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For a finitely generated graded module M over a positively-graded
commutative Noetherian ring R , the second author established in
1999 some restrictions, which can be formulated in terms of the
Castelnuovo regularity of M or the so-called a∗-invariant of M ,
on the supporting degrees of a graded-indecomposable graded-
injective direct summand, with associated prime ideal containing
the irrelevant ideal of R , of any term in the minimal graded-
injective resolution of M . Earlier, in 1995, T. Marley had established
connections between finitely graded local cohomology modules of
M and local behaviour of M across Proj(R).
The purpose of this paper is to present some multi-graded
analogues of the above-mentioned work.
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0. Introduction

Very briefly, the purpose of this paper is to explore multi-graded analogues of some results in the
algebra of modules, and particularly local cohomology modules, over a commutative Noetherian ring
that is graded by the additive semigroup N0 of non-negative integers.

To describe the results that we plan to generalize, let R = ⊕
n∈N0

Rn be such a ‘positively-graded’
commutative Noetherian ring. Any unexplained notation in this Introduction will be as in Chapters 12
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and 13 of our book [4]. In particular, the ∗injective envelope of a graded R-module M will be denoted
by ∗E(M) (see [4, §13.2]), and, for t ∈ Z, the tth shift functor (on the category ∗C(R) of all graded
R-modules and homogeneous R-homomorphisms) will be denoted by ( • )(t) (see [4, §12.1]).

Let N denote the set of positive integers; set R+ := ⊕
n∈N

Rn , the irrelevant ideal of R . For a graded
R-module M and p ∈ ∗ Spec(R) (the set of homogeneous prime ideals of R), we use M(p) to denote
the homogeneous localization of M at p. For i ∈ N0, the ordinary Bass number μi(p, M) is equal to
the rank of the homogeneous localization (∗ Exti

R(R/p, M))(p) as a (free) module over R(p)/pR(p) (see
R. Fossum and H.-B. Foxby [6, Corollary 4.9]).

Let i ∈ N0, and consider a direct decomposition given by a homogeneous isomorphism

∗Ei(M)
∼=−→

⊕
α∈Λi

∗E(R/pα)(−nα),

for an appropriate family (pα)α∈Λi of graded prime ideals of R and an appropriate family (nα)α∈Λi of
integers. (See [4, §13.2].)

Suppose that the graded prime ideal p contains the irrelevant ideal R+ . In this case, the graded
ring R(p)/pR(p) is concentrated in degree 0, and its 0th component is a field isomorphic to kR0 (p0),
the residue field of the local ring (R0)p0 . Thus,

μi(p, M) = dimkR0 (p0)

(∗ Exti
R(R/p, M)

)
(p)

=
∑
t∈Z

dimkR0 (p0)

((∗ Exti
R(R/p, M)

)
(p)

)
t .

In [15], it was shown that the graded R(p)/pR(p)-module (∗ Exti
R(R/p, M))(p) carries information about

the shifts ‘−nα ’ for those α ∈ Λi for which pα = p. One has

∗E(R/p)(n) � ∗E(R/p)(m) in ∗C(R) for m,n ∈ Z with m �= n,

and, for a given t ∈ Z, the cardinality of the set {α ∈ Λi: pα = p and nα = t} is equal to

dimkR0 (p0)

((∗ Exti
R(R/p, M)

)
(p)

)
t,

the dimension of the tth component of (∗ Exti
R(R/p, M))(p) .

Let ∗ Var(R+) := {q ∈ ∗ Spec(R): q ⊇ R+}. Let p ∈ ∗ Var(R+), let i ∈ N0 and let t ∈ Z. We say that t
is an ith level anchor point of p for M if

((∗ Exti
R(R/p, M)

)
(p)

)
t �= 0;

the set of all ith level anchor points of p for M is denoted by anchi(p, M); also, we write

anch(p, M) =
⋃
j∈N0

anch j(p, M),

and refer to this as the set of anchor points of p for M . Thus anchi(p, M) is the set of integers h for
which, when we decompose

∗Ei(M)
∼=−→

⊕
α∈Λi

∗E(R/pα)(−nα)

by means of a homogeneous isomorphism, there exists α ∈ Λi with pα = p and nα = h. Note that
anchi(p, M) = ∅ if μi(p, M) = 0, and that anchi(p, M) is a finite set when M is finitely generated.
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It was also shown in [15] that, when the graded R-module M is non-zero and finitely generated,
the Castelnuovo regularity reg(M) of M is an upper bound for the set

⋃
p∈∗ Var(R+)

anch(p, M)

of all anchor points of M . Consequently, for each i � 0, every ∗indecomposable ∗injective direct sum-
mand F of ∗Ei(M) with associated prime containing R+ must have F j = 0 for all j > reg(M).

In Sections 2, 3 we shall present an analogue of this theory for a standard multi-graded commu-
tative Noetherian ring S = ⊕

n∈N
r
0

Sn (where r ∈ N with r � 2). There is a satisfactory generalization
of anchor point theory to the multi-graded case, but we must stress now that we have not un-
covered any links between our multi-graded anchor point theory and the fast-developing theory of
multi-graded Castelnuovo regularity (see, for example, Huy Tài Hà [9] and D. Maclagan and G.G. Smith
[12]). This may be because our multi-graded anchor point theory only yields information about multi-
graded local cohomology modules with respect to Nr

0-graded ideals of S that contain one of the
components S(0,...,0,1,0,...,0) , whereas the ideal S+ := ⊕

n∈Nr Sn , which is relevant to multi-graded
Castelnuovo regularity, normally does not have that property.

The short Section 4 provides some motivation for our work in Section 5, where we provide multi-
graded analogues of work of T. Marley [14] about finitely graded local cohomology modules. We say
that a graded R-module L = ⊕

n∈Z
Ln is finitely graded precisely when Ln �= 0 for only finitely many

n ∈ Z. In [14], Marley defined, for a finitely generated graded R-module M ,

ga(M) := sup
{
k ∈ N0: Hi

a(M) is finitely graded for all i < k
}
,

and he modified ideas of N.V. Trung and S. Ikeda in [16, Lemma 2.2] to prove that

ga(M) := sup
{
k ∈ N0: R+ ⊆

√(
0 :R Hi

a

(
M

))
for all i < k

};
he then used Faltings’ Annihilator Theorem for local cohomology (see [5] and [4, Theorem 9.5.1]). In
Section 5 below, we shall obtain some multi-graded analogues of some of Marley’s results in this area.

1. Background results in multi-graded commutative algebra

Let R = ⊕
g∈G R g be a commutative Noetherian ring graded by a finitely generated, additively-

written, torsion-free Abelian group G . Some aspects of the G-graded analogue of the theory of Bass
numbers have been developed by S. Goto and K.-i. Watanabe [8, §§1.2, 1.3], and it is appropriate for
us to review some of those here.

We shall denote by ∗C G(R) (or sometimes by ∗C(R) when the grading group G is clear) the cate-
gory of all G-graded R-modules and G-homogeneous R-homomorphisms of degree 0G between them.
Projective (respectively injective) objects in the category ∗C G(R) will be referred to as ∗projective (re-
spectively ∗injective) G-graded R-modules. Similarly, the attachment of ‘∗ ’ to other concepts indicates
that they refer to the obvious interpretations of those concepts in the category ∗C G(R), although we
shall sometimes use ‘G ’ instead of ‘∗ ’ in order to emphasize the grading group. However, the following
comments about ∗ HomR and the ∗ Exti

R (i � 0) may be helpful.

1.1. Reminders. Let M = ⊕
g∈G Mg and N = ⊕

g∈G Ng be G-graded R-modules.

(i) Let a ∈ G . We say that an R-homomorphism f : M → N is G-homogeneous of degree a precisely
when f (Mg) ⊆ Ng+a for all g ∈ G . Such a G-homogeneous homomorphism of degree 0G is sim-
ply called G-homogeneous. We denote by ∗ HomR(M, N)a the R0G -submodule of HomR(M, N)
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consisting of all G-homogeneous R-homomorphisms from M to N of degree a. Then the sum∑
a∈G

∗ HomR(M, N)a is direct, and we set

∗ HomR(M, N) :=
∑
a∈G

∗ HomR(M, N)a =
⊕
a∈G

∗ HomR(M, N)a.

This is an R-submodule of HomR(M, N), and the above direct decomposition provides it with a
structure as G-graded R-module. It is straightforward to check that

∗ HomR( • , • ) : ∗C G(R) × ∗C G(R) −→ ∗C G(R)

is a left exact, additive functor.
(ii) If M is finitely generated, then HomR(M, N) is actually equal to ∗ HomR(M, N) with its G-grading

forgotten.
(iii) For i ∈ N0, the functor ∗ Exti

R is the ith right derived functor in ∗C G(R) of ∗ HomR . We make
two comments here about the case where M is finitely generated. In that case Exti

R(M, N) is
actually equal to ∗ Exti

R(M, N) with its G-grading forgotten, and, second, one can calculate the
∗ Exti

R(M, N) by applying the functor ∗ HomR(M, • ) to a (deleted) ∗injective resolution of N in
the category ∗C G(R) and then taking cohomology of the resulting complex.

For a ∈ G , we shall denote the ath shift functor by ( • )(a): ∗C G(R) → ∗C G(R): thus, for a G-graded
R-module M = ⊕

g∈G Mg , we have (M(a))g = Mg+a for all g ∈ G; also, f (a)
 (M(a))g = f 
 Mg+a for each

morphism f in ∗C G(R) and all g ∈ G .

1.2. Theorem. (See S. Goto and K.-i. Watanabe [8, §1.3].) Let M be a G-graded R-module, and denote by
∗ Spec(R) the set of G-graded prime ideals of R. We denote by ∗E(M) or ∗E R(M) ‘the’ ∗injective envelope
of M, and by ∗Ei(M) or ∗Ei

R(M) ‘the’ ith term in ‘the’ minimal ∗injective resolution of M ( for each i � 0).

(i) AssR
∗E R(M) = AssR M.

(ii) We have that M is a ∗indecomposable ∗injective G-graded R-module if and only if M is isomorphic (in
the category ∗C G(R)) to ∗E(R/q)(a) for some q ∈ ∗ Spec(R) and a ∈ G. In this case, AssR M = {q} and q

is uniquely determined by M.
(iii) Let (Mλ)λ∈Λ be a non-empty family of G-graded R-modules. Then

⊕
λ∈Λ Mλ is ∗injective if and only if

Mλ is ∗injective for all λ ∈ Λ.
(iv) Each ∗injective G-graded R-module M is a direct sum of ∗indecomposable ∗injective G-graded submod-

ules, and this decomposition is uniquely determined by M up to isomorphisms.
(v) Let i be a non-negative integer. In view of part (iv) above, there is a family (pα)α∈Λi of G-graded prime

ideals of R and a family (gα)α∈Λi of elements of G for which there is a G-homogeneous isomorphism

∗Ei(M)
∼=−→

⊕
α∈Λi

∗E(R/pα)(−gα).

Let p ∈ ∗ Spec(R). Then the cardinality of the set {α ∈ Λi: pα = p} is equal to the ordinary Bass number
μi(p, M) (that is, to dimk(p) Exti

R(Rp/pRp, Mp), where k(p) denotes the residue field of the local ring Rp).

A significant part of Section 2 of this paper is concerned with the shifts ‘−gα ’ in the statement
of part (v) of Theorem 1.2. (The minus signs are inserted for notational convenience.) In [15], the
second author obtained some results about such shifts in the special case in which R is graded by the
semigroup N0 of non-negative integers, and in Section 2 below, we shall establish some multi-graded
analogues.

We shall employ the following device used by Huy Tài Hà [9, §2].
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1.3. Definition. Let φ : G → H be a homomorphism of finitely generated torsion-free Abelian groups,
and let R = ⊕

g∈G R g be a G-graded commutative Noetherian ring.

For each h ∈ H , set Rφ

h := ⊕
g∈φ−1({h}) R g ; then

Rφ :=
⊕
h∈H

Rφ

h =
⊕
h∈H

( ⊕
g∈φ−1({h})

R g

)

provides an H-grading on R , and we denote R by Rφ when considering it as an H-graded ring in this
way.

Furthermore, for each G-graded R-module M = ⊕
g∈G Mg , set Mφ

h := ⊕
g∈φ−1({h}) Mg and Mφ :=⊕

h∈H Mφ

h ; then Mφ is an H-graded Rφ-module. Also, if f : M → N is a G-homogeneous homomor-
phism of G-graded R-modules, then the same map f becomes an H-homogeneous homomorphism
of H-graded Rφ-modules f φ : Mφ → Nφ .

In this way, ( • )φ becomes an exact additive covariant functor from ∗C G(R) to ∗C H (R).

1.4. Notation. We shall use N and N0 to denote the sets of positive and non-negative integers,
respectively, and r will denote a fixed positive integer. Throughout the remainder of the paper,
R := ⊕

n∈Zr Rn will denote a commutative Noetherian ring, graded by the additively-written finitely
generated free Abelian group Zr (with its usual addition). For n = (n1, . . . ,nr), m = (m1, . . . ,mr) ∈ Zr ,
we shall write

n � m if and only if ni � mi for all i = 1, . . . , r;

furthermore, n < m will mean that n � m and n �= m. The zero element of Zr will be denoted
by 0, and, for each i = 1, . . . , r, we shall use ei to denote the element of Zr which has 1 in the
ith spot and all other components zero. Also, 1 will denote (1, . . . ,1) ∈ Zr . Thus 1 = ∑r

i=1 ei , and
Re1 Re2 . . . Rer ⊆ R1 .

