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1. Introduction and preliminaries

Tambara functors on a finite group G were firstly defined by Tambara [13] under the name ‘TNR-
functors’, to treat the multiplicative transfers of Green functors. The terminology Tambara functor
firstly appeared in Brun’s paper, when he used it to describe the structure of Witt-Burnside rings [2].
It consists of a triplet T = (T*, T+, T,), where the additive part (T*,T+) forms a Mackey functor,
whereas the multiplicative part (T*, T,) forms a semi-Mackey functor. This is just like a commuta-
tive ring consists of an additive abelian group structure and a multiplicative commutative semi-group
structure. In fact a Tambara functor is nothing but a commutative ring when G is trivial. In this sense,
this notion is regarded as a Mackey-functor-theoretic analog (or, ‘G-bivariant analog’) of a commuta-
tive ring [16].

In this analogy, some algebraic notions in commutative ring theory find their analogs in Tam-
bara functor theory. We have ideals [7], fractions [6], and polynomials [8] of Tambara functors. These
are mutually related, as they should be, and moreover in connection with the celebrated Dress
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construction [12,9]. The most typical Tambara functor is the Burnside Tambara functor 2¢ (Exam-
ple 1.4), which plays a role just like Z in the ordinary commutative ring theory.

Especially, in the G-bivariant analog of the ideal theory, the prime spectrum SpecT has been de-
fined for any Tambara functor T. In our previous short note [10], we have demonstrated a calculation
of the prime spectrum of §2¢, when G is a group of prime order p. In this article, extending the
method in [10], we calculate Spec 2 when G is a cyclic p-group for a prime integer p. To determine
the prime ideals of £2¢, the key observation is that the set of subgroups of G is totally ordered

e=Ho<Hi<---<H; =G,

and thus £2¢ can be regarded as a sequence of commutative rings equipped with adjacent structure
morphisms

ind ind ind ind ind ind
—
Ro ~<res— Ry —<res— Ry <res— ... <-tes— R <-tes— .- <-T1es— Ry,
e
jnd jnd jnd jnd jnd jnd

where Ry = £2¢(G/H). With this identification, an ideal of £2¢ can be regarded as a sequence
[Ig, ..., I;] of ideals I, C Ry. A sequence [Io,...,I;] forms an ideal of £2¢ if and only if the condi-
tion

Z(k)| ind¥_; (Ie—1) € I, resk_ (1) € Ix—1, jnds_ (Ie—1) € Iy

is satisfied for each 1 <k <r (Corollary 3.3). The restriction of an ideal .# =[Iq, ..., I] of £2y, onto
H; is given by #|y; = [lo, ..., ;] for any 0 <i<k. On the contrary, we can consider an extension
of .# onto Hjyq, namely, an ideal .#" of 2y, satisfying .#’|y, = .#. In particular, the largest and
the smallest among such .#’ are explicitly given by £.# and S.# in Definition 3.5. This allows us an
inductive construction of ideals in £2¢.

Whether an ideal .# =[Iy, ..., I;] is prime or not can be also checked inductively on k. In fact, it
is prime if and only if the condition

P(k)| For any 0 < i<k, ae(ress_ )"'(I_1) and b e (res._)~1(Ii_1) \ Ij,

a -jnd{-‘(b) ely, = acl.
is satisfied for each 0 < k <r (Proposition 4.4). Consequently, any restriction .# |y, of a prime ideal
& =[lo, ..., It] € 24, is again prime. Especially I should be a prime ideal in Rg = Z, and thus equal
to 0, (p), or (q) for some prime integer q # p. By determining prime ideals over 0, (p), (g), namely,

prime ideals .# =[Io, ..., I] satisfying Iy =0, (p), (q) respectively, we obtain the following result. In
particular, the dimension of §2¢ is calculated as dim £2¢ =1+ 1 (Corollary 6.13).

Theorem 1.1. Let G be a cyclic p-group of order p". The prime ideals of £2¢ € Ob(Tam(G)) are as follows.
(i) Over (q) < Ry, there are r + 1 prime ideals
S@cLs s L@

(ii) Over (p) C Ry, there is only one prime ideal L' (p).
(iii) Over O C Ry, there are r + 1 prime ideals

0CLO)C - C L)
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Thus we have

Spec2¢ = {L"(p)} UL () [0 <i<r}

U{£'S"(q) | 0 <i<r, qisaprime different from p}.

Throughout this article, the unit of a finite group G will be denoted by e. Abbreviately we denote
the trivial subgroup of G by e, instead of {e}. The notation H < G means H is a subgroup of G.
The symbol ¢set denotes the category of finite G-sets and G-equivariant maps. If H < G and g € G,
then £H denotes the conjugate 8H = gHg~!. Similarly, H® = g~'Hg. A monoid is always assumed
to be unitary and commutative. Similarly a ring is assumed to be commutative, with an additive
unit 0 and a multiplicative unit 1. We denote the category of monoids by Mon, the category of rings
by Ring. A monoid homomorphism preserves units, and a ring homomorphism preserves 1. For any
category %4 and any pair of objects X and Y in %, the set of morphisms from X to Y in % is denoted
by €(X.Y).

We briefly recall the definition of a Tambara functor.

Definition 1.2. (See [13].) A Tambara functor T on G is a triplet T = (T*, T4, T,) of two covariant
functors

T+ : gset — Set, T, : gset — Set

and one contravariant functor

T*: gset — Set
which satisfies the following. Here Set is the category of sets.

(1) T* =(T*, T4) is a Mackey functor on G.

(2) TH =(T*, T,) is a semi-Mackey functor on G.
Since T, T* are semi-Mackey functors, we have T*(X) = T+ (X) = T(X) for each X € Ob(gset).
We denote this by T (X).

(3) (Distributive law) If we are given an exponential diagram

p A
<~ A <—

X VA
fl exp J/p
Y B

-
q
in gset, then
T+(p) T*()
T(X) T(A) T(Z)
Te(f) l O l Te(p)
T(Y) T(B)
T+ (@

is commutative. For the definition and basic properties of exponential diagrams, see [13].
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If T=(T*T4,T,) is a Tambara functor, then T(X) becomes a ring for each X € Ob(gset) [13].
Since T% is a Mackey functor, by definition T is ‘additive’, in the sense that for any Xi, X, € Ob(gset),
the inclusions ¢1 : X1 < X7 I X3 and ¢ : X2 — Xj U X, induce a natural isomorphism of rings
(T*(t1), T*(t2)) : T(X7 U X3) = T(X1) x T(X2). For each f € ¢gset(X,Y),

o T*(f): T(Y)— T(X) is a ring homomorphism, called the restriction along f,
o T (f):T(X)— T(Y) is an additive homomorphism, called the additive transfer along f,
o To(f): T(X)— T(Y) is a multiplicative homomorphism, called the multiplicative transfer along f.

T*(f), T+(f), To(f) are often abbreviated to f*, f, f,.

Remark 1.3. If f is the natural projection prf? :G/K — G/H for some K < H <G, then f*, fy, f, is
written as

resif = (prf})”,

H
K
- qH H
indg = (er)+*
Jnd;-(l = (pr%)o
For a conjugate map c¢g; : G/H® — G/H, we define cgy : T(G/H) — T(G/HE) (or simply
cg : T(G/H) — T(G/H%)) by
cg.n =T"(cg).
If g belongs to the normalizer Ng(H) of H in G, then this gives an automorphism cg y : T(G/H) —
T(G/H). With this Ng(H)-action, every T(G/H) becomes an N¢(H)/H-ring.
Since any G-map is a union of compositions of natural projections and conjugate maps, the

structure morphisms of a Tambara functor are completely determined by resf(’, indf(’, jnd?, cg.y for
K < H <G, gegG, by virtue of the additivity.

