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1. Introduction and preliminaries

Tambara functors on a finite group G were firstly defined by Tambara [13] under the name ‘TNR-
functors’, to treat the multiplicative transfers of Green functors. The terminology Tambara functor
firstly appeared in Brun’s paper, when he used it to describe the structure of Witt–Burnside rings [2].
It consists of a triplet T = (T ∗, T+, T•), where the additive part (T ∗, T+) forms a Mackey functor,
whereas the multiplicative part (T ∗, T•) forms a semi-Mackey functor. This is just like a commuta-
tive ring consists of an additive abelian group structure and a multiplicative commutative semi-group
structure. In fact a Tambara functor is nothing but a commutative ring when G is trivial. In this sense,
this notion is regarded as a Mackey-functor-theoretic analog (or, ‘G-bivariant analog’) of a commuta-
tive ring [16].

In this analogy, some algebraic notions in commutative ring theory find their analogs in Tam-
bara functor theory. We have ideals [7], fractions [6], and polynomials [8] of Tambara functors. These
are mutually related, as they should be, and moreover in connection with the celebrated Dress
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construction [12,9]. The most typical Tambara functor is the Burnside Tambara functor ΩG (Exam-
ple 1.4), which plays a role just like Z in the ordinary commutative ring theory.

Especially, in the G-bivariant analog of the ideal theory, the prime spectrum Spec T has been de-
fined for any Tambara functor T . In our previous short note [10], we have demonstrated a calculation
of the prime spectrum of ΩG , when G is a group of prime order p. In this article, extending the
method in [10], we calculate Spec ΩG when G is a cyclic p-group for a prime integer p. To determine
the prime ideals of ΩG , the key observation is that the set of subgroups of G is totally ordered

e = H0 < H1 < · · · < Hr = G,

and thus ΩG can be regarded as a sequence of commutative rings equipped with adjacent structure
morphisms

R0 R1 R2 · · · Rk · · · Rr,

ind

res

jnd

ind

res

jnd

ind

res

jnd

ind

res

jnd

ind

res

jnd

ind

res

jnd

where Rk = ΩG(G/Hk). With this identification, an ideal of ΩG can be regarded as a sequence
[I0, . . . , Ir] of ideals Ik ⊆ Rk . A sequence [I0, . . . , Ir] forms an ideal of ΩG if and only if the condi-
tion

I(k) indk
k−1(Ik−1) ⊆ Ik , resk

k−1(Ik) ⊆ Ik−1, jndk
k−1(Ik−1) ⊆ Ik .

is satisfied for each 1 � k � r (Corollary 3.3). The restriction of an ideal I = [I0, . . . , Ik] of ΩHk onto
Hi is given by I |Hi = [I0, . . . , Ii] for any 0 � i � k. On the contrary, we can consider an extension
of I onto Hk+1, namely, an ideal I ′ of ΩHk+1 satisfying I ′|Hk = I . In particular, the largest and
the smallest among such I ′ are explicitly given by LI and SI in Definition 3.5. This allows us an
inductive construction of ideals in ΩG .

Whether an ideal I = [I0, . . . , Ir] is prime or not can be also checked inductively on k. In fact, it
is prime if and only if the condition

P(k) For any 0 � i � k, a ∈ (resk
k−1)

−1(Ik−1) and b ∈ (resi
i−1)

−1(Ii−1) \ Ii ,

a · jndk
i (b) ∈ Ik ⇒ a ∈ Ik.

is satisfied for each 0 � k � r (Proposition 4.4). Consequently, any restriction I |Hi of a prime ideal
I = [I0, . . . , Ik] ⊆ ΩHk is again prime. Especially I0 should be a prime ideal in R0 ∼= Z, and thus equal
to 0, (p), or (q) for some prime integer q �= p. By determining prime ideals over 0, (p), (q), namely,
prime ideals I = [I0, . . . , Ir] satisfying I0 = 0, (p), (q) respectively, we obtain the following result. In
particular, the dimension of ΩG is calculated as dimΩG = r + 1 (Corollary 6.13).

Theorem 1.1. Let G be a cyclic p-group of order pr . The prime ideals of ΩG ∈ Ob(Tam(G)) are as follows.

(i) Over (q) ⊆ R0 , there are r + 1 prime ideals

Sr(q)� LSr−1(q)� · · · � Lr(q).

(ii) Over (p) ⊆ R0 , there is only one prime ideal Lr(p).
(iii) Over 0 ⊆ R0 , there are r + 1 prime ideals

0 � L(0)� · · · � Lr(0).
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Thus we have

Spec ΩG = {
Lr(p)

} ∪ {
Li(0)

∣∣ 0 � i � r
}

∪ {
LiSr−i(q)

∣∣ 0 � i � r, q is a prime different from p
}
.

Throughout this article, the unit of a finite group G will be denoted by e. Abbreviately we denote
the trivial subgroup of G by e, instead of {e}. The notation H � G means H is a subgroup of G .
The symbol G set denotes the category of finite G-sets and G-equivariant maps. If H � G and g ∈ G ,
then g H denotes the conjugate g H = g H g−1. Similarly, H g = g−1 H g . A monoid is always assumed
to be unitary and commutative. Similarly a ring is assumed to be commutative, with an additive
unit 0 and a multiplicative unit 1. We denote the category of monoids by Mon, the category of rings
by Ring. A monoid homomorphism preserves units, and a ring homomorphism preserves 1. For any
category C and any pair of objects X and Y in C , the set of morphisms from X to Y in C is denoted
by C (X, Y ).

We briefly recall the definition of a Tambara functor.

Definition 1.2. (See [13].) A Tambara functor T on G is a triplet T = (T ∗, T+, T•) of two covariant
functors

T+ : G set → Set, T• : G set → Set

and one contravariant functor

T ∗ : G set → Set

which satisfies the following. Here Set is the category of sets.

(1) T α = (T ∗, T+) is a Mackey functor on G .
(2) T μ = (T ∗, T•) is a semi-Mackey functor on G .

Since T α , T μ are semi-Mackey functors, we have T ∗(X) = T+(X) = T•(X) for each X ∈ Ob(G set).
We denote this by T (X).

(3) (Distributive law) If we are given an exponential diagram

X

Y

A Z

B

expf

p λ

ρ

q

in G set, then

T (X)

T (Y )

T (A) T (Z)

T (B)

T•( f )

T+(p) T ∗(λ)

T•(ρ)

T+(q)

�

is commutative. For the definition and basic properties of exponential diagrams, see [13].
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If T = (T ∗, T+, T•) is a Tambara functor, then T (X) becomes a ring for each X ∈ Ob(G set) [13].
Since T α is a Mackey functor, by definition T is ‘additive’, in the sense that for any X1, X2 ∈ Ob(G set),
the inclusions ι1 : X1 ↪→ X1 � X2 and ι2 : X2 ↪→ X1 � X2 induce a natural isomorphism of rings
(T ∗(ι1), T ∗(ι2)) : T (X1 � X2)

∼=−→ T (X1) × T (X2). For each f ∈ G set(X, Y ),

• T ∗( f ) : T (Y ) → T (X) is a ring homomorphism, called the restriction along f ,
• T+( f ) : T (X) → T (Y ) is an additive homomorphism, called the additive transfer along f ,
• T•( f ) : T (X) → T (Y ) is a multiplicative homomorphism, called the multiplicative transfer along f .

T ∗( f ), T+( f ), T•( f ) are often abbreviated to f ∗ , f+ , f• .

Remark 1.3. If f is the natural projection prH
K : G/K → G/H for some K � H � G , then f ∗ , f+ , f• is

written as

resH
K = (

prH
K

)∗
,

indH
K = (

prH
K

)
+,

jndH
K = (

prH
K

)
•.

For a conjugate map cg : G/H g → G/H , we define cg,H : T (G/H) → T (G/H g) (or simply
cg : T (G/H) → T (G/H g)) by

cg,H = T ∗(cg).

If g belongs to the normalizer NG(H) of H in G , then this gives an automorphism cg,H : T (G/H) →
T (G/H). With this NG(H)-action, every T (G/H) becomes an NG(H)/H-ring.

Since any G-map is a union of compositions of natural projections and conjugate maps, the
structure morphisms of a Tambara functor are completely determined by resH

K , indH
K , jndH

K , cg,H for
K � H � G , g ∈ G , by virtue of the additivity.

Example 1.4. If we define ΩG by

ΩG(X) = K0(G set/X)

for each X ∈ Ob(G set), where the right-hand side is the Grothendieck ring of the category of finite
G-sets over X , then ΩG becomes a Tambara functor on G [13]. This is called the Burnside Tambara
functor. For each f ∈ G set(X, Y ),

f• : ΩG(X) → ΩG(Y )

is the one determined by

f•(A
p−→ X) = (

Π f (A)
	−→ Y

) (∀(A
p−→ X) ∈ Ob(G set/X)

)
,

where Π f (A) and 	 are

Π f (A) =

⎧⎪⎨
⎪⎩(y,σ )

∣∣∣ y ∈ Y ,

σ : f −1(y) → A is a map of sets,

p ◦ σ = id f −1(y)

⎫⎪⎬
⎪⎭ ,

	(y,σ ) = y.