We shall sometimes denote the ith component of a general member w of Zr by wi without
additional explanation.

Comments made above that apply to the category ∗CZ
r
(R) will be used without further comment.

For example, we shall say that a graded ideal of R is ∗maximal if it is maximal among the set of
proper Zr -graded ideals of R , and that R is ∗local if it has a unique ∗maximal ideal. We shall use
∗ Max(R) to denote the set of ∗maximal ideals of R .

We shall use ∗ Spec(R) to denote the set of Zr -graded prime ideals of R; for a Zr -graded ideal a

of R , we shall set ∗ Var(a) := {p ∈ ∗ Spec(R): p ⊇ a}.

The next three lemmas are multi-graded analogues of preparatory results in [15, §1].

1.5. Lemma. Let p ∈ ∗ Spec(R) and let a be a Zr -homogeneous element of degree n in R \p. Then multiplication
by a provides a Zr -homogeneous automorphism of degree n of ∗E(R/p). Also, each element of ∗E(R/p) is
annihilated by some power of p.

Consequently, if S is a multiplicatively closed subset of Nr
0-homogeneous elements of R such that S ∩p �= ∅,

then S−1(∗E(R/p)) = 0.

Proof. Multiplication by a provides a Zr -homogeneous R-homomorphism

μa : ∗E(R/p) −→ ∗E(R/p)(n).

Since Kerμa has zero intersection with R/p, it follows that μa is injective. In view of Theorem 1.2(ii),
Imμa is a non-zero ∗injective Zr -graded submodule of the ∗indecomposable ∗injective Zr -graded
R-module ∗E(R/p)(n). Hence μa is surjective.
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The fact that each element of ∗E(R/p) is annihilated by some power of p follows from Theo-
rem 1.2(i), which shows that p is the only associated prime ideal of each non-zero cyclic submodule
of ∗E(R/p). The final claim is then immediate. �

The next two lemmas below can be proved by making obvious modifications to the proofs of the
(well-known) ‘ungraded’ analogues.

1.6. Lemma. Let f : L → M be a Zr -homogeneous homomorphism of Zr -graded R-modules such that M is a
∗essential extension of Im f . Let S be a multiplicatively closed subset of Zr -homogeneous elements of R. Then
S−1M is a ∗essential extension of its Zr -graded submodule Im(S−1 f ).

Proof. Modify the proof of [4, 11.1.5] in the obvious way. �
1.7. Lemma. Let S be a multiplicatively closed subset of Zr -homogeneous elements of R, and let p ∈ ∗ Spec(R)

be such that p ∩ S = ∅. Then

(i) the natural map ∗E R(R/p) → S−1(∗E R(R/p)) is a Zr -homogeneous R-isomorphism, so that ∗E R(R/p)

has a natural structure as a Zr -graded S−1 R-module;
(ii) there is a Zr -homogeneous isomorphism (in ∗C(S−1 R))

∗E R(R/p) ∼= ∗E S−1 R

(
S−1 R/S−1p

);
(iii) ∗E S−1 R(S−1 R/S−1p), when considered as a Zr -graded R-module by means of the natural homomor-

phism R → S−1 R, is Zr -homogeneously isomorphic to ∗E R(R/p);
(iv) for each n ∈ Zr , there is a Zr -homogeneous isomorphism (in ∗C(S−1 R))

S−1(∗E R(R/p)(n)
) ∼= ∗E S−1 R

(
S−1 R/S−1p

)
(n);

(v) if I is a ∗injective Zr -graded R-module, then the Zr -graded S−1 R-module S−1 I is ∗injective.

Proof. (i) This is immediate from 1.5.
(ii) One can make the obvious modifications to the proof of [4, 10.1.11] to see that, as a Zr -graded

S−1 R-module, ∗E R(R/p) is ∗injective; it is also Zr -homogeneously isomorphic, as a Zr -graded S−1 R-
module, to S−1(∗E R(R/p)). One can use 1.6 to see that S−1(∗E R(R/p)) is a ∗essential extension of
S−1 R/S−1p. The claim follows.

(iii), (iv) These are now easy.
(v) This can now be proved by making the obvious modifications to the proof of [4, 10.1.13(ii)]. �

2. A multi-graded analogue of anchor point theory

2.1. Definition. We shall say that R is positively graded precisely when Rn = 0 for all n � 0. When that
is the case, we say that R (as in 1.4) is standard precisely when R = R0[Re1 , . . . , Rer ].

The main results of this paper will concern the case where R is positively graded and standard.

2.2. Lemma. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. If a is an Nr
0-graded ideal of R

such that a ⊇ Rt for some t ∈ Nr
0 , then a ⊇ Rn for each n ∈ Nr

0 with n � t.

Proof. Since R is standard, Rn = Rt Rn−t , and so is contained in a. �
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2.3. Definition. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let p ∈ ∗ Spec(R). The

set { j ∈ {1, . . . , r}: Re j ⊆ p} will be called the set of p-directions and will be denoted by dir(p).
Observe that, if i ∈ dir(p), then p ⊇ R1 by 2.2. Conversely, if p ⊇ R1 , then, since R1 = Re1 . . . Rer ,

there exists i ∈ {1, . . . , r} such that Rei ⊆ p, and i ∈ dir(p). Thus dir(p) �= ∅ if and only if p ⊇ R1 .
More generally, let b be an Nr

0-graded ideal of R . We define the set of b-directions to be

dir(b) := {
j ∈ {1, . . . , r}: Re j ⊆ √

b
}
.

The members of the set {1, . . . , r} \dir(b) are called the non-b-directions. It is easy to see that dir(b) =⋂
p∈Min(b) dir(p), where Min(b) denotes the set of minimal prime ideals of b.

2.4. Remark. It follows from Lemma 2.2 that, in the situation of Definition 2.3, each Nr
0-homogeneous

element of R \ p has degree with ith component 0 for all i ∈ dir(p).

2.5. Proposition. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let p ∈ ∗ Var(R1 R). For

notational convenience, suppose that dir(p) = {1, . . . ,m}, where 0 < m � r. For each i ∈ {1, . . . , r} \ dir(p) =
{m + 1, . . . , r}, select ui ∈ Rei \ p.

Let a = (a1, . . . ,am) ∈ Zm. For c = (cm+1, . . . , cr) ∈ Zr−m, we shall denote by a|c the element
(a1, . . . ,am, cm+1, . . . , cr) of Zr obtained by juxtaposition.

(i) For all choices of c,d ∈ Zr−m, there is an isomorphism of R0-modules

(∗E R(R/p)
)

a|c ∼= (∗E R(R/p)
)

a|d.

(Note that this does not say anything of interest if m = r.)
(ii) If (∗E R(R/p))a|c �= 0 for any c ∈ Zr−m, then a � 0.

(iii) Let T := R(p)/pR(p) , where R(p) is the Zr -homogeneous localization of R at p. Then
(a) T is a simple Zr -graded ring in the sense of [8, Definition 1.1.1];
(b) T0 is a field;
(c) for each c = (cm+1, . . . , cr) ∈ Zr−m,

Ta|c =
{

0 if a �= 0,

T0(um+1/1)cm+1 . . . (ur/1)cr if a = 0

(where ‘ ’ is used to denote natural images of elements of R(p) in T ); and
(d) every Zr -graded T -module is free.

(iv) We have (0 :∗ E R(p)
(R(p)/pR(p)) pR(p)) = R(p)/pR(p) .

(v) If a,b ∈ Zm and c,d ∈ Zr−m, and there is a Zr -homogeneous isomorphism

(∗E R(R/p)
)
(a|c) ∼= (∗E R(R/p)

)
(b|d),

then a = b.

Note. The obvious interpretation of the above statement is to be made in the case where m = r.

Proof. It will be convenient to write v for a general member of Zm and w for a general member
of Zr−m , and to use v|w to indicate the element of Zr obtained by juxtaposition.

(i) By Lemma 1.5, for each i = m + 1, . . . , r, multiplication by ui provides a Zr -homogeneous auto-
morphism of ∗E R(R/p) of degree ei ; the claim follows from this.
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(ii) Set Δ := {v ∈ Zm: vi > 0 for some i ∈ {1, . . . ,m}}. Since Rei ⊆ p for all i = 1, . . . ,m, it follows
from Lemma 2.2 that the Zr -graded R-module R/p has (R/p)v|w = 0 for all choices of v|w ∈ Zr with
v ∈ Δ. Therefore the Zr -graded submodule

⊕
v∈Δ

w∈Z
r−m

(R/p)v|w

of R/p is zero. Since ∗E R(R/p) is a ∗essential extension of R/p, it follows that

⊕
v∈Δ

w∈Z
r−m

(∗E R(R/p)
)

v|w = 0.

(iii) By Remark 2.4, each Nr
0-homogeneous element of R \ p has degree v|w with v = 0. Also,

(R/p)v|w = 0 for all v ∈ Zm with v > 0. Now every non-zero Zr -homogeneous element of T is a unit
of T , so that T is a simple Zr -graded ring. Furthermore, the subgroup

G := {
n ∈ Zr: Tn contains a unit of T

}
is equal to {(n1, . . . ,nm,nm+1, . . . ,nr) ∈ Zr: n1 = · · · = nm = 0}. The claims in parts (b), (c) and (d)
now follow from [8, Lemma 1.1.2, Corollary 1.1.3 and Theorem 1.1.4].

(iv) Recall that T = R(p)/pR(p) . Now the Zr -graded T -module (0 :∗ E R(p)
(R(p)/pR(p)) pR(p)) contains

its Zr -graded T -submodule R(p)/pR(p) , and cannot be strictly larger, by ∗essentiality and the fact (see
part (iii)) that every Zr -graded T -module is free.

(v) By Lemma 1.7(iv), there is a Zr -homogeneous isomorphism of Zr -graded R(p)-modules

(∗E R(p)
(R(p)/pR(p))

)
(a|c) ∼= (∗E R(p)

(R(p)/pR(p))
)
(b|d).

Abbreviate ∗E R(p)
(R(p)/pR(p)) by F . It follows from part (iv) that

T (a|c) = (0 :F pR(p))(a|c) = (0 :F (a|c) pR(p))

∼= (0 :F (b|d) pR(p)) = (0 :F pR(p))(b|d)

= T (b|d),

where the isomorphism is Zr -homogeneous. But, for n = (n1, . . . ,nm,nm+1, . . . ,nr) ∈ Zr , we have

T (a|c)n �= 0 if and only if (n1, . . . ,nm) = −a

(by part (iii)). Therefore a = b. �
2.6. Remark. Suppose that R := ⊕

n∈N
r
0

Rn is positively graded and standard, and let b be an Nr
0-

graded ideal of R for which dir(b) �= ∅.
Write dir(b) = {i1, . . . , im}, where 0 < m � r and i1 < · · · < im . Let φ(b) : Zr → Zm be the epimor-

phism of Abelian groups defined by

φ(b)((n1, . . . ,nr)) = (ni1 , . . . ,nim ) for all (n1, . . . ,nr) ∈ Zr .

We can think of φ(b) : Zr → Zm as the homomorphism which ‘forgets the co-ordinates in the non-b-
directions’.

Now let p ∈ ∗ Var(R1 R). The above defines an Abelian group homomorphism φ(p) : Zr → Z# dir(p) .
(For a finite set Y , the notation #Y denotes the cardinality of the set Y .) In the case where b ⊆ p, we
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have dir(b) ⊆ dir(p), and we define the Abelian group homomorphism φ(p;b) : Z# dir(p) → Z# dir(b) to
be the unique Z-homomorphism such that φ(p;b) ◦ φ(p) = φ(b).

Now let p ∈ ∗ Var(R1 R) and # dir(p) = m; we use the notation of 1.3. Let T := R(p)/pR(p) , and let
L be a Zr -graded T -module.

(i) By Proposition 2.5(iii), for each a ∈ Zm and each n ∈ Zr ,

(
T (−n)φ(p)

)
a =

{
0 if φ(p)(n) �= a,

(T φ(p))0 if φ(p)(n) = a.

In particular, the Zm-graded ring T φ(p) is concentrated in degree 0 ∈ Zm .
(ii) Each component of the Zm-graded T φ(p)-module Lφ(p) is a free (T φ(p))0-submodule of Lφ(p) .

(iii) If L is finitely generated, then

rankT φ(p) Lφ(p) =
∑

a∈Zm

rank(T φ(p))0

(
Lφ(p)

)
a;

since the left-hand side of the above equation is finite, all except finitely many of the terms on
the right-hand side are zero.

2.7. Theorem. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let M be a Zr -graded R-

module, and let

I• : 0 −→ ∗E0(M)
d0−→ ∗E1(M) −→ · · · −→ ∗Ei(M)

di−→ ∗Ei+1(M) −→ · · ·

be the minimal ∗injective resolution of M. For each i ∈ N0 , let

θi : ∗Ei(M)
∼=−→

⊕
α∈Λi

∗E(R/pα)(−nα)

be a Zr -homogeneous isomorphism, where pα ∈ ∗ Spec(R) and nα ∈ Zr for all α ∈ Λi .
Let p ∈ ∗ Var(R1 R) and use the notation φ(p) : Zr → Zm and T := R(p)/pR(p) of Remark 2.6, where m is

the number of p-directions.
Let i ∈ N0 and let a ∈ Zm. Then the cardinality of the set {α ∈ Λi: pα = p and φ(p)(nα) = a} is equal to

rank(T φ(p))0

(((∗ Exti
R(p)

(R(p)/pR(p), M(p))
)φ(p))

a

)
.