Example 1.4. If we define 2¢ by

£2¢6(X) = Ko(gset/X)

for each X € Ob(gset), where the right-hand side is the Grothendieck ring of the category of finite
G-sets over X, then £2¢ becomes a Tambara functor on G [13]. This is called the Burnside Tambara
functor. For each f € gset(X,Y),

fo:826(X) — £26(Y)
is the one determined by
foA % X)= (M5 (A) Z>Y) ("(A S X) e Ob(cset/X)),

where [T¢(A) and w are

yevy,

Mf(A) = (y,o)‘a:f—1(y)—>Aisamapofsets, ,
pooO :idf—l(y)

w(y,0)=}y.
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G acts on I1;(A) by g-(y,0) = (gy,%0), where 8o is the map defined by

So(x)=go(g7'x) ("xe fl(gy).

fi:926(X) = £2¢(Y) is an additive homomorphism satisfying

FrAB X =L y) (Y(AB X)eob(set/x)).

f* is defined by using a fiber product [13]. Namely, the Mackey-functor structure on the additive part
of £2 is the usual one as in [1].

Remark 1.5. For any K < H < G, we have a natural isomorphism (cf. [1]) £2¢(G/K) = £2y4(H/K), and
we will identify them through this isomorphism.

We often abbreviate £2¢ to £2, if the base group is obvious from the context.
2. The Burnside Tambara functor on a cyclic p-group

Throughout this article, we fix a prime number p. Let G be a cyclic p-group of order p", and let
Hy < G be its subgroup of order p* for each 0 <k <r. In the following argument, without loss of
generality we may assume

G=Z/p'Z,  Hy=p *z/p'Z,
e=Ho<Hi<---<Hy<---<H,=6G.

Then the G-set G/Hy is canonically isomorphic to Z/p"~¥7Z, and the natural projection

pri
G/Hy =5 G/Hy (k<)

is identified with a map given by

Z)p" %2 — 7/p""*Z; amod p"*Z+> amod p"¢Z

for any a € Z.
Since G is commutative, each §2(G/Hy) has a trivial G-action, and admits a natural Z-basis

K
[G/H 25 G/H [0<i<k).

ok
Thus if we denote (G/H; RSN G/Hy) by Xy, then it is a free Z-module

2G/H) = P ZXu

0<i<k

with a trivial G-action. Therefore, if we put Ry = ®0<i<k ZXk i, then the Tambara functor £2¢ is
regarded just as a sequence of commutative rings R, and structure morphisms
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ind} ind? ind3 indf_, indf ! ind’_,
—_—
Ro <res)— R <res’— Ry —<ress— --- -eresL]; Ry -eres’;“t <. <rtess_ - R,
—_—
gl - L3 . . g
jnd} jnd3 jnd3 jndf_, jnd<H! jnd;_4

satisfying conditions in Definition 1.2. Here, indﬁq, resﬁ 1 jndﬁf1 are the abbreviations of indZ" ,

— k-1
resf,ii] , jndZtil. We use similar abbreviations in the rest. Remark that any structure morphism of £2¢
can be realized as a composition of these morphisms.

Remark 2.1. By virtue of Remark 1.5, the first k-terms

ind} ind? ind3 inds_,
Ro <resi— Ry <res’— Ry <res3— --- -eres‘§7( Ry (2.1)
jnd} jnd? jnd3 jndf_,

can be regarded as a sequence representing the Tambara functor £2y,. We always work under this
identification in this paper. With this identification, forgetting the entire group G, we can regard the

Burnside Tambara functor £y, on a cyclic p-group Hy of order pk, simply as a length k sequence of

rings (2.1) obtained inductively by adding Ry, indfj_p res;j_l, jndf_1 to the length k — 1 sequence

ind} ind? ind;::;
Ro <resi— Ry =<resj— -+ —<resi)— Rp_q
jnd} jnd? jnd72

corresponding to £2y, ,. This observation enables us an inductive construction of ideals of in £2.

We go on to describe Rj and the structure morphisms. As above, we have Ry = ®0<f<’< ZX; as
a module.

Remark 2.2. Additive transfer indﬁ : R — Ry is given by

indy (Xii) =Xei (0<i<k)
for each k < 4.
Proof. This is obvious. O

If we take a fiber product of pr’l.< :G/H;j — G/Hy and pr’j‘. :G/Hj— G/Hy

G/Hi %, G/H; — C/Hi

| o
G/Hi%k'G/Hk
pr;

where 0 < i, j <k, then by the Mackey decomposition formula, we have
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LIpx-i G/Hi (i< ).
G/Hi x G/Hj= .

2.2
G/H [p-i G/Hj (<. (22)

In any case, the cardinality of this G-set is
IG/Hi x G/Hj|=p" =+,
G/Hk
Eq. (2.2) is also written as

G/Hi x G/Hj= [] G/Hminij-
G/Hy

pk—max(i.j)
As a corollary, we obtain the following.

Corollary 2.3. For any 0 < k < r, the following holds.

(1) Foranyi, j <k,

in Ry. In particular, Xy, = 1 is the unit of Ry. In fact, Ry is written as the residue ring of the polynomial
ring Z[Xk,i | 0 <i < k] over indeterminates X ; (0 <i < k), by the ideal generated by

{Xik — YU {XkiXe j — P DXy min jy | 0< 1, j <k}

(2) Forany £ >k, resﬁ : Ry — Ry is given by

—k ;
P Xy i i<k,
resXed =1
P Xkk=Dp i=k).
As for multiplicative transfers, we need some calculation. For the detail, see Appendix A.
Corollary 2.4. For any £ >k, jndf : Ry — Ry is given by
i—1

—i £—
g (m?  — (my)P
indg( YD miXei ) =mXee+ Y Xei

Pt
0<i<k ki<t

t—k k k— £~k
- (Zs=i+1 msp S)p

pK—i

k k—s\p
—_jm
n Z (Qs=imsp*™*) Xoi

0<i<k

foranymg,...,my € Z.
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3. Ideals of £2 as a sequence

An ideal of a Tambara functor is defined in [7] as follows.

Definition 3.1. Let T be a Tambara functor. An ideal .# of T is a family of ideals {.#(X) €
T(X)}xeob(cser) satisfying

(i) fAIY) €I (X),

(il) f+(F (X)) S F(Y),
(iii) fo(F (X)) C fo(0) +.7(Y)
for any f € ¢gset(X,Y).

These conditions also imply

ﬂ(X] HXz) = ](X]) X .ﬂ(X2)

for any X7, X, € Ob(gset). From this, an ideal of T is determined by a family

{In =/(G/H)}H<G

of ideals Iy C T(G/H), indexed by the set of subgroups of G, as follows.

Proposition 3.2. Let T be a Tambara functor on G. To give an ideal .% of T is equivalent to give a family
{Iu}Hu<c of ideals Iy € T(G/H) satisfying the conditions

(i) rest (1) < Ik,
(i) indf (Ix) < In,
(iii) jnd (I) S In,
(iv) cg.H(In) S Ine

forany K <H<GandgeG.
Proof. This is straightforward (cf. Corollary 2.2 in [10]). O
In our particular case, an ideal of £2¢ is written as follows.

Corollary 3.3. Let G be a cyclic p-group of order p". An ideal .# of §2¢ is given by a sequence

ﬂ:[IOa"'vll’]
of ideals I, C Ry, satisfying the following condition Z(k) foreach 1 <k <r.
Z(k)] indf_; (Ik—1) S I, resk_, (I) S Ix—1, jndf_; (Tg—1) S I

Remark that for ideals .# = [Ip,...,I;] and _# =[]o,..., J;], we have .# C ¢ if and only if
I, € Ji holds for any 0 <k <.

