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We construct canonical non-vanishing global sections of pow-
ers of the Hodge bundle on each Ekedahl–Oort stratum of 
a Hodge type Shimura variety. In particular we recover the 
quasi-affineness of the Ekedahl–Oort strata. In the projec-
tive case, this gives a very short proof of non-emptiness of 
Ekedahl–Oort strata. It follows that the Newton strata are 
also nonempty, by a result of S. Nie. From the canonicity of 
our construction, we deduce the fact that the μ-ordinary locus 
is determined by the Ekedahl–Oort strata of its image under 
any embedding of Shimura varieties.
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Introduction

The Siegel modular variety Ag,N arises as a moduli space of g-dimensional principally 
polarized abelian varieties with level-N structure. More generally, Shimura varieties of 
PEL-type classify abelian varieties endowed with a polarization, an action of a semisimple 
algebra, and a level structure. These varieties satisfy nice properties due to their nature 
as moduli spaces. For example, the special fiber of a PEL-Shimura variety at a place of 
good reduction carries different stratifications (Ekedahl–Oort, Newton, p-rank, etc.).
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Shimura varieties which can be embedded into a Siegel modular variety are called 
‘of Hodge type’. In general, they do not have an interpretation as a moduli space. In 
particular, all PEL-Shimura varieties are of Hodge type. For Hodge type varieties, one 
can still define the Ekedahl–Oort stratification using the stack of G-zips, introduced by 
Wedhorn, Moonen, Pink, Ziegler in [9,12] and [13]. More precisely, let (G, μ) be a Hodge 
type Shimura datum and let SK denote the special fiber of the associated Shimura variety 
at a place of good reduction. Zhang has constructed in [19] a G-zip over SK and he has 
shown that the corresponding morphism

SK → G-Zipμ

is smooth. By definition, the Ekedahl–Oort strata of SK are the fibers of ζ. In particular, 
Zhang proves that the μ-ordinary Ekedahl–Oort stratum is open and dense. It is also 
possible to define group theoretically the Newton stratification on SK . Wortmann has 
shown in [18] that the open Newton stratum coincides with the μ-ordinary locus.

Fix an embedding ι : SK → Ag,N of a Hodge type Shimura variety SK into a Siegel 
modular variety. Denote by A → SK the pull-back of the universal abelian scheme on 
Ag,N via ι. Let e : SK → A denote the identity section of A . Then the Hodge bundle 
is by definition

ωSK
:= det(e∗ΩA /SK

).

This line bundle is ample on SK . In an upcoming paper by the author and T. Wedhorn,
it is proved that this line bundle admits a canonical global section, a generalized Hasse 
invariant, which vanishes exactly outside the μ-ordinary locus [8, Theorem 4.12]. In this 
paper we construct sections of ωS on each Ekedahl–Oort stratum. Here are our main 
results:

Theorem 1. Let Sw be a nonempty Ekedahl–Oort stratum. There exists Nw ≥ 1 such that 
for all d ≥ 1, there exists a (canonical) non-vanishing section in the space

H0(Sw, ω⊗Nwd
SK

).

This section is canonical, in the sense that it is a pull-back of a non-vanishing global 
section on a certain substack of the stack of G-zips. Therefore it only depends on the 
choice of the embedding into a Siegel Shimura variety. Our sections arise as pull-backs
from a one-dimensional vector space (see Theorem 3.1). This ensures “functoriality” (up 
to a scalar) of the sections under any embedding of Shimura varieties (see paragraph 3.2). 
Such a non-vanishing section induces an isomorphism OSw → ω⊗Nwd

SK
. In other words, 

Theorem 1 says that the line bundle ωSK
is torsion on Sw. This implies that OSw is 

ample on Sw, so we deduce the following result:

Corollary 1. The Ekedahl–Oort strata are quasi-affine.
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As pointed out to me by Ulrich Görtz and Chia-Fu Yu, this result can also be deduced 
immediately from the case of Siegel modular varieties. Let us also mention that by a result 
of Wedhorn and Yaroslav, the inclusion Sw → S is an affine morphism [17, Theorem 4.1].
From the quasi-affineness of Ekedahl–Oort strata, we deduce the following:

Corollary 2. Let SK be a Hodge type Shimura variety. Assume that SK is projective. 
Then all Ekedahl–Oort and Newton strata are nonempty.

