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1. Introduction

Suppose G is a reductive linear algebraic group defined over an algebraically closed field k with
g = Lie(G). The nullcone of g is the algebraic variety consisting of the nilpotent elements of g and is
denoted by AN (g). The adjoint action of G on g (denoted here by g - x for g € G and x € g) induces
an action of G on A (g), and the G-orbits in A (g) are called nilpotent orbits. Reductive groups always
have only finitely many nilpotent orbits, regardless of the value of char(k). Nilpotent orbits have many
applications in representation theory and have been extensively studied (cf. [9] and [5]).

1.1. Background

When char(k) =0 or char(k) > 0, the Jacobson-Morozov Theorem says that for each e € N (g),
there exist a semisimple element h € g and a nilpotent element f € g such that (h, e, f) forms a basis
for a copy of sl(k) in g. Such triples are called standard triples and are crucial to the classification
of the orbit set AV'(g)/G given by Bala and Carter in [1,2]. Given a nilpotent orbit O with e € O, the
Jacobson-Morozov Theorem gives a standard triple (h, e, f) as noted above. From this, we can con-
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struct a parabolic subalgebra q of g defined by q = EB:‘)O gi, where g; = {x € g: [h,x] =ix}. Bala and
Carter define the notions of distinguished elements and parabolic subalgebras. These will be analogous
to the featured elements and parabolic subalgebras defined in Section 3. The Bala-Carter classifica-
tion shows that there is a one-to-one correspondence from the set A/(g)/G to the set of G-conjugacy
classes of pairs (¢, q), where t is a Levi subalgebra and q is a distinguished parabolic subalgebra of «,
constructed as above using a standard triple.

In this paper we consider groups defined over fields of good or very good characteristics, defined
as follows. Suppose G is quasisimple. A characteristic of 0 is considered good and very good for G.
The following primes, which depend on the Cartan type of G, are also good: all primes are good if
G is of type A,, all primes greater than 2 are good for types By, C,;, and D,, and all primes greater
than 3 are good for the exceptional types, except for type Eg, for which primes greater than 5 are
good. A good prime p is very good for G if G is not of type A, or if G is of type A, and p does not
divide n + 1. For an arbitrary reductive group G, which is an almost direct product of quasisimple
groups G; and a torus T, char(k) is good (resp., very good) for G if it is good (resp., very good) for
each G;j.

In [15,16], Pommerening extended the Bala-Carter classification to reductive groups defined over
fields of good characteristic. However, instead of using standard triples, which are not always available
when char(k) is good, Pommerening used objects called associated cocharacters, which are defined in
Section 2. He was able to show that the classification of A'(g)/G given by Bala and Carter remains
the same when char(k) is good.

Now suppose G is equipped with an involution 6, i.e., an automorphism of order 2. Let K = {g €
G: 6(g) = g}, and for the sake of convenience let 6 also denote the differential of 6, which is an
involution of g. Let ¢ be the +1-eigenspace of 6 in g, and let p be the —1-eigenspace. The adjoint
action of G on g induces an action of K on p. The subgroup K also acts on the nullcone N (p) of p,
which is defined to be the variety N (p) = A (g) Np. The space p is called an infinitesimal symmetric
space, terminology inspired by the role that —1-eigenspaces of Cartan involutions play in the theory
of Riemannian symmetric spaces.

Kostant and Rallis gave an extensive study of the action of K on p in [11] when G is a complex
reductive group. Recently, Levy extended many of Kostant and Rallis’ results to fields of good charac-
teristic (see [12]). In particular, he shows that each irreducible component of A/(p) has a dense open
orbit and gives a new proof of the number of such components. He also gives results related to k[p],
the ring of ¢-invariant polynomials on p.

The following proposition (which is also true for a larger class of reductive groups, including G =
GL, (k) when char(k) # 2) will be important in Section 3.

Proposition 1. When G is a semisimple group defined over an algebraically closed field with a characteristic
which is very good for G and not 2, there are only finitely many K -orbits in N (p).

This statement follows immediately from a result of Richardson [18, Proposition 7.4] which says
that there are only finitely many K-orbits in I/(P) (U (P) being the set of unipotent elements in P)
and a result of Bardsley and Richardson [3, Proposition 10.1] which says ¢/(P) and N (p) are isomor-
phic as K-varieties. This isomorphism follows from Springer’s result in [19] that Z/(G) and N (g) are
isomorphic as G-varieties when char(k) is good for G.

If char(k) = 0 or char(k) > 0, then for any e € A/(p) one can use the Jacobson-Morozov Theorem
to obtain a standard triple (h, e, f) in g with the additional properties that h € ¢ and f € p. A standard
triple with these properties is called a normal triple. Normal triples were used by Noél in [14] to give
a classification of the orbit set N (p)/K when char(k) = 0.