In the following, we will simply say “[lo,...,Ir] is an ideal of £2p,” to mean that [lg,..., Ii]
satisfies Z(i) for any 1 <i < k. This makes sense by virtue of Remark 2.1. The restriction of an ideal
& =|[lyp, ..., Ix] of L2y, onto H; is given by [lo, ..., I;], for each 0 <i <k. We denote this by .#|y;.
Obviously, restriction preserves inclusions of ideals.
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On the contrary, Corollary 3.3 also enables us to extend an ideal [lp,..., Iy—1] of £y, , to an
ideal [Io, ..., Ix] of £2y,, by adding an ideal Iy C R; satisfying Z(k). Among the possible extensions
of [Io,...,Ix-1], the largest and the smallest are given as follows. If an ideal .#' C 2y, satisfies
S|, =¥ for a given ideal .# C 2y, then we say that .’ is an ideal over .#.

Proposition 3.4. For a fixed 1 < k <, suppose we are given an ideal ¥ =[lo, ..., Iy—1] of 24, _,.

(1) If we define Ly (Ix—1) = L(Ix—1) S Ri by

Ll 1) = (resk_ )™ (),

then [lo, ..., Ix_1, L(Ix—1)] is the largest ideal of 2p, over [lo, ..., Ix_1].
(2) Ifwe define Sy (Ix_1) = S(Ix—1) < Ry to be the ideal of Ry generated by

{indf_;(@) |ael_1} and {inds_ (@) |ael1},

shortly,

S(Ik-1) = (ind§_; (k1)) + (indf_; (k1))
then [lo, ..., Ix—1, SUk—1)] is the smallest ideal of 2y, over [lg, ..., Iy_1].

Definition 3.5. For an ideal .# =[lo, ..., Ix—1] of 2y,_,, define ideals Ly () =L.¥ and S(I)=SI
of 2y, by

L7 =[lo,.... kw1, L1)],

S =[lo, ..., k=1, SUk=1)],
where L(Ix_1) and S(Ix_1) are those in Proposition 3.4. Additionally, we denote the n-times iterations
of L, S, £, S by L", S" and L", S". For example, an ideal .¥ = [lo, ..., Ix] € £y, yields L".¥ =
o, ..., I, L), - .o, L' (T)] S 24y,

Proof of Proposition 3.4. (1) To show L£.# is an ideal of £2p,, it suffices to confirm Z(k) is satisfied.
By definition, res§§71 (L(Ix—1)) € Ix_q is obvious. In addition, by the existence of a pullback diagram

v
U, G/Hy_y — G/Hi1

| o |

G/Hg-1 ——— G/Hy

Pri_q
where V : 1, G/Hi_1 — G/Hy_1 is the folding map, we have
resf_, oindf_, (@) = per,
resk_, ojndf_ () =aP

for any o € Ry. Thus if o € [;_q, then
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. -1
indf (@) e (resf_;)™ (1),
. -1
inds_ (@) e (resk )7 (ko)
hold. This shows indf_;(Ix_1) € L(Ix_1) and jndf_, (Ix_1) € L(Ix_1), and thus £.# is an ideal of 2y,.
Moreover, since any ideal [lo, ..., Ix_1, Ji] of £2y, should satisfy res§§_1(]k) C Ix_1, obviously L.7 is
the largest.
(2) It suffices to confirm S.¢ satisfies Z (k). Since res,jf1 is a ring homomorphism, resL](S(Ik_l)) -
I_1 follows from the fact that any o € I,_1 satisfies
resk - oindf () =pael
k—1 k—1 =p k—1>

ko .ok
res;_;ojndg_;(a) =P € 1.

The other conditions

indg_; (Ie—1) € SUk—1),

indg_; (k1) € SUr1)
are obviously satisfied by the definition of S(Ix_1). Thus S.¢ is an ideal of £2y,. Moreover, since any
ideal [lo, ..., Ix_1, Jk] of 2y, should satisfy indf_, (Ix_1) € Ji and jnd¥_, (Ix_1) € Jx, obviously S.#
is the smallest. O
4. Inductive criterion of primality

In [7], a prime ideal of a Tambara functor is defined as follows.

Definition 4.1. Let G be an arbitrary finite group, and let T be a Tambara functor on G. An ideal
# C T is prime if and only if the following two conditions become equivalent, for any transitive
X,Y € Ob(gset) and any a € T(X), b € T(Y).

(1) For any C € Ob(gset) and for any pair of diagrams

in gset, .#(C) satisfies

(vew™ (@) — v4(0)) - (vow'*(b) — v, (0)) € 7 (C).
2)ae A(X)orbe #(Y).
Remark that (2) always implies (1).

By a straightforward argument, we may assume C, D, D’ are transitive, and this condition can be
also written as follows.

Proposition 4.2. Let G be an arbitrary finite group, and let ¥ = {Iy}y<c be anideal of T. Then .# is prime
if and only if the following condition is satisfied for any H, H' < G and anya € T(G/H), b € T(G/H’).
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(%) If(jnd','(g oCg K ores,"(' (a)) - (jnd’l'<,g, oCg’ k' oresz,’ (a)) € I issatisfied forany L, K, K’ < Gand g, g’ € G
satisfying L > K8 K < H,L>K'&,K' < H', then

aely or bely
holds.
In our case, this can be reduced to the following condition.

Corollary 4.3. Let G be a cyclic p-group of order p" > 1. Anideal .% = [Io, ..., I;] of §2¢ is prime if and only
if it satisfies the following condition P (k, £) foreach0 < £ <k <.

Foranya € Ry and b € Ry,
(ind]" oresf(a)) - (jnd7 ores(b)) € Im  (0<Yi<k, 0<Yj <€, m=max(, j))
implies
ael, or bel,.

Proof. For any 0 < k,¢ <r and any a € Ry, b € Ry, the condition (%) in Proposition 4.2 is equivalent
to the following.

(%) If
(ind} ocg o resk (a)) - (indT ocgr o resf(b)) elp (4.1)
is satisfied for any g, g’ € G and any m > i <k, m > j < ¥, then

aely or bel,

holds.

Remark that we have ¢z =id, ¢y’ = id. Besides, by (iii) of Proposition 3.2, assumption (4.1) is only have
to be confirmed for m = max(i, j). Moreover, by the symmetry in k and ¢, we may assume £ <k. O

Furthermore, this condition can be checked on each k-th step, as follows.

Proposition 4.4. Let G be as above. An ideal .% = [Iy, ..., I;] of $2¢ is prime if and only if it satisfies the
following condition P (k) for each 0 <k <.

Pk)| Forany0<i<kandanyae Ly(Ix_1),b e Li(li—1) \ I;,
a-ind*byely = acel (4.2)

holds.

Here, when k = 0, we define Lo(I_1) to be Ro. Namely, P (0) is as follows.
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P(0)| Foranya e Rogand b € Rp \ o,

abelp = acly
holds. (This is saying Io C Rg is prime in the ordinary ring-theoretic meaning.)

Proof. For each 0 <k <r, we define condition Q(k) as follows.

Q)| Pk, £) holds for all 0 < ¢ <k.

It suffices to show that Q(k) holds for any 0 < k <r if and only if P(k) holds for any 0 < k <.
This follows from:

Claim 4.5. For any 0 < k < r, the following holds.
(1) Q(k) implies P (k).

(2) Ifk > 1, then Q(k — 1) and P (k) imply Q(k).
(3) Q(0) is equivalent to P(0).

In fact if this is shown, then by an induction on k, we can easily show that the following are
equivalent for each 0 <k <r.

- Q(k') holds for any 0 <k’ <k.
- P(k) holds for any 0 <k’ <k.