For the definition of Newton strata, see paragraph 4.1. For a more detailed and thor-
ough exposition, see [18, §5.2]. For PEL-Shimura varieties, all Ekedahl–Oort strata are 
known to be nonempty, by a result of Viehmann and Wedhorn in [16]. For more general 
Hodge type Shimura varieties, nonemptiness is expected to hold, even though no proof 
has been given so far.

Here is an idea of the proof of Corollary 2. The ampleness of the Hasse bundle and the 
existence of the Hasse invariant imply that an Ekedahl–Oort stratum of positive dimen-
sion cannot be projective. Using an inductive argument, we deduce that the superspecial 
locus (the Ekedahl–Oort stratum of dimension zero) is nonempty, and then the result is 
a consequence of the flatness of the map ζ. The rigidity of the construction in Theorem 1
has the following consequence:

Corollary 3. Let Sμ be the μ-ordinary Ekedahl–Oort stratum, and let Sμ
0 be the Ekedahl–

Oort stratum of the Siegel modular variety Ag,N containing the image of Sμ by the 
embedding ι : SK → Ag,N . Then one has the equality:

Sμ = ι−1(Sμ
0 ).

For example, assume S is a PEL-Shimura variety parametrizing tuples (A, λ, ι, ̄ν)
where A is an abelian variety, λ a polarization, ι an action of a Z(p)-algebra, and ν̄ a level 
structure. Then the μ-ordinary locus of S is entirely determined by the isomorphism class 
of the p-torsion A[p], forgetting the rest of the structure. This is a somewhat surprising 
result, even in the PEL-case. Of course it can happen that two Ekedahl–Oort strata 
are mapped to the same stratum via an embedding of Shimura varieties. For example, 
consider a Hilbert–Blumenthal Shimura variety SK attached to a totally real field E
which is a cyclic extension of Q, and look at the reduction modulo an inert prime p. 
Then the Galois group Gal(E/Q) acts non-trivially on the set of Ekedahl–Oort strata. 
Since the Galois action on the Ekedahl–Oort strata of a Siegel modular variety is trivial, 
it follows that two Galois-conjugate strata of SK must be mapped to the same stratum 
under any embedding of Shimura varieties SK → Ag,N defined over Q.

We now give an overview of the paper. In the first section we recall the parametrization 
of Ekedahl–Oort strata using the stack of G-zips and the map ζ. Then in the second part 
we state some general facts about the Picard group of a quotient stack and the space 
of global sections of a line bundle, which we apply to the stack of G-zips. In the third 
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part we construct Hasse invariants on each Ekedahl–Oort stratum. Finally, we prove the 
corollaries of Theorem 1 in the last subsection.

1. Parametrization of Ekedahl–Oort strata

1.1. Shimura varieties of Hodge type

We follow the general setup of [8, (4.1)]. If (G1, X1) and (G2, X2) are two Shimura 
data (as in [2, 2.1.1]), a morphism of Shimura data (G1, X1) → (G2, X2) is a map of 
groups G1 → G2, which induces a map X1 → X2.

Let (G, X) be a Shimura datum of Hodge type. We fix an embedding ι : (G, X) →
(GSp(V ), S±) of Shimura data, where V = (V, ψ) is a symplectic space over Q and 
S± the double Siegel half space. Let h ∈ X be a morphism S → GR and let [μ] the 
G(C)-conjugacy class of the component of hC: 

∏
Gal(C/R) Gm,C → GC corresponding to 

id ∈ Gal(C/R). Let E be the reflex field, i.e. the field of definition of [μ].
For every sufficiently small open compact subgroup K ⊂ G(Af ) we obtain a Shimura 

variety S0
K(G, X) defined over E. For every choice of compact open subsets K ⊂ G(Af )

and K̃ ⊂ GSp(V ⊗ Af ) such that ι(K) ⊂ K̃, the embedding ι induces a map over E:

ι : S0
K(G,X) −→ S0

K̃
(GSp(V ), S±) ⊗Q E (1.1)

where S0
K̃

(GSp(V ), S±) denotes the Siegel modular variety attached to the data 
(GSp(V ), S±) at the level K̃.