H. Nakaoka / Journal of Algebra 398 (2014) 21–54 25
G acts on Π f (A) by g · (y, σ ) = (gy, gσ), where gσ is the map defined by

gσ(x) = gσ
(

g−1x
) (∀x ∈ f −1(gy)

)
.

f+ : ΩG(X) → ΩG(Y ) is an additive homomorphism satisfying

f+(A
p−→ X) = (A

f ◦p−−→ Y )
(∀(A

p−→ X) ∈ Ob(G set/X)
)
.

f ∗ is defined by using a fiber product [13]. Namely, the Mackey-functor structure on the additive part
of Ω is the usual one as in [1].

Remark 1.5. For any K � H � G , we have a natural isomorphism (cf. [1]) ΩG(G/K ) ∼= ΩH (H/K ), and
we will identify them through this isomorphism.

We often abbreviate ΩG to Ω , if the base group is obvious from the context.

2. The Burnside Tambara functor on a cyclic p-group

Throughout this article, we fix a prime number p. Let G be a cyclic p-group of order pr , and let
Hk � G be its subgroup of order pk for each 0 � k � r. In the following argument, without loss of
generality we may assume

G = Z/prZ, Hk = pr−kZ/prZ,

e = H0 < H1 < · · · < Hk < · · · < Hr = G.

Then the G-set G/Hk is canonically isomorphic to Z/pr−kZ, and the natural projection

G/Hk
pr�k−−→ G/H� (k � �)

is identified with a map given by

Z/pr−kZ → Z/pr−�Z; a mod pr−kZ �→ a mod pr−�Z

for any a ∈ Z.
Since G is commutative, each Ω(G/Hk) has a trivial G-action, and admits a natural Z-basis

{
(G/Hi

prk
i−−→ G/Hk)

∣∣ 0 � i � k
}
.

Thus if we denote (G/Hi
prk

i−−→ G/Hk) by Xk,i , then it is a free Z-module

Ω(G/Hk) =
⊕

0�i�k

ZXk,i

with a trivial G-action. Therefore, if we put Rk = ⊕
0�i�k ZXk,i , then the Tambara functor ΩG is

regarded just as a sequence of commutative rings Rk and structure morphisms
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R0 R1 R2 · · · Rk · · · Rr

ind1
0

res1
0

jnd1
0

ind2
1

res2
1

jnd2
1

ind3
2

res3
2

jnd3
2

indk
k−1

resk
k−1

jndk
k−1

indk+1
k

resk+1
k

jndk+1
k

indr
r−1

resr
r−1

jndr
r−1

satisfying conditions in Definition 1.2. Here, indk
k−1, resk

k−1, jndk
k−1 are the abbreviations of indHk

Hk−1
,

resHk
Hk−1

, jndHk
Hk−1

. We use similar abbreviations in the rest. Remark that any structure morphism of ΩG

can be realized as a composition of these morphisms.

Remark 2.1. By virtue of Remark 1.5, the first k-terms

R0 R1 R2 · · · Rk

ind1
0

res1
0

jnd1
0

ind2
1

res2
1

jnd2
1

ind3
2

res3
2

jnd3
2

indk
k−1

resk
k−1

jndk
k−1

(2.1)

can be regarded as a sequence representing the Tambara functor ΩHk . We always work under this
identification in this paper. With this identification, forgetting the entire group G , we can regard the
Burnside Tambara functor ΩHk on a cyclic p-group Hk of order pk , simply as a length k sequence of
rings (2.1) obtained inductively by adding Rk , indk

k−1, resk
k−1, jndk

k−1 to the length k − 1 sequence

R0 R1 · · · Rk−1

ind1
0

res1
0

jnd1
0

ind2
1

res2
1

jnd2
1

indk−1
k−2

resk−1
k−2

jndk−1
k−2

corresponding to ΩHk−1 . This observation enables us an inductive construction of ideals of in Ω .

We go on to describe Rk and the structure morphisms. As above, we have Rk = ⊕
0�i�k ZXk,i as

a module.

Remark 2.2. Additive transfer ind�
k : Rk → R� is given by

ind�
k(Xk,i) = X�,i (0 � i � k)

for each k � �.

Proof. This is obvious. �
If we take a fiber product of prk

i : G/Hi → G/Hk and prk
j : G/H j → G/Hk

G/Hi ×G/Hk G/H j
G/H j

G/Hi G/Hk

� prk
j

prk
i

where 0 � i, j � k, then by the Mackey decomposition formula, we have
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G/Hi ×
G/Hk

G/H j =
{∐

pk− j G/Hi (i � j),∐
pk−i G/H j ( j � i).

(2.2)

In any case, the cardinality of this G-set is

|G/Hi ×
G/Hk

G/H j| = pr+k−(i+ j).

Eq. (2.2) is also written as

G/Hi ×
G/Hk

G/H j =
∐

pk−max(i, j)

G/Hmin(i, j).

As a corollary, we obtain the following.

Corollary 2.3. For any 0 � k � r, the following holds.

(1) For any i, j � k,

Xk,i · Xk, j =
{

pk− j Xk,i (i � j),

pk−i Xk, j ( j � i)

in Rk. In particular, Xk,k = 1 is the unit of Rk. In fact, Rk is written as the residue ring of the polynomial
ring Z[Xk,i | 0 � i � k] over indeterminates Xk,i (0 � i � k), by the ideal generated by

{Xk,k − 1} ∪ {
Xk,i Xk, j − pk−max(i, j) Xk,min(i, j)

∣∣ 0 � i, j � k
}
.

(2) For any � � k, res�
k : R� → Rk is given by

res�
k(X�,i) =

{
p�−k Xk,i (i � k),

p�−i Xk,k = p�−i (i � k).

As for multiplicative transfers, we need some calculation. For the detail, see Appendix A.

Corollary 2.4. For any � � k, jnd�
k : Rk → R� is given by

jnd�
k

( ∑
0�i�k

mi Xk,i

)
= mk X�,� +

∑
k�i<�

(mk)
p�−i − (mk)

p�−i−1

p�−i
X�,i

+
∑

0�i<k

(
∑k

s=i ms pk−s)p�−k − (
∑k

s=i+1 ms pk−s)p�−k

p�−i
X�,i

for any m0, . . . ,mk ∈ Z.
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3. Ideals of Ω as a sequence

An ideal of a Tambara functor is defined in [7] as follows.

Definition 3.1. Let T be a Tambara functor. An ideal I of T is a family of ideals {I (X) ⊆
T (X)}X∈Ob(G set) satisfying

(i) f ∗(I (Y )) ⊆ I (X),
(ii) f+(I (X)) ⊆ I (Y ),

(iii) f•(I (X)) ⊆ f•(0) + I (Y )

for any f ∈ G set(X, Y ).

These conditions also imply

I (X1 � X2) ∼= I (X1) × I (X2)

for any X1, X2 ∈ Ob(G set). From this, an ideal of T is determined by a family

{
I H = I (G/H)

}
H�G

of ideals I H ⊆ T (G/H), indexed by the set of subgroups of G , as follows.

Proposition 3.2. Let T be a Tambara functor on G. To give an ideal I of T is equivalent to give a family
{I H }H�G of ideals I H ⊆ T (G/H) satisfying the conditions

(i) resH
K (I H ) ⊆ I K ,

(ii) indH
K (I K ) ⊆ I H ,

(iii) jndH
K (I K ) ⊆ I H ,

(iv) cg,H (I H ) ⊆ I H g

for any K � H � G and g ∈ G.

Proof. This is straightforward (cf. Corollary 2.2 in [10]). �
In our particular case, an ideal of ΩG is written as follows.

Corollary 3.3. Let G be a cyclic p-group of order pr . An ideal I of ΩG is given by a sequence

I = [I0, . . . , Ir]
of ideals Ik ⊆ Rk, satisfying the following condition I(k) for each 1 � k � r.

I(k) indk
k−1(Ik−1) ⊆ Ik , resk

k−1(Ik) ⊆ Ik−1 , jndk
k−1(Ik−1) ⊆ Ik .

Remark that for ideals I = [I0, . . . , Ir] and J = [ J0, . . . , Jr], we have I ⊆ J if and only if
Ik ⊆ Jk holds for any 0 � k � r.