When char(k) = 0, normal triples play a part in the study of AV (p)/K analogous to the part played
by standard triples in the study of A/(g)/G. A goal of this paper is to construct cocharacters that
will replace normal triples when char(k) is very good and not 2, similar to the way in which Pom-
merening’s associated cocharacters replaced standard triples. These cocharacters are constructed in
Section 2, and in Section 3, we will then use them to obtain a classification of N'(p)/K that will hold
whenever char(k) is very good and not 2.
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1.2. Assumptions and conventions

Throughout, we will make the following assumptions. The group G is a semisimple linear algebraic
group defined over an algebraically closed field k whose characteristic is very good for G and not 2.
Actually, the results contained herein hold even when G = GL, (k) and char(k) # 2. Note that in this
case when char(k) divides n, G is isomorphic to a Levi subgroup of SL;+1(k), for which char(k) is very
good.

Any references to topological concepts refer to the Zariski topology on G and g = Lie(G). The group
of units of k will be denoted k*, and the identity component of G will be denoted by G°. The derived
subgroup of an algebraic group H will be denoted DH.

There is a bijection from the set of nilpotent G-orbits in g to the set of nilpotent G/Z(G)-orbits in
Lie(G/Z(G)) (see [9, Proposition 2.7a]). Since G/Z(G) is of adjoint type, we may thus assume that G
also has this property when studying nilpotent orbits.

The assumptions on G imply that Lie(Cs(x)) = g* for all x € g, where C¢(x) (resp., g*) denotes the
centralizer of x in G (resp., g) relative to the adjoint action. Thus, the tangent space Tx(G - x) at x to
the orbit G - x is equal to [g, x] (see [9, Section 2.2]).

Since involutions are semisimple automorphisms when char(k) # 2, G contains a 6-stable Borel
subgroup B which in turn contains a 0-stable torus T (see [20, Theorem 7.5]). The Lie algebra  of T
is a O-stable Cartan subalgebra of g.

2. Areplacement for normal triples

In this section, we first state some basic facts about characters and cocharacters. Then we develop
a special cocharacter that will serve as a replacement for normal triples when we classify NV (p)/K in
the next section.

2.1. Characters and cocharacters

Let X*(T) denote the group of characters of T, which consists of all algebraic group morphisms
from T to k*, and let X,(T) denote the group of cocharacters of T, which consists of all algebraic
group morphisms from k* to T. There is a perfect pairing X*(T) x X,(T) — Z, (&, A) — (&, 1), defined
by a(A(t)) =% for all t € k*,

Since T is 6-stable, the subgroup () of Aut(G) acts on X*(T) with an action defined by 6 =« 06
for « € X*(T), and on X,(T) with an action defined by 6A =6 o A for A € X,(T). Let @ denote the
root system of G defined by T, &% the positive roots defined by B, and A the simple roots in &.
Since B and T are #-stable, ®, ®*, and A are 6-stable subsets of X*(T). The following lemma will
be useful in Section 3.

Lemma 2. The pairing (, ) between X*(T) and X, (T) is 0-equivariant.

Proof. For all t € k*, @ € X*(T), and A € X, (T),

£ = 9o (0A()) = (0(0 (A (D)) = (A (D)) = £1*H.
Thus, (fa, OA) = (¢, A). O

Cocharacters can be used to construct certain subalgebras of g. Given a cocharacter X € X, (G), we
get a grading

g=Por.d)

i€Z
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of g, where g(1,0) =h ® Dy 3y—0 8 and g(x, 1) =P 4 ;)= g for i #0. Since gy ={x€g: g-x=
a(gxforall ge T}, g, i)={xeg: A(t) - x= tix for all t € k*}. Define

a=q) =EPa@.i.

i>0

Then q is a parabolic subalgebra of g. If we let [=[(1) = g(&,0) and u=u(x) = ;. 9(%, i), then
[ u is a Levi decomposition of q. Furthermore, L = L(A) = Cg()) is a Levi subgroup of G such that
Lie(L) =, where Cc(A\) ={g € G: gr(t)g~ ! = A(t) for all t € k*}.