We choose a prime number p > 2 and a place v of E over p and we denote by κ := κ(v)
the residue field of v. We now fix a pair (K, K̃) of compact subgroups as above such that 
the following assumptions are satisfied:

(i) There exists a reductive Z(p)-model G of G, such that Kp = G(Zp) (this is called 
a hyperspecial subgroup of G(Qp)). In particular, GQp

is unramified, and hence 
quasi-split. It follows from the smoothness of the stack parametrizing Borel pairs 
in G that the group G is then also quasi-split (i.e. admits a Borel pair over Zp). We 
say that the Shimura variety S0

K(G, X) has good reduction at p.
(ii) There is a Z(p)-lattice Λ of V such that ι is induced by an embedding G → GL(Λ)

(this is always possible by [5, Lemma (2.3.1)]).
(iii) The bilinear form ψ induces a perfect Z(p)-pairing on Λ and one has K̃p =

GSp(Λ, ψ)(Zp). This implies that S0
K̃

(GSp(V ), S±) has good reduction at p.
(iv) The compact subgroups Kp and K̃p are sufficiently small (see below for details).
(v) The map (1.1) is a closed embedding. For fixed K and K̃p as above, it is possible 

to find K̃p such that this condition is satisfied (see [5, Lemma 2.1.2]).

Assumption (iii) may fail for our fixed ι, but it is possible to replace the symplectic 
space (V, ψ) such that it is satisfied (this is Zarhin’s trick — see [6, (1.3.3)]). In assump-
tion (iv), we choose Kp and K̃p such that the Shimura varieties S0

˜ (GSp(V ), S±) and 

K
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S0
K(G, X) have smooth integral models SK̃(GSp(V ), S±) over Zp and SK(G, X) over 

OEv
respectively. By the main results of [5] and [14], the scheme SK(G, X) is defined 

as the normalization of the scheme-theoretic image of S0
K(G, X) inside SK̃(GSp(V ), S±)

by the embedding (1.1).
We denote by SK := SK(G, X) ×OEv

κ the special fiber of SK(G, X). It is a smooth 
quasi-projective scheme over κ. By assumptions (ii) and (iii) we have an embedding

ι:G ↪→ GSp(Λ) (1.2)

over Z(p) and G is the scheme-theoretic stabilizer of a finite set s of tensors in Λ⊗ (see 
[5, Proposition 1.3.2]). By construction, there is a finite morphism:

SK(G,X) −→ SK̃(GSp(Λ), S±) ⊗Z(p) OEv
(1.3)

Let Ã → SK̃(GSp(Λ), S±) be the universal abelian scheme of the integral Siegel modular 
variety, and let A be its pull-back to SK(G, X) by the map (1.3). We define a line bundle 
on SK(G, X) by

ω := det(e∗Ω1
A /S)

where e is the identity section of A , and we call it the Hodge line bundle. The line bundle 
ω is ample as the pull-back of an ample line bundle by a finite map. We denote by ωSK

the pull-back of ω to the special fiber SK .

1.2. The stack of G-zips

We denote by k an algebraic closure of κ and we write G = G ×Z(p) Fp for the special 
fiber of G.

The conjugacy class of cocharacters [μ−1] extends to a conjugacy class over OEv
. As 

G is quasi-split, there exists a representative defined over OEv
. We denote by χ : Gm,κ →

Gκ the reduction of this representative to the special fiber. Let P± = P±(χ) be the pair 
of opposite parabolic subgroups of Gκ attached to the cocharacter χ, with common Levi 
subgroup L (the centralizer of χ). Then (G, P+, σ(P−), ϕ) is an algebraic zip datum in 
the sense of [12, 10.1], where σ(−) denotes the pull-back under the absolute Frobenius 
σ: x �→ xp and where ϕ: L → σ(L) is the relative Frobenius. We set P := P+, Q := σ(P−)
and M := σ(L), so that M is a Levi subgroup of Q.

