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kernels of epimorphisms, and cokernels of monomorphisms. 
We show some relationships to the theory of prime ideals in 
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1. Introduction

In this paper, we investigate Bass numbers in a locally noetherian Grothendieck cat-
egory and give generalizations of fundamental results in the commutative ring theory.
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Let R be a commutative noetherian ring. For a nonnegative integer i, the i-th Bass 
number μi(p, M) of an R-module M with respect to a prime ideal p of R is defined by

Ei(M) =
⊕

p∈Spec R

E(R/p)⊕μi(p,M),

where Ei(M) denotes the i-th term in the minimal injective resolution of M , and E(R/p)
is the injective envelope of R/p. Bass numbers are important invariants of modules in 
order to study homological aspects of commutative rings. For example, Bass [4] proved 
the following theorem.

Theorem 1.1. (See Bass [4, Lemma 2.7].) Let R be a commutative noetherian ring, 
p a prime ideal of R, M an R-module, and i a nonnegative integer. Then we have the 
equation

μi(p,M) = dimk(p) ExtiRp

(
k(p),Mp

)
= dimk(p) ExtiR(R/p,M)p,

where k(p) is the residue field of p.

In the case of noncommutative rings, prime ideals do not always work well, and hence 
it is hard to generalize Theorem 1.1 to noncommutative rings straightforwardly. In this 
paper, we see that the generalization is possible if we treat it in a viewpoint of atoms.

For a ring R, Storrer [18] introduced the notion of atoms in the category ModR of 
right R-modules, which are equivalence classes of monoform modules. In the case where 
R is a right noetherian ring, it is known that the atoms bijectively correspond to the 
isomorphism classes of indecomposable injective modules. If R is a commutative ring 
(which is not necessarily noetherian), the atoms in ModR bijectively correspond to the 
prime ideals of R. In [11], we investigated atoms in arbitrary abelian categories, especially 
noetherian abelian categories and locally noetherian Grothendieck categories, and gave 
classifications of Serre subcategories and localizing subcategories, respectively.

In the case of locally noetherian Grothendieck category A, the atoms also bijectively 
correspond to the isomorphism classes of simple objects in the spectral category of A, 
which was introduced by Gabriel and Oberst [8]. In this paper, we regard a notion in [8]
as morphism spaces between atoms and objects (Definition 3.5), and by deriving them, 
define extension groups between atoms and objects (Definition 4.1). Then we obtain the 
following description of Bass numbers (Definition 5.1) for A.

Main Theorem 1.2. (See Theorem 5.3.) Let A be a locally noetherian Grothendieck cat-
egory, α an atom in A, M an object in A, and i a nonnegative integer. Then we have 
the equation

μi(α,M) = dimk(α) ExtiA(α,M),
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where μi(α, M) is the i-th Bass number of M with respect to α, and k(α) is the residue 
(skew) field of α.

This theorem has some applications to E-stable subcategories. A full subcategory X
of A is called E-stable if for any object M in A, M belongs to X if and only if Ei(M)
belongs to X for each nonnegative integer i. As a generalization of a result by Takahashi 
[19, Theorem 2.18], we show the following classification.

Theorem 1.3. (See Theorem 6.4.) Let A be a locally noetherian Grothendieck category. 
Then there exists a bijection between the E-stable subcategories of A closed under ar-
bitrary direct sums and direct summands, and the subsets of the set of all the atoms 
in A.

As an application of Main Theorem 1.2, we show the following result. In the case of 
commutative noetherian rings, it is stated by Takahashi [19, Corollary 2.19].

Corollary 1.4. (See Corollary 6.5.) Let A be a locally noetherian Grothendieck category 
and X an E-stable subcategory of A closed under arbitrary direct sums and direct sum-
mands. Then X is also closed under extensions, kernels of epimorphisms, and cokernels 
of monomorphisms.

In Section 7, we deal with noetherian algebras and show some relationships between 
our theory and the theory of prime ideals described in [9].

We refer the reader to [13] for the general theory of commutative rings, [16] for that of 
abelian categories and Grothendieck categories, and [20] for that of derived categories.

2. Atoms

Throughout this paper, we deal with a locally noetherian Grothendieck category A. 
Its definition is as follows.

Definition 2.1.

(1) An abelian category A is called a Grothendieck category if A has a generator and 
arbitrary direct sums and satisfies the following condition: for any object M in A, 
any family L = {Lλ}λ∈Λ of subobjects of M such that any finite subfamily of L has 
an upper bound in L, and any subobject N of M , we have

(∑
λ∈Λ

Lλ

)
∩N =

∑
λ∈Λ

(Lλ ∩N).

(2) A Grothendieck category A is called locally noetherian if there exists a set of gener-
ators of A consisting of noetherian objects.
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Remark 2.2.

(1) It is known that an abelian category with a generator and arbitrary direct sums is 
a Grothendieck category if and only if direct limit is exact.

(2) For any Grothendieck category A, it is shown in [15, Theorem 2.9] that any object M
in A has its injective hull E(M) in A.

We recall the definition of atoms, which was introduced by Storrer [18].

Definition 2.3. Let A be a locally noetherian Grothendieck category.

(1) An object H in A is called monoform if for any nonzero subobject N of H, there 
exists no common nonzero subobject of H and H/N , that is, there does not exist a 
nonzero subobject of H which is isomorphic to a subobject of H/N .

(2) We say that monoform objects H and H ′ in A are atom-equivalent if there exists a 
common nonzero subobject of H and H ′.

The following properties about monoform objects are well known (for example, [18]). 
For complete proofs, we refer to [11].

Proposition 2.4. Let A be a locally noetherian Grothendieck category.

(1) Any nonzero subobject of a monoform object in A is also monoform.
(2) Any monoform object H in A is uniform, that is, any nonzero subobjects N1 and N2

of H have a nonzero intersection.
(3) Any nonzero object in A has a monoform subobject.

Proof. (1) See [11, Proposition 2.2].
(2) See [11, Proposition 2.6].
(3) See [11, Theorem 2.9]. Note that any object in A has a nonzero noetherian sub-

object. �
By Proposition 2.4 (2), the atom equivalence is an equivalence relation between mono-

form objects in A. We denote by ASpecA the quotient set and call it the atom spectrum
of A, and we call an element of ASpecA an atom in A. The equivalence class of a 
monoform object H is denoted by H, and we regard H as an element of H. As in 
[11, Proposition 5.3], ASpecA forms a set. In the case where R is a commutative noethe-
rian ring, the map p �→ R/p is a bijection between the prime spectrum SpecR of R and 
ASpec(ModR). For the details of these arguments, see [18] or [11].