In the following, we will simply say “[I0, . . . , Ik] is an ideal of ΩHk ” to mean that [I0, . . . , Ik]
satisfies I(i) for any 1 � i � k. This makes sense by virtue of Remark 2.1. The restriction of an ideal
I = [I0, . . . , Ik] of ΩHk onto Hi is given by [I0, . . . , Ii], for each 0 � i � k. We denote this by I |Hi .
Obviously, restriction preserves inclusions of ideals.
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On the contrary, Corollary 3.3 also enables us to extend an ideal [I0, . . . , Ik−1] of ΩHk−1 to an
ideal [I0, . . . , Ik] of ΩHk , by adding an ideal Ik ⊆ Rk satisfying I(k). Among the possible extensions
of [I0, . . . , Ik−1], the largest and the smallest are given as follows. If an ideal I ′ ⊆ ΩHk satisfies
I ′|Hi = I for a given ideal I ⊆ ΩHi , then we say that I ′ is an ideal over I .

Proposition 3.4. For a fixed 1 � k � r, suppose we are given an ideal I = [I0, . . . , Ik−1] of ΩHk−1 .

(1) If we define Lk(Ik−1) = L(Ik−1) ⊆ Rk by

L(Ik−1) = (
resk

k−1

)−1
(Ik−1),

then [I0, . . . , Ik−1, L(Ik−1)] is the largest ideal of ΩHk over [I0, . . . , Ik−1].
(2) If we define Sk(Ik−1) = S(Ik−1) ⊆ Rk to be the ideal of Rk generated by

{
indk

k−1(α)
∣∣ α ∈ Ik−1

}
and

{
jndk

k−1(α)
∣∣ α ∈ Ik−1

}
,

shortly,

S(Ik−1) = (
indk

k−1(Ik−1)
) + (

jndk
k−1(Ik−1)

)
,

then [I0, . . . , Ik−1, S(Ik−1)] is the smallest ideal of ΩHk over [I0, . . . , Ik−1].

Definition 3.5. For an ideal I = [I0, . . . , Ik−1] of ΩHk−1 , define ideals Lk(I ) =LI and Sk(I ) = SI
of ΩHk by

LI = [
I0, . . . , Ik−1, L(Ik−1)

]
,

SI = [
I0, . . . , Ik−1, S(Ik−1)

]
,

where L(Ik−1) and S(Ik−1) are those in Proposition 3.4. Additionally, we denote the n-times iterations
of L, S , L, S by Ln , Sn and Ln , Sn . For example, an ideal I = [I0, . . . , Ik] ⊆ ΩHk yields LnI =
[I0, . . . , Ik, L(Ik), . . . , Ln(Ik)] ⊆ ΩHk+n .

Proof of Proposition 3.4. (1) To show LI is an ideal of ΩHk , it suffices to confirm I(k) is satisfied.
By definition, resk

k−1(L(Ik−1)) ⊆ Ik−1 is obvious. In addition, by the existence of a pullback diagram

�p G/Hk−1
G/Hk−1

G/Hk−1 G/Hk

�

∇

prk
k−1

prk
k−1

where ∇ : �p G/Hk−1 → G/Hk−1 is the folding map, we have

resk
k−1 ◦ indk

k−1(α) = pα,

resk
k−1 ◦ jndk

k−1(α) = αp

for any α ∈ Rk . Thus if α ∈ Ik−1, then
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indk
k−1(α) ∈ (

resk
k−1

)−1
(Ik−1),

jndk
k−1(α) ∈ (

resk
k−1

)−1
(Ik−1)

hold. This shows indk
k−1(Ik−1) ⊆ L(Ik−1) and jndk

k−1(Ik−1) ⊆ L(Ik−1), and thus LI is an ideal of ΩHk .

Moreover, since any ideal [I0, . . . , Ik−1, Jk] of ΩHk should satisfy resk
k−1( Jk) ⊆ Ik−1, obviously LI is

the largest.
(2) It suffices to confirm SI satisfies I(k). Since resk

k−1 is a ring homomorphism, resk
k−1(S(Ik−1))⊆

Ik−1 follows from the fact that any α ∈ Ik−1 satisfies

resk
k−1 ◦ indk

k−1(α) = pα ∈ Ik−1,

resk
k−1 ◦ jndk

k−1(α) = αp ∈ Ik−1.

The other conditions

indk
k−1(Ik−1) ⊆ S(Ik−1),

jndk
k−1(Ik−1) ⊆ S(Ik−1)

are obviously satisfied by the definition of S(Ik−1). Thus SI is an ideal of ΩHk . Moreover, since any
ideal [I0, . . . , Ik−1, Jk] of ΩHk should satisfy indk

k−1(Ik−1) ⊆ Jk and jndk
k−1(Ik−1) ⊆ Jk , obviously SI

is the smallest. �
4. Inductive criterion of primality

In [7], a prime ideal of a Tambara functor is defined as follows.

Definition 4.1. Let G be an arbitrary finite group, and let T be a Tambara functor on G . An ideal
I � T is prime if and only if the following two conditions become equivalent, for any transitive
X, Y ∈ Ob(G set) and any a ∈ T (X), b ∈ T (Y ).

(1) For any C ∈ Ob(G set) and for any pair of diagrams

C v←− D w−→ X, C v ′←− D ′ w ′−→ Y

in G set, I (C) satisfies

(
v•w∗(a) − v•(0)

) · (v ′•w ′ ∗(b) − v ′•(0)
) ∈ I (C).

(2) a ∈ I (X) or b ∈ I (Y ).

Remark that (2) always implies (1).

By a straightforward argument, we may assume C , D , D ′ are transitive, and this condition can be
also written as follows.

Proposition 4.2. Let G be an arbitrary finite group, and let I = {I H }H�G be an ideal of T . Then I is prime
if and only if the following condition is satisfied for any H, H ′ � G and any a ∈ T (G/H), b ∈ T (G/H ′).
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(∗) If ( jndL
K g ◦cg,K ◦ resH

K (a)) · ( jndL
K ′ g′ ◦cg′,K ′ ◦ resH ′

K ′ (a)) ∈ I L is satisfied for any L, K , K ′ � G and g, g′ ∈ G

satisfying L � K g , K � H, L � K ′ g′
, K ′ � H ′ , then

a ∈ I H or b ∈ I H ′

holds.

In our case, this can be reduced to the following condition.

Corollary 4.3. Let G be a cyclic p-group of order pr � 1. An ideal I = [I0, . . . , Ir] of ΩG is prime if and only
if it satisfies the following condition P(k, �) for each 0 � � � k � r.

P(k, �) For any a ∈ Rk and b ∈ R� ,

(
jndm

i ◦ resk
i (a)

) · ( jndm
j ◦ res�

j(b)
) ∈ Im

(
0 � ∀i � k, 0 � ∀ j � �, m = max(i, j)

)
implies

a ∈ Ik or b ∈ I�.

Proof. For any 0 � k, � � r and any a ∈ Rk , b ∈ R� , the condition (∗) in Proposition 4.2 is equivalent
to the following.

(∗) If

(
jndm

i ◦cg ◦ resk
i (a)

) · ( jndm
j ◦cg′ ◦ res�

j(b)
) ∈ Im (4.1)

is satisfied for any g, g′ ∈ G and any m � i � k, m � j � �, then

a ∈ Ik or b ∈ I�

holds.

Remark that we have cg = id, cg′ = id. Besides, by (iii) of Proposition 3.2, assumption (4.1) is only have
to be confirmed for m = max(i, j). Moreover, by the symmetry in k and �, we may assume � � k. �

Furthermore, this condition can be checked on each k-th step, as follows.

Proposition 4.4. Let G be as above. An ideal I = [I0, . . . , Ir] of ΩG is prime if and only if it satisfies the
following condition P(k) for each 0 � k � r.

P(k) For any 0 � i � k and any a ∈ Lk(Ik−1), b ∈ Li(Ii−1) \ Ii ,

a · jndk
i (b) ∈ Ik ⇒ a ∈ Ik (4.2)

holds.

Here, when k = 0, we define L0(I−1) to be R0 . Namely, P(0) is as follows.
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P(0) For any a ∈ R0 and b ∈ R0 \ I0 ,

ab ∈ I0 ⇒ a ∈ I0

holds. (This is saying I0 ⊆ R0 is prime in the ordinary ring-theoretic meaning.)

Proof. For each 0 � k � r, we define condition Q(k) as follows.

Q(k) P(k, �) holds for all 0 � � � k.

It suffices to show that Q(k) holds for any 0 � k � r if and only if P(k) holds for any 0 � k � r.
This follows from:

Claim 4.5. For any 0 � k � r, the following holds.

(1) Q(k) implies P(k).
(2) If k � 1, then Q(k − 1) and P(k) imply Q(k).
(3) Q(0) is equivalent to P(0).

In fact if this is shown, then by an induction on k, we can easily show that the following are
equivalent for each 0 � k � r.

– Q(k′) holds for any 0 � k′ � k.
– P(k′) holds for any 0 � k′ � k.

This proves Proposition 4.4. Thus it remains to show Claim 4.5.