Proof. By Lemmas 1.5, 1.6 and 1.7, there are Zr -homogeneous isomorphisms of graded R(p)-modules

∗Ei
R(p)

(M(p)) ∼= (∗Ei
R(M)

)
(p)

∼=
⊕
α∈Λi
pα⊆p

∗E(R(p)/pα R(p))(−nα).

One can calculate ∗ Exti
R(p)

(R(p)/pR(p), M(p)) (up to isomorphism in the category ∗CZ
r
(R(p))) by

taking the ith cohomology module of the complex (0 :(I•)(p)
pR(p)). Note that, by Lemma 1.6, for each

j ∈ N0, the inclusion Ker(d j
(p)) ⊆ ∗E j(M)(p) is ∗essential, so that the inclusion

Ker
(
d j

(p)

) ∩ (0 :∗ E j(M) pR(p)) ⊆ (0 :∗ E j(M) pR(p))
(p) (p)
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is also ∗essential. Because, by Proposition 2.5(iii)(d), each Zr -graded T -module is free, it follows that
all the ‘differentiation’ maps in the complex (0 :(I•)(p)

pR(p)) are zero. Hence

∗ Exti
R(p)

(R(p)/pR(p), M(p)) ∼=
⊕
α∈Λi
pα⊆p

(0 :∗ E(R(p)/pα R(p))(−nα) pR(p)) in ∗CZ
r
(R(p)).

For α ∈ Λi such that pα ⊂ p (the symbol ‘⊂’ is reserved to denote strict inclusion), there exists an
Nr

0-homogeneous element u ∈ p \ pα , and the fact (see Lemma 1.5) that multiplication by u/1 ∈ R(p)

provides an automorphism of ∗E(R(p)/pα R(p)) ensures that

(0 :∗ E(R(p)/pα R(p))(−nα) pR(p)) = 0.

If α ∈ Λi is such that pα = p, then, by Proposition 2.5(iv),

(0 :∗ E R(p)
(R(p)/pR(p))(−nα) pR(p)) = (R(p)/pR(p))(−nα)

and, by Proposition 2.5(iii)(d), this is a free Zr -graded T -module.
Therefore there is a Zr -homogeneous isomorphism of Zr -graded T -modules

∗ Exti
R(p)

(R(p)/pR(p), M(p)) ∼=
⊕
α∈Λi
pα=p

(R(p)/pR(p))(−nα).

Now apply the functor ( • )φ(p) to obtain a Zm-homogeneous isomorphism of Zm-graded T φ(p)-
modules

(∗ Exti
R(p)

(R(p)/pR(p), M(p))
)φ(p) ∼=

⊕
α∈Λi
pα=p

(
(R(p)/pR(p))(−nα)

)φ(p)
.

But, by Remark 2.6(i), for an α ∈ Λi ,

((
T (−nα)

)φ(p))
a =

{
0 if φ(p)(nα) �= a,

(T φ(p))0 if φ(p)(nα) = a.

The desired result now follows from Remark 2.6(iii). �
2.8. Definitions. Let the situation and notation be as in Theorem 2.7, so that, in particular, p ∈
∗ Var(R1 R) and m denotes the number of p-directions.

Let i ∈ N0. We say that a ∈ Zm is an ith level anchor point of p for M if

((∗ Exti
R(p)

(R(p)/pR(p), M(p))
)φ(p))

a �= 0;

the set of all ith level anchor points of p for M is denoted by anchi(p, M); also, we write

anch(p, M) =
⋃
j∈N0

anch j(p, M),

and refer to this as the set of anchor points of p for M .
Thus anchi(p, M) is the set of m-tuples a ∈ Zm for which, when we decompose

∗Ei(M)
∼=−→

⊕
α∈Λ

∗E(R/pα)(−nα)
i
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by means of a Zr -homogeneous isomorphism, there exists α ∈ Λi with pα = p and φ(p)(nα) = a. Note
that anchi(p, M) = ∅ if μi(p, M) = 0, and that, if M is finitely generated, then anchi(p, M) is a finite
set, by Remark 2.6(iii).

The details in our present multi-graded situation are more complicated (and therefore more inter-
esting!) than in the singly-graded situation studied in [15] because there might exist a p ∈ ∗ Var(R1 R)

for which the set of p-directions is a proper subset of {1, . . . , r}. This cannot happen when r = 1. It
is worthwhile for us to draw attention to the simplifications that occur in the above theory when
dir(p) = {1, . . . , r}, for that case provides a more-or-less exact analogue of the anchor point theory for
the singly-graded case developed in [15].

2.9. Example. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let M be a Zr -graded
R-module, and let

I• : 0 −→ ∗E0(M)
d0−−→ ∗E1(M) −→ · · · −→ ∗Ei(M)

di−−→ ∗Ei+1(M) −→ · · ·

be the minimal ∗injective resolution of M . For each i ∈ N0, let

θi : ∗Ei(M)
∼=−→

⊕
α∈Λi

∗E(R/pα)(−nα)

be a Zr -homogeneous isomorphism, where pα ∈ ∗ Spec(R) and nα ∈ Zr for all α ∈ Λi .
Let p ∈ ∗ Spec(R) be such that p ⊇ Rn for all n > 0, so that dir(p) = {1, . . . , r}. In this case, T :=

R(p)/pR(p) is concentrated in degree 0, and T0 is a field isomorphic to kR0 (p0).
Let i ∈ N0. Then anchi(p, M) is the set of r-tuples a ∈ Zr for which there exists α ∈ Λi with pα = p

and nα = a. The cardinality of the set of such αs is

dimkR0 (p0)

((∗ Exti
R(p)

(R(p)/pR(p), M(p))
)

a

)
,

and we have

∑
a∈Zr

dimkR0 (p0)

((∗ Exti
R(p)

(R(p)/pR(p), M(p))
)

a

) = μi(p, M).

In particular, if M is finitely generated, then there are only finitely many ith level anchor points of p

for M .
This reflects rather well the singly-graded anchor point theory studied in [15].

Our next aim is to extend (in a sense) the final result in Example 2.9 (namely that, when M (as
in the example) is a finitely generated Zr -graded R-module and p ∈ ∗ Spec(R) is such that p ⊇ Rn for
all n > 0, then, for each i ∈ N0, there are only finitely many ith level anchor points of p for M) to all
Nr

0-graded primes of R that contain R1 .

2.10. Remark. Let S be a multiplicatively closed set of Zr -homogeneous elements of R , and let M , N
be Zr -graded R-modules with M finitely generated. Then, for each i ∈ N0, there is a Zr -homogeneous
S−1 R-isomorphism

S−1(∗ Exti
R(M, N)

) ∼= ∗ Exti
S−1 R

(
S−1 M, S−1N

)
.

2.11. Theorem. Assume that R = ⊕
n∈N

r
0

Rn is positively graded and standard, and let M be a Zr -graded

R-module. Let i ∈ N0 , and let p ∈ ∗ Var(R1 R). Then
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anchi(p, M) = anchi(
pφ(p), Mφ(p)

)
,

and so is finite if M is finitely generated.

Proof. Suppose, for ease of notation, that dir(p) = {1, . . . ,m}, where 0 < m � r. Note that pφ(p) is a
Zm-graded prime ideal of the Zm-graded ring Rφ(p) , and that dir(pφ(p)) = {1, . . . ,m} (by Lemma 2.2).

Set E := ∗ Exti
R(R/p, M). Let a ∈ Zm . In view of 2.10, the m-tuple a is an ith level anchor point of p

for M if and only if ((E(p))
φ(p))a �= 0. Our initial task in this proof is to show that this is the case if

and only if

((∗ Exti
Rφ(p)

(
Rφ(p)/pφ(p), Mφ(p)

))
(pφ(p))

)
a �= 0.

Now the Zr -graded R-module E can be constructed by application of the functor ∗ HomR( • , M)

to a (deleted) ∗free resolution of R/p by finitely generated ∗free Zr -graded modules in the cate-
gory ∗CZ

r
(R) and then taking cohomology of the resulting complex. It follows that there is a Zm-

homogeneous isomorphism of Zm-graded Rφ(p)-modules

Eφ(p) ∼= ∗ Exti
Rφ(p)

(
Rφ(p)/pφ(p), Mφ(p)

)
.

Suppose that ((E(p))
φ(p))a �= 0. Thus there exists n ∈ Zr such that φ(p)(n) = a and ξ ∈ (E(p))n

such that ξ �= 0. By Remark 2.4, there exists n′ ∈ Zr such that φ(p)(n′) = a and e ∈ En′ which is
not annihilated by any Zr -homogeneous element of R \ p. Now any Zm-homogeneous element of
Rφ(p) \ pφ(p) will, when written as a sum of Zr -homogeneous elements of R , have at least one com-
ponent outside p, and so 0 �= e/1 ∈ (Eφ(p))(pφ(p)) . Hence ((Eφ(p))(pφ(p)))a �= 0, so that

((∗ Exti
Rφ(p)

(
Rφ(p)/pφ(p), Mφ(p)

))
(pφ(p))

)
a �= 0.

Now suppose that ((∗ Exti
Rφ(p) (Rφ(p)/pφ(p), Mφ(p)))(pφ(p)))a �= 0. Then ((Eφ(p))(pφ(p)))a �= 0. Since

every Zm-homogeneous element of Rφ(p) \ pφ(p) has degree 0 ∈ Zm , it follows that there exists e ∈
(Eφ(p))a that is not annihilated by any Zm-homogeneous element of Rφ(p) \ pφ(p) . In particular, e is
not annihilated by any Zr -homogeneous element of R \ p. Therefore 0 �= e/1 ∈ ((E(p))

φ(p))a .
This proves that anchi(p, M) = anchi(pφ(p), Mφ(p)). Finally, since dir(pφ(p)) = {1, . . . ,m}, it follows

from Example 2.9 that anchi(pφ(p), Mφ(p)) is finite when M is finitely generated. �
The aim of the remainder of this section is to establish a multi-graded analogue of a result of

Bass [1, Lemma 3.1]. However, there are some subtleties which mean that our generalization of [15,
Lemma 1.8] is not completely straightforward.

2.12. Theorem. Assume that R = ⊕
n∈N

r
0

Rn is positively graded and standard, and let M be a finitely gen-

erated Zr -graded R-module. Let p,q ∈ ∗ Spec(R) be such that R1 R ⊆ p ⊂ q (we reserve the symbol ‘⊂’
to denote strict inclusion) and that there is no Zr -graded prime ideal strictly between p and q. Note that
dir(p) ⊆ dir(q): suppose, for ease of notation, that dir(p) = {1, . . . ,m} and dir(q) = {1, . . . ,m,m + 1, . . . ,h},
where 0 < m � h � r.

Let i ∈ N0 . Then, for each a = (a1, . . . ,am) ∈ anchi(p, M), there exists

b = (b1, . . . ,bm,bm+1, . . . ,bh) ∈ anchi+1(q, M)

such that (b1, . . . ,bm) = (a1, . . . ,am) = a.

Proof. There exists an Nr
0-homogeneous element b ∈ q \ p. By Remark 2.4, each Nr

0-homogeneous
element of R \ p has degree with first m components 0. In particular, deg(b) = 0|v ∈ Zm × Zr−m for
some v ∈ Zr−m .
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Since a ∈ anchi(p, M), there exists w ∈ Zr−m such that (∗ Exti
R(p)

(R(p)/pR(p), M(p)))a|w �= 0. Set

E := ∗ Exti
R(R/p, M). In view of Remark 2.10, we must have (E(p))a|w �= 0. Since each Nr

0-homogeneous
element of R \ p has degree with first m components 0, this means that there exists a homo-
geneous element e ∈ E , with deg(e) = a|w′ for some w′ ∈ Zr−m , that is not annihilated by any
Nr

0-homogeneous element of R \ p. But R \ q ⊆ R \ p, and so it follows that (E(q))a|w′ �= 0. By Re-
mark 2.10 again, (∗ Exti

R(q)
(R(q)/pR(q), M(q)))a|w′ �= 0. Write F := ∗ Exti

R(q)
(R(q)/pR(q), M(q)).

There is an exact sequence

0 −→ (R(q)/pR(q))
(−(0|v)

) b/1−−→ R(q)/pR(q) −→ R(q)/
(
pR(q) + (b/1)R(q)

) −→ 0

in ∗CZ
r
(R(q)), and this induces an exact sequence

F
b/1−−→ F (0|v) −→ ∗ Exti+1

R(q)

(
R(q)/

(
pR(q) + (b/1)R(q)

)
, M(q)

)
.

Recall that deg(b) = 0|v. We claim that there exists y ∈ Zr−m such that Fa|y �= (b/1)Fa|y−v . To see this,
note that b/1 ∈ qR(q) , the unique ∗maximal ideal of the homogeneous localization R(q) , and if we
had Fa|y = (b/1)Fa|y−v for every y ∈ Zr−m , then we should have Fa|w′ ⊆ ⋂

n∈N
(b/1)n F , which is zero

by the multi-graded version of Krull’s Intersection Theorem. (One can show that G := ⋂
n∈N

(b/1)n F
satisfies G = (b/1)G , and then use the multi-graded version of Nakayama’s Lemma.) Thus there exists
y ∈ Zr−m such that Fa|y �= (b/1)Fa|y−v , and therefore, in view of the last exact sequence,

(∗ Exti+1
R(q)

(
R(q)/

(
pR(q) + (b/1)R(q)

)
, M(q)

))
a|y �= 0.