In the commutative ring theory, Matlis [12, Proposition 3.1] shows that for a commuta-
tive noetherian ring R, the map p �→ E(R/p) is a bijection between SpecR and the set of 
all the isomorphism classes of indecomposable injective modules over R. This result can 
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be generalized in terms of atoms as follows. That is shown by Storrer [18, Corollary 2.5]
in the case of a module category, and a complete proof for the case of a locally noetherian 
Grothendieck category is in [11, Theorem 5.9].

Theorem 2.5. (See Storrer [18].) Let A be a locally noetherian Grothendieck category.

(1) Let α be an atom in A and H ∈ α. Then the injective hull E(H) of H does not 
depend on the choice of the representative H of α, that is, for another H ′ ∈ α, 
E(H ′) is isomorphic to E(H). Hence denote it by E(α) and call it the injective hull 
of α.

(2) The map α �→ E(α) is a bijection between ASpecA and the set of all the isomorphism 
classes of indecomposable injective objects in A.

In general, for an atom α in A, there exist many monoform objects H such that 
H ∈ α. However, we can take a canonical one Hα in the following sense.

Theorem 2.6. Let A be a locally noetherian Grothendieck category and α an atom in A. 
Then there exists a unique maximal monoform subobject Hα of E(α).

Proof. See [18] for the case of a module category. We give a proof for the general case.
Denote by Jα the set of all the endomorphisms of E(α) which are not automorphisms. 

Since any Grothendieck category has arbitrary direct products [16, Corollary 7.10], we 
can define a subobject Hα of E(α) by

Hα =
⋂

f∈Jα

Ker f,

where 
⋂

f∈Jα
Ker f is defined as the kernel of the morphism

E(α) →
∏
f∈Jα

E(α)
Ker f

induced by the canonical morphism E(α) → E(α)/ Ker f for each f ∈ Jα.
Let H be a monoform subobject of E(α) and f ∈ Jα. Denote the composite H ↪→ E(α)

and f : E(α) → E(α) by g. If f is a monomorphism, then f is a split monomorphism 
which is not an epimorphism. This contradicts to the indecomposability of E(α). Hence 
f is not a monomorphism. Assume that H �⊂ Ker f . Then Im g �= 0. Since E(α) is 
uniform, we have Ker g = H ∩ Ker f �= 0 and H ∩ Im g �= 0. Then we have

H

Ker g
∼= Im g ⊃ H ∩ Im g ⊂ H

and this contradicts the monoformness of H. Therefore H ⊂ Ker f , and this shows that 
H ⊂ Hα.
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Assume that Hα is not monoform. Then there exist a nonzero subobject N of Hα and 
a nonzero subobject B of Hα which is isomorphic to a subobject B′ of Hα/N . By the 
injectivity of E(α), we obtain a morphism g′ in A such that the diagram

Hα/N
g′

E(α)

Hα

B′ ∼
B

commutes. We also obtain a morphism f ′ in A such that the diagram

E(α)

f ′
Hα

Hα/N
g′

E(α)

commutes. Since N �= 0, f ′ is not a monomorphism, and hence f ′ ∈ Jα. By the definition 
of Hα, we have Hα ⊂ Ker f ′. Then g′ = 0 and hence B = 0. This is a contradiction. 
Therefore Hα is a unique maximal monoform subobject of E(α). �

We call the monoform object Hα in Theorem 2.6 the atomic object corresponding to 
the atom α.

3. Morphism spaces between atoms and objects

Recall that a Grothendieck category S is called a spectral category if any short exact 
sequence in S splits. Gabriel and Oberst [8] defined the associated spectral category to 
a Grothendieck category A, whose definition is based on the notion of essential subob-
jects.

Let M be a nonzero object in A. A subobject N of M is called an essential subobject
of M if for any nonzero subobject L of M , we have L ∩N �= 0. Note that M is uniform 
if and only if any nonzero subobject of M is an essential subobject of M . We denote 
by FM the set of all the essential subobjects of M . Since the intersection of two essential 
subobjects of M is also an essential subobject of M , FM is a directed set with respect 
to the opposite relation of the inclusion of subobjects.



R. Kanda / Journal of Algebra 422 (2015) 53–77 59
Definition 3.1. (See Gabriel and Oberst [8].) Define the spectral category S of a 
Grothendieck category A as follows.

(1) The objects of S are the same as the objects of A.
(2) For objects M and N in A,

HomS(M,N) = lim−−→
M ′∈FM

HomA
(
M ′, N

)
.

(3) Let L, M , N be objects in A and [f ] ∈ HomS(L, M) and [g] ∈ HomS(M, N). We 
assume that [f ] and [g] are represented by f ∈ HomA(L′, M) and g ∈ HomA(M ′, N), 
where L′ ∈ FL, M ′ ∈ FM , respectively. Then the composite [g][f ] ∈ HomS(L, N)
is the equivalence class of the composite of f ′ : f−1(M ′) → M ′ and g : M ′ → N , 
where f ′ is the restriction of f .

Note that the inverse image of an essential subobject is also essential.
With the notation in Definition 3.1, we can define a canonical additive functor P :

A → S by the correspondence M �→ M for each object M in A and the canonical map 
PM,N : HomA(M, N) → lim−−→M ′∈FM

HomA(M ′, N) for objects M and N in A.
The following theorem states fundamental properties on the spectral category of A.

Theorem 3.2. (See Gabriel and Oberst [8].) Let A be a Grothendieck category, S the 
spectral category of A, and P : A → S the canonical additive functor.

(1) S is a spectral category, that is, S is a Grothendieck category such that any short 
exact sequence in S splits.

(2) P is a left exact functor and commutes with arbitrary direct sums.

Gabriel and Oberst [8] also showed the following results.

Theorem 3.3. (See Gabriel and Oberst [8].) Let A be a Grothendieck category, S the 
spectral category of A, and P : A → S the canonical additive functor.

(1) Let M be an object in A and N an essential subobject of M . Denote the inclusion 
morphism by ν : N ↪→ M . Then P (ν) is an isomorphism in S.

(2) Let M and N be objects in A. If P (M) is isomorphic to P (N), then there exists an 
essential subobject of M which is isomorphic to an essential subobject of N .