For g€ L(A), x € g(A, i), and t € k*,

MO - (g0 =g- (%) =t'(g- %),
which shows that g(i, 1) is L(1)-stable for all i.
2.2. Associated cocharacters of K

In [15,16], Pommerening extended the Bala-Carter classification of the orbit set N'(g)/G to groups
defined over fields of good characteristic. He found that the classification remained the same as
the one given by Bala and Carter for k = C. One obstacle in extending the Bala-Carter classifica-
tion was the unavailability of the Jacobson-Morozov Theorem, which only holds when char(k) =0 or
char(k) > 0. Given e € N'(g), Jantzen in [9] formulated Pommerening’s solution to this problem using
a cocharacter A:k* — G which satisfies the following properties relative to e:

o A(t)-e=t2e for all t € k*.
e A(k*) is contained in the derived subgroup of a Levi subgroup R of G such that Lie(R) is a
minimal Levi subalgebra containing e.

Such a cocharacter is defined to be associated with e. Associated cocharacters provide a partial substi-
tute for standard triples, which were utilized by Bala and Carter in their classification.

Pommerening’s proof was computational in nature and ultimately relied on case-checking by root
system type. In [17], Premet gave a fairly short, conceptual proof of Pommerening’s theorem using the
theory of optimal cocharacters, as introduced by Kempf and Rousseau (see [17] for a short exposition of
Kempf-Rousseau theory). The relationship between the optimal cocharacters used by Premet and the
associated cocharacters used by Pommerening was stated precisely by McNinch in [13, Theorem 21].
He defines a cocharacter A € X, (G) to be primitive if there is no ¢ € X,(G) such that A =n¢ for some
integer n > 2. He then showed that if a cocharacter X is associated with e € N'(g), then A is optimal
for e. Conversely, if A is primitive and optimal for e, then either A or 2 is associated with e.

Let e be an element in N(g), and let N(e) = {g € G: g-e € ke}, a closed subgroup of G. Any
cocharacter of G associated with e is in X,(N(e)). The following lemma is the main result needed to
construct our desired cocharacter.

Lemma 3. (See [13, Lemma 25].) Let e € N (g), and let S be any maximal torus of N(e). Then there is a unique
cocharacter A in X, (S) associated with e.

Suppose e € p. Then 6(e) = —e, which means 6 leaves N(e) invariant. Hence by [20], N(e) has a
maximal torus which is #-stable.

Theorem 4. Let e € N'(p), and let S be a §-stable maximal torus of N(e). There is a unique cocharacter X in
X4 (S N K) associated with e.
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Proof. By Lemma 3, e has a unique cocharacter A in X,(S) associated with it. Let R be the Levi
subgroup which by the definition of an associated cocharacter contains the image of A. Because S is
0-stable, 6 o A € X, (S). Since 0 is a semisimple automorphism, 6 is actually conjugation by a semisim-
ple element s in a linear algebraic group G containing G. Thus (8 o A)(t) -e = (sA(t)s~ 1) -e = tZe for all
t e k*. Also (0 o1)(k*) C D(sRs™1), and Lie(sRs~1) =s-Lie(R) is a minimal Levi subalgebra containing
0(e) = —e, and hence e itself. Thus 6 o A is associated with e. The uniqueness of A now implies that
6 o A = A, which means A is also a cocharacter of K. O

Given e € N (p), Theorem 4 gives an associated cocharacter A € X,(S N K). Then there exists an
element g € K such that gag~! € X, (T NK), and grg~! is associated with g -e. Replacing e by g -e
does not affect the orbit K - e, so we may assume that A € X, (T N K). We will denote the unique
cocharacter in X, (T N K) associated with e € N'(p) by A.. The cocharacter Ae, given that its image is
in K, can be seen as an analogue to a normal triple, just as Pommerening’s associated cocharacters
are analogous to standard triples.

Since @ is a semisimple automorphism, it has the important property that Lie(G?) = g?, where G’
(resp., g?) is the subgroup of 6-fixed points in G (resp., g). This fact will be needed in the proof of
the following lemma and elsewhere below.

Lemma 5. Let e € N (p), and let . = . Let L = Cg()), and let [ = Lie(L).

Lie(LNK)=INE
(Crnk (e))° is reductive.
Lie(Crnk (e)) = (INE)°.

(
(
(
(d) Lie(Ck(e)) = €.

RaZ2NE A s 2Na)

a
b
c
d

Proof. (a) Let g € L. Then for all t € k*, 0(g)A(H)0(g)~! =0(gr(t)g~1) since A(t) € K. But this equals
O(A(t)) since g € L, and this in turn is just A(t). Thus 6(g) € L, and we have that 6 restricts to a
semisimple automorphism of L. Thus Lie(L N K) = Lie(L?) = Lie(L)? =1 =(N.

(b) Since e € N(g), the centralizer Cy(e) is reductive (see [9, Proposition 5.11]). It thus follows
from [21] that (Cp(e)?)° = (Crnk (e))° is also reductive.