We may assume (see [8, Lemma 4.2]), possibly after replacing χ by a conjugate 
cocharacter, that there is a Borel pair (T, B) defined over Fp such that B− ⊂ P , and 
therefore B ⊂ Q. Let (X, Φ, X∨, Φ∨, Δ) be the based root datum of (G, B, T ). Denote by 
W = W (G, T ) := NG(T )/T the Weyl group and by I ⊂ W the set of simple reflections 
defined by B. The subsets of I correspond bijectively to the parabolic subgroups of Gk

containing B, which are called standard. For J ⊂ I, denote by QJ the corresponding 
standard parabolic and by MJ the unique Levi subgroup of QJ containing T . We have 
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an inclusion WJ := W (MJ , T ) ↪→ W (G, T ) such that J = WJ ∩ I. Every parabolic 
subgroup P ′ of Gk is conjugate to a unique standard parabolic subgroup QJ and J ⊂ I

is called the type of P ′.
We define the following set:

JW := {w ∈ W, 
(sw) > 
(w) ∀s ∈ J}.

Any element w ∈ JW is the minimal element in the right coset WJw. Hence the set JW
is a set of representatives for the quotient WJ\W .

For x ∈ P , we denote by x̄ the image of x in P/Ru(P ) = L, and similarly for the 
image of y ∈ Q in Q/Ru(Q) = M . The associated zip group is defined by

E := { (x, y) ∈ P ×Q ; ϕ(x̄) = ȳ }

and E acts on Gκ by (x, y) · g := xgy−1. Note that dim(E) = dim(G). By [12, Proposi-
tion 7.3], there are finitely many E-orbits in Gk, which are parametrized as follows. Let 
J and K denote the types of P and Q, respectively. For every w ∈ W we choose a repre-
sentative ẇ ∈ NormG(T ) such that (w1w2)· = ẇ1ẇ2 whenever 
(w1w2) = 
(w1) + 
(w2)
(this can be achieved by choosing representatives in NormG(T ) attached to a Chevalley 
system [3, Exp. XXIII, §6]). Let w0,J ∈ WJ and w0 ∈ W be the longest elements and 
set g0 := (w0w0,J )·. By [12, Theorem 5.12 and Theorem 7.5] we obtain a bijection

JW
∼−→ {E-orbits in Gk}, w �→ Ow := E · (g0ẇ) (1.4)

such that dimOw = 
(w) + dim(P ).

1.3. Ekedahl–Oort strata

The algebraic quotient stack over κ

G-Zipχ := [E\Gκ] (1.5)

is called the stack of G-zips. The underlying topological space of G-Zipχ is homeomorphic 
to JW endowed with the order topology with respect to a certain partial order 
 (see 
[12, Definition 6.1] for the definition of 
).

Zhang has constructed in [19] a G-zip of type χ over SK and he has shown in [19] that 
the corresponding morphism SK → G-Zipχ is smooth. In this paper, we prefer to use 
the construction given by Wortmann in [18, §5] and we obtain again a smooth morphism

ζ := ζG:SK −→ G-Zipχ . (1.6)

The Ekedahl–Oort strata of SK are defined as the fibers of ζ. For w ∈ JW , we denote by 
Sw := ζ−1(w) the corresponding stratum endowed with the reduced scheme structure as 
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a locally closed subset of SK . Then Sw is smooth by [17] and if nonempty, has dimension 

(w). In the case of PEL-Shimura varieties, every Ekedahl–Oort stratum is nonempty 
[16, Theorem 10.1]. The map (1.6) restricts to a smooth map of stacks:

ζ:Sw −→ [E\Ow]. (1.7)

2. Equivariant Picard group

2.1. G-linearizations

In this section we consider an arbitrary smooth algebraic group over k acting on a 
k-variety X. If π : L → X is a line bundle, a G-linearization of L is a map

G× L → L

defining an action of G on L, satisfying the conditions:

(i) The map π is G-equivariant.
(ii) The action of G on L is linear on the fibers.

We denote by PicG(X) the group of isomorphism classes of G-linearized line bundles 
on X. The image of the natural map PicG(X) → Pic(X) is the subgroup of G-linearizable 
line bundles, and is denoted by PicG(X). The group PicG(X) can be identified with the 
Picard group of the quotient stack [G\X], defined as the group of isomorphism classes 
of line bundles on the stack [G\X].