This proves Proposition 4.4. Thus it remains to show Claim 4.5.
Proof of Claim 4.5. (3) When k = 0, then the condition

P(0, 0) holds. Namely, for any a, b € R,

abely = aelyg or bely

holds.

is obviously equivalent to P(0).
(1) Fix k, suppose we are given 0 <{¢ <k and a € Ly(Iy_1),b € L¢(Iy—1) \ I, satisfying

a-jnd(b) € Iy. (4.3)

It suffices to show a € I. Since Q(k) (in particular P(k, £)) is assumed, it is enough to confirm that

(jnd" oresf(a)) - (jnd7 ores|(b)) € I (4.4)

is satisfied for any 0 <i <k, 0 < j < ¢ and m = max(i, j). However, when i <k or j < ¢, (4.4) follows
from resi‘(a) e l; and resf(b) € I, since we have a € Ly(Ix—1) and b € L¢(I,—1). In the remaining case
where i =k and j=¢, (4.4) is also satisfied by the assumption (4.3).

(2) Fix k > 1, and assume Q(k — 1). Under this assumption, we show P (k) implies P(k, £) for any
0 < ¢ < k. By an induction on ¢, this is reduced to the following.
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Claim 4.6. For any 1 <k <rand 0 < ¢ <k, we have

Qk—1),Pk), Pk, t—1) = Pk,L).
(Here, for £ =0, P(k, —1) is regarded as an empty condition.)

We only have to show this claim in the rest. Suppose a € R, and b € R, satisfy
(indMorest(a)) - (jnd} oresf»(b)) €ln (4.5)

for any 0 <i <k, 0<j<¥{ m=max(i,j). Claim 4.6 will follow immediately, if the following are
shown.

(A) If a € Rg\ Iy, then b € Ly(I;—1). (This is trivial when ¢ = 0, since we have defined as Lo(I-1) = Rg.)
(B) If be Ry \ Iy—1, then a € Li(Ix_1).

In fact, if (A) and (B) are shown, then the above a and b will satisfy
(i) ael, or
(ii) b e Iy, or
(iii) a € Ly(Ix—1) and b € Le(Ig—1) \ I¢.
In the third case, since a »jnd’g(b) € Iy, is satisfied by (4.5) for i =k and j = ¢, it follows a € Iy by P (k).

Thus it remains to show (A) and (B).
(A) By applying Pk, £ —1) to

acRy and res; ,(b) € Ry_1,

we obtain resﬁ] (b) € Ig—1, namely b € Ly(Ig—1).
(B) When ¢ <k, by applying Q(k — 1), in particular P(k — 1, £) to

res£_1(a) € Ry_1 and beRy,

we obtain resﬁfl(a) € Ix_1, namely a € Ly (Ix_1).
When ¢ =k, by applying P(k,k — 1) to

K
beRy and res;_;(a) € Rg_1,
we obtain resk_,(a) € Iy_q, namely a € Ly(Iy_1). O

By Proposition 4.4, whether an ideal is prime or not can be checked inductively on k using P (k).
This is applied to restrictions and extensions of prime ideals as follows.

Corollary 4.7. For any 0 <i <k <r, ifanideal .7 =[lo, ..., I}] S §2y, is prime, then its restriction & |y, =
[Io, ..., I;] onto H;j is also prime.

Proof. This immediately follows from Proposition 4.4. 0O

Corollary 4.8. For k > 1, let .% =[lo, ..., Ix_1] be an ideal of 2p,. If .7 is prime, then L. C 2y, is also
prime.
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Proof. It suffices to show P(k) is satisfied. However for £.¢ = [lq, ..., Ix_1, I, = L(Ix_1)], this condi-
tion becomes trivial as follows.

e Forany 0 <i<k,aeli(lx_q1) and b e Li(Ii_1) \ I,
a-indbyely = ael (4.6)
holds.
Of course this is satisfied, since a belongs to Iy = Li(Ix_1) from the first. O

5. Ideals J, (%) € R

In this section, we introduce ideals [, x(x) of R, which will perform an essential role in deter-
mining the prime ideals of £2.
First we prepare another Z-basis for Ry, which is more suitable for calculation.

Definition 5.1. For any 0 <i < ¢ <r, define F,; € R; by

Foi=Xgi— p*.

Obviously, each R, admits a Z-basis

{1,Fe0,Fe1....,Fpo_1}
for 0 < ¢ <r, and thus any element « € Ry can be written as
-1
o =myg+ ZmiFZ,i
i=0
for some uniquely determined my, ..., my; € Z.

This basis behaves well with the multiplication and the structure morphisms as follows.

Proposition 5.2. The following holds.

(1) Forany 0<1i, j < ¢, we have

—j Ll X : .
p* I Fei—p T 'Fej (<)),

Xej-Fei= l P
0 (j <.

(2) Forany 0 < i,k < ¢, we have
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In particular, we have

-2
resj_j(c)=mg+ Y mipFo 1,
i=0
forany o =m; + Zf;(} m;Fgi € Ry.
(3) When ¢ > 1, for any
=2
o=n1+ ZmiFé—l,i €Ry_1,
i=0
we have
-1
indf_ (@) = (ng—1)" + Z uiFe
i=0
forsome ug, ..., up_1 €Z.

(4) When £ > 2, forany 0 <i < ¢ — 1, we have

nd}_ (Fe_14)=Fpi— P Fe .

Moreover, Fy ¢—1 is calculated as

Feeo1=jndS_{(Fe—1,0-2) + ( pp) ind}_; (Fe—1,0-2).

Proof. (1) and (2) follow immediately from Corollary 2.3. ‘
(3) For any @ =ny_q + Zfz_g m;Fe_1; € Re_1, if we put me_1 =ng_1 — Zf gm,p“'*l, then we
have

2
a=mg1+ Zmixzq,i
i=0

and thus by Corollary 2.4, we obtain

(me—1)? —my_q

ind}_; (@) =my_4 ++Xu—1
Z Z 1 (3 1—- S)p (Zs i mspl lfs)px
¢
p! !
(-2 P -1 P
=mg_1+{(Me-1)? —me_s +Z{<stp 15) —( > msP61s> }
i=0 s=i+1
(m Y —m 2T mept19P — (L meptT TSP
— elFfél‘i‘Z SH_] 5 Fg,i

p P p!
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(Mme—1)? —my_q
= ne-1)P + ff‘e,zq

-2 i— _1— i _1—
n Z ng—1 — ZL:}J mspe 1 P — (ng—1 — lezo mspe 1 5P F,
pi K,l'
i=0

(4) By Remark 2.2, we have
ind}_; (Fe—1,) +p* " "Feoo1 = (Xe,i — PZii*le,eq) + (P‘H*le,zf] —p')
=Fp;.

Moreover, by Remark 2.2 and Corollary 2.4, we have

: (=p)? .
Jndfq (Fe—1,0-2) + p—i 1ndf},1 (Fe—1,0-2)

—p)P
(_p+( pP+p

p p
Xeo-1——> Xz,z-z) + ——Xee—2— pXee-1)
p p
=Xee-1—p=Fre1. O
Lemma 5.3. For 1 < £ < r and n € Z, we have the following.
(1) Ifnis not divisible by p, then we have
p—1

. nPm -1,
n=jnd}_,(n) — > ind’_,(n).

-1 . . .
Remark that ”F'T‘l is an integer, by assumption.
(2) Ifn = pu for some u € Z, then we have

Y
n=ind,_;(u) —uFge_1.

Proof. (1) By Remark 2.2 and Corollary 2.4, we have

p—1

. nP~1_1, nP —n nP~1_1
Jnd’,ﬁ_] n) — T md’,ﬁ_] n)=n+

Xik—1— Tnxk,k—l =n.