(3) For any object M in A, M is uniform if and only if P (M) is simple.
(4) The correspondence I �→ P (I) gives a bijection between the isomorphism classes of 

indecomposable injective objects in A and the isomorphism classes of simple objects 
in S.
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In the rest of this section, let A be a locally noetherian Grothendieck category, S the 
spectral category of A, P : A → S the canonical additive functor, and α an atom in A.

Remark 3.4.

(1) For any object M in A, as shown in [12, Theorem 2.5], E(M) is a direct sum of 
indecomposable injective objects in A. By Theorem 3.3 (1), P (M) is isomorphic to 
P (E(M)). Hence by Theorem 3.2 (2) and Theorem 3.3 (4), P (M) is isomorphic to 
a direct sum of simple objects in S.

(2) Since E(α) is an indecomposable injective object in A, by Theorem 3.3 (4), P (E(α))
is a simple object in S. Therefore EndS(P (E(α))) is a skew field.

In terms of the spectral category, we define the morphism space between an atom and 
an object in A. For a ring R, ModR denotes the category of right R-modules.

Definition 3.5. Let A be a locally noetherian Grothendieck category, S the spectral 
category of A, P : A → S the canonical additive functor, and α an atom in A.

(1) Denote the skew field EndS(P (E(α))) by k(α) and call it the residue field of α.
(2) Define an additive functor HomA(α, −) : A → Mod k(α) by

HomA(α,−) = HomS
(
P
(
E(α)

)
, P (−)

)
.

Remark 3.6.

(1) For any nonzero subobject U ′ of E(α), since E(α) is uniform, FU ′ is the set of all 
the nonzero subobjects of U ′, and it is a cofinal subset of FE(α). Hence we obtain a 
functorial isomorphism

HomA(α,−) ∼= lim−−→
U∈FU′

HomA(U,−)

of additive functors A → Mod k(α). If we take U ′ as Hα, then FU ′ is the set of all 
the monoform subobjects of E(α). This is the reason why we denote this additive 
functor by HomA(α, −).

(2) By Theorem 3.2 (2), the additive functor HomA(α, −) commutes with arbitrary 
direct sums since P (E(α)) is a simple object in S.

(3) For a nonzero subobject U of E(α), an object M in A, and a morphism f : U → M

in A, we denote the image of f in HomA(α, M) by [f ].
In the case where M is a nonzero subobject U ′ of E(α), the composite of f and the 
inclusion morphism U ′ ↪→ E(α) defines an element of k(α). We also denote it by [f ]
by abuse of notation. By Theorem 3.3 (1), we have

k(α) ∼= HomS
(
P (U), P

(
U ′)).
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This implies that

k(α) =
{
[f ]

∣∣ f : U → U ′ in A, U ∈ FE(α)
}
.

If there exists a simple object S in A such that α = S, by Remark 3.6 (1), we have 
an isomorphism k(α) ∼= EndA(S) of skew fields and a functorial isomorphism

HomA(α,−) ∼= HomA(S,−)

of additive functors A → Mod k(α). In general, however, the additive functor 
HomA(α, −) : A → ModZ is not necessarily representable.

Proposition 3.7. The additive functor HomA(α, −) : A → ModZ is representable if and 
only if there exists a simple object S in A such that α = S.

Proof. Assume that HomA(α, −) : A → ModZ is representable, that is, there exists a 
functorial isomorphism

HomA(α,−) ∼= HomA(U,−)

of additive functors A → ModZ for some object U in A. Then there exist a nonzero 
noetherian subobject V of U and a simple quotient object S of V . We obtain a mor-
phism f in A such that the diagram

U
f

E(S)

V S

commutes. Since f is nonzero, we have

HomS
(
P
(
E(α)

)
, P

(
E(S)

))
= HomA

(
α,E(S)

) ∼= HomA
(
U,E(S)

)
�= 0.

By Theorem 3.3 (4), we have E(α) ∼= E(S) ∼= E(S). By Theorem 2.5 (2), it follows that 
α = S. �

We show a property about the morphism space between an atom and an object.

Proposition 3.8. Let U be a nonzero subobject of E(α), M an object in A, and f : U → M

a morphism in A. Then [f ] �= 0 in HomA(α, M) if and only if f is a monomorphism.

Proof. By the definition of direct limit, [f ] = 0 if and only if there exists a nonzero 
subobject U ′ of U such that U ′ ⊂ Ker f . This condition is equivalent to that f is not a 
monomorphism. �
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The residue field k(α) of an atom α in A appears in several contexts related to the 
atom α. In order to show that, we prove the following lemma.

Lemma 3.9. Let H ∈ α and f : H → E(α) be a morphism in A. Then we have Im f ⊂ Hα.

Proof. Since E(α) is isomorphic to E(H), there exists a subobject H ′ of E(α) which is 
isomorphic to H. Assume that f is a nonzero morphism which is not a monomorphism. 
Then we have Ker f �= 0 and Im f �= 0, and hence, by the uniformness of E(α), we have 
Im f ∩H ′ �= 0. Then

H

Ker f
∼= Im f ⊃ Im f ∩H ′ ⊂ H ′ ∼= H

implies that H is not monoform. This is a contradiction. Therefore f is a monomorphism 
or a zero morphism, and hence Im f is monoform or zero. This implies that Im f ⊂
Hα. �
Proposition 3.10.

(1) We have an isomorphism EndA(Hα) ∼= k(α) of skew fields.
(2) Let Jα be the unique maximal ideal of the local ring EndA(E(α)). Then we have an 

isomorphism

EndA(E(α))
Jα

∼= k(α)

of skew fields.

Proof. (1) For any morphism f : Hα → Hα in A, we have an element [f ] of k(α). This 
correspondence defines a ring homomorphism ϕ : EndA(Hα) → k(α).

If f is nonzero, then we have Im f �= 0 and

Hα

Ker f
∼= Im f ⊂ Hα.

Since Hα is monoform, we have Ker f = 0. Hence f is a monomorphism and by Propo-
sition 3.8, we have [f ] �= 0. This shows that ϕ is injective.