We define E(X) := Gm(X)/k×. If X is an irreducible variety over k, it is a free abelian 
group of finite type.

Proposition 2.1. Let G be a smooth algebraic group, and X an irreducible G-variety. 
Then there is an exact sequence:

1 → k× → Gm(X)G → E(X) → X∗(G) → PicG(X) → Pic(X)

Proof. See [7, Proposition 2.3 and Lemma 2.2]. The assumption that k is of character-
istic 0 is not needed in the proof. �

The map X∗(G) → PicG(X), λ �→ L (λ) is defined as follows. A character λ ∈ X∗(G)
induces a G-linearization of the trivial line bundle A1

k × X on X given by (g, x, s) �→
(g · x, λ(g)s) for all g ∈ G, x ∈ X, s ∈ A1

k.

Proposition 2.2. Let H ⊂ G be algebraic groups. Then there is a natural isomorphism:

PicG(G/H) � X∗(H).
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Proof. One has PicG(G/H) � Pic([G\(G/H)]) � Pic([1/H]) � PicH(1) � X∗(H). �
2.2. The space of global sections

Proposition 2.3. Let G be an algebraic group and let X be an irreducible G-variety con-
taining an open G-orbit U . Denote by π : X → [X/G] the projection. Let L be a line 
bundle on the stack [X/G] and write L = π∗L . Then:

(i) H0 ([X/G] ,L ) identifies with H0 (X,L)G. In particular, for λ ∈ X∗(G) one has:

H0 ([X/G] ,L (λ)) = {f : X → k, f(g · x) = λ(g)f(x), ∀g ∈ G, x ∈ X}.

(ii) The k-vector space H0 ([X/G] ,L ) has dimension less than 1.
(iii) If H0 ([X/G] ,L ) �= 0 then L restricts to the trivial line bundle on [U/G].
(iv) If L is trivial, H0 ([X/G] ,L ) = k.

Proof. See [8, Proposition 1.18]. �
3. Hasse invariants on Ekedahl–Oort strata

3.1. Construction

In this section we construct a canonical non-vanishing section of the Hodge bundle on 
each Ekedahl–Oort stratum of SK . We expect that this section extends to the Zariski 
closure of the stratum, so we call it abusively a Hasse invariant of the stratum. In the 
particular case of the μ-ordinary stratum, it was proved in [8, Theorem 4.12], that this 
canonical section does extend to the whole Shimura variety (and even to its minimal 
compactification), and that the non-vanishing locus is exactly the μ-ordinary stratum. 
In [4, Theorem 3.1.1], Goldring and the author prove that Hw extends to the Zariski 
closure Sw under a certain weak condition on the prime number p. See also [1] for similar 
results in PEL-cases of type A and C.

Let G be a reductive group over Fp, and μ : Gm,k → Gk a minuscule cocharacter. 
Denote by (G, P, Q, ϕ) the associated zip datum, and by E the attached zip group.

Theorem 3.1. For all E-orbit C ⊂ Gk, the Picard group PicE(C) is finite. Denote by NC

its exponent. Then for all d ≥ 1 and all λ ∈ X∗(E), the space of global sections

H0 ([E\C] ,L (λ)⊗NCd
)

is one-dimensional.
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Proof. We apply Proposition 2.1 to the E-variety C. Clearly Gm(C)E = k×. Hence we 
get an exact sequence:

1 → E(C) → X∗(E) → PicE(C) → Pic(C) (3.1)

Let x be an arbitrary element of C. The map E → C, e �→ e · x identifies C with the 
quotient E/Ax, where Ax is the scheme-theoretic stabilizer of x in E. We have an exact 
sequence

1 → Ax,red → Ax → Ax/Ax,red → 1

where Ax/Ax,red is a finite group scheme. Hence we have an exact sequence

0 → X∗(Ax/Ax,red) → X∗(Ax) → X∗(Ax,red).