(2) This follows from
ind_;(u) — uFge—1=uXp¢—1—u(Xe—1—p)
=pu=n. O
Definition 5.4. For any 0 <€ <r, 0<k < ¢ and x € Z, we define an ideal [, (x) € R; by

X, Fops Forg1, ..o Foo—1) (k<E€—=1),

Jer(®) = { @ k=0).

Jek(x) can be calculated as follows.
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Proposition 5.5. Forany 1 < £ <r,0< k< ¢ — 1 and x € Z, we have

k—1 1
Jex(x) = {x~ (ﬂg + Znﬁm) + Y niFei|no.....n EZ]
i=0 i=k
-1 mo, ..., My € Z,
={m, + ZmiFK,i ‘ my € Zx,
i=0 meZx(0<i<k—1)

Proof. Obviously, J, x(x) contains any element of the form
k—1 £—1
X- (ng—i—ZniFg,,-)—i—ZniFg,i. (5.1)
i=0 i=k

To show the converse, since any element in J, x(x) can be written as an Rg-coefficient sum of

X, Fegy.ooy Foean,
it suffices to show that any element

(i) ax,
(ii) OlFLi (k<i<£— 1)

can be written in the form of (5.1) for any « € R,.
(i) For any o =my + Zf;(} m;Fg; (m; € Z), we have

k-1 -1
ax=x- (m( + Zm,’F[,i) + me,'Fg,i.
i=0 i=k

(ii) For any o = Z?:o m;X, j (mj € Z), we have

i e
aFgi=Y miXejFei+ Y mjXejFei
j=0 j=it+1
14

= > mj(p"IFei—p"'Fe)
j=i+1

¢ ¢

= ( Z mjp(Z]) Foi— Z mjpeilFZ,j
Jj=i+1 Jj=i+1

for any k <i< ¢ —1 by Proposition 5.2. O

Proposition 5.6. Forany 1 < £ <r,0 <k < £ — 1 and any n € Z, we have the following.

(1) Ifn=0 orn = q for some prime integer q different from p, then we have

(i) LUe—1,6M) = Jo (),
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.. Jex(m) k< t-2),
(if) S(UJe-1,k(m) { T = ket
Moreover, when n = q is a prime different from p, then there is no ideal between J; k+1(q) < J¢k(q).
(2) Fork =0 andn = pt! for somee € N>o, we have
(i) LUe—1.0(0°H) = Jeo(pe™),
(ii) S(Je-1,0(p**) = Je,0(p*2).
Moreover, there is no ideal between [, 0(p®*2) C Je.o(p®*1).

Proof. (1) (i) By definition,

L(Je—1 k(M) = | € Ry | resi_j (@) € Jo—1,m)).

For any « =my + Z;‘Z:_(} m;F,; (m; € Z), since we have

-1
resi_j(@)=mg+ Y mipFy
i=0
k-1 -1
=mg+ Y mipFe i+ Y mipFe 1,
i=0 i=k

this satisfies resf;_l(oz) € Jo—1x(m) if and only if
my € nZ,
mipenZ O<Li<k—1),

by Proposition 5.5. Since n is 0 or a prime different from p, this is equivalent to

mgenZ and mjenZ O<Li<k—-1),

namely, to o € Jy x(n).
(ii) When k < £ — 2, it suffices to show

Jex(m € S(Je—1.km)).

In fact, this implies

Jex) € S(Je—1.kM) S L(Je—1.kM) = Je k),
and thus S(Je—1,k(M) = L(Je—1,k(1)) = J¢x(n) follows.
Thus it remains to show [, (n) =, Fek, ..., Fee—1) S S(Je—1,k(M)). However, this immediately

follows from Proposition 5.2 and Lemma 5.3, since we have

¢ np71 i
n=jnd,_,(n) — Y (forn #0),

)

. (—=p)? .
Fg o1 =Jnd§,1(ﬂz—1,z—2) + 7 lnd§,1(Fe—1,z—2),

Fei=ind! ((Feo1)+p" " TFoem1 (k<i<e-1).
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When k = ¢ — 1, remark that we have Jy_1,-1(q) =(q) S R¢—1.1fn=0, (0) € S(Jr—1,6-1(0)) is
trivial. If n = q is a prime different from p, then by Lemma 5.3 we have

p—1

—1
q=ind’_,(q) - qT ind’_, (@) € S((@).

which means (q) € S(Je-1,e-1(9)).
Conversely, if n =q is a prime different from p, then for any o € Ry_1, we have

jnd’_(aq) =jnd’_ (@) -jnd}_,(q)

p_
=jnd}_;(e) - (q +1 » qxz,ul)

. P11
=]1’1d§7](01) . (1 + qTXz,z—l> “q € (),
ind{_; (¢q) = ind}_; (@) - q € (q),
which imply S(J¢—1,¢-1(q)) (q). Similarly, S(J¢—1.¢,—1(0)) S (0) follows from indﬁ1 0 :jndffl(O) =
0.

Thus it remains to show there is no ideal between J;x11(q) < J¢x(q) for a prime q # p. Suppose
there is an ideal

Jek+1(@) STE Jek(@).
By Proposition 5.5, I should contain an element
-1
a=qB+ ) niFe;

i=k

in Jyx(q), for some B e R, and n; € Z (k <i< ¢ — 1), which does not belong to Jyx+1(q). Then I
should contain

-1
ngFer=a— {Qﬂ + Z niFe,i]-
i=k+1

Since o does not belong to Jyx+1(q), it follows that q does not divide ny, and thus I contains an
element of the form

ngFer (ng € Z, not divisible by q).

On the other hand, q € Jy x+1(q) I implies

qFprel.

Since q and ny are coprime, it follows F, x € I, which means I = J; x(q).
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(2) (i) For an element o« =my + Zf:_g m;Fy i, since we have

-2

resi_j(@)=mg+ Y mipFy_q
i=0

by Proposition 5.2, it satisfies a € L(J¢_1.0(p®*!)) if and only if m, € p*T1Z, namely o € J; o(p¢+).
(ii) By Proposition 5.2 and Lemma 5.3, we have
, (=p)P .
Feo—1=jnd}_{(Fe—1,0-2) + — ind}_;(Fe—1,¢-2),
p
Fei=indj_y(Fe1,) +p" 7 (Fe-n) (0<i<e—1),

p€+2 — ind§71 (pe-l-l) _ p€+1 FZ,Z—] ,

which imply J¢,0(p*™) € S(Le—1,0(p°™1)).
To show the converse, by Proposition 5.5, it suffices to show any element

02
a=p*g g+ miFeai (nee1mi€Z(0<i<L—2)
i=0

in Jo_10(pt*") satisfies ind’ () € Jo.0(p®™2) and jnd} (@) € Jr.o(pe*?). However, these follow
from

=2

ind}_; (@) = p*ne_1Xp o1 + Zmi(FZ,i —ptit Feo—1)
i—0

-2 =2
=p*Pne 1+ ) miFi+ (Peﬂnzl - ZPellmi> Fe.e-1
i=0 i=0

and
-1
. p
indj (@)= (p° 1)’ + > uiFe
i=0
for some uy,...,uy_1 € Z, by Proposition 5.2.

It remains to show there is no ideal between ]gyo(p”z) C ]g’()(pe+]). Suppose there is an ideal

Jeo(P™) S 1S Jeo(p®™).

Then by Proposition 5.5, I should contain an element

-1
o= p”lng —+ Zm,-Fg,,-
i=0
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in ]g,()(pe+1), for some ny,m; € Z (0 <i<£—1), which does not belong to ]g,o(peJ“Z). Then I should
contain

-1
e+1
p Ty =o— Zm[ngi.
i=0

Since « is not in ]Lo(p”z), it follows that p does not divide n,. On the other hand, we have

p€+2 c jﬁ,O(pe+2) g I
These imply p®*! e I, which means I = J,o(p*™!). O
6. Structure of Spec 22

Let 0 < ¢ <r be any integer. For any ideal . =[Iy,...,I;] € 2y,, define F(.#) to be the ideal
F(%) = Iy of Ry. Since Ip becomes prime if .# is prime, this gives a map

F : Spec $2¢ — Spec Ry.