Now R(q)/(pR(q) + (b/1)R(q)) is concentrated in Zr -degrees whose first m components are all
zero. Therefore all its Zr -graded R-homomorphic images and all its Zr -graded submodules are also
concentrated in Zr -degrees whose first m components are all zero.

The only Zr -graded prime ideal of R(q) that contains the ideal pR(q) + (b/1)R(q) is qR(q) , and
so pR(q) + (b/1)R(q) is qR(q)-primary. It follows that there is a chain of Zr -graded ideals of R(q)

from qR(q) to pR(q) + (b/1)R(q) with the property that each subquotient is R(q)-isomorphic to
(R(q)/qR(q))(0|z) for some z ∈ Zr−m . It therefore follows from the half-exactness of ∗ Exti+1

R(q)
that

there exists y′ ∈ Zr−m such that

(∗ Exti+1
R(q)

(R(q)/qR(q), M(q))
)

a|y′ �= 0.

The claim then follows from Theorem 2.7. �
2.13. Corollary. Assume that R = ⊕

n∈N
r
0

Rn is positively graded and standard, and let M be a finitely gener-

ated Zr -graded R-module. Let p ∈ ∗ Var(R1 R), and suppose, for ease of notation, that dir(p) = {1, . . . ,m}.
Let a ∈ anch(p, M). Then there exists q ∈ ∗ Spec(R) such that q ⊇ Rn for all n ∈ Nr

0 with n > 0 and b =
(b1, . . . ,bm,bm+1, . . . ,br) ∈ anch(q, M) such that a = (b1, . . . ,bm).

Proof. There exists a saturated chain p = p0 ⊂ p1 ⊂ · · · ⊂ pt = q of Zr -graded prime ideals of R such
that q is ∗maximal. Since q is contained in the Zr -graded prime ideal

(q ∩ R0)
⊕⊕

n>0

Rn,

these two Zr -graded prime ideals must be the same; we therefore see that q ⊇ Rn for all n ∈ Nr
0 with

n > 0. The claim is now immediate from Theorem 2.12. �
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3. The ends of certain multi-graded local cohomology modules

We begin with a combinatorial lemma.

3.1. Lemma. Let a := (a1, . . . ,ar) ∈ Zr and let Σ be a non-empty subset of Zr such that n � a for all n ∈ Σ .
Then Σ has only finitely many maximal elements.

Note. We are grateful to the referee for drawing our attention to the following proof, which is shorter
than our original.

Proof. The set Δ := a − Σ := {a − n: n ∈ Σ} is a non-empty subset of Nr
0. Now Nr

0 is a Noetherian
monoid with respect to addition, by [11, Proposition 1.3.5], for example. (All terminology concerning
monoids in this proof is as in [11, Chapter 1].) Therefore the monoideal (Δ) of Nr

0 generated by Δ

can be generated by finitely many elements of Δ, say by m(1), . . . ,m(s) ∈ Δ. Therefore

Δ ⊆ (Δ) = (
m(1) + Nr

0

) ∪ · · · ∪ (
m(s) + Nr

0

)
,

from which it follows that any minimal member of Δ must belong to the set {m(1), . . . ,m(s)}. There-
fore any maximal member of Σ must belong to the set {a − m(1), . . . ,a − m(s)}. �
3.2. Notation. Let Σ,Δ ⊆ Zr . We shall denote by max(Σ) the set of maximal members of Σ . (If Σ

has no maximal member, then we interpret max(Σ) as the empty set.)
We shall write Σ � Δ to indicate that, for each n ∈ Σ , there exists m ∈ Δ such that n � m;

moreover, we shall describe this situation by the terminology ‘Δ dominates Σ ’. We shall use obvious
variants of this terminology. Observe that, if Σ � Δ and Δ � Σ , then max(Σ) = max(Δ), and Σ �
max(Σ) if and only if Δ � max(Δ).

3.3. Remark. (See Huy Tài Hà [9, §2].) Let φ : Zr → Zm , where m is a positive integer, be a homo-
morphism of Abelian groups. We use the notation Rφ , etcetera, of Definition 1.3. Let a be a Zr -graded
ideal of R . Then ((Hi

a( • ))φ)i∈N0 and ((Hi
aφ ( • φ)))i∈N0 are both negative strongly connected sequences

of covariant functors from ∗CZ
r
(R) to ∗CZ

m
(Rφ); moreover, the 0th members of these two connected

sequences are the same functor, and, whenever, I is a ∗injective Zr -graded R-module and i > 0, we
have Hi

a(I) = 0 when all gradings are forgotten, so that (Hi
a(I))φ = 0 and Hi

aφ (Iφ) = 0. Consequently,
the two above-mentioned connected sequences are isomorphic. Hence, for each Zr -graded R-module
M , there is a Zm-homogeneous isomorphism of Zm-graded Rφ-modules

(
Hi

a(M)
)φ ∼= Hi

aφ

(
Mφ

)
for each i ∈ N0.

3.4. Notation. Throughout this section, we shall be concerned with the situation where

R =
⊕
n∈N

r
0

Rn

is positively graded; we shall only assume that R is standard when this is explicitly stated.
We shall be greatly concerned with the Nr

0-graded ideal

c := c(R) :=
⊕
n∈N

r
0

Rn.
n>0
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We shall accord R+ its usual meaning (see E. Hyry [10, p. 2215]), so that

R+ :=
⊕
n∈N

r
0

n�1

Rn =
⊕
n∈Nr

Rn.

Observe that, when r = 1, we have c = R+ . However, in general this is not the case when r > 1.

3.5. Definition. Suppose that R = ⊕
n∈N

r
0

Rn is positively graded and standard; let M = ⊕
n∈Zr Mn be

a finitely generated Zr -graded R-module, and let j ∈ N0.
Let b be an Nr

0-graded ideal such that dir(b) �= ∅, and let i ∈ dir(b); consider the Abelian group
homomorphism φi : Zr → Z for which φi((n1, . . . ,nr)) = ni for all (n1, . . . ,nr) ∈ Zr , which is just the
ith co-ordinate function.

By Lemma 2.2, since Rei ⊆ √
b, we have

(
Rφi

)
+ =

⊕
n∈N

r
0

ni>0

Rn ⊆ √
b

φi
.

It therefore follows from [15, Corollary 2.5], with the notation of that paper, that the N0-graded Rφi -
module (H j

b
(M))φi ∼= H j

bφi
(Mφi ), if non-zero, has finite end satisfying

end
((

H j
b
(M)

)φi
)
� a∗(Mφi

) = sup
{

end
(

Hk
(Rφi )+

(
Mφi

))
: k ∈ N0

} = sup
{

ak
(Rφi )+

(
Mφi

)
: k ∈ N0

}
.

(Note that, in these circumstances, the invariant a∗(Mφi ) is an integer.) Thus, if n := (n1, . . . ,nr) ∈ Zr

is such that H j
b
(M)n �= 0, then ni � a∗(Mφi ). Thus there exists a ∈ Z# dir(b) such that, for all n :=

(n1, . . . ,nr) ∈ Zr with H j
b
(M)n �= 0, we have φ(b)(n) � a. We define the end of H j

b
(M) by

end
(

H j
b
(M)

) := max
{
φ(b)(n): n ∈ Zr and H j

b
(M)n �= 0

}
.

By Lemma 3.1, if H j
b
(M) �= 0 and dir(b) �= ∅, then this end is a non-empty finite set of points of

Z# dir(b) . Note that the end of H j
b
(M) dominates φ(b)(n) for every n ∈ Zr for which H j

b
(M)n �= 0.

We draw the reader’s attention to the fact that, when r > 1 and Rei �= 0 for all i ∈ {1, . . . , r}, the
ideal R+ = ⊕

n∈N
r
0

n�1

Rn has empty set of directions; consequently, we have not defined the end of

the ith local cohomology module Hi
R+ (M) of M with respect to R+ . Thus we are not, in this pa-

per, making any contribution to the theory of multi-graded Castelnuovo regularity, and, in particular,
we are not proposing an alternative definition of a-invariant or a∗-invariant (see [9, Definitions 3.1.1
and 3.1.2]).

With this definition of the ends of (certain) multi-graded local cohomology modules, we can now
establish multi-graded analogues of some results in [15, §2].

3.6. Theorem. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let M be a finitely generated

Zr -graded R-module, and let

I• : 0 −→ ∗E0(M)
d0−→ ∗E1(M) −→ · · · −→ ∗Ei(M)

di−→ ∗Ei+1(M) −→ · · ·

be the minimal ∗injective resolution of M.
Let b be an Nr

0-graded ideal such that dir(b) �= ∅, and let j ∈ N0 . Then
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max

( j⋃
i=0

end
(

H j
b
(M)

)) = max
{
φ(b)(n): n ∈ Zr and

(
Γb

(∗Ei(M)
))

n �= 0 for some i ∈ {0, . . . , j}}

= max

( j⋃
i=0

⋃
p∈∗ Var(b)

φ(p;b)
(
anchi(p, M)

))
.

Proof. Let i ∈ N0 and set

Δi := {
φ(b)(n): n ∈ Zr and Hi

b(M)n �= 0
}
, Σi := {

φ(b)(n): n ∈ Zr and
(
Γb

(∗Ei(M)
))

n �= 0
}

and

Φi :=
⋃

p∈∗ Var(b)

φ(p;b)
(
anchi(p, M)

)
.

Also, let

θi : ∗Ei(M)
∼=−→

⊕
α∈Λi

∗E(R/pα)(−nα)

be a Zr -homogeneous isomorphism, where pα ∈ ∗ Spec(R) and nα ∈ Zr for all α ∈ Λi .
We shall first show that Δi � Σi � Φi . Now Hi

b
(M) is a homomorphic image, by a Zr -

homogeneous epimorphism, of

Ker
(
Γb

(
di) :Γb

(∗Ei(M)
) −→ Γb

(∗Ei+1(M)
))

.

Therefore, if n ∈ Zr is such that Hi
b
(M)n �= 0, then (Γb(∗Ei(M)))n �= 0. This proves that Δi ⊆ Σi , so

that Δi � Σi .
Furthermore, given n ∈ Zr such that (Γb(∗Ei(M)))n �= 0, we can see from the isomorphism θi that

there must exist α ∈ Λi such that b ⊆ pα and (∗E(R/pα)(−nα))n �= 0. It now follows from Proposi-
tion 2.5(ii) that φ(pα)(n) � φ(pα)(nα), so that

φ(pα;b)
(
φ(pα)(n)

)
� φ(pα;b)

(
φ(pα)(nα)

)
.

Now φ(pα)(nα) is an ith level anchor point of pα for M , and φ(pα;b) ◦ φ(pα) = φ(b). This is enough
to prove that Σi � Φi .

In particular, we have proved that Δ0 � Σ0 � Φ0. We shall prove the desired result by induction
on j. We show next that Φ0 � Δ0, and this, together with the above, will prove the claim in the
case where j = 0. Let m ∈ Φ0. Thus m ∈ Z# dir(b) and there exists α ∈ Λ0 such that pα ∈ ∗ Var(b) and
m = φ(pα;b)(φ(pα)(nα)). Now the image of

⊕
n∈Z

r

φ(pα)(n)�φ(pα)(nα)

(∗E(R/pα)(−nα)
)

n

under θ−1
0 is a non-zero Zr -graded submodule of Γb(∗E0(M)); as the latter is a ∗essential extension

of Γb(M), it follows that there exists n ∈ Zr with φ(pα)(n) � φ(pα)(nα) such that (Γb(M))n �= 0.
Moreover,

φ(b)(n) = φ(pα;b)
(
φ(pα)(n)

)
� φ(pα;b)

(
φ(pα)(nα)

) = m.
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It follows that Φ0 � Δ0, so that max(Δ0) = max(Σ0) = max(Φ0), and the desired result has been
proved when j = 0.

Now suppose that j > 0 and make the obvious inductive assumption. As we have already proved
that Δi � Σi and Σi � Φi for all i = 0, . . . , j, it will be enough, in order to complete the inductive
step, for us to prove that Φ j �

⋃ j
k=0 Δk . So consider α ∈ Λ j such that pα ∈ ∗ Var(b); we shall show

that φ(pα;b)(φ(pα)(nα)) is dominated by a member of Δ0 ∪ Δ1 ∪ · · · ∪ Δ j−1 ∪ Δ j .
Now the image of

⊕
n∈Z

r

φ(pα)(n)�φ(pα)(nα)

(∗E(R/pα)(−nα)
)

n

under θ−1
j is a non-zero Zr -graded submodule of Γb(∗E j(M)); as the latter is a ∗essential extension of

KerΓb(d j), it follows that there exists n ∈ Zr with φ(pα)(n) � φ(pα)(nα) such that (KerΓb(d j))n �= 0.
There is an exact sequence

0 −→ ImΓb

(
d j−1) −→ KerΓb

(
d j) −→ H j

b
(M) −→ 0

of graded Zr -modules and homogeneous homomorphisms. Therefore either H j
b
(M)n �= 0 or

(
ImΓb

(
d j−1))

n �= 0.