(c) By [9, Proposition 5.10], Lie(Cr(e)) = I¢. Using this fact, and the fact that 6 restricts to a
semisimple automorphism of C;(e), an argument similar to the one in part (a) gives the desired
result.

(d) Since @ is semisimple, Lie(Ck (e)) = Lie(Cg(e))? = (g¢)? =¥¢. O

3. A classification of N (p)/K

In this section, we give a classification of the K-orbits in A (p) which is similar in spirit to the
Bala-Carter-Pommerening classification of N'(g)/G which holds whenever char(k) is good and to
Noél’s classification of A/ (p)/K which holds when char(k) = 0. In [10], Kawanaka gave a classification
of M(p)/K using objects similar to weighted Dynkin diagrams which holds when char(k) is good, but
the one given here is significantly different. Also, a classification of A (p)/K in good characteristic is
given in [7] under the assumption that G is a classical group. The present classification makes no
such assumption.

3.1. Featured elements and featured pairs

Let S be a torus in G. We call C¢(S) a special Levi subgroup if S C K. The Lie algebra of a special
Levi subgroup will be called a special Levi subalgebra. By definition, a special Levi subalgebra will have
the form g° for some subset s of ¢ consisting of semisimple elements. We call an element e € N '(p)
featured in g if the only special Levi subalgebra of g containing e is g itself. Featured elements are
analogous to Noél's noticed elements and Bala and Carter’s distinguished elements.

Suppose e € N (p) is featured and g € K. If v is a special Levi subalgebra containing g - e, then
g~ 1.t is a special Levi subalgebra containing e. Since e is featured, this implies g~! -t =g, and hence
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that v = g. This shows that if e is featured, then so is every element in the orbit K - e. We call orbits
consisting of featured nilpotent elements featured nilpotent orbits.

The first step is to classify the featured K-orbits in N (p). The fact that every nilpotent element is
featured in a minimal special Levi subalgebra containing it will allow us to then extend the classifi-
cation to all orbits. The following characterizations of featured elements will be quite useful.

Proposition 6. Let e be an element in N (p), and let ). = ). The following are equivalent:

(a) eis featuredin g.
(b) €¢ contains no nonzero semisimple elements.
(c) dim(g(A,0) NE) =dim(g(x, 2) Np).

Proof. ((a) < (b)) By definition, if e is featured then all semisimple elements of ¢, and hence of £¢,
are contained in the center of g. However, g is semisimple (by our assumptions on G), so its center is
trivial. (Recall that since char(k) is very good, g has no factor isomorphic to sl,(k) where char(k) di-
vides n, which would have a nonzero center.) Therefore £ contains no nonzero semisimple elements.
Conversely, suppose ¥¢ contains no nonzero semisimple elements, and let v = g° be a special Levi
subalgebra containing e. Then s C £, so s = {0}. Thus, t =g, and hence e is featured.

((b) < (c)) Let q=q(A). Recall that q =16 u, where [ =[(A) = g(A,0) and u=u()) as defined in
Section 2. Also recall the definition of the subgroup L = L(}). By [9, Lemma 5.7, Proposition 5.8] the
map (ade):[— g(i,2) is onto since e € g(A, 2). Since e is also in p, (ade): [Nt — g(A,2) Np is onto
as well, which means dim([{ N ¢) = dim(g(i,2) Np) if and only if (ade) is one-to-one. The kernel of
(ade) is (INE)°€. Since (IN©)° is the Lie algebra of the reductive group (Crng(e))° (by Lemma 5(b)
and (c)), it will be nonzero if and only if it contains nonzero semisimple elements. Thus, we have so
far that dim(I N €) = dim(g(x, 2) Np) if and only if (IN€)¢ contains no nonzero semisimple elements.
Now since A is associated to e, by [9, Eq. (6), p. 55] g = q¢, which implies ¢ = (I ® u)¢ N & Thus
(IN€)°¢ contains no nonzero semisimple elements if and only if & contains no nonzero semisimple
elements. O

Remark 7. To see that Proposition 6 also holds when G = GL,(k) and char(k) # 2, note that up to
conjugacy by an inner automorphism, the only involutions on G are g (g7}, g~ J-1(gT) ™ Jm
(where n=2m and |, = ( 0 I’”)). and g~ Ju.58Ja.p (Where (a, B) is a partition of n and Ju g =

—In 0
('g _?ﬂ)) (see [8]). From this, one can compute the possible subalgebras ¢ of g and conclude that they

all have a trivial intersection with the center of g, which consists of the scalar matrices in g. Thus,
we can still conclude that € contains no nonzero semisimple elements.