Proof of Claim 4.5. (3) When k = 0, then the condition

Q(0) P(0,0) holds. Namely, for any a,b ∈ R0,

ab ∈ I0 ⇒ a ∈ I0 or b ∈ I0

holds.

is obviously equivalent to P(0).
(1) Fix k, suppose we are given 0 � � � k and a ∈ Lk(Ik−1),b ∈ L�(I�−1) \ I� satisfying

a · jndk
�(b) ∈ Ik. (4.3)

It suffices to show a ∈ Ik . Since Q(k) (in particular P(k, �)) is assumed, it is enough to confirm that

(
jndm

i ◦ resk
i (a)

) · ( jndm
j ◦ res�

j(b)
) ∈ Im (4.4)

is satisfied for any 0 � i � k, 0 � j � � and m = max(i, j). However, when i < k or j < �, (4.4) follows
from resk

i (a) ∈ Ii and res�
j(b) ∈ I j , since we have a ∈ Lk(Ik−1) and b ∈ L�(I�−1). In the remaining case

where i = k and j = �, (4.4) is also satisfied by the assumption (4.3).
(2) Fix k � 1, and assume Q(k − 1). Under this assumption, we show P(k) implies P(k, �) for any

0 � � � k. By an induction on �, this is reduced to the following.
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Claim 4.6. For any 1 � k � r and 0 � � � k, we have

Q(k − 1),P(k),P(k, � − 1) ⇒ P(k, �).

(Here, for � = 0, P(k,−1) is regarded as an empty condition.)

We only have to show this claim in the rest. Suppose a ∈ Rk and b ∈ R� satisfy

(
jndm

i ◦ resk
i (a)

) · ( jndm
j ◦ res�

j(b)
) ∈ Im (4.5)

for any 0 � i � k, 0 � j � �, m = max(i, j). Claim 4.6 will follow immediately, if the following are
shown.

(A) If a ∈ Rk \ Ik , then b ∈ L�(I�−1). (This is trivial when � = 0, since we have defined as L0(I−1) = R0.)
(B) If b ∈ R� \ I�−1, then a ∈ Lk(Ik−1).

In fact, if (A) and (B) are shown, then the above a and b will satisfy

(i) a ∈ Ik , or
(ii) b ∈ I� , or

(iii) a ∈ Lk(Ik−1) and b ∈ L�(I�−1) \ I� .

In the third case, since a · jndk
�(b) ∈ Ik is satisfied by (4.5) for i = k and j = �, it follows a ∈ Ik by P(k).

Thus it remains to show (A) and (B).
(A) By applying P(k, � − 1) to

a ∈ Rk and res�
�−1(b) ∈ R�−1,

we obtain res�
�−1(b) ∈ I�−1, namely b ∈ L�(I�−1).

(B) When � < k, by applying Q(k − 1), in particular P(k − 1, �) to

resk
k−1(a) ∈ Rk−1 and b ∈ R�,

we obtain resk
k−1(a) ∈ Ik−1, namely a ∈ Lk(Ik−1).

When � = k, by applying P(k,k − 1) to

b ∈ Rk and resk
k−1(a) ∈ Rk−1,

we obtain resk
k−1(a) ∈ Ik−1, namely a ∈ Lk(Ik−1). �

By Proposition 4.4, whether an ideal is prime or not can be checked inductively on k using P(k).
This is applied to restrictions and extensions of prime ideals as follows.

Corollary 4.7. For any 0 � i � k � r, if an ideal I = [I0, . . . , Ik] ⊆ ΩHk is prime, then its restriction I |Hi =
[I0, . . . , Ii] onto Hi is also prime.

Proof. This immediately follows from Proposition 4.4. �
Corollary 4.8. For k � 1, let I = [I0, . . . , Ik−1] be an ideal of ΩHk . If I is prime, then LI ⊆ ΩHk is also
prime.
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Proof. It suffices to show P(k) is satisfied. However for LI = [I0, . . . , Ik−1, Ik = L(Ik−1)], this condi-
tion becomes trivial as follows.

• For any 0 � i � k, a ∈ Lk(Ik−1) and b ∈ Li(Ii−1) \ Ii ,

a · jndk
i (b) ∈ Ik ⇒ a ∈ Ik (4.6)

holds.

Of course this is satisfied, since a belongs to Ik = Lk(Ik−1) from the first. �
5. Ideals J�,k(x) ⊆ R�

In this section, we introduce ideals J�,k(x) of R� , which will perform an essential role in deter-
mining the prime ideals of Ω .

First we prepare another Z-basis for R� , which is more suitable for calculation.

Definition 5.1. For any 0 � i � � � r, define F�,i ∈ R� by

F�,i = X�,i − p�−i .

Obviously, each R� admits a Z-basis

{1, F�,0, F�,1, . . . , F�,�−1}

for 0 � � � r, and thus any element α ∈ R� can be written as

α = m� +
�−1∑
i=0

mi F�,i

for some uniquely determined m0, . . . ,m� ∈ Z.

This basis behaves well with the multiplication and the structure morphisms as follows.

Proposition 5.2. The following holds.

(1) For any 0 � i, j � �, we have

X�, j · F�,i =
{

p�− j F�,i − p�−i F�, j (i � j),

0 ( j � i).

(2) For any 0 � i,k � �, we have

res�
k(F�,i) =

{
p�−k Fk,i (i � k),

0 (k � i).
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In particular, we have

res�
�−1(α) = m� +

�−2∑
i=0

mi pF�−1,i

for any α = m� +∑�−1
i=0 mi F�,i ∈ R� .

(3) When � � 1, for any

α = n�−1 +
�−2∑
i=0

mi F�−1,i ∈ R�−1,

we have

jnd�
�−1(α) = (n�−1)

p +
�−1∑
i=0

ui F�,i

for some u0, . . . , u�−1 ∈ Z.
(4) When � � 2, for any 0 � i � � − 1, we have

ind�
�−1(F�−1,i) = F�,i − p�−i−1 F�,�−1.

Moreover, F�,�−1 is calculated as

F�,�−1 = jnd�
�−1(F�−1,�−2) + (−p)p

p2
ind�

�−1(F�−1,�−2).

Proof. (1) and (2) follow immediately from Corollary 2.3.
(3) For any α = n�−1 + ∑�−2

i=0 mi F�−1,i ∈ R�−1, if we put m�−1 = n�−1 − ∑�−2
i=0 mi p�−i−1, then we

have

α = m�−1 +
�−2∑
i=0

mi X�−1,i

and thus by Corollary 2.4, we obtain

jnd�
�−1(α) = m�−1 + (m�−1)

p − m�−1

p
X�,�−1

+
�−2∑
i=0

(
∑�−1

s=i ms p�−1−s)p − (
∑�−1

s=i+1 ms p�−1−s)p

pi
X�,i

= m�−1 + {
(m�−1)

p − m�−1
}+

�−2∑
i=0

{(
�−1∑
s=i

ms p�−1−s

)p

−
(

�−1∑
s=i+1

ms p�−1−s

)p}

+ (m�−1)
p − m�−1

p
F�,�−1 +

�−2∑ (
∑�−1

s=i ms p�−1−s)p − (
∑�−1

s=i+1 ms p�−1−s)p

pi
F�,i
i=0
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= (n�−1)
p + (m�−1)

p − m�−1

p
F�,�−1

+
�−2∑
i=0

(n�−1 −∑i−1
s=0 ms p�−1−s)p − (n�−1 −∑i

s=0 ms p�−1−s)p

pi
F�,i .

(4) By Remark 2.2, we have

ind�
�−1(F�−1,i) + p�−i−1 F�,�−1 = (

X�,i − p�−i−1 X�,�−1
)+ (

p�−i−1 X�,�−1 − p�−i)
= F�,i .

Moreover, by Remark 2.2 and Corollary 2.4, we have

jnd�
�−1(F�−1,�−2) + (−p)p

p2
ind�

�−1(F�−1,�−2)

=
(

−p + (−p)p + p

p
X�,�−1 − (−p)p

p2
X�,�−2

)
+ (−p)p

p2
(X�,�−2 − p X�,�−1)

= X�,�−1 − p = F�,�−1. �
Lemma 5.3. For 1 � � � r and n ∈ Z, we have the following.

(1) If n is not divisible by p, then we have

n = jnd�
�−1(n) − np−1 − 1

p
ind�

�−1(n).

Remark that np−1−1
p is an integer, by assumption.

(2) If n = pu for some u ∈ Z, then we have

n = ind�
�−1(u) − uF�,�−1.

Proof. (1) By Remark 2.2 and Corollary 2.4, we have

jndk
k−1(n) − np−1 − 1

p
indk

k−1(n) = n + np − n

p
Xk,k−1 − np−1 − 1

p
nXk,k−1 = n.

(2) This follows from

ind�
�−1(u) − uF�,�−1 = u X�,�−1 − u(X�,�−1 − p)

= pu = n. �
Definition 5.4. For any 0 � � � r, 0 � k � � and x ∈ Z, we define an ideal J�,k(x) ⊆ R� by

J�,k(x) =
{

(x, F�,k, F�,k+1, . . . , F�,�−1) (k � � − 1),

(x) (k = �).