To determine Spec 2, it suffices to investigate each fiber of F over the points of SpecRg. Since
Spec Ry = SpecZ = {0} U{(q) | q is a prime integer}, in the rest we will study the following three cases.

(i) Prime ideals over (q), where q is a prime integer different from p.
(ii) Prime ideals over (0).
(iii) Prime ideals over (p).

6.1. Prime ideals over q # p

Let g be any prime integer different from p.

Proposition 6.1. We have the following.
(1) Forany k > 0, we have
s“@) = (@) S Ry,

and thus S¥(q) = [(@), @), ..., @]
(2) Forany 1 < ¢ <rand 0 <k < ¥, we have

L7*Sk(q) = Jok(@) C Re.

(3) Forany1 < ¢ <rand 0 <k < ¢ — 2, we have

SLK—k—l Sk(q) — Lﬁ—ksk (q)

Proof. This follows from Proposition 5.6, by an induction on k and ¢. O
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Proposition 6.2. For any 0 <k <r,

S =[@..... @] < 2n,
is a prime ideal.

Proof. We show this by an induction on k. If k =0, then (q) C 2, = Z is indeed a prime ideal.
When k > 1, suppose S¥~1(q) € 2y,_, is prime. It suffices to show Sk@) = [(q), ..., (@)] satis-
fies P (k). Namely, we only have to show the following.

Claim 6.3. Forany 0 < i<k, anya € Ly(q) andany b € L;(q) \ (9),

a-jndf(bye(@ = ae(Q
holds.
Proof. Since Ly(q) = Jxx—1(q), a can be written as
a=qf+mFyk—1 (BERk, meZ)

by Proposition 5.5.
Similarly by Proposition 5.5, b € Li(q) = Ji.i—1(q) can be written in the form

i-2
b= q(ni + anFi,j> +ni—1Fi i

j=0
i-2 i-2

= Q<ni - Z”J‘P’_]> —pni1+ Y njqXij+nio1Xiio1
j=0 j=0

-2 iej
_onjp'~’, then we have

for some nj e Z (0 < j <i). If we put ”§=ni—Z]:

k-1
indf(b) = (qnj — pni_1) + > _ucXi
t=0

for some u; € Z (0 <t <k), by Corollary 2.4.
Now we have

a-jndf(b) =q(B - jnd! (b)) + (qn} — pni—1)mF k1.
This satisfies a -jndi»‘(b) € (q) if and only if

pni—1mFy 1 € (Q),

which is equivalent to pn;_ym € qZ by Proposition 5.2. Since b is not in (g), n;—1 is not divisible by g.
Thus it follows m € qZ, which means a € (q). O
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Proposition 6.4. In 2y, there are exactly (¢ + 1) ideals over (q) € Ro
s@cesTi oS S L, (6.1)
all of which are prime.

Proof. By Proposition 6.2 and Corollary 4.8, these are prime.

We show the proposition by an induction on ¢. Suppose we have done for ¢ — 1, and take any
ideal .# =[lp,...,1¢] € 2y, over (q) € Ro. By the assumption of the induction, there exists some
0 <k<€—1 satisfying

]|HZ,1 — E[—l{—]sk(q).
If k<¢—2, then I, should satisfy
Ig=SL* sk @) = L7 s4(q) = Jex@

by Proposition 6.1, and thus .# = £{*kSk(q).
If k=+¢ —1, then I; should satisfy

S‘@ Sl LS (@.
Since there is no ideal between S¢(q) = (q) and LS*~1(q) = J¢.¢—1(q) by Proposition 5.6, we have
I;=S%@q) or LS (g,
namely
s =80 or L8 (@. O
6.2. Prime ideals over p
Proposition 6.5. Consider an ideal in R, obtained from (p) C Rg by an iterated application of L and S
shbisazpba .. gosbs(py C Ry

forai, bj € N satisfying > ";_; ai + > ;_q bi = €. Then this depends only onk = ;_; a; (0 <k < ¢), and is
equal to ]@,o(p"+1 ). Namely we have

S bisaz b2 ... gas s () = SKLEK(p)
= L7555 (p) = Joo(p*H).
Proof. By an induction on ¢, this immediately follows from Proposition 5.6. O
Corollary 6.6. For any 1 < ¢ <r, any ideal .% =[lp = (p), I1, ..., I¢] of 2y, over (p) satisfies

(1) I; =SUij—1) or I; = L(I;—1),
(2) Ii = Jio(p**1) for some 0 <k < i

foreach1 <i<¥t.
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Proof. We proceed by an induction on ¢. Suppose we have shown for ¢ — 1. Then, any ideal .¥ =
[(p), I1,..., 1] should satisfy

Iy = Je—1,0(Pk+l)

for some 0 < k < ¢ — 1. Then by Proposition 5.6, I, should lie between S(I;—1) = ]g,o(pk“) and
L(Ig—q) = jg,o(pk“), while there is no ideal between them. Thus I, should agree with S(I,_1) =

Jeo(¥*?) or Lle-1) = Jeo(@*). O

Proposition 6.7. Among all the ideals of 2, over (p) determined in Corollary 6.6,

£4p) =), J1.0(P). .-, Jeo(D)]

is the only one prime ideal.

Proof. £%(p) is prime by Corollary 4.8. Remark that any other ideal .# = [Ig = (p), I1, ..., I;] should
satisfy I = S(I_1) for some 1 <k < £. If we take the smallest such k, then it satisfies

o1 = Jke10(p) and I = Jio(p?).

Then P (k) fails for .#. In fact, for

a=b=peLllg-1)= Jko(p)
we have ab = p? € Jy.o(p?), while neither a nor b belong to I. O
6.3. Prime ideals over O
Proposition 6.8. We have the following.
(1) Forany k > 0, we have

ko) —
S*(0) = (0).
(2) Forany 1 < £ <rand 0 <k < ¢, we have
L7*s4(0) = Jok(0) S R

(3) Forany 1 < £ <rand0<k<{—2,wehave
Proof. Similarly to Proposition 6.1, this follows from Proposition 5.6 by an induction. 0O
Proposition 6.9. For any 0 < k <r,

sk0)=10,...,01=0C 2y,

is prime.
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Proof. This is shown in a similar way as in Proposition 6.2. More generally, for any finite group G, it
was shown that the zero ideal 0 C §2¢ is prime (Theorem 4.40 in [7]). O

Lemma 6.10. For any 1 < ¢ <rand 0 <k < ¢ — 1, any ideal I satisfying

Jek+1(0) S TS Jei(0)
is of the form
I'=Jok+1(0) + (nFe k)
= Fe ks Fopr1s Fepgos -5 Fee—1)

forsomen € Z.

Proof. By Proposition 5.5, we have

-1
Jex(©®) = :ZniFZ,i ez e<i<e- 1)},

i=k
-1

JZ,k+1(O):: > miFy;

i=k+1

n,-eZ(k+1<i<€—1)].

When I # J k+1(0), if we put
n=min{n € Nog |nFy €I},
then we can show easily
I'=Jer41(0) 4+ (@Fer). O
Proposition 6.11. In $2y,, there are exactly £ 4 1 prime ideals
0CLO) S LO0) S-S L)

over (0) C Ry.
Here, £¥(0) is the ideal obtained by a k-times application of £ to 0 C 2u, ,, foreach0 <k < L.

Proof. By Corollary 4.8 and Proposition 6.9, each £X(0) is prime.