In the next subsection, we will associate each featured orbit to an object called a featured pair,
which is defined as follows. Let q be an arbitrary parabolic subalgebra of g with Levi decomposition
[ @ u. Let L be the connected subgroup of G such that Lie(L) = [. Then q is defined to be a featured
parabolic subalgebra if q is 6-stable and K-conjugate to a standard parabolic subalgebra.

Lemma 8. Suppose q is a standard parabolic subalgebra with Levi decomposition q = [ & u. Let u! = u and
w = [u, u'""] fori > 2, and let Ay be the subset of A which defines q. Then u has the following properties:

(a) Fori>1,ul is the sum of its one-dimensional root spaces.
(b) Aroot & of wis aroot of u' if and only if o is the sum of i roots of .
(c) Aroot of ul which is not a root of uit1 is the sum of i roots in A \ Ag plus various roots in Ag.

Proof. Parts (a) and (b) follow easily from the fact that [gq, gg] C ga+p for all @ and 8 in @.

(c) Let o be a root of u' which is not a root of ui*1, By part (b), & is the sum of i roots in u. The
fact that « is not a root of ui*! implies that none of the roots of u which are summands of o can be
roots of u?. By [6, Proposition 8.27(iii)], a root of u which is not a root of u? is the sum of exactly one
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root in A \ Ag and various roots in Ag. Thus « is the sum of exactly i roots in A\ Ag and various
roots in Ag. O

Suppose q = [ @ u is featured and satisfies the hypotheses of Lemma 8. (We lose no generality
in assuming that q is standard since we will only be working up to K-conjugacy in what follows.)
Denote by ¢(2) the direct sum of all the root spaces g, with the property that « is the sum of 2 roots
in A and various roots in Ag. We define a featured pair (q,m) to be a pair consisting of a featured
parabolic subalgebra q and the closure m of an (L N K)°-orbit in q(2) Np with the property that
dimm = dim([ N #).

The set m is an irreducible subset of p since (L N K)° is irreducible. Because, by Proposition 1,
there are only finitely many K-orbits in N (p), there must be a unique K-orbit O m) such that
O(g,m) Nm is open and dense in m. Notice that Og.q,g.m) = O(q,m) for all g € K. This shows that
there is a well-defined map from the set of K-conjugacy classes of featured pairs to the set A/ (p)/K.
If e € O,my N'm, we call e a Richardson element associated with (q, m). The following proposition
gives an example of a featured pair together with a Richardson element.

Proposition 9. Let e be a featured element in N (p), and let . = . Let q = q(A) and m = g(), 2) N p. Then
(q, m) is a featured pair, and e is a Richardson element associated with (q, m).

Proof. As above, we have q=q(A), L =L(A), [=1[(1), and u=u(}). First, notice that q is the standard
parabolic subalgebra of g defined by the subset {« € A: («, A) =0}, hence q is trivially K-conjugate
to a standard parabolic. Since A € X, (K), for t € k* and x € g(A, i), A(t)-6(x) = (A (t) - x) = t'6(x). Thus
g(), 1) is O-stable for all i, which proves that q is 6-stable. Therefore, q is a featured parabolic.

By the proof of Proposition 6, [[ N ¢, e] = g(A,2) Np, which implies that (L N K)° - e is dense in
g(x, 2) Np =m. Further, we have by Lemma 8 that ul = ®<a,k>>i9“' so g(x,2) =q(2). Thus, m is the
closure of an (L N K)°-orbit in q(2) N p. Finally, since e is featured,

dimlN¢=dimg(x,0) Ne=dimg(x,2)Np=dimm.

Thus, (g, m) = (q(A), g(x,2) Np) is a featured pair.
The orbit O m) associated to this pair is the one containing (LN K)°-e. Since e € O¢q,m) N, € is
a Richardson element for the featured pair (q,m). O

3.2. (lassification

The first step in obtaining a classification of N'(p)/K is to show that there is a one-to-one corre-
spondence between the set of K-conjugacy classes of featured pairs and the set of featured K-orbits
in A(p). We can then obtain the classification of all of N'(p)/K by replacing g with special Levi
subalgebras.

Given an arbitrary featured pair (q, m), we first develop a way to explicitly describe q and m in
terms of a cocharacter t € X, (K). Since we are dealing with K-conjugacy classes of featured pairs,
there is no loss of generality in assuming that q is a standard parabolic in what follows.

Proposition 10. Given a featured pair (q, m) with q = [ & u a standard parabolic subalgebra, there exists a
cocharacter T € X, (K) such that q = q(t) and m C g(t, 2) N p. Furthermore, the subgroup L(t) = C¢(7) is
a 0-stable Levi subgroup such that Lie(L(t)) = [.