J�,k(x) can be calculated as follows.
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Proposition 5.5. For any 1 � � � r, 0 � k � � − 1 and x ∈ Z, we have

J�,k(x) =
{

x ·
(

n� +
k−1∑
i=0

ni F�,i

)
+

�−1∑
i=k

ni F�,i

∣∣∣ n0, . . . ,n� ∈ Z

}

=
⎧⎨
⎩m� +

�−1∑
i=0

mi F�,i

∣∣∣ m0, . . . ,m� ∈ Z,

m� ∈ Zx,

mi ∈ Zx (0 � i � k − 1)

⎫⎬
⎭ .

Proof. Obviously, J�,k(x) contains any element of the form

x ·
(

n� +
k−1∑
i=0

ni F�,i

)
+

�−1∑
i=k

ni F�,i . (5.1)

To show the converse, since any element in J�,k(x) can be written as an R�-coefficient sum of

x, F�,k, . . . , F�,�−1,

it suffices to show that any element

(i) αx,
(ii) αF�,i (k � i � � − 1)

can be written in the form of (5.1) for any α ∈ R� .
(i) For any α = m� +∑�−1

i=0 mi F�,i (mi ∈ Z), we have

αx = x ·
(

m� +
k−1∑
i=0

mi F�,i

)
+

�−1∑
i=k

xmi F�,i .

(ii) For any α = ∑�
j=0 m j X�, j (m j ∈ Z), we have

αF�,i =
i∑

j=0

m j X�, j F�,i +
�∑

j=i+1

m j X�, j F�,i

=
�∑

j=i+1

m j
(

p�− j F�,i − p�−i F�, j
)

=
(

�∑
j=i+1

m j p�− j

)
F�,i −

�∑
j=i+1

m j p�−i F�, j

for any k � i � � − 1 by Proposition 5.2. �
Proposition 5.6. For any 1 � � � r, 0 � k � � − 1 and any n ∈ Z, we have the following.

(1) If n = 0 or n = q for some prime integer q different from p, then we have
(i) L( J�−1,k(n)) = J�,k(n),
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(ii) S( J�−1,k(n)) =
{

J�,k(n) (k � � − 2),

J�,�(n) = (n) (k = � − 1).
Moreover, when n = q is a prime different from p, then there is no ideal between J�,k+1(q) � J�,k(q).

(2) For k = 0 and n = pe+1 for some e ∈N�0 , we have
(i) L( J�−1,0(pe+1)) = J�,0(pe+1),

(ii) S( J�−1,0(pe+1)) = J�,0(pe+2).
Moreover, there is no ideal between J�,0(pe+2) � J�,0(pe+1).

Proof. (1) (i) By definition,

L
(

J�−1,k(n)
) = {

α ∈ R�

∣∣ res�
�−1(α) ∈ J�−1,k(n)

}
.

For any α = m� +∑�−1
i=0 mi F�,i (mi ∈ Z), since we have

res�
�−1(α) = m� +

�−1∑
i=0

mi pF�−1,i

= m� +
k−1∑
i=0

mi pF�−1,i +
�−1∑
i=k

mi pF�−1,i,

this satisfies res�
�−1(α) ∈ J�−1,k(n) if and only if

m� ∈ nZ,

mi p ∈ nZ (0 � i � k − 1),

by Proposition 5.5. Since n is 0 or a prime different from p, this is equivalent to

m� ∈ nZ and mi ∈ nZ (0 � i � k − 1),

namely, to α ∈ J�,k(n).
(ii) When k � � − 2, it suffices to show

J�,k(n) ⊆ S
(

J�−1,k(n)
)
.

In fact, this implies

J�,k(n) ⊆ S
(

J�−1,k(n)
) ⊆ L

(
J�−1,k(n)

) = J�,k(n),

and thus S( J�−1,k(n)) = L( J�−1,k(n)) = J�,k(n) follows.
Thus it remains to show J�,k(n) = (n, F�,k, . . . , F�,�−1) ⊆ S( J�−1,k(n)). However, this immediately

follows from Proposition 5.2 and Lemma 5.3, since we have

n = jnd�
�−1(n) − np−1 − 1

p
(for n �= 0),

F�,�−1 = jnd�
�−1(F�−1,�−2) + (−p)p

p2
ind�

�−1(F�−1,�−2),

F�,i = ind�
�−1(F�−1,i) + p�−i−1 F�,�−1 (k � i � � − 1).
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When k = � − 1, remark that we have J�−1,�−1(q) = (q) ⊆ R�−1. If n = 0, (0) ⊆ S( J�−1,�−1(0)) is
trivial. If n = q is a prime different from p, then by Lemma 5.3 we have

q = jnd�
�−1(q) − qp−1 − 1

p
ind�

�−1(q) ∈ S
(
(q)

)
,

which means (q) ⊆ S( J�−1,�−1(q)).
Conversely, if n = q is a prime different from p, then for any α ∈ R�−1, we have

jnd�
�−1(αq) = jnd�

�−1(α) · jnd�
�−1(q)

= jnd�
�−1(α) ·

(
q + qp − q

p
X�,�−1

)

= jnd�
�−1(α) ·

(
1 + qp−1 − 1

p
X�,�−1

)
· q ∈ (q),

ind�
�−1(αq) = ind�

�−1(α) · q ∈ (q),

which imply S( J�−1,�−1(q))⊆(q). Similarly, S( J�−1,�−1(0))⊆(0) follows from ind�
�−1(0) = jnd�

�−1(0) =
0.

Thus it remains to show there is no ideal between J�,k+1(q) � J�,k(q) for a prime q �= p. Suppose
there is an ideal

J�,k+1(q)� I ⊆ J�,k(q).

By Proposition 5.5, I should contain an element

α = qβ +
�−1∑
i=k

ni F�,i

in J�,k(q), for some β ∈ R� and ni ∈ Z (k � i � � − 1), which does not belong to J�,k+1(q). Then I
should contain

nk F�,k = α −
{

qβ +
�−1∑

i=k+1

ni F�,i

}
.

Since α does not belong to J�,k+1(q), it follows that q does not divide nk , and thus I contains an
element of the form

nk F�,k (nk ∈ Z, not divisible by q).

On the other hand, q ∈ J�,k+1(q) ⊆ I implies

qF�,k ∈ I.

Since q and nk are coprime, it follows F�,k ∈ I , which means I = J�,k(q).
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(2) (i) For an element α = m� +∑�−1
i=0 mi F�,i , since we have

res�
�−1(α) = m� +

�−2∑
i=0

mi pF�−1,i

by Proposition 5.2, it satisfies α ∈ L( J�−1,0(pe+1)) if and only if m� ∈ pe+1Z, namely α ∈ J�,0(pe+1).
(ii) By Proposition 5.2 and Lemma 5.3, we have

F�,�−1 = jnd�
�−1(F�−1,�−2) + (−p)p

p2
ind�

�−1(F�−1,�−2),

F�,i = ind�
�−1(F�−1,i) + p�−i−1(F�,�−1) (0 � i � � − 1),

pe+2 = ind�
�−1

(
pe+1)− pe+1 F�,�−1,

which imply J�,0(pe+2) ⊆ S(L�−1,0(pe+1)).
To show the converse, by Proposition 5.5, it suffices to show any element

α = pe+1n�−1 +
�−2∑
i=0

mi F�−1,i
(
n�−1,mi ∈ Z (0 � i � � − 2)

)

in J�−1,0(pe+1) satisfies ind�
�−1(α) ∈ J�,0(pe+2) and jnd�

�−1(α) ∈ J�,0(pe+2). However, these follow
from

ind�
�−1(α) = pe+1n�−1 X�,�−1 +

�−2∑
i=0

mi
(

F�,i − p�−i−1 F�,�−1
)

= pe+2n�−1 +
�−2∑
i=0

mi Fi +
(

pe+1n�−1 −
�−2∑
i=0

p�−i−1mi

)
F�,�−1

and

jnd�
�−1(α) = (

pe+1n�−1
)p +

�−1∑
i=0

ui F�,i

for some u0, . . . , u�−1 ∈ Z, by Proposition 5.2.
It remains to show there is no ideal between J�,0(pe+2) � J�,0(pe+1). Suppose there is an ideal

J�,0
(

pe+2)� I ⊆ J�,0
(

pe+1).
Then by Proposition 5.5, I should contain an element

α = pe+1n� +
�−1∑

mi F�,i
i=0
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in J�,0(pe+1), for some n�,mi ∈ Z (0 � i � � − 1), which does not belong to J�,0(pe+2). Then I should
contain

pe+1n� = α −
�−1∑
i=0

mi F�,i .

Since α is not in J�,0(pe+2), it follows that p does not divide n� . On the other hand, we have

pe+2 ∈ J�,0
(

pe+2) ⊆ I.