We show the proposition by an induction on ¢. Suppose we have done for ¢ — 1, and take any
prime ideal .# =[Io,...,I¢] € 2y, over 0 C Ry. Since .#|p, , is prime by Corollary 4.7, we have
I, , = L*0) on Hy_; for some 0 <k < ¢ — 1, namely

o, ..., Ie—11=[0,...,0,L(0),..., LK(0)].

If k> 1, then Proposition 6.8 shows

S(g—1) = SL*(0) = L*1(0) = L(I,—1),

and thus I, should be equal to L¥*1(0). This means .# = £¥+1(0).
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If k=0, then I, should satisfy

0C 1y CLe(0)=(Fee-1).

By Lemma 6.10, there exists n € N3 satisfying I, = (nF; ¢—1). Thus it suffices to show that .# =
[0,...,0,(nFg¢—1)] € §2p, is not prime unless n =0 or 1.
Suppose .# is prime for some n # 0. Then for a=Fy,—1 and b =n € Rp \ (0), since we have

-1
a-jnd§(€) = F o1 - (n + Zmng,,) (for some m; € Z)
i=0
=nFy 1 €1y,
we obtain Fg¢—1 € I, by P(€). This implies I;—1 = J¢¢—1(0) andn=1. O

6.4. Total picture

Putting Propositions 6.4, 6.7, 6.11 together, we obtain the following.

Theorem 6.12. Let G be a cyclic p-group of order p". The prime ideals of 2¢ € Ob(Tam(G)) are as follows.

(i) Over (q) < Ry, there are r + 1 prime ideals

S@cLsS g C--C L.

(ii) Over (p) C Ry, there is only one prime ideal L™ (p).
(iii) Over 0 C Ry, there are r + 1 prime ideals

0CLO)SC - C L),
Thus we have

Spec2¢ = {L"(p)} UL (0) [0 <i<r}
U{£'S" ()| 0 <i<r, qisaprime different from p}.

For each 0 <i <, there is an inclusion £/(0) ¢ £'S"~(q), while we have £/(0) ¢ £'S"™(q) for any
j > i. Moreover, we have

L/OocL(p),  LMELQ@, L LL(Dp).

Corollary 6.13. The longest sequence of prime ideals of §2¢ is of length r + 1, such as
0CS@GLS MG ¢ L@,
and thus the dimension of Spec §2¢, which we denote simply by dim £2¢, is

dimQ2¢=r+1.
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L(O) $ L.Z £.3 L. E.
SpecQ = \ (2) (3) (p) (@)
o o/ : o/
52 8(3) i S(q)
0 :
F a
S Z — 0 ( [ ) [ ] - @ [ ]
pee @ @ (p) (a)

.

Fig. 1. Spec §2 for G =7Z/pZ.

Let us draw some picture of Spec §2¢, by indicating the closures of points. If r=1 and G is a group
of prime order p, then the picture will become as follows (§3.7 in [10]).

Example 6.14. Let G be the group of order p. Then we have

Spec 2 = {L(p)} U {0} U {L£(0)}

U{S(q) | g € Zis prime, q# p} U{L(q) |q € Zis prime, q # p}.

Inclusions are

0) < LO) € L(p)
Ut Ut
S@ < L@  @#p-

Especially, the dimension is 2. £(p) and £(q)’s are the closed points, and 0 is the generic point in
Spec £2. If we represent the points in Spec £2 by their closures, Spec £2 with fibration F can be depicted
as in Fig. 1.

A similar description is also possible for an arbitrary r. £ (p) and L£7(q)’s are the closed points,
and 0 is the generic point in Spec §2. The picture becomes as in Fig. 2.

6.5. Topology on Spec 2
It is also possible to determine all the closed subsets of Spec 2. Throughout, let G be a cyclic

p-group of order p'.
First, we remark that the closed subsets in the closed fibers are determined by Theorem 6.12.

Remark 6.15. For any prime integer q 0, any closed subset in the fiber F~1(q) is irreducible of the
form V(%) for some prime ideal .# € F~1(q). Moreover for each g, these are totally ordered with
respect to the inclusion.

Proof. If g = p, this is trivial. For q # p, by Theorem 6.12, the set of prime ideals in F~1(q) is totally
ordered as

S@cLs g c--C L.



48 H. Nakaoka / Journal of Algebra 398 (2014) 21-54

e S @—
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° . ° e [
L(q) L'(p) L7(q")
£7(0)
Spec Q) = .
£2(0) [,S'v’l(q) Lsr‘ll(qr)
T e/ — o/
F ' S"(q) S"(q')
0 : |
7 — 0 Y e ° e .,
Spec f W @)

Fig. 2. Spec 2 for G =Z/p'Z.
For any closed subset V C F~1(q), put
ko = min{k | s *(q) e V}.
Since V should contain the closure of the singleton {£¥0S"*o(q)}, which is
v(closT o q)) = {£48" (@) [ ko <k <1},
we have
vcv(chshg)cv,

and thus obtain V = V (£kS ko (q)). This means that V is irreducible, and the closed sets in F~'(q)
are totally ordered as

V(S @) 2V(LST @) 22 V(L @). o
Remark that there also exist closed sets in Spec §2 ‘transverse’ to fibers.
Remark 6.16. For each 0 <t <r, we have an irreducible closed subset
V(L£"7(0)) < Spec 2.

We show that any closed subset V of Spec$2 can be written as a union of closed sets given in
Remarks 6.15 and 6.16. In fact, this gives the irreducible decomposition of V.
Remark that any closed subset in Spec §2 is, by definition, of the form V (%) for some ideal .# C £2.

Proposition 6.17. Let .% = [y, ..., I;] be any ideal in 2. If we put
to=minft | I; #0} — 1

and
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Py ={q € Lo, prime| (V(#) =V (£'~(0)) N F~'(q) # 0},

then we have the following. (When to = —1, we put V (L'+10(0)) = @.)

(1) P_z is a finite set.
(2) V(#£) =V (L (0) U (qupy Vq(F)), where Vg(¥) = V() N F~1(q). This gives the irreducible
decomposition of V (.%).

Proof. Since (2) follows immediately from (1), we only show (1). For any prime q € Z- o, remark that
we have

F7 (@) — V(£0) = {£"7*S(q) | to <k <7}

and £r—to~1St+1(q) is the largest in this set.
Thus g satisfies

(V(#) = V(L) NF (g #0
if and only if it satisfies

V(7)) Lo 1stt g,

which is equivalent to .# C £'—fo—1Sto+1 (g,
Since we have

I = [07 RN Oa I[o-‘y—]v lt0+2, R Ir],
N ——’
to
£ isot gy = [(@), ..., @, @, L@), ..., L (q)],
N e’
to+1

this means I¢;+1 < (q). Thus we have

0#Ipn S [ @

qeP
in R¢y+1, which implies that P ¢ is finite. O

Remark 6.18. Since Spec 2 is a spectral space in the sense of [5], it should be homeomorphic to a
prime spectrum of a commutative ring. However it will not be so easy to construct the ring which
plays this role.

Nevertheless, we can find some relationship with the prime spectrum Spec £2(G) of the Burnside
ring £2(G).
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6.6. Relation to Spec 2(G)

A celebrated Dress’ theorem [3] states that the prime spectrum of the Burnside ring £2(G) detects
the solvability of a finite group G. It would be a natural question whether Spec §2(G) and our Spec §2
are related in some way. In the case of a cyclic p-group, we can construct an ad hoc continuous map
Spec 2(G) — Spec £2, which is bijective as a map of sets.

In fact, Dress’ result gives the whole picture of Spec £2(G) as follows.