Proof. Suppose g is defined by the subset Ag of A and has Levi decomposition [ & u.
Define a function f: A — Z by

0, oeAp,
1, otherwise

f(a)={
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and extend f linearly to Z®. Since G is of adjoint type, Z® = X*(T). Thus, f has the property that
f(X*(T)) C Z. The perfect pairing X*(T) x X,(T) — Z therefore produces a cocharacter T € X,(T)
such that f(a) = (c, T) for all @ € @ U {0}.

Because ¢ is 6-stable, so is [. Since h and A are 0-stable, it can be shown that 6(gy) = g for all
o € A. Now

heo P gu=1=01=b& P g,

ae(Ag) ae(Ao)

which implies that Ag is 6-stable. This means that f(«x) = f(6«) for all @ € A. This, together with
the fact stated in Lemma 2 that the pairing (,) is 6-equivariant, gives

7) = f() = f(6) = (b, T) = (a, OT)

for all o € A. Thus 6t = 7, and hence, T € X, (K).
The fact that q is defined by Ag means

1=b® P wd® P

a&(Ao) ae®@H\(Ag)*

which says that q = q(7). Also, by Lemma 8 and the definition of the function f, q(2) C g(t,2). We
thus have m C g(t, 2) Np. (It will be shown later that we actually have m = g(t,2) Np.)

Finally, L(t) is 6-stable since 7(k*) C K. The equality Lie(L(t)) = [ follows from the fact that
[=g(7,0). O

Lemma 11. Let (q, m) be a featured pair, and let e be a Richardson element associated with (q, m). Also, let
L=L(t)and [=[(t). Then

(a) ¥ cqnet and
(b) Lie(Crnik(e)) = (NS

Proof. (a) Let u=u(t), and let Q be the connected subgroup of G such that Lie(Q) = q. Suppose D
is the unique nilpotent G-orbit in g which meets u in a dense set. (We know D exists because there
are finitely many G-orbits in g.) Since O = O(q ) is the unique nilpotent K-orbit in p meeting m in
a dense set, O C D. Thus, e € D Nu. Then by a theorem of Richardson (see [4, Corollary 5.2.4], which
only requires that char(k) be good), C;(e)° C Q. Now, it is easy to show that Cg(e)° is 6-stable, and
Q is O-stable since q is. Thus, taking the Lie algebras of the 6-fixed point subgroups of both sides, we
get Lie(Cg(e)°)? c Lie(Q?), which simplifies to ¥ c g N ¢.
(b) An argument identical to the one used to prove Lemma 5(c) proves this result. 0O

Proposition 12. If (q, m) is a featured pair, then Oq w) is a featured orbit.

Proof. Let L = L(7) and [ =[(T). Suppose e is a Richardson element associated with (g, m). It suffices
to show that e is featured. Since Lie(Cing (e)) = (INE)E, Te((LNK)°-e) =[INE,e] (see [9, Section 2.2]).
Then dim[[N ¢, e] =dim(L N K)° - e =dimm =dim [N ¢. This implies (I N €)¢ = {0}. Since ¢ = (g N )€
by Lemma 11(a), € = (uN £)¢, which means £ contains no nonzero semisimple elements. Thus e is
featured. O

This proposition gives a well-defined map ¢ from the set of K-conjugacy classes of featured pairs
to the set of featured K-orbits in A/ (p). It remains to show that ¢ is a bijection. The following re-
statement of Proposition 9 shows that ¢ is onto.
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Proposition 13. Let e € N (p) be featured, and let A = A.. Then

(a) (q(r), g(A, 2) Np) is a featured pair, and
(b) e € Oqn).a(.2)np)-

We now show that ¢ is one-to-one.

Proposition 14. Let e € N (p) be a Richardson element associated to a featured pair (q, m), and let . = Ae.
Then (q, m) is K-conjugate to (q(1), g(x, 2) N p).

Proof. By definition, we may assume that q =[ @ u is a standard parabolic subalgebra defined by
Ao C A. Then by Proposition 10, there exists a cocharacter T such that q=q(r) and [ = (7). We will
show that g(z,i) = g(4,i) for all i € Z, which will imply that q = q(2).

Choose hy € b such that a(hy) = (o, ) for all @ € A. Because Ag and A\ Ag are 0-stable, h; is
actually in h N €. Notice that [hq,e] =« (h1)e = (o, T)e = 2e since e e m C g(t, 2).

Since A € X, (K), the subsets {& € A: (o,1) =i} of A are #-stable for each i € Z. This allows
us to choose hy € h Nt such that a(hy) = (o, 1) for all o € A. Since e € g(A, 2), [ha,e] = 2e. Thus
[h1 — hy, e] = 0, which means hi — hy is a semisimple element of £¢. But e is featured, so hi = h;.
Therefore, (¢, 7) = (o, A) for all @ € @, and hence, g(7,i) = g(%,i) for all i € Z. Therefore q = q(%).