These imply pe+1 ∈ I , which means I = J�,0(pe+1). �
6. Structure of Spec Ω

Let 0 � � � r be any integer. For any ideal I = [I0, . . . , I�] ⊆ ΩH�
, define F (I ) to be the ideal

F (I ) = I0 of R0. Since I0 becomes prime if I is prime, this gives a map

F : Spec ΩG → Spec R0.

To determine Spec Ω , it suffices to investigate each fiber of F over the points of Spec R0. Since
Spec R0 = SpecZ = {0}∪{(q) | q is a prime integer}, in the rest we will study the following three cases.

(i) Prime ideals over (q), where q is a prime integer different from p.
(ii) Prime ideals over (0).

(iii) Prime ideals over (p).

6.1. Prime ideals over q �= p

Let q be any prime integer different from p.

Proposition 6.1. We have the following.

(1) For any k � 0, we have

Sk(q) = (q) ⊆ Rk,

and thus Sk(q) = [(q), (q), . . . , (q)].
(2) For any 1 � � � r and 0 � k � �, we have

L�−k Sk(q) = J�,k(q) ⊆ R�.

(3) For any 1 � � � r and 0 � k � � − 2, we have

S L�−k−1 Sk(q) = L�−k Sk(q).

Proof. This follows from Proposition 5.6, by an induction on k and �. �
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Proposition 6.2. For any 0 � k � r,

Sk(q) = [
(q), . . . , (q)

] ⊆ ΩHk

is a prime ideal.

Proof. We show this by an induction on k. If k = 0, then (q) ⊆ Ωe ∼= Z is indeed a prime ideal.
When k � 1, suppose Sk−1(q) ⊆ ΩHk−1 is prime. It suffices to show Sk(q) = [(q), . . . , (q)] satis-

fies P(k). Namely, we only have to show the following.

Claim 6.3. For any 0 � i � k, any a ∈ Lk(q) and any b ∈ Li(q) \ (q),

a · jndk
i (b) ∈ (q) ⇒ a ∈ (q)

holds.

Proof. Since Lk(q) = Jk,k−1(q), a can be written as

a = qβ + mFk,k−1 (β ∈ Rk, m ∈ Z)

by Proposition 5.5.
Similarly by Proposition 5.5, b ∈ Li(q) = J i,i−1(q) can be written in the form

b = q

(
ni +

i−2∑
j=0

n j Fi, j

)
+ ni−1 Fi,i−1

= q

(
ni −

i−2∑
j=0

n j pi− j

)
− pni−1 +

i−2∑
j=0

n jqXi, j + ni−1 Xi,i−1

for some n j ∈ Z (0 � j � i). If we put n′
i = ni −∑i−2

j=0 n j pi− j , then we have

jndk
i (b) = (

qn′
i − pni−1

)+
k−1∑
t=0

ut Xk,t

for some ut ∈ Z (0 � t < k), by Corollary 2.4.
Now we have

a · jndk
i (b) = q

(
β · jndk

i (b)
) + (

qn′
i − pni−1

)
mFk,k−1.

This satisfies a · jndk
i (b) ∈ (q) if and only if

pni−1mFk,k−1 ∈ (q),

which is equivalent to pni−1m ∈ qZ by Proposition 5.2. Since b is not in (q), ni−1 is not divisible by q.
Thus it follows m ∈ qZ, which means a ∈ (q). �



H. Nakaoka / Journal of Algebra 398 (2014) 21–54 43
Proposition 6.4. In ΩH�
, there are exactly (� + 1) ideals over (q) ⊆ R0

S�(q)� LS�−1(q)� · · · � L�−kSk(q) � · · ·� L�(q), (6.1)

all of which are prime.

Proof. By Proposition 6.2 and Corollary 4.8, these are prime.
We show the proposition by an induction on �. Suppose we have done for � − 1, and take any

ideal I = [I0, . . . , I�] ⊆ ΩH�
over (q) ⊆ R0. By the assumption of the induction, there exists some

0 � k � � − 1 satisfying

I |H�−1 = L�−k−1Sk(q).

If k � � − 2, then I� should satisfy

I� = S L�−k−1 Sk(q) = L�−k Sk(q) = J�,k(q)

by Proposition 6.1, and thus I =L�−kSk(q).
If k = � − 1, then I� should satisfy

S�(q) ⊆ I� ⊆ L S�−1(q).

Since there is no ideal between S�(q) = (q) and L S�−1(q) = J�,�−1(q) by Proposition 5.6, we have

I� = S�(q) or L S�−1(q),

namely

I = S�(q) or LS�−1(q). �
6.2. Prime ideals over p

Proposition 6.5. Consider an ideal in R� , obtained from (p) ⊆ R0 by an iterated application of L and S

Sa1 Lb1 Sa2 Lb2 · · · Sas Lbs (p) ⊆ R�

for ai,bi ∈ N�0 satisfying
∑s

i=1 ai + ∑s
i=1 bi = �. Then this depends only on k = ∑s

i=1 ai (0 � k � �), and is
equal to J�,0(pk+1). Namely we have

Sa1 Lb1 Sa2 Lb2 · · · Sas Lbs (p) = Sk L�−k(p)

= L�−k Sk(p) = J�,0
(

pk+1).
Proof. By an induction on �, this immediately follows from Proposition 5.6. �
Corollary 6.6. For any 1 � � � r, any ideal I = [I0 = (p), I1, . . . , I�] of ΩH�

over (p) satisfies

(1) Ii = S(Ii−1) or Ii = L(Ii−1),
(2) Ii = J i,0(pk+1) for some 0 � k � i

for each 1 � i � �.
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Proof. We proceed by an induction on �. Suppose we have shown for � − 1. Then, any ideal I =
[(p), I1, . . . , I�] should satisfy

I�−1 = J�−1,0
(

pk+1)
for some 0 � k � � − 1. Then by Proposition 5.6, I� should lie between S(I�−1) = J�,0(pk+2) and
L(I�−1) = J�,0(pk+1), while there is no ideal between them. Thus I� should agree with S(I�−1) =
J�,0(pk+2) or L(I�−1) = J�,0(pk+1). �
Proposition 6.7. Among all the ideals of ΩH�

over (p) determined in Corollary 6.6,

L�(p) = [
(p), J1,0(p), . . . , J�,0(p)

]
is the only one prime ideal.

Proof. L�(p) is prime by Corollary 4.8. Remark that any other ideal I = [I0 = (p), I1, . . . , I�] should
satisfy Ik = S(Ik−1) for some 1 � k � �. If we take the smallest such k, then it satisfies

Ik−1 = Jk−1,0(p) and Ik = Jk,0
(

p2).
Then P(k) fails for I . In fact, for

a = b = p ∈ L(Ik−1) = Jk,0(p),

we have ab = p2 ∈ Jk,0(p2), while neither a nor b belong to Ik . �
6.3. Prime ideals over 0

Proposition 6.8. We have the following.

(1) For any k � 0, we have

Sk(0) = (0).

(2) For any 1 � � � r and 0 � k � �, we have

L�−k Sk(0) = J�,k(0) ⊆ R�.

(3) For any 1 � � � r and 0 � k � � − 2, we have

S L�−k−1 Sk(0) = L�−k Sk(0).

Proof. Similarly to Proposition 6.1, this follows from Proposition 5.6 by an induction. �
Proposition 6.9. For any 0 � k � r,

Sk(0) = [0, . . . ,0] = 0 ⊆ ΩHk

is prime.
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Proof. This is shown in a similar way as in Proposition 6.2. More generally, for any finite group G , it
was shown that the zero ideal 0 ⊆ ΩG is prime (Theorem 4.40 in [7]). �
Lemma 6.10. For any 1 � � � r and 0 � k � � − 1, any ideal I satisfying

J�,k+1(0) ⊆ I ⊆ J�,k(0)

is of the form

I = J�,k+1(0) + (nF�,k)

= (nF�,k, F�,k+1, F�,k+2, . . . , F�,�−1)

for some n ∈ Z.

Proof. By Proposition 5.5, we have

J�,k(0) =
{

�−1∑
i=k

ni F�,i

∣∣∣ ni ∈ Z (k � i � � − 1)

}
,

J�,k+1(0) =
{

�−1∑
i=k+1

ni F�,i

∣∣∣ ni ∈ Z (k + 1 � i � � − 1)

}
.

When I �= J�,k+1(0), if we put

n = min{n ∈ N>0 | nF�,k ∈ I},

then we can show easily

I = J�,k+1(0) + (nF�,k). �
Proposition 6.11. In ΩH�

, there are exactly � + 1 prime ideals

0 � L(0) � L2(0) � · · · � L�(0)

over (0) ⊆ R0 .
Here, Lk(0) is the ideal obtained by a k-times application of L to 0 ⊆ ΩH�−k , for each 0 � k � �.