In the first case, φ(pα;b)(φ(pα)(n)) = φ(b)(n) ∈ Δ j . In the second case, (Γb(∗E j−1(M)))n �= 0,
whence φ(b)(n) ∈ Σ j−1, so that, by the inductive hypothesis, φ(b)(n) is dominated by an element of
Δ0 ∪ Δ1 ∪ · · · ∪ Δ j−1; thus, in this case also, φ(pα;b)(φ(pα)(nα)) is dominated by an element of⋃ j

k=0 Δk . This is enough to complete the inductive step. �
3.7. Notation. Suppose that R := ⊕

n∈N
r
0

Rn is positively graded and standard, and let M be a finitely

generated Zr -graded R-module. Let Q be a non-empty subset of {1, . . . , r}. Define cQ := ∑
i∈Q Rei R .

Then dir(cQ) ⊇ Q, and cQ is the smallest ideal (up to radical) with set of directions containing Q.
We also define the Q-bound bndQ(M) of M by

bndQ(M) := max

( ⋃
i∈N0

end
(

Hi
cQ (M)

))
.

Observe that bndQ(M) is a finite set of points in Z# dir(cQ) , because Hi
cQ (M) = 0 whenever i exceeds

the arithmetic rank of cQ .
For consistency with our earlier notation in 3.4, we abbreviate c{1,...,r} = ∑

n>0 Rn by c. Note that
bnd{1,...,r}(M) = max

(⋃
i∈N0

end(Hi
c(M))

)
is a finite set of points in Zr .

The following corollaries, which are multi-graded analogues of [15, Corollaries 2.5, 2.6], can now
be deduced immediately from Theorem 3.6.

3.8. Corollary. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let M be a finitely generated

Zr -graded R-module, and let

I• : 0 −→ ∗E0(M)
d0−→ ∗E1(M) −→ · · · −→ ∗Ei(M)

di−→ ∗Ei+1(M) −→ · · ·

be the minimal ∗injective resolution of M.
Let b be an Nr

0-graded ideal of R such that dir(b) �= ∅, and let j ∈ N0 . Then
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max

( j⋃
i=0

end
(

H j
b
(M)

))
� max

( j⋃
i=0

⋃
p∈∗ Var(cdir(b))

φ
(
p; cdir(b)

)(
anchi(p, M)

))

= max
{
φ(b)(n): n ∈ Zr and

(
Γcdir(b)

(∗Ei(M)
))

n �= 0 for an i ∈ {0, . . . , j}}

= max

( j⋃
i=0

end
(

H j
cdir(b) (M)

))
� bnddir(b)(M).

3.9. Corollary. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded and standard. Let M be a finitely generated

Zr -graded R-module.
Let b be an Nr

0-graded ideal of R of arithmetic rank t such that dir(b) �= ∅, and let k ∈ N with k > t. Then

max

(
t⋃

i=0

⋃
p∈∗ Var(b)

φ(p;b)
(
anchi(p, M)

)) = max

(
t⋃

i=0

end
(

Hi
b(M)

)) = max

(
k⋃

i=0

end
(

Hi
b(M)

))

= max

(
k⋃

i=0

⋃
p∈∗ Var(b)

φ(p;b)
(
anchi(p, M)

))
.

Consequently, for a p ∈ ∗ Var(b) and a ∈ anch(p, M), we can conclude that φ(p;b)(a) is dominated by

max

(
t⋃

i=0

⋃
p∈∗ Var(b)

φ(p;b)
(
anchi(p, M)

))
,

a set of points of Z# dir(b) which arises from consideration of just the 0th, 1st, . . . , (t − 1)th and tth terms of
the minimal ∗injective resolution of M.

Our next aim is the establishment of multi-graded analogues of [15, Corollaries 3.1 and 3.2].

3.10. Lemma. Suppose that R := ⊕
n∈N

r
0

Rn is positively graded, and let m be a ∗maximal ideal of R. Then

m0 := m ∩ R0 is a maximal ideal of R0 and m = m0 ⊕ c, where c is as defined in Notation 3.4.

Proof. Recall that

c :=
⊕
n∈N

r
0

n>0

Rn.

Since m0 ∈ Spec(R0), it follows that R ⊃ m0 ⊕ c ⊇ m, so that m = m0 ⊕ c. Furthermore, m0 must be a
maximal ideal of R0 . �
3.11. Corollary. Suppose that R := ⊕

n∈N
r
0

Rn is positively graded and standard. Let M be a finitely generated

Zr -graded R-module; let b be an Nr
0-graded ideal of R such that dir(b) �= ∅. Then

max

( ⋃
i∈N0

end
(

Hi
b(M)

)) = max

( ⋃
m∈∗ Var(b)∩∗ Max(R)

⋃
i∈N0

φ(m;b)end
(

Hi
m(M)

))
.
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Proof. Let m ∈ ∗ Var(b) ∩ ∗ Max(R). By Lemma 3.10, dir(m) = {1, . . . , r}; therefore, by Theorem 3.6,
max(

⋃
i∈N0

end(Hi
m(M))) = max(

⋃
i∈N0

anchi(m, M)). Another use of Theorem 3.6 therefore shows
that

max

( ⋃
i∈N0

φ(m;b)
(
end

(
Hi

m(M)
))) = max

( ⋃
i∈N0

φ(m;b)
(
anchi(m, M)

))

� max

( ⋃
i∈N0

⋃
p∈∗ Var(b)

φ(p;b)
(
anchi(p, M)

))

= max

( ⋃
i∈N0

end
(

Hi
b(M)

))
.

We have thus proved that

max

( ⋃
i∈N0

end
(

Hi
b(M)

))
� max

( ⋃
m∈∗ Var(b)∩∗ Max(R)

⋃
i∈N0

φ(m;b)
(
end

(
Hi

m(M)
)))

.

Now let n ∈ Z# dir(b) be a maximal member of
⋃

i∈N0
end(Hi

b
(M)). By Theorem 3.6, there exist

s ∈ N0 and p ∈ ∗ Var(b) such that n = φ(p;b)(w) for some sth level anchor point w of p for M .
Now use Theorem 2.12 repeatedly, in conjunction with a saturated chain (of length t say) of Nr

0-
graded prime ideals of R with p as its smallest term and a ∗maximal ideal m as its largest term: the
conclusion is that there exists v ∈ anchs+t(m, M) such that φ(m;p)(v) = w. Now

n = φ(p;b)(w) = φ(p;b)
(
φ(m;p)(v)

) = φ(m;b)(v).

But, by Theorem 3.6 again, v is dominated by max(
⋃

i∈N0
end(Hi

m(M))); it follows that

max

( ⋃
i∈N0

end
(

Hi
b(M)

))
� max

( ⋃
m∈∗ Var(b)∩∗ Max(R)

⋃
i∈N0

φ(m;b)
(
end

(
Hi

m(M)
)))

.

The desired conclusion follows. �
3.12. Corollary. Let the situation be as in Corollary 3.11, but assume in addition that (R0,m0) is local and that
b is proper; set m := m0 ⊕ c, where c is as defined in Notation 3.4. Then

max

( ⋃
i∈N0

end
(

Hi
b(M)

)) = max

( ⋃
i∈N0

φ(m;b)
(
end

(
Hi

m(M)
)))

.

In particular,

max

( ⋃
i∈N0

end
(

Hi
c(M)

)) = max

( ⋃
i∈N0

end
(

Hi
m(M)

))
.

4. Some vanishing results for multi-graded components of local cohomology modules

It is well known that, when r = 1, if M is a finitely generated Z-graded R-module, then there
exists t ∈ Z such that Hi

R+ (M)n = 0 for all i ∈ N0 and all n � t; it then follows from [15, Corollary 2.5]

that, if b is any graded ideal of R with b ⊇ R+ , then Hi
b
(M)n = 0 for all i ∈ N0 and all n � t . One of

the aims of this section is to establish a multi-graded analogue of this result.
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4.1. Notation. Throughout this section, we shall be concerned with the situation where

R =
⊕
n∈N

r
0

Rn

is positively graded; we shall only assume that R is standard when this is explicitly stated.
We shall be concerned with the Nr

0-graded ideal R+ of R given (see Notation 3.4) by

R+ :=
⊕
n∈N

r
0

n�1

Rn.

Although it is well known (see Hyry [10, Theorem 1.6]) that, if M is a finitely generated Zr -graded
R-module, then Hi

R+ (M)(n1,...,nr) = 0 for all n1, . . . ,nr � 0, we have not been able to find in the
literature a proof of the corresponding statement with R+ replaced by an Nr

0-graded ideal b that
contains R+ . We present such a proof below, because we think it is of interest in its own right.

4.2. Theorem. Suppose that R = ⊕
n∈N

r
0

Rn is positively graded; let M be a finitely generated Zr -graded

R-module. Let b be an Nr
0-graded ideal of R such that b ⊇ R+ . Then there exists t ∈ Z such that

Hi
b(M)n = 0 for all i ∈ N0 and all n � (t, t, . . . , t).

Proof. We shall prove this by induction on r. In the case where r = 1 the result follows from [15,
Corollary 2.5], as was explained in the introduction to this section.

Now suppose that r > 1 and that the claim has been proved for smaller values of r. We define
three more Nr

0-graded ideals a, c and d of R , as follows. Set

a :=
⊕

n=(n1,...,nr )∈N
r
0

an where an =
{

bn if nr = 0,

Rn if nr > 0;

c :=
⊕

n=(n1,...,nr )∈N
r
0

cn where cn =
{

bn if (n1, . . . ,nr−1) � (1, . . . ,1),

Rn if (n1, . . . ,nr−1) � (1, . . . ,1);

and d := a + c.
Consider a ∩ c: for each n = (n1, . . . ,nr) ∈ Nr

0, the nth component (a ∩ c)n satisfies

(a ∩ c)n = an ∩ cn =
{

bn if nr = 0 or (n1, . . . ,nr−1) � (1, . . . ,1),

Rn if nr > 0 and (n1, . . . ,nr−1) � (1, . . . ,1).

Since b ⊇ R+ , we see that a ∩ c = b.
Let σ : Zr → Zr−1 be the group homomorphism defined by

σ((n1, . . . ,nr)) = (n1 + nr, . . . ,nr−1 + nr) for all (n1, . . . ,nr) ∈ Zr .

Note that, for (n1, . . . ,nr) ∈ Nr
0, we have (n1 + nr, . . . ,nr−1 + nr) � 1 in Zr−1 if and only if nr � 1 or

(n1, . . . ,nr−1) � 1; furthermore, if nr � 1, then an = Rn , and if (n1, . . . ,nr−1) � 1, then cn = Rn . Let
m ∈ Zr−1 with m � 1. Therefore, in the Nr−1

0 -graded ring Rσ , we have

(
dσ

)
m =

⊕
n∈Z

r

σ(n)=m

(an + cn) =
⊕
n∈Z

r

σ(n)=m

Rn = (
Rσ

)
m.
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Thus dσ ⊇ ⊕
m�1(Rσ )m = (Rσ )+ .

It therefore follows from the inductive hypothesis that there exists t̃ ∈ Z such that (H j
dσ (Mσ ))h = 0

for all j ∈ N0 and all h � (t̃, . . . , t̃) in Zr−1. In view of Remark 3.3, this means that ((H j
d(M))σ )h = 0

for all j ∈ N0 and all h � (t̃, . . . , t̃) in Zr−1, so that, for all j ∈ N0,

H j
d(M)(n1,...,nr ) = 0 whenever (n1, . . . ,nr−1,nr) �

( 1
2 t̃, . . . , 1

2 t̃, 1
2 t̃

)
in Zr .

We now give two similar, but simpler, arguments. Let π : Zr → Z be the group homomorphism
given by projection onto the rth co-ordinate. Note that, for n ∈ Nr

0, if π(n) � 1, then an = Rn . There-
fore aπ ⊇ (Rπ )+ . It therefore follows from the case where r = 1 that there exists t ∈ Z such that
(H j

aπ (Mπ ))n = 0 for all j ∈ N0 and all n � t . In view of Remark 3.3, this means that ((H j
a(M))π )n = 0

for all j ∈ N0 and all n � t , that is,

H j
a(M)(n1,...,nr) = 0 whenever j ∈ N0 and nr � t.

Next, let θ : Zr → Zr−1 be the group homomorphism defined by

θ((n1, . . . ,nr)) = (n1, . . . ,nr−1) for all (n1, . . . ,nr) ∈ Zr .

Note that, if n ∈ Zr has θ(n) � 1 in Zr−1, then cn = Rn . Therefore, for m ∈ Zr−1 with m � 1, we have
(cθ )m = (Rθ )m . This means that, in the Nr−1

0 -graded ring Rθ , we have cθ ⊇ ⊕
m�1(Rθ )m = (Rθ )+ .

It therefore follows from the inductive hypothesis that there exists t̂ ∈ Z such that (H j
cθ (Mθ ))h = 0

for all j ∈ N0 and all h � (t̂, . . . , t̂) in Zr−1. In view of Remark 3.3, this means that ((H j
c(M))θ )h = 0

for all j ∈ N0 and all h � (t̂, . . . , t̂) in Zr−1, so that

H j
c(M)(n1,...,nr ) = 0 whenever j ∈ N0 and (n1, . . . ,nr−1) � (t̂, . . . , t̂).