It remains to show that m = g(, 2) N p. We know that m C g(t,2) Np by Proposition 10. Since
(q,m) is a featured pair,

dimm=dimIN¢g
=dimg(z,0)N¢t
=dimg(x,0) Nt
=dimg(x,2)Np

=dimg(t,2)Np.
Then m =g(7,2) Np =g(A,2) Np since g(tr,2) Np is irreducible and m is closed. O
We have proved the following:

Theorem 15. There is a one-to-one correspondence between featured K-orbits in N'(p) and K-conjugacy
classes of featured pairs. The K-orbit corresponding to a featured pair (q, m) is the unique one which inter-
sects m in a dense subset of m.

Before stating the general classification, we need a couple of lemmas.

Lemma 16. All minimal special Levi subalgebras of g containing a fixed element e € N'(p) are Ck(e)-
conjugate.

Proof. Let v; and t, be special Levi subalgebras containing e. Then there exist tori S; and S, in K
such that v; = Lie(C¢(S1)) and tp = Lie(C¢(S3)). Since v1 and ty both contain e, S1 and S, both fix e
and are thus contained in Ck(e). Further, t; and v will be minimal precisely when S1 and S, are
maximal in Cg(e). Being maximal tori in Cg(e), S; and S, are Cg(e)-conjugate, and thus t; and t;
are Ck(e)-conjugate. O

Lemma 17. Let v be a minimal special Levi subalgebra of g containing a nilpotent element e. Thene € v/ = [, t],
and e is a featured element of v'.
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Proof. Since all elements of the center of v are semisimple, we have e € . The fact that e is featured
in ¢/ follows from Proposition 6. O

We can now give the classification of K-orbits in A/(p). Since X, is an associated cocharacter for
each e e N (p), it has the property that A.(k*) C DL, where L = Cc(M) for a maximal torus M in
Cc(e) (see [13]). Let M = M N K, a maximal torus in Ck(e), and let R = C¢ (M), a Levi subgroup of G.

Since Lie(Ck (e)) = € and Lie(R) = gHe™) ¢ is featured in Lie(R) by definition, and 2. (k*) C DR.

Theorem 18. There is a one-to-one correspondence between K-orbits in N'(p) and K-conjugacy classes of
triples (v, q,/, m), where v is a special Levi subalgebra of g and (q, m) is a featured pair of the semisimple
partt’ of v. The K-orbit corresponding to a given triple (x, q./, m) contains the (R N K)-orbit which intersects m
in a dense subset of m.

Proof. We again have a well-defined map ¢ from K-conjugacy classes of triples (¢, g/, m) to nilpo-
tent K-orbits on p which sends the triple (v, g/, m) to the K-orbit containing the (R N K)-orbit which
intersects m in a dense subset of m.

Let e € N (p). We have that the image of A = A, is in DR. This allows us to replace G by DR in the
preceding arguments. By Lemma 17, e is a featured element in the semisimple subalgebra t. Thus by
Proposition 13, there is a featured pair (q., m) of v such that e is a Richardson element associated
with (g, m). This shows that i is onto.

We say that an element e € NV'(p) is a Richardson element associated with a triple (t, gy, m) if
v is a minimal special Levi subalgebra containing e and e is a Richardson element associated with
the pair (qv, m). Suppose e € N'(p) is a Richardson element associated with the triples (tl,qt/],nn)
and (t, A, my). By Lemma 16, t; and t; are conjugate by an element in Ck(e), and thus by Propo-
sition 14, (qt/l,ml) and (qr/z,mz) are conjugate by an element in DR; N K (or equivalently, by an
element in DRy N K). Thus, the triples (tq, qta,rm) and (t, qt/z,mz) are in the same K-conjugacy
class. This shows that ¢ is also one-to-one. O

Example 19. This example is adapted from [14]. Let G = SL3(k), and let # be the involution on G
defined by 6(g) = (g~1)T. Then K = SO3(k), g = sl3(k), and the induced involution ¢ on g is defined
by 6(x) = —xT for all x € g. Then p is the subspace of symmetric matrices in g. By [7], we know that
the nilpotent K-orbits in p correspond to partitions of 3. Thus, there are two nonzero orbits, which
correspond to the partitions (2,1) and (3).