In order to show that ϕ is surjective, let H be a monoform subobject of E(α) and 
g : H → E(α) a morphism in A such that [g] �= 0. By the injectivity of E(α), we obtain 
a morphism g′ in A such that the diagram

Hα

g′

H
g

E(α)
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commutes. By Lemma 3.9, we obtain a morphism g′′ in A such that the diagram

Hα

g′′

g′

Hα

E(α)

commutes. Then [g′′] = [g′] = [g] in k(α). This shows that ϕ is surjective.
(2) The localness of EndA(E(α)) is shown in [12, Proposition 2.6].
We have a canonical ring homomorphism ψ : EndA(E(α)) → k(α). For any nonzero 

subobject U of E(α), the injectivity of E(α) ensures that every morphism U → E(α)
can be lifted to some endomorphism of E(α), and hence ψ is surjective. The kernel of ψ
is the unique maximal two-sided ideal Jα since k(α) is a skew field. �

In the case where A = ModR for a commutative noetherian ring R, each prime ideal 
of R defines an atom α = R/p in ASpec(ModR). As in [18], the corresponding atomic 
object Hα is the residue field k(p) of p. Hence the residue field k(α) ∼= EndR(k(p)) is 
also k(p). In general, however, for an atom α in A, the atomic object Hα corresponding 
to α and the residue field k(α) of α do not necessarily coincide with each other.

Example 3.11. Let R be the ring of 2 × 2 lower triangular matrices
[
K 0
K K

]

over a field K. The right R-module S = [K 0] is simple, and hence monoform. The 
atomic object corresponding to α = S is Hα = [K K]. However, the residue field k(α)
of α is isomorphic to K.

In the rest of this section, we consider a relationship to associated atoms, which were 
introduced by Storrer [18] in the case of a module category. In the case of an abelian 
category, they are stated in [11].

Definition 3.12. Let A be a locally noetherian Grothendieck category. For an object M
in A, a subset AAssM of ASpecA is defined by

AAssM = {α ∈ ASpecA | there exists H ∈ α which is a subobject of M}.

An element of AAssM is called an associated atom of M .

Proposition 3.13. For any object M in A and any atom α in A, α ∈ AAssM if and only 
if HomA(α, M) �= 0.

Proof. This follows from Proposition 3.8. �
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We recall a fundamental result concerning associated atoms.

Proposition 3.14. Let 0 → L → M → N → 0 be an exact sequence in A. Then we have

AAssL ⊂ AAssM ⊂ AAssL ∪ AAssN.

Proof. See [11, Proposition 3.5]. �
4. Extension groups between atoms and objects

Throughout this section, let A be a locally noetherian Grothendieck category, S the 
spectral category of A, P : A → S the canonical additive functor, and α an atom in A.

By Theorem 3.2 (1), the additive functor HomS(P (E(α)), −) : S → Mod k(α) is exact. 
Since P is a left exact functor, the additive functor HomA(α, −) = HomS(P (E(α)),
P (−)) : A → Mod k(α) is left exact.

Definition 4.1. Let A be a locally noetherian Grothendieck category. For an atom α in A, 
denote the right derived functor of the left exact functor HomA(α, −) : A → Mod k(α) by 
RHomA(α, −) : D(A) → D(Mod k(α)), where D(A) is the unbounded derived category 
of A. For a nonnegative integer i, the i-th right derived functor of HomA(α, −) is denoted 
by ExtiA(α, −) : A → Mod k(α).

The existence of the right derived functor follows from the fact that every complex in 
a Grothendieck category has a K-injective resolution ([17] and [1]).

In order to give other descriptions of the functors RHomA(α, −) and ExtiA(α, −), we 
will see that the functor HomA(α, −) is the composite of additive functors Gα and Lα

defined below.

Definition 4.2.

(1) Denote by Cα the full subcategory of A consisting of objects which are isomorphic 
to nonzero subobjects of E(α).

(2) Denote by Mod Cα the category of contravariant Z-functors from Cα to ModZ. (Note 
that the category Cα is skeletally small since A is a Grothendieck category.)

Remark 4.3.

(1) Regard the directed set FE(α) as a category (see Section 3). Then we have a canonical 
contravariant functor FE(α) → Cα, which sends the unique morphism U → U ′ in 
FE(α) for each pair of subobjects U ⊃ U ′ to the inclusion morphism U ′ ↪→ U . This 
canonical functor is faithful and dense.

(2) Mod Cα is a Grothendieck category.
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Definition 4.4. For a nonnegative integer i, define an additive functor Gi
α : A → Mod Cα

by Gi
α(M) = ExtiA(−, M)|Cα

for each object M in A and Gi
α(f) = ExtiA(−, f)|Cα

for 
each morphism f in A, where (−)|Cα

is the restriction to Cα. G0
α is also denoted by Gα.

Gα is a left exact functor and its i-th right derived functor is Gi
α.

Proposition 4.5.

(1) Let X be an object in Mod Cα. Then the composite of the canonical contravariant 
functor FE(α) → Cα and the contravariant additive functor X : Cα → ModZ defines 
a direct system in ModZ. Denote its direct limit in ModZ by Lα(X).

(2) The correspondence X �→ Lα(X) defines an exact functor Lα : Mod Cα → Mod k(α).

Proof. (1) This is obvious.
(2) In order to show that Lα(X) has a canonical k(α)-module structure, let [x] ∈

Lα(X) and [f ] ∈ k(α), where x ∈ X(U), f : U ′ → U , and U, U ′ ∈ FE(α) (see Re-
mark 3.6 (3)). Define [x][f ] ∈ Lα(X) by [x][f ] = [X(f)(x)].

In order to show the well-definedness of this action, let y ∈ X(V ) and g : V ′ → V such 
that [x] = [y], and [f ] = [g]. In the case where N is a subobject of an object M in A, 
denote the inclusion morphism N ↪→ M by ιN,M . By the definition of Lα(X), there exists 
W ∈ FE(α) such that W ⊂ U ∩ V , and X(ιW,U )(x) = X(ιW,V )(y). Since [f ] = [g], there 
exists W ′ ∈ FE(α) such that W ′ ⊂ U ′ ∩V ′, and ιU,E(α)fιW ′,U ′ = ιV,E(α)gιW ′,V ′ . Denote 
this morphism by r : W ′ → E(α). By replacing W ′ by W ′ ∩ r−1(W ), we can assume 
Im r ⊂ W . Then there exists a morphism h : W ′ → W such that ιW,Uh = fιW ′,U ′ , and 
ιW,V h = gιW ′,V ′ . Hence we have

[
X(f)(x)

]
=

[
X(ιW ′,U ′)

(
X(f)(x)

)]
=

[
X(fιW ′,U ′)(x)

]
=

[
X(ιW,Uh)(x)

]
=

[
X(f)

(
X(ιW,U )(x)

)]
=

[
X(f)

(
X(ιW,V )(y)

)]
=

[
X(g)(y)

]
.