We recall that a ∩ c = b. There is an exact Mayer–Vietoris sequence (in the category ∗CZ
r
(R))

0 −→ H0
d(M) −→ H0

c(M) ⊕ H0
a(M) −→ H0

b(M)

−→ H1
d(M) −→ H1

c(M) ⊕ H1
a(M) −→ H1

b(M)

−→ · · ·
−→ Hi

d(M) −→ Hi
c(M) ⊕ Hi

a(M) −→ Hi
b(M)

−→ Hi+1
d (M) −→ · · · .

It now follows from this Mayer–Vietoris sequence that, if we set t := max{ 1
2 t̃, t̂, t}, then

H j
b
(M)(n1,...,nr) = 0 whenever j ∈ N0 and (n1, . . . ,nr) � (t, . . . , t).

This completes the inductive step, and the proof. �
We can deduce from the above Theorem 4.2 a vanishing result for multi-graded components of

local cohomology modules with respect to a multi-graded ideal that has both directions and non-
directions.

4.3. Corollary. Suppose that R = ⊕
n∈N

r
0

Rn is positively graded and standard; let M be a finitely generated

Zr -graded R-module. Let b be an Nr
0-graded ideal of R that has some directions and some non-directions: to be
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precise, and for ease of notation, suppose that dir(b) = {m+1, . . . , r}, where 1 � m < r. Then there exists t ∈ Z
such that, for all j ∈ N0 , and for all n = (n1, . . . ,nr) ∈ Zr for which (n1, . . . ,nm,nm+1 + · · ·+nr) � (t, . . . , t)

in Zm+1 , we have H j
b
(M)n = 0.

Note. As b has some directions and R is standard, it follows from Lemma 2.2 that R+ ⊆ b, so that
Theorem 4.2 yields a t′ ∈ Z such that Hi

b
(M)n = 0 for all n � (t′, . . . , t′). Thus, when m = r − 1, the

conclusion of Corollary 4.3 already follows from Theorem 4.2.

Proof. Without loss of generality, we can, and do, assume that b = √
b.

Let φ : Zr → Zm+1 be the group homomorphism defined by

φ((n1, . . . ,nr)) = (n1, . . . ,nm,nm+1 + · · · + nr) for all (n1, . . . ,nr) ∈ Zr .

Let n = (n1, . . . ,nr) ∈ Nr
0 be such that φ(n) � 1 in Zm+1. Then nm+1 + · · · + nr � 1, so that one of

nm+1, . . . ,nr is positive. Now Rei ⊆ √
b = b for all i = m + 1, . . . , r, and since n � ei for one of these

is, it follows from Lemma 2.2 that b ⊇ Rn . It therefore follows that, in the Nm+1
0 -graded ring Rφ , we

have bφ ⊇ ⊕
m�1(Rφ)m = (Rφ)+ .

We can now appeal to Theorem 4.2 to deduce that there exists t ∈ Z such that (H j
bφ (Mφ))h = 0

for all j ∈ N0 and all h � (t, . . . , t) in Zm+1. In view of Remark 3.3, this means that ((H j
b
(M))φ)h = 0

for all j ∈ N0 and all h � (t, . . . , t) in Zm+1, so that

H j
b
(M)(n1,...,nr ) = 0 whenever j ∈ N0 and (n1, . . . ,nm,nm+1 + · · · + nr) � (t, . . . , t). �

One of the reasons why we consider that Theorem 4.2 is of interest in its own right concerns the
structure of the (multi-)graded components Hi

b
(M)n (n ∈ Zr) as modules over R0 (the hypotheses

and notation here are as in Theorem 4.2). The example in [4, Exercise 15.1.7] shows that these graded
components need not be finitely generated R0-modules; however, it is always the case that (for a
finitely generated Zr -graded R-module M) the (multi-)graded components Hi

R+ (M)n (n ∈ Zr) of the
ith local cohomology module of M with respect to R+ are finitely generated R0-modules (for all
i ∈ N0), as we now show.

4.4. Theorem. Suppose that R = ⊕
n∈N

r
0

Rn is positively graded; let M be a finitely generated Zr -graded

R-module. Then Hi
R+ (M)n is a finitely generated R0-module, for all i ∈ N0 and all n ∈ Zr .

Note. In the case where r = 1, this result is well known: see [4, Proposition 15.1.5].

Proof. We use induction on i. When i = 0, the claim is immediate from the fact that H0
R+ (M) is

isomorphic to a submodule of M , and so is finitely generated. So suppose that i > 0 and that the
claim has been proved for smaller values of i, for all finitely generated Zr -graded R-modules.

Recall that all the associated prime ideals of M are Nr
0-graded. Set B(M) := AssR(M) \ ∗ Var(R+),

and denote #B(M) by b(M); we shall argue by induction on b(M). If b(M) = 0, then M is R+-torsion,
so that Hi

R+ (M) = 0 and the desired result is clear in this case.

Now suppose that b(M) = 1: let p be the unique member of B(M). Set M := M/ΓR+ (M). We can
use the long exact sequence of local cohomology modules induced by the exact sequence

0 −→ ΓR+ (M) −→ M −→ M −→ 0,

together with the fact that H j
R+ (ΓR+ (M)) = 0 for all j ∈ N, to see that, in order to complete the

proof in this case, it is sufficient for us to prove the result for M . Now M is R+-torsion-free, and
Ass(M) = {p}. (See [4, Exercise 2.1.12].) There exists a Zr -homogeneous element a ∈ R+ \ p; note that
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a is a non-zero-divisor on M . Let the degree of a be v = (v1, . . . , vr), and note that v j > 0 for all

j = 1, . . . , r. By Theorem 4.2, there exists t ∈ Z such that H j
R+ (M)n = 0 for all n � (t, t, . . . , t).

Let n = (n1, . . . ,nr) ∈ Zr . Since v j > 0 for all j = 1, . . . , r, there exists w ∈ N such that n j + v j w � t
for all j = 1, . . . , r. The exact sequence

0 −→ M aw−−→ M(wv) −→ (
M/aw M

)
(wv) −→ 0

induces an exact sequence of R0-modules

Hi−1
R+

(
M/aw M

)
n+wv −→ Hi

R+ (M)n −→ Hi
R+ (M)n+wv,

and since w was chosen to ensure that the rightmost term in this sequence is zero, it follows from
the inductive hypothesis that Hi

R+(M)n is a finitely generated R0-module. This completes the proof
in the case where b(M) = 1.

Now suppose that b(M) = b > 1 and that it has been proved that all the graded components
of Hi

R+ (L) are finitely generated R0-modules for all choices of finitely generated Zr -graded R-module
L with b(L) < b. Let p,q ∈ B(M) with p �= q: suppose, for the sake of argument, that p �⊆ q. Consider
the p-torsion submodule Γp(M) of M . By [4, Exercise 2.1.12], Ass(Γp(M)) and Ass(M/Γp(M)) are
disjoint and Ass M = Ass(Γp(M)) ∪ Ass(M/Γp(M)). Now p ∈ Ass(Γp(M)) and q /∈ Ass(Γp(M)); hence
b(Γp(M)) < b and b(M/Γp(M)) < b. Therefore, by the inductive hypothesis, both Hi

R+ (Γp(M))n and

Hi
R+ (M/Γp(M))n are finitely generated R0-modules, for all n ∈ Zr . We can now use the long exact

sequence of local cohomology modules (with respect to R+) induced from the exact sequence

0 → Γp(M) → M → M/Γp(M) → 0

to deduce that Hi
R+ (M)n is a finitely generated R0-module for all n ∈ Zr . The result follows. �

5. A multi-graded analogue of Marley’s work on finitely graded local cohomology modules

As was mentioned in the Introduction, the purpose of this section is to obtain some multi-graded
analogues of results about finitely graded local cohomology modules that were proved, in the case
where r = 1, by Marley in [14]. We shall present a multi-graded analogue of one of Marley’s results
and some extensions of that analogue.

5.1. Notation. Throughout this section, we shall be concerned with the situation where R = ⊕
n∈N

r
0

Rn

is positively graded and standard, and we shall let M = ⊕
n∈Zr Mn be a Zr -graded R-module. Also, b

will always denote an Nr
0-graded ideal of R .

For n = (n1, . . . ,nr) ∈ Nr
0, we shall denote {i ∈ {1, . . . , r}: ni �= 0} by P (n).

5.2. Definition. An r-tuple n ∈ Zr is called a supporting degree of M precisely when Mn �= 0; we denote
the set of all supporting degrees of M by S(M).

Note that Theorem 4.2 imposes substantial restrictions on S(Hi
b
(M)) when (i ∈ N0 and) b ⊇ R+ .

The example below is included as motivation for the introduction of some notation.

5.3. Example. Let k be an algebraically closed field and let

A = k ⊕ A1 ⊕ · · · ⊕ Am ⊕ · · · and B = k ⊕ B1 ⊕ · · · ⊕ Bn ⊕ · · ·

be two normal Noetherian standard N0-graded k-algebra domains with w := dim A > 1 and v :=
dim B > 1. We consider the N2

0-graded k-algebra
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Fig. 1. S(Hi
R+ (R)) for i = 2,3,4,5 respectively.

R := A ⊗k B =
⊕

(m,n)∈N
2
0

Am ⊗k Bn.

Clearly R = k[R(1,0), R(0,1)] is positively graded and standard, and, as a finitely generated k-algebra,
is Noetherian. By [17, Chapter III, §15, Theorem 40, Corollary 1], R is again an integral domain. Ob-
serve that R+ = R(1,1)R = A+ ⊗k B+ . As A and B are normal and their dimensions exceed 1, we
have Hi

A+ (A) = Hi
B+ (B) = 0 for i = 0,1. The Künneth relations for tensor products (see [7] or [13,

Theorem 10.1]) yield, for each i ∈ N0, an isomorphism of Z2-graded R modules

Hi
R+ (R) ∼= (

A ⊗k Hi
B+ (B)

) ⊕ (
Hi

A+ (A) ⊗k B
) ⊕

( ⊕
j,l∈N\{1}
j+l=i+1

(
H j

A+ (A) ⊗k Hl
B+ (B)

))
.

As S(A) = S(B) = N0, it follows that, for each i ∈ N0,

S
(

Hi
R+ (R)

) = (
N0 × S

(
Hi

B+ (B)
)) ∪ (

S
(

Hi
A+ (A)

) × N0
) ∪

( ⋃
j,l∈N\{1}
j+l=i+1

(
S

(
H j

A+ (A)
) × S

(
Hl

B+ (B)
)))

.

Observe, in particular, that Hi
R+ (R) = 0 for i = 0,1 and for all i � w + v .

Appropriate choices for A and B yield many examples for R . We shall just concentrate on a class of
examples obtained by this procedure when A and B are chosen in a particular way, which we now de-
scribe. We can use [2, Proposition (2.13)], in conjunction with the Serre–Grothendieck correspondence
(see [4, 20.4.4]), to choose the algebra A (as above) so that, for a prescribed set W ⊆ {2, . . . , w − 1},
we have

S
(

Hi
A+ (A)

) =
⎧⎨
⎩

∅ for all i ∈ N0 \ (
W ∪ {w}),

{0} for all i ∈ W ,

{k ∈ Z: k < 0} for i = w.

Similarly, for a prescribed set V ⊆ {2, . . . , v − 1}, we choose B (as above) so that

S
(

Hi
B+ (B)

) =
⎧⎨
⎩

∅ for all i ∈ N0 \ (
V ∪ {v}),

{0} for all i ∈ V ,

{k ∈ Z: k < 0} for i = v.

With such a choice of A for w = 5 and W = {2}, and such a choice of B for v = 5 and V = {3}, the
sets of supporting degrees S(Hi

R+ (R)) for i = 2,3,4,5 are as in Fig. 1.

In view of Theorem 4.2, the supporting set S(H5
R+ (R)) seems unremarkable. The local cohomology

module H4
R+ (R) is finitely graded. Although neither H3

R+ (R) nor H2
R+ (R) is finitely graded, both have

sets of supporting degrees that are quite restricted.
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Fig. 2. The set X((−2,1), (0,2)) in Z
2.

We now return to the general situation described in Notation 5.1. In the case where r = 1, one
way of recording that a local cohomology module Hi

b
(M) is finitely graded is to state that there exist

s, t ∈ Z with s < t such that

S
(

Hi
b(M)

) = {
n ∈ Z: Hi

b(M)n �= 0
} ⊆ {n ∈ Z: s � n < t}.

One might expect the natural generalization to our multi-graded situation to involve conditions such
as

S
(

Hi
b(M)

) = {
n ∈ Zr: Hi

b(M)n �= 0
} ⊆ {

n = (n1, . . . ,nr) ∈ Zr: si � ni < ti for all i = 1, . . . , r
}
,

where s = (s1, . . . , sr), t = (t1, . . . , tr) ∈ Zr satisfy s � t. However, in the light of evidence like that
provided by Example 5.3 above, and other examples, we introduce the following.

5.4. Notation. Let s = (s1, . . . , sr), t = (t1, . . . , tr) ∈ Zr with s � t. We set

X(s, t) := {
n = (n1, . . . ,nr) ∈ Zr: there exists i ∈ {1, . . . , r} such that si � ni < ti

}
.