Proof. By Corollary 4.8 and Proposition 6.9, each Lk(0) is prime.
We show the proposition by an induction on �. Suppose we have done for � − 1, and take any

prime ideal I = [I0, . . . , I�] ⊆ ΩH�
over 0 ⊆ R0. Since I |H�−1 is prime by Corollary 4.7, we have

I |H�−1 =Lk(0) on H�−1 for some 0 � k � � − 1, namely

[I0, . . . , I�−1] = [
0, . . . ,0, L(0), . . . , Lk(0)

]
.

If k � 1, then Proposition 6.8 shows

S(I�−1) = S Lk(0) = Lk+1(0) = L(I�−1),

and thus I� should be equal to Lk+1(0). This means I =Lk+1(0).
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If k = 0, then I� should satisfy

0 ⊆ I� ⊆ L�(0) = (F�,�−1).

By Lemma 6.10, there exists n ∈ N�0 satisfying I� = (nF�,�−1). Thus it suffices to show that I =
[0, . . . ,0, (nF�,�−1)] ⊆ ΩH�

is not prime unless n = 0 or 1.
Suppose I is prime for some n �= 0. Then for a = F�,�−1 and b = n ∈ R0 \ (0), since we have

a · jnd�
0(�) = F�,�−1 ·

(
n +

�−1∑
i=0

mi X�,i

)
(for some mi ∈ Z)

= nF�,�−1 ∈ I�,

we obtain F�,�−1 ∈ I� by P(�). This implies I�−1 = J�,�−1(0) and n = 1. �
6.4. Total picture

Putting Propositions 6.4, 6.7, 6.11 together, we obtain the following.

Theorem 6.12. Let G be a cyclic p-group of order pr . The prime ideals of ΩG ∈ Ob(Tam(G)) are as follows.

(i) Over (q) ⊆ R0 , there are r + 1 prime ideals

Sr(q)� LSr−1(q)� · · · � Lr(q).

(ii) Over (p) ⊆ R0 , there is only one prime ideal Lr(p).
(iii) Over 0 ⊆ R0 , there are r + 1 prime ideals

0 � L(0)� · · · � Lr(0).

Thus we have

Spec ΩG = {
Lr(p)

} ∪ {
Li(0)

∣∣ 0 � i � r
}

∪ {
LiSr−i(q)

∣∣ 0 � i � r, q is a prime different from p
}
.

For each 0 � i � r, there is an inclusion Li(0) � LiSr−i(q), while we have L j(0) � LiSr−i(q) for any
j > i. Moreover, we have

Lr(0) ⊆ Lr(p), Lr(p) � Lr(q), Lr(q)� Lr(p).

Corollary 6.13. The longest sequence of prime ideals of ΩG is of length r + 1, such as

0 � Sr(q)� LSr−1(q) � · · · � Lr(q),

and thus the dimension of Spec ΩG , which we denote simply by dimΩG , is

dimΩG = r + 1.



H. Nakaoka / Journal of Algebra 398 (2014) 21–54 47
Fig. 1. Spec Ω for G = Z/pZ.

Let us draw some picture of Spec ΩG , by indicating the closures of points. If r = 1 and G is a group
of prime order p, then the picture will become as follows (§3.7 in [10]).

Example 6.14. Let G be the group of order p. Then we have

Spec Ω = {
L(p)

}∪ {0} ∪ {
L(0)

}
∪ {

S(q)
∣∣ q ∈ Z is prime, q �= p

}∪ {
L(q)

∣∣ q ∈ Z is prime, q �= p
}
.

Inclusions are

(0) � L(0) � L(p)

�

S(q)

�

� L(q) (q �=p).

Especially, the dimension is 2. L(p) and L(q)’s are the closed points, and 0 is the generic point in
Spec Ω . If we represent the points in Spec Ω by their closures, Spec Ω with fibration F can be depicted
as in Fig. 1.

A similar description is also possible for an arbitrary r. Lr(p) and Lr(q)’s are the closed points,
and 0 is the generic point in Spec Ω . The picture becomes as in Fig. 2.

6.5. Topology on Spec Ω

It is also possible to determine all the closed subsets of Spec Ω . Throughout, let G be a cyclic
p-group of order pr .

First, we remark that the closed subsets in the closed fibers are determined by Theorem 6.12.

Remark 6.15. For any prime integer q �= 0, any closed subset in the fiber F −1(q) is irreducible of the
form V (I ) for some prime ideal I ∈ F −1(q). Moreover for each q, these are totally ordered with
respect to the inclusion.

Proof. If q = p, this is trivial. For q �= p, by Theorem 6.12, the set of prime ideals in F −1(q) is totally
ordered as

Sr(q)� LSr−1(q)� · · · � Lr(q).
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Fig. 2. Spec Ω for G = Z/pr
Z.

For any closed subset V ⊆ F −1(q), put

k0 = min
{
k
∣∣ LkSr−k(q) ∈ V

}
.

Since V should contain the closure of the singleton {Lk0Sr−k0 (q)}, which is

V
(
Lk0Sr−k0(q)

) = {
LkSr−k(q)

∣∣ k0 � k � r
}
,

we have

V ⊆ V
(
Lk0Sr−k0(q)

) ⊆ V ,

and thus obtain V = V (Lk0Sr−k0 (q)). This means that V is irreducible, and the closed sets in F −1(q)

are totally ordered as

V
(
Sr(q)

)
� V

(
LSr−1(q)

)
� · · · � V

(
Lr(q)

)
. �

Remark that there also exist closed sets in Spec Ω ‘transverse’ to fibers.

Remark 6.16. For each 0 � t � r, we have an irreducible closed subset

V
(
Lr−t(0)

) ⊆ Spec Ω.

We show that any closed subset V of Spec Ω can be written as a union of closed sets given in
Remarks 6.15 and 6.16. In fact, this gives the irreducible decomposition of V .

Remark that any closed subset in Spec Ω is, by definition, of the form V (I ) for some ideal I ⊆ Ω .

Proposition 6.17. Let I = [I0, . . . , Ir] be any ideal in Ω . If we put

t0 = min{t | It �= 0} − 1

and
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PI = {
q ∈ Z>0, prime

∣∣ (V (I ) − V
(
Lr−t0(0)

))∩ F −1(q) �= ∅},
then we have the following. (When t0 = −1, we put V (Lr+10 (0)) = ∅.)

(1) PI is a finite set.
(2) V (I ) = V (Lr−t0 (0)) ∪ (

⋃
q∈PI

Vq(I )), where Vq(I ) = V (I ) ∩ F −1(q). This gives the irreducible
decomposition of V (I ).

Proof. Since (2) follows immediately from (1), we only show (1). For any prime q ∈ Z>0, remark that
we have

F −1(q) − V
(
Lr−t0(0)

) = {
Lr−kSk(q)

∣∣ t0 < k � r
}

and Lr−t0−1St0+1(q) is the largest in this set.
Thus q satisfies

(
V (I ) − V

(
Lr−t0

)) ∩ F −1(q) �= ∅

if and only if it satisfies

V (I ) � Lr−t0−1St0+1(q),

which is equivalent to I ⊆Lr−t0−1St0+1(q).
Since we have

I = [0, . . . ,0︸ ︷︷ ︸
t0

, It0+1, It0+2, . . . , Ir],

Lr−t0−1St0+1(q) = [
(q), . . . , (q), (q)︸ ︷︷ ︸

t0+1

, L(q), . . . , Lr−t0−1(q)
]
,

this means It0+1 ⊆ (q). Thus we have

0 �= It0+1 ⊆
⋂

q∈PI

(q)

in Rt0+1, which implies that PI is finite. �
Remark 6.18. Since Spec Ω is a spectral space in the sense of [5], it should be homeomorphic to a
prime spectrum of a commutative ring. However it will not be so easy to construct the ring which
plays this role.

Nevertheless, we can find some relationship with the prime spectrum Spec Ω(G) of the Burnside
ring Ω(G).
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6.6. Relation to Spec Ω(G)

A celebrated Dress’ theorem [3] states that the prime spectrum of the Burnside ring Ω(G) detects
the solvability of a finite group G . It would be a natural question whether Spec Ω(G) and our Spec Ω

are related in some way. In the case of a cyclic p-group, we can construct an ad hoc continuous map
Spec Ω(G) → Spec Ω , which is bijective as a map of sets.

In fact, Dress’ result gives the whole picture of Spec Ω(G) as follows.

Fact 6.19. Let G be a cyclic p-group of order pr , and let

ρ = (ρHk )0�k�r : Ω(G) →
∏

0�k�r

Z

be the mark morphism. Then any prime ideal in Ω(G) is of the form

pk,q = ρ−1
Hk

(q),

where q ∈ Z is 0 or a prime, and k is an integer satisfying 0 � k � r. Remark that ρHk is given by

ρHk =
(

Ω(G) = Rr
resr

k−−→ Rk =
⊕

0�i�k

ZXk,i → Z

)
,

where the last map is given by
∑

i mi Xk,i �→ mk . Thus we have

pk,q =
{

r∑
i=0

mi Xr,i ∈ Rr

∣∣∣ r∑
i=k

(
mi pr−i) ∈ qZ

}

=
{

(q, Fr,r−1, . . . , Fr,k, Xr,k−1, . . . , Xr,0) (q �= p),

(p, Fr,r−1, . . . , Fr,0) (q = p).