This shows the well-definedness of [x][f ].
It is straightforward to show that this action makes Lα(X) a k(α)-module, and Lα be-

comes an additive functor. The exactness of Lα follows from that of direct limit. �
In Section 3, we defined the left exact functor HomA(α, −) as the composite of the 

left exact functor P : A → S and the exact functor HomS(P (E(α)), −) : S → Mod k(α). 
We also have the following description of HomA(α, −).

Proposition 4.6. The left exact functor HomA(α, −) is the composite of the left exact 
functor Gα : A → Mod Cα and the exact functor Lα : Mod Cα → Mod k(α).

Proof. This can be shown straightforwardly. �
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This observation allows us to give other descriptions of the functors RHomA(α, −) :
D(A) → D(Mod k(α)) and ExtiA(α, −) : A → Mod k(α).

Theorem 4.7. Let A be a locally noetherian Grothendieck category, S the spectral category 
of A, P : A → S the canonical additive functor, and α an atom in A.

(1) There exist functorial isomorphisms

RHomA(α,−) ∼= HomS
(
P
(
E(α)

)
,−

)
◦ RP ∼= Lα ◦ RGα

of triangle functors D(A) → D(Mod k(α)).
(2) For any nonnegative integer i, we have a functorial isomorphism

ExtiA(α,−) ∼= lim−−→
U∈FE(α)

ExtiA(U,−)

of additive functors A → Mod k(α).

Proof. (1) This follows from above observation.
(2) For an object M in A, we have

ExtiA(α,M) = Hi
(
RHomA(α,M)

) ∼= Hi
(
Lα

(
RGα(M)

))
∼= Lα

(
Hi

(
RGα(M)

))
= Lα

(
ExtiA(−,M)|Cα

)
= lim−−→

U∈FE(α)

ExtiA(U,M).

It is easy to see that these isomorphisms are functorial on M . �
Remark 4.8. Similarly to Remark 3.6 (1), for any nonzero subobject U ′ of E(α), we have 
a functorial isomorphism

ExtiA(α,−) ∼= lim−−→
U∈FU′

ExtiA(U,−)

of additive functors A → Mod k(α).

5. Bass numbers

Throughout this section, let A be a locally noetherian Grothendieck category. For an 
object M in A, denote by Ei(M) the i-th term in the minimal injective resolution of M , 
that is,

0 → M → E0(M) → E1(M) → E2(M) → · · ·

is the minimal injective resolution of M . Note that E0(M) = E(M).
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By considering Theorem 2.5 (2), we can define Bass numbers from the viewpoint of 
atoms as a generalization of Bass numbers defined by Bass [4].

Definition 5.1. Let A be a locally noetherian Grothendieck category, α an atom in A, 
M an object in A, and i a nonnegative integer. Define the i-th Bass number μi(α, M)
of M with respect to α as the cardinal number satisfying

Ei(M) =
⊕

α∈ASpec A
E(α)⊕μi(α,M).

Remark 5.2.

(1) In Definition 5.1, the existence of indecomposable decompositions of injective objects 
is shown by Matlis [12, Theorem 2.5]. Since the endomorphism ring of any indecom-
posable injective object is a local ring, Krull–Remak–Schmidt–Azumaya’s theorem 
[2, Theorem 1] ensures the uniqueness of indecomposable decompositions of injective 
objects. The uniqueness also can be shown by using Theorem 5.3.

(2) In the case where i = 0 in Definition 5.1, μ0(α, M) coincides with rIα(M) with the 
notation in [8].

We show that Bass numbers defined above coincide with the dimensions of the exten-
sion groups between an atom and an object.

Theorem 5.3. Let A be a locally noetherian Grothendieck category, α an atom in A, 
M an object in A, and i a nonnegative integer. Then we have the equation

μi(α,M) = dimk(α) ExtiA(α,M).

Proof. For a nonnegative integer j, denote by �j(M) the j-th cosyzygy of an object M
in A, that is, �0(M) = M , and �j+1(M) is the cokernel of the inclusion morphism 
�j(M) ↪→ Ej(M). Then we have the long exact sequence

0 HomA
(
α,�j(M)

)
HomA

(
α,Ej(M)

)
HomA

(
α,�j+1(M)

)

Ext1A
(
α,�j(M)

)
Ext1A

(
α,Ej(M)

)
Ext1A

(
α,�j+1(M)

)

Ext2A
(
α,�j(M)

)
Ext2A

(
α,Ej(M)

)
Ext2A

(
α,�j+1(M)

)

· · ·



68 R. Kanda / Journal of Algebra 422 (2015) 53–77
in Mod k(α). Since �j(M) is an essential subobject of Ej(M), by Theorem 3.3 (1), 
the morphism HomA(α, �j(M)) → HomA(α, Ej(M)) is an isomorphism. For a posi-
tive integer l, we have ExtlA(α, Ej(M)) = 0. Hence we obtain ExtlA(α, �j+1(M)) ∼=
Extl+1

A (α, �j(M)) for any nonnegative integer l. By using this isomorphism repeatedly, 
we obtain

ExtiA(α,M) ∼= HomA
(
α,�i(M)

)
∼= HomA

(
α,Ei(M)

)
= HomA

(
α,

⊕
β∈ASpec A

E(β)⊕μi(β,M)
)

∼=
⊕

β∈ASpec A
HomA

(
α,E(β)

)⊕μi(β,M)

= k(α)⊕μi(α,M).

Therefore the statement holds. �
6. Application to E-stable subcategories

Throughout this section, let A be a locally noetherian Grothendieck category. As an 
application of Theorem 5.3, we show some properties about E-stable subcategories. We 
recall their definition.

Definition 6.1. Let A be a locally noetherian Grothendieck category and X a full sub-
category of A.

(1) X is called E-stable if for any object M in A, M belongs to X if and only if Ei(M)
belongs to X for each nonnegative integer i.

(2) We say that X is closed under arbitrary direct sums if for any family {Mλ}λ∈Λ of 
objects in X , 

⊕
λ∈Λ Mλ also belongs to X .

(3) We say that X is closed under direct summands if for any object M in X , any direct 
summand of M also belongs to X .

We define the small atom support of an object. This generalizes the notion of the 
small support in the setting of commutative noetherian rings (see [6, Remark 2.9]).

Definition 6.2. Let A be a locally noetherian Grothendieck category.