Now, turning back to our classification scheme, let i = «/—1 in k. Noél showed that up to K-
conjugacy, the only #-stable parabolic subalgebra of g is

qg=kH{ ®kHy ®kE1 ®kE, ® kE3,

0 i 0 1 0 O
H1:<—i 0 O), H2:<O 1 O),
0 0O 00 -2

L/i 10 00 i 00 —i
E1:—(1 —i o), 52:(0 0 1), E3:<0 0 —1).
2\o0 0 o i 10 i 1 0

We have that q is K-conjugate to the set of upper triangular matrices in sl3(k), which of course is a
standard parabolic. A Levi decomposition for ¢ is [®u, where [ =kH{ ®kH, and u=kE{ ®kE» ®KEs3.
Let m; = kE; and let my = kE,. Both of these contain dense (L N K)°-orbits since [Nt =kH; and
[H1,E1]=2E1 and [H1, E2] = E;. Also,

where

dim(IN¢) =1=dimm; =dimmy.
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Thus, (q,m) is a featured pair corresponding to the orbit in A'(p)/K containing E1 (which corre-
sponds to the partition (2, 1)), and (g, my) is a featured pair corresponding to the orbit containing E»
(which corresponds to the partition (3)). Since E; and E, are both featured nilpotent elements, the
nonzero nilpotent K-orbits in N (p) are completely classified by the K-conjugacy classes of the triples
(g, 9, m1) and (g, q, m2).

The classification of N'(p)/K given here is inspired by the one given by Noél in [14] under the
assumption that k = C. In this case, the well-known Kostant-Sekiguchi bijection states that the K-
orbits in AV (p) correspond bijectively to the Gr-orbits in AV(gr), where Gg is a real Lie group with
complexified maximal compact subgroup K and gr = Lie(Gr). Thus, Noél’s classification simultane-
ously classifies A (gr)/Gr. The classification given here only requires that char(k) be very good for
the group G and not 2; in particular, it holds when char(k) = 0. We thus get a streamlined classi-
fication of NV'(p)/K when char(k) = 0, and hence, by the Kostant-Sekiguchi correspondence, a new
classification of NV (gr)/Gr.

Acknowledgments

The author would like to thank his thesis adviser Terrell Hodge, George McNinch, and the referees
for their helpful and insightful suggestions.

References

[1] P. Bala, R. Carter, Classes of unipotent elements in simple algebraic groups I, Math. Proc. Cambridge Philos. Soc. 79 (1976)
401-425.
[2] P. Bala, R. Carter, Classes of unipotent elements in simple algebraic groups II, Math. Proc. Cambridge Philos. Soc. 80 (1976)
1-18.
[3] P. Bardsley, R. Richardson, Etale slices for algebraic transformation groups in characteristic p, Proc. London Math. Soc. 51
(1985) 295-317.
[4] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley & Sons, London, 1985.
[5] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhduser, Boston, 1997.
[6] D. Collingwood, W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.
[7] J. Fox, T. Hodge, B. Parshall, Nilpotent orbits associated to the classical groups, preprint.
[8] R. Goodman, N. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge,
1998.
[9] ]J.C. Jantzen, Nilpotent orbits in representation theory, in: Lie Theory: Lie Algebras and Representations, Birkhduser, Boston,
2004, pp. 1-211.
[10] N. Kawanaka, Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra, J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 34 (1987) 573-597.
[11] B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. ]. Math. 93 (1971) 753-809.
[12] P. Levy, Involutions of reductive Lie algebras in positive characteristic, Adv. Math. 210 (2007) 505-559.
[13] G. McNinch, Nilpotent orbits over ground fields of good characteristic, Math. Ann. 329 (2004) 49-85.
[14] A. Noél, Nilpotent orbits and theta-stable parabolic subalgebras, Represent. Theory 2 (1998) 1-32 (electronic).
[15] K. Pommerening, Uber die unipotenten Klassen reduktiver Gruppen, ]. Algebra 49 (1977) 525-536.
[16] K. Pommerening, Uber die unipotenten Klassen reduktiver Gruppen II, ]. Algebra 65 (1980) 373-398.
[17] A. Premet, Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, ]. Algebra 260 (2003) 338-366.
[18] R. Richardson, Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math. 66 (1982)
287-312.
[19] T. Springer, The unipotent variety of a semisimple group, in: Algebraic Geometry, Oxford University Press, London, 1969,
pp. 373-391.
[20] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
[21] T. Vust, Opération de groupes réductifs dans un type de cones presque homogénes, Bull. Soc. Math. France 102 (1974)
317-334.



	A classification of nilpotent orbits in infinitesimal symmetric spaces
	Introduction
	Background
	Assumptions and conventions

	A replacement for normal triples
	Characters and cocharacters
	Associated cocharacters of K

	A classification of N(p)/K
	Featured elements and featured pairs
	Classification

	Acknowledgments
	References