Fact 6.19. Let G be a cyclic p-group of order p", and let

p=(prosksr : RG)— [] Z
o<k<r

be the mark morphism. Then any prime ideal in £2(G) is of the form

Prg = Pp, (@,

where g € Z is 0 or a prime, and k is an integer satisfying 0 <k <r. Remark that py, is given by

ph, = (9(6) =Ry —5 Re= @D ZXii— Z>,
0<i<k

where the last map is given by ), m; Xy ; = my. Thus we have

r r
Pkg= {Zmixr,i eR; Z(miprfi) € qZ}

i=0 i=k

{ @, Frr—1,.oos Frgs Xe k=1, ..., Xr0) (@#D),
(p, Frr-1,...,Fro) (@=Dp).

In particular py , does not depend on k. We denote this simply by p,. No other prime ideal equals to
any other. The only inclusions among these ideals are

Pko CShg O<k<r, g#0,p),
PoCSpp Ok,

Also remark that there is a canonical continuous map E : Spec £2(G) — SpecZ induced from the ring
homomorphism Z — §2(G). The fibers of E are

E7(0) = {pko | 0<k <),
E"Nq) ={prq|0<k<T} (q#0,p),
E~(p) = {pp).

All points in E~1(q) and E~1(p) are the closed points in Spec £2(G).
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Corollary 6.20. If we define f : Spec $2(G) — Spec 2 by

flprg) =L@ (q#0,p),
f(pro) = L750),
fpp) =L"(p),

then f is a continuous bijective (not homeomorphic) map, which makes the following diagram commutative.

f
Spec $2(G) ——— Spec §2

E\O/F

SpecZ

Proof. This immediately follows from Theorem 6.12, Proposition 6.17 and Fact 6.19. O
Appendix A. An inductive calculation of jnd, when G is abelian

We demonstrate how to calculate the multiplicative transfers of §2 inductively, when G is an
abelian group. This will show Corollary 2.4. A detailed investigation of an exponential map will be
found in [14]. A more clear argument using Mobius inversion will be found in [11].

Since jndb :21(L/H) — 221(L/L) and jndﬁ, : 26(G/H) — £2¢(G/L) are essentially equal for H <
L < G, we may assume L = G from the first, and calculate jndﬁ :2¢(G/H) — 2¢(G/G) for any H < G.
Remark that any element in 2y (H/H) is of the form ZKH myH/I for some m; € Z (I < H), and is

H
identified with -, m;(G/I LAlEN G/H) € £26(G/H). If each m; satisfies m; > 0, this is equal to

H
(]_[lgH(Hnu G/ LPr, G/H) in £2¢(G/H), where Pr is the union of the projections G/I L iR G/H.

Remark that jndf, : 26(G/H) — 26(G/G) is a polynomial map [15] as in the following. (As for
polynomial maps, see [4].)

Fact A.1. There exist polynomials

Px € ZIm; | I<H] (K<G)

which satisfy

jndﬁ( > mi(G/1 7 G/H)) = 3" Pi(imihi<n)G/K (A1)

I<H K<G
for any {m;};<H.

In particular if we obtain polynomials Pg which satisfy (A.1) whenever {m;}; satisfies m; > 0
(YI < H), then (A1) should hold for any {mi}i<y with these Pg’s. Now we calculate Pk, for
each K < G. Let ZKH myH/I € 2y(H/H) be any element satisfying m; > 0 (YI < H), and de-

note the corresponding G-set ]_[lgH(Hm: G/I) by A. By the definition of jnd§ = Q.(prg), the G-set
S =jnd% (A £ G/H) is given by
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S={(,9) |y €G/G, seMap((pr§) " (), A), Pros=ide/u}

={seMap(G/H, A) | Pros=idg/y }

= {s e Map(G/H, A) | s is a section of Pr}
(remark that G/G consists of only one element). The set S is equipped with a G-action
gsxx)=gs(g7'x) ("geG, "ses, "xe G/H).
Definition A.2. Let G, H, A, S be as above. For each K < G, define c(K) € Z by

c(K)=t{seS|Gs=K}.

c(K)
GK]’

Then, since G is abelian, the number of G-orbits in S isomorphic to G/K should be equal to
and thus we have

c(K)
S= G/K,
2 IG: K| /
K<G

namely, Px = ‘CG(I% Thus it remains to calculate c(K).

Since G is abelian, we have the following.

Remark A.3. If we decompose G/K into K-orbits
G/H=X; - -1 Xy k),
then r(K) = |[K\G/H| = |G : KH|, and each X; is isomorphic to
KH/HZK/(KNH). (A.2)
Fix an element x; € X; for each 1 <i <r(K). Then, we have the following.

Proposition A.4. For any element s € S, the following are equivalent.

(1) K <Gs.
(2) Forany 1 <i<r(K)andany k € K, we have

ks(xi) = s(kx;). (A.3)
Proof. By definition, K < G holds if and only if for any 1 <i <r(K), any x € X; and any k € K,
ks(x) = s(x) (A4)
is satisfied. Since X; is K-transitive, there is some k' € K satisfying x = k’x;. Then (A.4) is written as
ks(k™'K'x;) = s(K'x;).

This is easily shown to be equivalent to (2). O
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Corollary A.5. Let G, H, A, S be as above. For each K < G, there is a bijection
~ H
{s€S|Gs>K} = ]_[ < ]_[(r]rﬂ{si e G/I|pri(s)) = xi, K, =1<x,.})>.
1<i<r(K) N ISH
Proof. By Proposition A.4, the set of s € S satisfying Gs > K is determined by the values s(x;) (1 <i <
r(K)). In fact, to a set of elements sq, ..., Syk) € A, we may associate a map s: G/H — A satisfying
s(xi) =s;, by using (A.3). This map s becomes well-defined if and only if Ky, < K, is satisfied for

any i. Moreover, we see that the following are equivalent.

(i) s is a section of Pr: A — G/H, and satisfies G5 > K.
(i) Pr(s;) =x (1<Yi<r(K)), and Ks; = Ky,.

Thus, to give an element in {s € S | Gs > K} is equivalent to give a set of elements s1,...,s k) € A
satisfying (ii). Namely, we have a bijection

(seS|Gs =K} = ]_[ {si € A|Pr(s) =xi, K5, =Ky}
1<i<r(K)

= I ( ]_[(nI;I’{s, € G/I | pri(s)) = xi, K, =le.})>. i

1<I<r(K) N ISH

Corollary A.6. For any K < G, we have

r(K)
ﬁ{seS|Gs2K}:< > m,|H:1|) ‘
(KNH)KIKH
Consequently, we can calculate c(K) inductively by
r(K)
c(K) = ( > mylH: 1|) - > .

(KNH)I<H K<L<G

Proof. Since G is abelian, we have Ky, = K N H by (A.2). Similarly, for each s; € G/I, we have K, =
K N 1. Since I < H, we obtain

Ky=Ks;, & KNH=KNI <& KNH<KI

As a consequence, the bijection in Corollary A.5 is reduced to

sesiGs>ky= J] ( I (Tlﬁl{sfeG/I|prf'(si)=x,-})>.

1<i<r(K) > (KNH)KIKH

Since the fiber (pri)~1(x;) has |H : I| elements, it follows

tseS|Gs =Ky = [] ( > (m,|H:I|)>

1<i<r(K) S (KNH)KISH

r(K)
:< Z m1|H:I|) . O

(KNH)KIKH
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Example A.7. When G = Z/p‘Z, let H; < G be the subgroup of order p¥;

e=Hypo<Hi<---<Hy=G.

For H = Hy, we can determine c(H;) (0< j <¥) ofjndg(zogigk m;H/H;) as follows.
By Corollary A.6, for each 0 < j < £ we have

my, j=r,

c(Hj) = m?™ = am? k<j<r,
{—k —k 3

(Zﬁ:jmspkis)p - (le(=j+1mspk75)p , 0<j<k,

which leads to Corollary 2.4.
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