(1) For an object M in A, define a subset asuppM of ASpecA by

asuppM =
{
α ∈ ASpecA

∣∣ μi(α,M) �= 0 for some i ∈ Z≥0
}
,

and call it the small atom support of M .
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(2) For a full subcategory X of A, define a subset asuppX of ASpecA by

asuppX =
⋃

M∈X
asuppM.

(3) For a subset Φ of ASpecA, define a full subcategory asupp−1 Φ of A by

asupp−1 Φ = {M ∈ A | asuppM ⊂ Φ}.

The small atom support is related to associated atoms in Definition 3.12 as follows.

Proposition 6.3. Let M be an object in A. Then the following hold.

(1) asuppM = {α ∈ ASpecA | RHomA(α, M) �= 0}.
(2) AAssM ⊂ asuppM .

Proof. (1) This follows from Theorem 5.3.
(2) This follows from (1) and Proposition 3.13. �

Theorem 6.4. Let A be a locally noetherian Grothendieck category. Then the map X �→
asuppX is a bijection between the E-stable subcategories of A closed under arbitrary 
direct sums and direct summands, and the subsets of ASpecA. The inverse map is given 
by Φ �→ asupp−1 Φ.

Proof. Let Φ be a subset of ASpecA. Then asupp−1 Φ is E-stable and closed under direct 
summands. It is also closed under arbitrary direct sums since for any family {Mλ}λ∈Λ

of objects in A, the minimal injective resolution of 
⊕

λ∈Λ Mλ is

0 →
⊕
λ∈Λ

Mλ →
⊕
λ∈Λ

E0(Mλ) →
⊕
λ∈Λ

E1(Mλ) →
⊕
λ∈Λ

E2(Mλ) → · · ·

by [12, Proposition 2.1]. The inclusion asupp asupp−1 Φ ⊂ Φ is obvious. For any α ∈ Φ, 
since E(α) belongs to asupp−1 Φ, we have α ∈ asuppE(α) ⊂ asupp asupp−1 Φ. Hence 
asupp asupp−1 Φ = Φ.

Let X be an E-stable subcategory of A which is closed under arbitrary direct sums 
and direct summands. Then an object M in A belongs to X if and only if E(α) belongs 
to X for any α ∈ asuppM . For any atom α in A, if E(α) belongs to X , then α ∈
asuppE(α) ⊂ asuppX . Conversely, if α ∈ asuppX , there exist an object N in X and 
a nonnegative integer i, E(α) is a direct summand of Ei(N), and hence E(α) belongs 
to X . Therefore M belongs to X if and only if asuppM ⊂ asuppX . This implies that 
X = asupp−1 asuppX . �

By using the long exact sequence of extension groups between atoms and objects, we 
can show the following result, which is a generalization of [19, Corollary 2.19].
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Corollary 6.5. Let A be a locally noetherian Grothendieck category and X an E-stable 
subcategories of A closed under arbitrary direct sums and direct summands. For any 
exact sequence

0 → L → M → N → 0

in A, if two of L, M , N belong to X , then the remaining one also belongs to X .

Proof. This short exact sequence induces a triangle

L → M → N → L[1]

in D(A). For any atom α in A, we have the triangle

RHomA(α,L) → RHomA(α,M) → RHomA(α,N) → RHomA(α,L)[1]

in D(Mod k(α)). Then by Proposition 6.3 (1), we have

asuppL ⊂ asuppM ∪ asuppN,

asuppM ⊂ asuppL ∪ asuppN,

asuppN ⊂ asuppL ∪ asuppM.

Then the claim follows. For example, if M and N belong to X , then by Theorem 6.4, we 
have asuppM ⊂ asuppX and asuppN ⊂ asuppX . Therefore we deduce that asuppL ⊂
asuppX , and hence L belongs to X . �
7. Bass numbers for noetherian algebras

In this section, we give another description of Bass numbers in the case of noetherian 
algebras. Throughout this section, let R be a commutative noetherian ring and Λ a ring 
whose center contains R as a subring, and assume that Λ is finitely generated as an 
R-module. A module means a right module, and an ideal means a two-sided ideal.

A proper ideal P of Λ is called a prime ideal of Λ if for any a, b ∈ Λ, aΛb ⊂ P implies 
a ∈ P or b ∈ P . The set of all the prime ideals of Λ is denoted by SpecΛ, and the 
set of all the maximal ideals of Λ is denoted by MaxΛ. Note that MaxΛ ⊂ SpecΛ. 
For a Λ-module M , denote by AssΛ M the set of all the associated prime ideals 
of M , that is, a prime ideal P of Λ belongs to AssΛ M if and only if there exists 
a nonzero Λ-submodule N of M such that for any nonzero Λ-submodule N ′ of N , 
AnnΛ(N ′) = P .

On indecomposable injective Λ-modules, the following fact is known.
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Theorem 7.1.

(1) (See [7, V, 4, Lemma 2].) There exists a bijection between SpecΛ and the set of 
isomorphism classes of indecomposable injective Λ-modules. For each prime ideal P
of Λ, denote by I(P ) the corresponding indecomposable injective Λ-module. Then the 
injective envelope EΛ(Λ/P ) is the direct sum of finitely many copies of I(P ). We 
also have AssΛ I(P ) = AssΛ(Λ/P ) = {P}.

(2) (See [7, V, 4, Proposition 6].) Let M be a Λ-module and P a prime ideal of Λ. Then 
P ∈ AssΛ M if and only if I(P ) is a direct summand of EΛ(M).

Therefore we have a description of the atom spectrum of ModΛ.

Theorem 7.2.

(1) There exists a bijection between SpecΛ and ASpec(ModΛ). For each prime ideal P
of Λ, the corresponding atom P̃ is determined by AAss(Λ/P ) = {P̃}.

(2) The bijection in (1) induces a bijection between AssΛ M and AAssM for any 
Λ-module M .

Proof. (1) This follows from Theorem 7.1 (1) and Theorem 2.5 (2).
(2) Let P be a prime ideal of Λ. By Theorem 7.1 (2), we have P ∈ AssΛ M if and 

only if μ0(P̃ , M) �= 0. By Theorem 5.3 and Proposition 3.13, this is equivalent to P̃ ∈
AAssM . �

The following lemma is useful to see behavior of Λ/P for a prime ideal P of Λ.

Lemma 7.3. (See Goto and Nishida [9, Lemma 2.5.1].) Let P be a prime ideal of Λ and 
M a Λ-module. Then P ∈ AssΛ M if and only if there exist a positive integer i and 
a Λ-monomorphism Λ/P ↪→ M⊕i.