5.5. Example. Fig. 2 illustrates, in the case where r = 2, the set X((−2,1), (0,2)).

5.6. Remark. Let s, s′, s′′, t, t′, t′′ ∈ Zr with s � t, s′ � t′ and s′′ � t′′ . Let m ∈ Nr
0 \ {0}.

(i) Clearly (s + Nr
0) \ (t + Nr

0) ⊆ X(s, t).
(ii) Suppose that P (t − s) ⊆ P (m). Let w ∈ Zr be such that P (w) ⊆ {1, . . . , r} \ P (m). Then

X(s + w, t + w) = X(s, t) = {
n ∈ Zr: there exists i ∈ P (m) such that si � ni < ti

}
.

(iii) Clearly X(s′, t′) ∪ X(s′′, t′′) ⊆ X((min{s′
1, s′′

1}, . . . ,min{s′
r, s′′

r }), (max{t′
1, t′′

1}, . . . ,max{t′
r, t′′

r })).
(iv) Assume that P (t′ − s′) ⊆ P (m) and P (t′′ − s′′) ⊆ P (m). For each i ∈ {1, . . . , r}, set

s̃i := min
{

s′
i, s′′

i

}
and t̃i :=

{
max{t′

i, t′′
i } if i ∈ P (m),

s̃i if i ∈ {1, . . . , r} \ P (m).

Set s̃ := (s̃1, . . . , s̃r) and t̃ := (t̃1, . . . , t̃r). Then

s̃ � t̃, P (t̃ − s̃) ⊆ P (m) and X(s′, t′) ∪ X(s′′, t′′) ⊆ X(s̃, t̃).

The next lemma provides a small hint about the importance of the sets X(s, t) of Notation 5.4 for
our work.



M.P. Brodmann, R.Y. Sharp / Journal of Algebra 321 (2009) 450–482 475
5.7. Lemma. Let m ∈ Nr
0 \ {0}. Assume that M is finitely generated and that Rm ⊆ √

(0 :R M). Then there exist
s, t ∈ Zr such that s � t, P (t − s) ⊆ P (m) and S(M) ⊆ (s + Nr

0) \ (t + Nr
0), so that S(M) ⊆ X(s, t) in view

of Remark 5.6(i).

Proof. As M is finitely generated, there exist s,w ∈ Zr such that s � w and M = ∑
s�n�w RMn . In

particular, S(M) ⊆ s + Nr
0.

Moreover, there exists u ∈ N such that (Rm)u ⊆ (0 :R M); since R is standard, (Rm)u = Rum; hence
RumMn = 0 for all n ∈ Zr .

Let t = s+∑
i∈P (m)(wi − si +umi)ei . Now, let h = (h1, . . . ,hr) ∈ t+Nr

0. Our proof will be complete
once we have shown that Mh = 0. For each i ∈ P (m), we have hi � ti = wi + umi . Moreover,

Mh =
∑
n∈T

Rh−n Mn, where T = {
n ∈ Zr: s � n � w, n � h

}
.

Let n = (n1, . . . ,nr) ∈ T . If i ∈ P (m), then ni + umi � wi + umi � hi ; if i ∈ {1, . . . , r} \ P (m), then
ni + umi = ni � hi . Consequently n + um � h. Therefore um � h − n for all n ∈ T , and hence

Mh =
∑
n∈T

Rh−nMn =
∑
n∈T

Rh−n−um RumMn = 0. �

5.8. Definition. Let Q ⊆ {1, . . . , r}. By a Q-domain in Zr we mean a set of the form

X(s, t) with s, t ∈ Zr, s � t and P (t − s) ⊆ Q.

5.9. Remarks. The following statements are immediate from the definition.

(i) A ∅-domain in Zr is empty.
(ii) If Q ⊆ Q′ ⊆ {1, . . . , r} and if X is a Q-domain in Zr , then X is a Q′-domain in Zr .

(iii) If X is a Q-domain in Zr and w ∈ Zr , then w + X := {w + n: n ∈ X} is a Q-domain in Zr .
(iv) If s, t ∈ Zr with s � t and P (t− s) ⊆ Q, then (s+Nr

0)\ (t+Nr
0) is contained in a Q-domain in Zr ,

by Remark 5.6(i).
(v) If X is a Q-domain in Zr and w ∈ Zr is such that P (w) ∩ Q = ∅, then X = w + X, by Re-

mark 5.6(ii).
(vi) By Remark 5.6(iv), the union of finitely many Q-domains in Zr is contained in a Q-domain in Zr .

5.10. Lemma. Let m,k ∈ Nr
0 \ {0}, and let T be a Zr -graded R-module such that RmT = 0. Let y ∈ Rk , and

let K denote the kernel of the homogeneous R-homomorphism T → T (k) given by multiplication by y.

(i) If P (m) ⊆ P (k), then there exists v ∈ N0 such that S(T ) ⊆ ⋃v
j=0(S(K ) − jk).

(ii) If P (m) �⊆ P (k), if multiplication by y provides an isomorphism T
∼=−→ T (k), and if T considered as an

R y-module is finitely generated, then S(T ) is contained in a (P (m) \ P (k))-domain in Zr .

Proof. Write m = (m1, . . . ,mr) and k = (k1, . . . ,kr). Let u ∈ N be such that mi � uki for all i ∈ P (k).
Set h := ∑

i∈{1,...,r}\P (k) miei . Then, if i ∈ P (k), we have (uk + h)i = uki � mi , whereas, if
i ∈ {1, . . . , r} \ P (k), we have (uk + h)i = uki + mi � mi . Therefore m � uk + h.

Now, let z ∈ Rh . Then, because R is standard, yu z ∈ Ruk+h = Ruk+h−m Rm . As RmT = 0, it follows
that yu zT = 0. Therefore yu RhT = 0.

(i) Assume that P (m) ⊆ P (k). Then P (h) = P (m) \ P (k) = ∅, so that h = 0. Hence yu T =
yu R0T = 0.

Now let K := ⋃u−1
j=0 (S(K ) − jk), and let n ∈ Zr \ K. If we show that Tn = 0, then we shall have

proved part (i). Now n + jk /∈ S(K ) for all j ∈ {0, . . . , u − 1}, and so the R0-homomorphism yu : Tn →
Tn+uk , which is the composition of the R0-homomorphisms y : Tn+ jk → Tn+( j+1)k for j = 0, . . . , u−1,
is injective. But yu Tn = 0, and so Tn = 0.
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(ii) Now assume that P (m) �⊆ P (k), that multiplication by y provides an isomorphism T
∼=−→ T (k),

and that T considered as an R y-module is finitely generated. As yu RhT = 0, it follows that RhT = 0.
As T is finitely generated over R y , there are finitely many r-tuples g(1), . . . ,g(q) ∈ Zr such that

T = ∑q
j=1 R y Tg( j) . Now, for i ∈ {1, . . . , r}, set

si :=
{

0 if i /∈ P (h),

min{g( j)
i : j = 1, . . . ,q} if i ∈ P (h),

ti :=
{

0 if i /∈ P (h),

max{g( j)
i : j = 1, . . . ,q} + hi if i ∈ P (h),

and put s = (s1, . . . , sr), t = (t1, . . . , tr). Then s � t and P (t − s) = P (h) = P (m) \ P (k). Let
n ∈ Zr \ X(s, t). If we show that Tn = 0, then we shall have proved part (ii). Let α ∈ Tn . There ex-
ist integers v1, . . . , vq such that α ∈ ∑q

j=1 yv j Rn−v j k−g( j) Tg( j) .
Note that, for each i ∈ P (h) = P (m) \ P (k), we have either ni < si or ti � ni (because n /∈ X(s, t)).
Assume first that there is some i ∈ P (h) with ni < si . As i /∈ P (k), it follows that

(
n − v jk − g( j))

i = ni − v jki − g( j)
i = ni − g( j)

i < si − g( j)
i � 0,

for all j ∈ {1, . . . ,q}, so that Rn−v j k−g( j) = 0 and α = 0.
Therefore, we can, and do, assume that ti � ni for all i ∈ P (h). In this case, for each i ∈ P (h) and

each j ∈ {1, . . . ,q}, we have

(
n − v jk − g( j))

i = ni − v jki − g( j)
i = ni − g( j)

i � ti − g( j)
i � hi .

Therefore, for each j ∈ {1, . . . ,q}, either n− v jk−g( j) � h, or n− v jk−g( j) has a negative component
and Rn−v j k−g( j) = 0. This means that

α ∈
q∑

j=1

yv j Rn−v j k−g( j) Tg( j) =
q∑

j=1
n−v j k−g( j)�0

yv j Rn−v j k−g( j)−h RhTg( j) = 0.

It follows that Tn = 0, as required. �
5.11. Lemma. Let m ∈ Nr

0 \ {0} and k ∈ Nr
0 . Assume that M is finitely generated and that Rm ⊆ √

(0 :R M).
Let y ∈ Rk . Then there exists a (P (m) \ P (k))-domain X in Zr such that S(H1

yR(M)) ⊆ X.

Proof. Assume first that k = 0. Then P (k) = ∅ and, by the multi-graded analogue of [4, Lem-
ma 13.1.10], there are R0-isomorphisms H1

yR(M)n ∼= H1
yR0

(Mn) for all n ∈ Zr . Therefore S(H1
yR(M)) ⊆

S(M), and the claim follows in this case from Lemma 5.7.
We now deal with the remaining case, where k �= 0. Since (by the multi-graded analogue of [4,

12.4.2]) there is a Zr -homogeneous epimorphism of Zr -graded R-modules D yR(M) → H1
yR(M), it

suffices for us to show that S(D yR(M)) is contained in a (P (m) \ P (k))-domain in Zr .
Recall that there is a homogeneous isomorphism D yR(M) ∼= M y , and so the multiplication

map y : D yR(M) → D yR(M)(k) is an isomorphism, and D yR(M) is finitely generated as an R y-
module. Since Rm ⊆ √

(0 :R M), there exists u ∈ N such that RumM = 0, so that RumM y = 0 and
Rum D yR(M) = 0. Observe that P (um) = P (m). We now apply Lemma 5.10, with D yR(M) as the
module T and um in the rôle of m: if P (um) = P (m) ⊆ P (k), then part (i) of Lemma 5.10 yields that
S(D yR(M)) = ∅, while if P (um) = P (m) �⊆ P (k), then it follows from part (ii) of Lemma 5.10 that
S(D yR(M)) is contained in a (P (m) \ P (k))-domain in Zr . �
5.12. Lemma. Let m ∈ Nr

0 \ {0}. Assume that M is finitely generated and that Rm ⊆ √
(0 :R M). Then there

exists a P (m)-domain X in Zr such that S(Hi
b
(M)) ⊆ X for all i ∈ N0 .



M.P. Brodmann, R.Y. Sharp / Journal of Algebra 321 (2009) 450–482 477
Proof. Since Hi
b
(M) = 0 for all i > ara(b), it follows from Remark 5.9(vi) that it is sufficient for us to

show that, for each i ∈ N0, there exists a P (m)-domain Xi in Zr such that S(Hi
b
(M)) ⊆ Xi . For i = 0,

this is immediate from Lemma 5.7.
Let y1, . . . , ys be Nr

0-homogeneous elements of R that generate b. We argue by induction on s.
When s = 1 and i = 1, the desired result follows from Lemma 5.11; as we have already dealt, in the
preceding paragraph, with the case where i = 0, and as Hi

y1 R(M) = 0 for all i > 1, we have established
the desired result in all cases when s = 1.

So suppose now that s > 1 and that the desired result has been proved in all cases where b can
be generated by fewer than s Nr

0-homogeneous elements. Again, we have already dealt with the case
where i = 0. For i ∈ N, there is an exact Mayer–Vietoris sequence (in the category ∗CZ

r
(R))

· · · −→ Hi−1
(y1 ys,...,ys−1 ys)R(M) −→ Hi

b(M) −→ Hi
(y1,...,ys−1)R(M) ⊕ Hi

ys R(M) −→ · · · .

By the inductive hypothesis, there exist P (m)-domains X′
i,X′′

i ,X′′′
i in Zr such that

S
(

Hi−1
(y1 ys,...,ys−1 ys)R(M)

) ⊆ X′
i, S

(
Hi

(y1,...,ys−1)R(M)
) ⊆ X′′

i and S
(

Hi
ys R(M)

) ⊆ X′′′
i .

Therefore S(Hi
b
(M)) ⊆ X′

i ∪ X′′
i ∪ X′′′

i , and so the desired result follows from Remark 5.9(vi). �
5.13. Lemma. Let m ∈ Nr

0 \ {0}. Let p1, . . . ,pn be prime ideals of R such that Rm �⊆ pi for each i = 1, . . . ,n.
Then there exists u ∈ N such that Rum �⊆ ⋃n

i=1 pi .

Proof. Consider the (Noetherian) N0-graded ring R0[Rm] = ⊕
j∈N0

R jm (in which R jm is the compo-
nent of degree j, for all j ∈ N0). Apply the ordinary Homogeneous Prime Avoidance Lemma (see [4,
Lemma 15.1.2]) to the graded ideal Rm R0[Rm] = ⊕

j∈N
R jm and the prime ideals pi ∩ R0[Rm] (i =

1, . . . ,n). �
5.14. Lemma. Let m ∈ Nr

0 \ {0} and let X be a P (m)-domain in Zr . Then there exists u ∈ N such that, for each
w ∈ Zr , there is some j ∈ {0, . . . ,#P (m)} with w + jum /∈ X.

Proof. There exist s, t ∈ Zr with s � t and P (t − s) ⊆ P (m) for which X = X(s, t). Choose u ∈ N such
that um � t − s.