In particular pk,p does not depend on k. We denote this simply by pp . No other prime ideal equals to
any other. The only inclusions among these ideals are

pk,0 ⊆ pk,q (0 � k � r, q �= 0, p),

pk,0 ⊆ pp (0 � k � r).

Also remark that there is a canonical continuous map E : Spec Ω(G) → SpecZ induced from the ring
homomorphism Z → Ω(G). The fibers of E are

E−1(0) = {pk,0 | 0 � k � r},
E−1(q) = {pk,q | 0 � k � r} (q �= 0, p),

E−1(p) = {pp}.

All points in E−1(q) and E−1(p) are the closed points in Spec Ω(G).
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Corollary 6.20. If we define f : Spec Ω(G) → Spec Ω by

f (pk,q) = Lr−kSk(q) (q �= 0, p),

f (pk,0) = Lr−k(0),

f (pp) = Lr(p),

then f is a continuous bijective (not homeomorphic) map, which makes the following diagram commutative.

Spec Ω(G) Spec Ω

SpecZ

f

E F
�

Proof. This immediately follows from Theorem 6.12, Proposition 6.17 and Fact 6.19. �
Appendix A. An inductive calculation of jnd, when G is abelian

We demonstrate how to calculate the multiplicative transfers of Ω inductively, when G is an
abelian group. This will show Corollary 2.4. A detailed investigation of an exponential map will be
found in [14]. A more clear argument using Möbius inversion will be found in [11].

Since jndL
H : ΩL(L/H) → ΩL(L/L) and jndL

H : ΩG(G/H) → ΩG(G/L) are essentially equal for H �
L � G , we may assume L = G from the first, and calculate jndG

H : ΩG(G/H) → ΩG(G/G) for any H � G .
Remark that any element in ΩH (H/H) is of the form

∑
I�H mI H/I for some mI ∈ Z (I � H), and is

identified with
∑

I�H mI (G/I
prH

I−−−→ G/H) ∈ ΩG(G/H). If each mI satisfies mI � 0, this is equal to

(
∐

I�H (�mI G/I) Pr−−→ G/H) in ΩG(G/H), where Pr is the union of the projections G/I
prH

I−−−→ G/H .

Remark that jndG
H : ΩG(G/H) → ΩG(G/G) is a polynomial map [15] as in the following. (As for

polynomial maps, see [4].)

Fact A.1. There exist polynomials

P K ∈ Z[mI | I � H] (K � G)

which satisfy

jndG
H

( ∑
I�H

mI
(
G/I

prH
I−−→ G/H

)) =
∑
K�G

P K
({mI }I�H

)
G/K (A.1)

for any {mI }I�H .

In particular if we obtain polynomials P K which satisfy (A.1) whenever {mI }I satisfies mI � 0
(∀ I � H), then (A.1) should hold for any {mI }I�H with these P K ’s. Now we calculate P K , for
each K � G . Let

∑
I�H mI H/I ∈ ΩH (H/H) be any element satisfying mI � 0 (∀ I � H), and de-

note the corresponding G-set
∐

I�H (�mI G/I) by A. By the definition of jndG
H = Ω•(prG

H ), the G-set

S = jndG
H (A Pr−−→ G/H) is given by
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S = {
(y, s)

∣∣ y ∈ G/G, s ∈ Map
((

prG
H

)−1
(y), A

)
, Pr ◦ s = idG/H

}
= {

s ∈ Map(G/H, A)
∣∣ Pr ◦ s = idG/H

}
= {

s ∈ Map(G/H, A)
∣∣ s is a section of Pr

}
(remark that G/G consists of only one element). The set S is equipped with a G-action

g s(x) = gs
(

g−1x
) (∀g ∈ G, ∀s ∈ S, ∀x ∈ G/H

)
.

Definition A.2. Let G , H , A, S be as above. For each K � G , define c(K ) ∈ Z by

c(K ) = 
{s ∈ S | Gs = K }.

Then, since G is abelian, the number of G-orbits in S isomorphic to G/K should be equal to c(K )
|G:K | ,

and thus we have

S =
∑
K�G

c(K )

|G : K | G/K ,

namely, P K = c(K )
|G:K | . Thus it remains to calculate c(K ).

Since G is abelian, we have the following.

Remark A.3. If we decompose G/K into K -orbits

G/H = X1 � · · · � Xr(K ),

then r(K ) = |K\G/H | = |G : K H |, and each Xi is isomorphic to

K H/H ∼= K/(K ∩ H). (A.2)

Fix an element xi ∈ Xi for each 1 � i � r(K ). Then, we have the following.

Proposition A.4. For any element s ∈ S, the following are equivalent.

(1) K � Gs.
(2) For any 1 � i � r(K ) and any k ∈ K , we have

ks(xi) = s(kxi). (A.3)

Proof. By definition, K � Gs holds if and only if for any 1 � i � r(K ), any x ∈ Xi and any k ∈ K ,

ks(x) = s(x) (A.4)

is satisfied. Since Xi is K -transitive, there is some k′ ∈ K satisfying x = k′xi . Then (A.4) is written as

ks
(
k−1k′xi

) = s
(
k′xi

)
.

This is easily shown to be equivalent to (2). �
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Corollary A.5. Let G, H, A, S be as above. For each K � G, there is a bijection

{s ∈ S | Gs � K } ∼=
∏

1�i�r(K )

( ∐
I�H

( �
mI

{
si ∈ G/I

∣∣ prH
I (si) = xi, Ksi = Kxi

}))
.

Proof. By Proposition A.4, the set of s ∈ S satisfying Gs � K is determined by the values s(xi) (1 � i �
r(K )). In fact, to a set of elements s1, . . . , sr(K ) ∈ A, we may associate a map s : G/H → A satisfying
s(xi) = si , by using (A.3). This map s becomes well-defined if and only if Kxi � Ksi is satisfied for
any i. Moreover, we see that the following are equivalent.

(i) s is a section of Pr : A → G/H , and satisfies Gs � K .
(ii) Pr(si) = xi (1 � ∀i � r(K )), and Ksi = Kxi .

Thus, to give an element in {s ∈ S | Gs � K } is equivalent to give a set of elements s1, . . . , sr(K ) ∈ A
satisfying (ii). Namely, we have a bijection

{s ∈ S | Gs � K } ∼=
∏

1�i�r(K )

{
si ∈ A

∣∣ Pr(si) = xi, Ksi = Kxi

}

=
∏

1�i�r(K )

( ∐
I�H

( �
mI

{
si ∈ G/I

∣∣ prH
I (si) = xi, Ksi = Kxi

}))
. �

Corollary A.6. For any K � G, we have


{s ∈ S | Gs � K } =
( ∑

(K∩H)�I�H

mI |H : I|
)r(K )

.

Consequently, we can calculate c(K ) inductively by

c(K ) =
( ∑

(K∩H)�I�H

mI |H : I|
)r(K )

−
∑

K<L�G

c(L).

Proof. Since G is abelian, we have Kxi = K ∩ H by (A.2). Similarly, for each si ∈ G/I , we have Ksi =
K ∩ I . Since I � H , we obtain

Kxi = Ksi ⇔ K ∩ H = K ∩ I ⇔ K ∩ H � I.

As a consequence, the bijection in Corollary A.5 is reduced to

{s ∈ S | Gs � K } ∼=
∏

1�i�r(K )

( ∐
(K∩H)�I�H

( �
mI

{
si ∈ G/I

∣∣ prH
I (si) = xi

}))
.

Since the fiber (prH
I )−1(xi) has |H : I| elements, it follows


{s ∈ S | Gs � K } =
∏

1�i�r(K )

( ∑
(K∩H)�I�H

(
mI |H : I|))

=
( ∑

(K∩H)�I�H

mI |H : I|
)r(K )

. �
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Example A.7. When G = Z/p�Z, let Hk � G be the subgroup of order pk;

e = H0 < H1 < · · · < H� = G.

For H = Hk , we can determine c(H j) (0 � j � �) of jndG
H (

∑
0�i�k mi H/Hi) as follows.

By Corollary A.6, for each 0 � j � � we have

c(H j) =

⎧⎪⎪⎨
⎪⎪⎩

mk, j = r,

(mk)
p�− j − (mk)

p�− j−1
, k � j < r,

(
∑k

s= jms pk−s)p�−k − (
∑k

s= j+1ms pk−s)p�−k
, 0 � j < k,

which leads to Corollary 2.4.
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