Proposition 7.4. The correspondence P �→ P̃ gives a bijection between MaxΛ and the 
set of atoms which are represented by simple Λ-modules. Therefore MaxΛ bijectively 
corresponds to the set of all the isomorphism classes of simple Λ-modules.

Proof. Let P be a maximal ideal of Λ. Since Λ/P is a noetherian Λ-module, there exist 
a simple Λ-module S and a Λ-epimorphism Λ/P � S. Since P ⊂ AnnΛ(S) � Λ, we have 
P = AnnΛ(S) by the maximality of P . Hence AssΛ S = {P}, and by Theorem 7.2 (2), 
{P̃} = AAssS = {S}.

Conversely, let P be a prime ideal of Λ, and assume that P̃ is represented by a simple 
Λ-module S. Since AAssS = {S} = {P̃}, by Theorem 7.2 (2), we have AssΛ S = {P}. 
By Lemma 7.3, there exist a positive integer i and a Λ-monomorphism Λ/P ↪→ S⊕i, 
and hence Λ/P is isomorphic to S⊕j for some positive integer j. Let Q be a maximal 
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ideal of Λ such that P ⊂ Q. Since Λ/Q is a quotient Λ-module of Λ/P ∼= S⊕j , Λ/Q is 
isomorphic to S⊕l for some positive integer l. By Proposition 3.14, {P̃} = AAss(Λ/P ) =
AAssS = AAss(Λ/Q) = {Q̃}, and hence P = Q is a maximal ideal of Λ. �

For a prime ideal p of R, the Rp-algebra Λp also satisfies our assumption. We recall a 
description of prime ideals of Λp.

Proposition 7.5. Let p be a prime ideal of R.

(1) The map

{Q ∈ SpecΛ | Q ∩R ⊂ p} → SpecΛp, Q �→ QΛp

is bijective. The inverse map is given by Q′ �→ ϕ−1(Q′), where ϕ : Λ → Λp is the 
canonical ring homomorphism.

(2) The map in (1) induces a bijection

{P ∈ SpecΛ | P ∩R = p} → MaxΛp.

Proof. (1) This can be shown straightforwardly.
(2) Let Q be a prime ideal of Λ such that Q ∩R ⊂ p. By [14, 10.2.13, Proposition (iii)], 

QΛp is a maximal ideal of Λp if and only if QΛp ∩ Rp is a maximal ideal of Rp. Since 
QΛp ∩Rp = (Q ∩R)Rp, this condition is equivalent to Q ∩R = p. �

For any prime ideal P of Λ, it can be easily shown that p = P ∩ R is a prime ideal 
of R. Then by Proposition 7.5 (2), PΛp is a maximal ideal of Λp. By Proposition 7.4, 
PΛp determines an isomorphism class S(P ) of simple Λp-modules. We also denote by 
S(P ) a simple Λp-module which represents the isomorphism class S(P ).

Theorem 7.6. The map

SpecΛ →
∐

p∈Spec R

Sp, P �→ S(P )

is bijective, where for a prime ideal p of R, Sp is the set of all the isomorphism classes 
of simple Λp-modules.

Consequently, the map

ASpec(ModΛ) →
∐

p∈Spec R

Sp, P̃ �→ S(P )

is bijective.
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Proof. The first assertion follows from Proposition 7.5 (2) and the definition of S(P ). 
By Theorem 7.2 (1), we obtain the description of the atom spectrum. �

The following lemma clarifies injective modules over Λp for each prime ideal p of R.

Lemma 7.7. Let I be an injective Λ-module and p a prime ideal of R.

(1) (See Bass [3, Lemma 1.2].) Ip is an injective Λp-module.
(2) (See Goto and Nishida [9, Lemma 2.4.1].) The canonical Λ-homomorphism I → Ip

is a split Λ-epimorphism.

The residue field k(P̃ ) of the atom P̃ can be described by using S(P ).

Proposition 7.8. Let P be a prime ideal of Λ and p = P ∩ R. Then there exists an 
isomorphism k(P̃ ) ∼= EndΛp

(S(P )) of skew fields.

Proof. Set I = I(P ). By Theorem 7.1 (1), AssΛ I = {P}. Hence by Lemma 7.3, 
there exist a positive integer i and a Λ-monomorphism Λ/P ↪→ I⊕i. By localizing 
this morphism at p, we have Λp/PΛp ↪→ I⊕i

p . By Proposition 7.4 and the proof of 
it, Λp/PΛp

∼= S(P )⊕j in ModΛp for some positive integer j. By Lemma 7.7, Ip is 
an indecomposable injective Λp-module, and Ip ∼= I in ModΛ. Since Ip contains 
S(P ) as a Λp-submodule, we have Ip ∼= EΛp

(S(P )). Since any Λp-homomorphism 
S(P ) → S(P ) can be lifted to a Λp-homomorphism Ip → Ip, the ring homomorphism 
EndΛp

(Ip) → EndΛp
(S(P )) is surjective. Then we have a surjective ring homomor-

phism EndΛ(I) ∼= EndΛ(Ip) ∼= EndΛp
(Ip) → EndΛp

(S(P )). By Proposition 3.10 (2), 
EndΛp

(S(P )) is isomorphic to k(P̃ ). �
In order to give a description of Bass numbers, we regard S(P ) as a Λp-submodule of 

I(P ) for each prime ideal P of Λ. In fact, S(P ) is characterized as follows.

Lemma 7.9. Let P be a prime ideal of Λ and p = P ∩R. Then {x ∈ I(P ) | xP = 0} is a 
Λp-module which is isomorphic to S(P ).

Proof. By Lemma 7.7 (2), I(P ) can be regarded as an indecomposable injective 
Λp-module. As in the proof of Proposition 7.8, S(P ) is isomorphic to a unique sim-
ple Λp-submodule of I(P ). Set N = {x ∈ I(P ) | xP = 0}. For any x ∈ N and s ∈ R \ p, 
set y = xs−1. Since yPs = xP = 0, and s acts on I(P ) as an isomorphism, we obtain 
yP = 0. Hence xs−1 ∈ N , and this shows that N is a Λp-submodule of I(P ). Since I(P )
is a uniform Λp-module, and NPΛp = 0, N is a uniform Λp/PΛp-module. Since Λp/PΛp

is a finite-dimensional Rp/pRp-algebra, it is artinian. Furthermore Λp/PΛp is a simple 
ring and hence is Morita-equivalent to a skew field by Artin–Wedderburn’s theorem. 
Therefore N is a simple Λp/PΛp-module and hence is also simple as a Λp-module. �
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Theorem 7.10. Let P be a prime ideal of Λ and p = P ∩R.