For an arbitrary w ∈ Zr , set I(w) = {i ∈ {1, . . . , r}: si � wi < ti}, and observe that I(w) ⊆ P (m),
and that w ∈ X if and only if I(w) �= ∅. Note also that, for i ∈ I(w) and j ∈ N, we have

(w + jum)i = wi + jumi � si + umi � si + ti − si = ti,

so that i /∈ I(w + jum). So, for each i ∈ P (m), if there is a j′ ∈ N0 with i ∈ I(w + j′um), then
i /∈ I(w + jum) for all j > j′ . This means that, for each i ∈ P (m), there is at most one j′ ∈ N0 with
i ∈ I(w + j′um). By the pigeon-hole principle, it is therefore possible to choose a j ∈ {0, . . . ,#P (m)}
for which I(w + jum) ∩ P (m) = ∅, and then w + jum /∈ X. �

The concept introduced in the next definition can be regarded as a multi-graded analogue of one
defined by Marley in [14, §2].

5.15. Definition. Let Q ⊆ {1, . . . , r}, and let b be an Nr
0-graded ideal of R . We define the Q-finiteness

dimension gQ
b

(M) of M with respect to b by

gQ
b

(M) := sup
{
k ∈ N0: for all i < k, there exists a Q-domain Xi in Zr with S

(
Hi

b(M)
) ⊆ Xi

}
,

if this supremum exists, and ∞ otherwise.
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5.16. Example. For R as in Example 5.3, we have

g∅
R+ (R) = 2, g{1}

R+(R) = 3, g{2}
R+(R) = 2, g{1,2}

R+ (R) = 5.

5.17. Remarks. The first three of the statements below are immediate from Remarks 5.9(i)–(iii) re-
spectively.

(i) In the case where Q = ∅, we have g∅
b
(M) = inf{i ∈ N0: Hi

b
(M) �= 0} (with the usual convention

that the infimum of the empty set of integers is interpreted as ∞).
(ii) If Q ⊆ Q′ ⊆ {1, . . . , r}, then gQ

b
(M) � gQ′

b
(M).

(iii) For n ∈ Zr , we have gQ
b

(M(n)) = gQ
b

(M).
(iv) Let (Qλ)λ∈Λ be a family of subsets of {1, . . . , r}. Set

Ω :=
{ ⋂

λ∈Λ

Xλ: Xλ is a Qλ-domain in Zr for all λ ∈ Λ

}
.

It is straightforward to check that

inf
{

gQλ

b
(M): λ ∈ Λ

} = sup
{
k ∈ N0: for all i < k, there exists Yi ∈ Ω with S

(
Hi

b(M)
) ⊆ Yi

}
.

(v) Since a subset of Zr is finite if and only if it is contained in a set of the form
⋂r

j=1 X j , where X j
is a { j}-domain in Zr for all j ∈ {1, . . . , r}, it therefore follows from part (iv) that

min
{

g{1}
b

(M), . . . , g{r}
b

(M)
} = sup

{
k ∈ N0: S

(
Hi

b(M)
)

is finite for all i < k
}
.

Thus we can say that min{g{1}
b

(M), . . . , g{r}
b

(M)} identifies the smallest integer i (if there be any)
for which Hi

b
(M) is not finitely graded.

5.18. Proposition. Let m ∈ Nr
0 \ {0}, and let f ∈ N. Assume that M is finitely generated. The following state-

ments are equivalent:

(i) Rm ⊆
√

(0 :R Hi
b
(M)) for all integers i < f ;

(ii) for each integer i < f , there is a P (m)-domain Xi in Zr such that S(Hi
b
(M)) ⊆ Xi , that is f �

gP (m)
b

(M);
(iii) there is a P (m)-domain X in Zr such that S(Hi

b
(M)) ⊆ X for all integers i < f .

Proof. (ii) ⇔ (iii) This is immediate from Remark 5.9(vi).
(iii) ⇒ (i) Assume that statement (iii) holds. By Lemma 5.14, there exist u, v := #P (m) ∈ N such

that, for each n ∈ Zr , there exists j(n) ∈ {0, . . . , v} with n + j(n)um /∈ X. So, for each n ∈ Zr and each
integer i < f , we have Hi

b
(M)n+ j(n)um = 0 and

R vum Hi
b(M)n = R vum− j(n)um R j(n)um Hi

b(M)n ⊆ R vum− j(n)um Hi
b(M)n+ j(n)um = 0.

Therefore R vum Hi
b
(M) = 0 for all integers i < f , and hence

(Rm)vu ⊆ R vum ⊆ (
0 :R Hi

b(M)
)

for all i < f .

(i) ⇒ (ii) Assume that statement (i) holds. We argue by induction on f . When f = 1, the desired
conclusion is immediate from Lemma 5.7 (applied to H0

b
(M)).
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So assume now that f > 1 and that statement (ii) has been proved for smaller values of f .
This inductive hypothesis implies that there exist P (m)-domains X0, . . . ,X f −2 in Zr such that
S(Hi

b
(M)) ⊆ Xi for all i ∈ {0, . . . , f − 2}. It thus remains to find a P (m)-domain X f −1 in Zr such

that S(H f −1
b

(M)) ⊆ X f −1.
Set M := M/ΓRm R(M), and observe that Rm ⊆ √

(0 :R ΓRm R(M)). It therefore follows from

Lemma 5.12 that there is a P (m)-domain X′ in Zr such that S(H f −1
b

(ΓRm R(M))) ⊆ X′ . In view of
the exact sequence of Zr -graded R-modules

H f −1
b

(
ΓRm R(M)

) −→ H f −1
b

(M) −→ H f −1
b

(M)

and Remark 5.9(vi), it is now enough for us to show that S(H f −1
b

(M)) is contained in a P (m)-domain
in Zr .

As Rm ⊆
√

(0 :R H j
b
(ΓRm R(M))) for all j ∈ N0, the exact sequence

Hi
b(M) −→ Hi

b(M) −→ Hi+1
b

(
ΓRm R(M)

)

shows that Rm ⊆
√

(0 :R Hi
b
(M)) for all integers i < f . Set AssR(M) =: {p1, . . . ,pk}. As Rm R does

not consist entirely of zero-divisors on M , we have Rm �⊆ pi for each i = 1, . . . ,k. Therefore, by
Lemma 5.13, there exists u′ ∈ N such that Ru′m �⊆ ⋃k

i=1 pi , and hence there exists y′ ∈ Ru′m which
is not a zero-divisor on M . We can now take a sufficiently high power y of y′ to find u ∈ N and
y ∈ Rum such that Rum H f −1

b
(M) = 0 and y is a non-zero-divisor on M , so that there is a short exact

sequence of Zr -graded R-modules

0 −→ M(−um)
y−−→ M −→ M/yM −→ 0.

It now follows from the long exact sequence of local cohomology modules induced from the above

short exact sequence that Rm ⊆
√

(0 :R Hi
b
(M/yM)) for all integers i < f − 1. Therefore, by the in-

ductive hypothesis, there is a P (m)-domain X′′ in Zr such that S(H f −2
b

(M/yM)) ⊆ X′′ . Let K be

the kernel of the map H f −1
b

(M) → H f −1
b

(M)(um) provided by multiplication by y. The long exact
sequence of local cohomology modules induced from the last-displayed short exact sequence now
shows that S(K ) ⊆ X′′ − um.

We now apply Lemma 5.10(i) to H f −1
b

(M), with um playing the rôles of both m and k: the con-
clusion is that there exists v ∈ N0 such that

S
(

H f −1
b

(M)
) ⊆

v⋃
j=0

(
S(K ) − jum

) ⊆
v⋃

j=0

(X′′ − um − jum).

We can now use Remarks 5.9(iii),(vi) to deduce the existence of a P (m)-domain X f −1 in Zr such

that S(H f −1
b

(M)) ⊆ X f −1. With this, the proof is complete. �
We now connect the concept of Q-finiteness dimension of M with respect to b, introduced in

Definition 5.17, with the concept of a-finiteness dimension of M relative to b (where a is a second
ideal of R), studied by Faltings in [5]. (See also [4, Chapter 9].)

5.19. Reminder. Assume that M is finitely generated, and let a,d be ideals of R (not necessarily
graded).
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The a-finiteness dimension f a
d (M) of M relative to d is defined by

f a
d (M) = inf

{
i ∈ N0: a �⊆

√(
0 : Hi

d(M)
)}

and the a-minimum d-adjusted depth λa
d(M) of M is defined by

λa
d(M) := inf

{
depth Mp + ht(d + p)/p: p ∈ Spec(R) \ Var(a)

}
.

(Here, Var(a) denotes the variety {p ∈ Spec(R): p ⊇ a} of a.) It is always the case that f a
d (M) � λa

d(M);
Faltings’ (Extended) Annihilator Theorem [5] states that if R admits a dualizing complex or is a ho-
momorphic image of a regular ring, then f a

d (M) = λa
d(M). (See [3, Corollary 3.8] for an account of the

extended version of Faltings’ Annihilator Theorem.)

5.20. Remark. Let the situation be as in Reminder 5.19, let K ⊆ R , and let (K j) j∈ J be a family of
subsets of R .

(i) It is easy to deduce from the definition that f K R
d (M) = inf{ f aR

d (M): a ∈ K }.

(ii) We can then deduce from part (i) that f
(
⋃

j∈ J K j)R
d (M) = inf

{
f

K j R
d (M): j ∈ J

}
.

(iii) Similarly, it is easy to deduce from the definition that λK R
d (M) = inf{λaR

d (M): a ∈ K }.

(iv) We can then deduce from part (iii) that λ
(
⋃

j∈ J K j)R
d (M) = inf

{
λ

K j R
d (M): j ∈ J

}
.

5.21. Theorem. Assume that M is finitely generated, and let ∅ �= T ⊆ Nr
0 .

(i) We have

sup
{
k ∈ N0: for all i < k and all m ∈ T , there exists a P (m)-domain X(m)

i in Zr

such that S
(

Hi
b(M)

) ⊆ X(m)
i

}
= inf

{
gP (m)
b

(M): m ∈ T
}

= f
∑

m∈T Rm R
b

(M) � λ

∑
m∈T Rm R

b
(M).

(ii) If R admits a dualizing complex or is a homomorphic image of a regular ring, then we can replace the
inequality in part (i) by equality.

Proof. Apply Remark 5.17(iv) to the family (P (m))m∈T of subsets of {1, . . . , r} to conclude that

sup
{
k ∈ N0: for all i < k and all m ∈ T , there exists a P (m)-domain X(m)

i in Zr

such that S
(

Hi
b(M)

) ⊆ X(m)
i

}
= inf

{
gP (m)
b

(M): m ∈ T
}
.

By Proposition 5.18, we have gP (m)
b

(M) = f Rm R
b

(M) for all m ∈ T . Therefore, on use of Remark 5.20(ii),
we deduce that

inf
{

gP (m)
b

(M): m ∈ T
} = inf

{
f Rm R
b

(M): m ∈ T
} = f

∑
m∈T Rm R

b
(M).

We can now use Faltings’ (Extended) Annihilator Theorem [5] (see Reminder 5.19) to complete the
proof of part (i) and to obtain the statement in part (ii). �
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5.22. Corollary. Assume that M is finitely generated.

(i) For each non-empty set T ⊆ 1 + Nr
0 , we have

f
∑

m∈T Rm R
b

(M) = g{1,...,r}
b

(M).

(ii) For each set T ⊆ Nr
0 \ {0} such that Nei ∩ T �= ∅ for all i ∈ {1, . . . , r}, we have

f
∑

m∈T Rm R
b

(M) = sup
{
k ∈ N0: S

(
Hi

b(M)
)

is finite for all i < k
}

= sup
{
k ∈ N0: Hi

b(M) is finitely graded for all i < k
}
.

(iii) If M �= bM, then f R
b

(M) = g∅
b
(M) = gradeM b.

Note. If, in the case where r = 1, we take T = N, so that
∑

m∈T Rm R = R+ , then the statement in
part (ii) becomes

f R+
b

(M) = sup
{
k ∈ N0: Hi

b(M) is finitely graded for all i < k
}
,

a result proved by Marley in [14, Proposition 2.3].

Proof. (i) By Theorem 5.21(i), we have f
∑

m∈T Rm R
b

(M) = inf{gP (m)
b

(M): m ∈ T }. But P (m) =
{1, . . . , r} for all m ∈ 1 + Nr

0.
(ii) By Theorem 5.21(i), we have

f
∑

m∈T Rm R
b

(M) = inf
{

gP (m)
b

(M): m ∈ T
}
.

By the hypothesis, for each i ∈ {1, . . . , r}, there exists mi ∈ T with P (mi) = {i}. It therefore follows
from Remark 5.17(ii) that inf{gP (m)

b
(M): m ∈ T } = min{g{1}

b
(M), . . . , g{r}

b
(M)}. However, we noted in

Remark 5.17(v) that

min
{

g{1}
b

(M), . . . , g{r}
b

(M)
} = sup

{
k ∈ N0: S

(
Hi

b(M)
)

is finite for all i < k
}
.

(iii) Since R = R0 R , we can deduce from Theorem 5.21(i) and Remark 5.17(i) that

f R
b (M) = f R0 R

b
(M) = gP (0)

b
(M) = g∅

b
(M) = sup

{
k ∈ N0: Hi

b(M) = 0 for all i < k
} = gradeM b. �
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