) 2> M — M/yM —> 0.

It now follows from the long exact sequence of local cohomology modules induced from the above
short exact sequence that Ry € /(0 :g HL(M/yIW)) for all integers i < f — 1. Therefore, by the in-

ductive hypothesis, there is a P(m)-domain X” in Z" such that S(Hg_z(l\_/l/yIW)) C X”. Let K be

the kernel of the map H{fl(l\_/l) — H{fl(l\_/l)(um) provided by multiplication by y. The long exact
sequence of local cohomology modules induced from the last-displayed short exact sequence now
shows that S(K) € X” — um.

We now apply Lemma 5.10(i) to Hgfl(l\_/l), with um playing the roles of both m and k: the con-
clusion is that there exists v € Ny such that

S(HI7'(M)) < US(K)—]um U —um — jum).
: ],0

We can now use Remarks 5.9(iii),(vi) to deduce the existence of a P(m)-domain X;_; in Z" such
that S(Hg_l(M)) C Xy_1. With this, the proof is complete. O

We now connect the concept of Q-finiteness dimension of M with respect to b, introduced in
Definition 5.17, with the concept of a-finiteness dimension of M relative to b (where a is a second
ideal of R), studied by Faltings in [5]. (See also [4, Chapter 9].)

5.19. Reminder. Assume that M is finitely generated, and let a,0 be ideals of R (not necessarily
graded).
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The a-finiteness dimension f3 (M) of M relative to 0 is defined by
fEa =inflieNo: ag \/(0: Hy(M)) |
and the a-minimum v-adjusted depth 15 (M) of M is defined by
A$(M) := inf{depth M, + ht(d + p)/p: p € Spec(R) \ Var(a)}.
(Here, Var(a) denotes the variety {p € Spec(R): p 2 a} of a.) It is always the case that fj (M) <A§(M);
Faltings’ (Extended) Annihilator Theorem [5] states that if R admits a dualizing complex or is a ho-
momorphic image of a regular ring, then f3 (M) = A3(M). (See [3, Corollary 3.8] for an account of the

extended version of Faltings’ Annihilator Theorem.)

5.20. Remark. Let the situation be as in Reminder 5.19, let K C R, and let (Kj)jc; be a family of
subsets of R.

(i) It is easy to deduce from the definition that fXR(M) = inf{f3R(M): a € K}.

(ii) We can then deduce from part (i) that fD(U’“ Kj)R(M) = inf] DI(jR(M): jel}
(iii) Similarly, it is easy to deduce from the definition that AXR(M) = inf(A3R (M): a € K}.
(iv) We can then deduce from part (iii) that A(OUH Kj)R(M) = inf{kl;fR(M): jel}.

5.21. Theorem. Assume that M is finitely generated, and let  # T C Nj,.

(i) We have

sup{k € Np: foralli <k and allm € 7T, there exists a P (m)-domain X;m) inZ'
such that S(HL(M)) - X,.(m)}
= inf{gf(m)(M): meT}

RmR

= e R ) < e B ),

(ii) If R admits a dualizing complex or is a homomorphic image of a regular ring, then we can replace the
inequality in part (i) by equality.

Proof. Apply Remark 5.17(iv) to the family (P(m))me7 of subsets of {1,...,r} to conclude that
sup{k € Np: for all i <k and all m € 7, there exists a P(m)-domain X{Fm) inZ"

such that S(H, (M) € X{™}

= inf{gf(m)(M): meT}.

By Proposition 5.18, we have gf(m)(M) = ff‘“R(M) for all m € 7. Therefore, on use of Remark 5.20(ii),
we deduce that

inf{gl ™ (M): me T} =inf{ fRmf(M): meT) = fEmer R ).

We can now use Faltings’ (Extended) Annihilator Theorem [5] (see Reminder 5.19) to complete the
proof of part (i) and to obtain the statement in part (ii). O
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5.22. Corollary. Assume that M is finitely generated.

(i) For each non-empty set T C 1+ N7, we have

(ii) For each set T C N \ {0} such that Ne; N7 # @ foralli € (1,...,r}, we have

th:meT fm® (M) = sup{k € No: S(H', (M)) is finite for all i <k}

=sup{k € No: HL (M) is finitely graded for all i < k}.
(iii) If M # bM, then fR(M) = gl (M) = grade, b.

Note. If, in the case where r =1, we take 7 =N, so that >+ RyR = R4, then the statement in
part (ii) becomes

ff*(M) =sup{k € No: H} (M) is finitely graded for all i <k},

a result proved by Marley in [14, Proposition 2.3].

Proof. (i) By Theorem 5.21(i), we have sz“‘ET R“’R(M) = inf{gf(m)(M): m e 7}. But P(m) =
{1,...,r} for all m e 1+ Nj.
(ii) By Theorem 5.21(i), we have

fEmeT B R vy = inf{ g™ (M): me T).

By the hypothesis, for each i € {1,...,r}, there exists m; € 7 with P(m;) = {i}. It therefore follows
from Remark 5.17(ii) that inf{gf(m)(M): me7}= min{gél}(M), . gg’ (M)}. However, we noted in
Remark 5.17(v) that

min{gE](M), o gg}(M)} = sup{k € No: S(HL(M)) is finite for all i <k}.
(iii) Since R = RgR, we can deduce from Theorem 5.21(i) and Remark 5.17(i) that
FRy = floR vy = g7y = gl (M) = sup{k € No: HL,(M) =0 for all i <k} =gradey b. O
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