(1) There exists a functorial isomorphism

RHomΛ(P̃ ,−) ∼= RHomΛp

(
S(P ), (−)p

)
of triangle functors D(ModΛ) → D(Mod k(P̃ )).

(2) For any nonnegative integer i and any Λ-module M ,

μi(P̃ ,M) = dimk(P̃ ) ExtiΛp

(
S(P ),Mp

)
.

Proof. (1) By [5, Proposition 2.12], every complex in ModΛ has a K-projective reso-
lution. Since the localization functor (−)p = − ⊗ Λp : ModΛ → ModΛp has an exact 
right adjoint HomΛp

(Λp, −) : ModΛp → ModΛ, it sends any K-projective complex in 
ModΛ to a K-projective complex in ModΛp. Hence by [10, Proposition 5.4], the right 
derived functor of HomΛp

(S(P ), (−)p) is the composite of the induced triangle func-
tor (−)p : D(ModΛ) → D(ModΛp) and the right derived functor RHomΛp

(S(P ), −) :
D(ModΛp) → D(Mod k(P̃ )). Therefore it suffices to show that there exists a functorial 
isomorphism

HomΛ(P̃ ,−) ∼= HomΛp

(
S(P ), (−)p

)
of additive functors ModΛ → Mod k(P̃ ).

We regard S(P ) as a Λp-submodule of I(P ). By definition, for any Λ-module M ,

HomΛ(P̃ ,M) = lim−−→
U∈FI(P )

HomΛ(U,M),

where FI(P ) is the directed set of all the nonzero Λ-submodules of I(P ). For any U ∈
FI(P ) and any Λ-homomorphism f : U → M , we have 0 �= U ↪→ Up ↪→ I(P )p = I(P )
by Lemma 7.7 (2), and hence the composite of S(P ) ↪→ Up and fp : Up → Mp is an 
element of HomΛp

(S(P ), Mp). This correspondence defines a Z-homomorphism ϕM :
HomΛ(P̃ , M) → HomΛp

(S(P ), Mp).
In order to show that ϕM is a k(P̃ )-homomorphism, let [h] ∈ k(P̃ ), where h : V → U , 

and V ∈ FI(P ). Then there exists a Λ-homomorphism h̃ : I(P ) → I(P ) such that the 
diagram

I(P ) h̃
I(P )

V
h

U
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commutes. By Proposition 7.8, [h] ∈ k(P̃ ) corresponds to a Λp-homomorphism θ :
S(P ) → S(P ). The commutative diagram

I(P ) h̃
I(P )

Vp

hp

Up

fp
Mp

S(P ) θ
S(P )

shows that ϕM is a k(P̃ )-homomorphism.
Assume that ϕM ([f ]) = 0. Then by the definition of ϕM , fp is not a Λp-monomor-

phism. Hence f is not a Λ-monomorphism. This means that [f ] = 0 by Proposition 3.8. 
Therefore ϕM is injective.

In order to show the surjectivity of ϕM , take a nonzero Λp-homomorphism g : S(P ) →
Mp. By Lemma 7.7 (2), the canonical Λ-homomorphism EΛ(M) → EΛ(M)p is a split 
Λ-epimorphism. Denote a section of it by ν : EΛ(M)p → EΛ(M) and the composite of 
g : S(P ) → Mp, Mp ↪→ EΛ(Mp), and ν : EΛ(M)p ↪→ EΛ(M) by g′. Since g′ is nonzero, 
there exists a nonzero element x of S(P ) such that 0 �= g′(x) ∈ EΛ(M). Since M is an 
essential Λ-submodule of EΛ(M), there exists λ ∈ Λ such that 0 �= g′(x)λ ∈ M . Then g′

induces a Λ-homomorphism f ′ : xλΛ → M . f ′ defines an element of HomΛ(P̃ , M). We 
have the commutative diagram

S(P )
g

Mp EΛ(M)p
ν

EΛ(M)

xλΛ
f ′

M.

By applying (−)p to this diagram, we obtain the commutative diagram

S(P )
g

Mp EΛ(M)p
νp

EΛ(M)p

(xλΛ)p
f ′
p

Mp.

This shows that ϕM ([f ′]) = g, and hence ϕM is surjective.
It is straightforward to show that ϕM is functorial on M .
(2) This follows from (1) and Theorem 5.3. �
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Example 7.11. Let R be a commutative noetherian ring and Λ the ring of 2 × 2 lower 
triangular matrices over R, that is,

Λ =
[
R 0
R R

]
.

Then for any prime ideal p of R,

Λp =
[
Rp 0
Rp Rp

]
,

and all the isomorphism classes of simple Λp-modules are given by

S1(p) = [ k(p) 0 ] , S2(p) = [ k(p) k(p) ]
[ k(p) 0 ] ,

where k(p) = Rp/pRp. By considering Theorem 7.6, denote the prime ideal of Λ corre-
sponding to Si(p) by Pi(p) for each i ∈ {1, 2}. Then k(P̃i(p)) = k(p), and

EΛ

(
P̃1(p)

)
= [ER(R/p) ER(R/p) ] , EΛ

(
P̃2(p)

)
= [ER(R/p) ER(R/p) ]

[ER(R/p) 0 ] .

Let V be an R-module, and define a Λ-module M by

M = [ V 0 ] .

Then

Mp = [ Vp 0 ] , EΛp
(Mp) = [ER(Vp) ER(Vp) ] .

By Theorem 7.10,

μ0
(
P̃1(p),M

)
= dimk(p) HomΛp

(
S1(p),Mp

)
= dimk(p) HomRp

(
k(p), Vp

)
= μ0(p, V ),

μ0
(
P̃2(p),M

)
= dimk(p) HomΛp

(
S2(p),Mp

)
= 0,

μ1
(
P̃1(p),M

)
= dimk(p) Ext1Λp

(
S1(p),Mp

)
= dimk(p) Ext1Rp

(
k(p), Vp

)
= μ1(p, V ),

μ1
(
P̃2(p),M

)
= dimk(p) Ext1Λp

(
S2(p),Mp

)
= dimk(p) HomRp

(
k(p), Vp

)
= μ0(p, V ).
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