By [12, Theorem 8.1], the group Ax,red has the form Ux�Hx where Ux is unipotent and 
Hx finite. We deduce that X∗(Ax,red) is finite, and hence so is X∗(Ax). It follows from 
Proposition 2.2 that PicE(C) is finite. Let NC be its exponent.

For all d ≥ 1, the character NCdλ maps to zero in PicE(C). Therefore there exists a 
function f ∈ E(C) mapping to NCdλ. By definition, this is a non-vanishing function on 
C satisfying the relation f(e ·x) = λ(e)NCdf(x), ∀e ∈ E, x ∈ C, so it is a nonzero global 
section of L (λ)⊗NCd. This concludes the proof. �
Remark 3.2. For a fixed character λ ∈ X∗(E), let NC(λ) be the order of L (λ) in PicE(C). 
The set of integers r such that H0 ([E\C] ,L (λ)⊗r) �= 0 is the subgroup of Z generated 
by NC(λ).

The first projection E → P induces an isomorphism X∗(E) = X∗(P ). A character 
λ ∈ X∗(E) = X∗(P ) is said to be ample if the associated line bundle on G/P is ample, see 
Definition 3.2 in [8]. This defines a cone in X∗(E). The following result is a reformulation 
of Theorem 3.8 in [8].

Theorem 3.3. Let U ⊂ Gk denote the open E-orbit of Gk. Let λ ∈ X∗(E) be an ample 
character. Then one has

H0 ([E\U ] ,L (λ)⊗n
)

= H0 ([E\Gk] ,L (λ)⊗n
)

for all n ≥ 1. For NU as in Theorem 3.1, d ≥ 1, and n = NUd, this space is one-
dimensional and any nonzero element induces a function Gk → A1

k which vanishes 
exactly on the complement of U .

Proof. The natural pull-back map H0 ([E\Gk] ,L (λ)⊗n) → H0 ([E\U ] ,L (λ)⊗n) is 
clearly injective. Since PicE(U) is finite, we have an isomorphism

E(U)Q � X∗(E)Q.
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The space H0 ([E\U ] ,L (λ)⊗n) is one-dimensional if and only if the function in E(U)Q
corresponding to nλ is in E(U) ⊂ E(U)Q. In this case the function extends to a regular 
function on Gk which vanishes exactly outside U , by [8, Theorem 3.8]. �

Now let us return to the notations of section 1. For an element w ∈ JW , denote by Nw

the integer associated with the E-orbit Ow as in Theorem 3.1. The map (1.7) induces 
by pull-back a map

H0 ([E\Ow] ,L (λ)⊗Nwd
)
→ H0 (Sw, ζ∗L (λ)⊗Nwd

)

As explained in [8, 4.6] and in the proof of Theorem 4.12, there is a character λω of E
such that

ζ∗L (λω) = ωSK
.

Thus we get a non-vanishing section Hw of ωNwd
SK

over Sw (well-defined up to a scalar), 
which proves Theorem 1. Note that this construction depends only on the choice of the 
Siegel embedding. Therefore we call Hw a canonical Hasse invariant for Sw.

We deduce the following corollary:

Corollary 3.4. The Ekedahl–Oort strata are quasi-affine.

Proof. Let Sw be an Ekedahl–Oort stratum. The non-vanishing section Hw induces 
an isomorphism ωSK

� OSw on Sw. Hence the trivial bundle OSw is ample, so Sw is 
quasi-affine. �

As mentioned in the introduction, this result can also be deduced from the quasi-
affineness of Ekedahl–Oort strata in the Siegel case (proved in [11, Theorem 1.2]). Each 
stratum Sw is in fact locally closed in the preimage of the corresponding Siegel Ekedahl–
Oort stratum, and is therefore quasi-affine.

3.2. Functoriality

Let f : G1 → G2 be a morphism of connected reductive groups over Fp. Let μ1 :
Gm,k → G1,k be a minuscule cocharacter, and set μ2 := f ◦ μ1. For i = 1, 2, denote 
by (Gi, Pi, Qi, ϕ) the zip datum attached to μi. Denote by E1 and E2 respectively the 
corresponding zip groups. The map f induces naturally a map E1 → E2, which we 
denote again by f . We get a map of stacks:

[E1\G1,k] −→ [E2\G2,k].
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Let C1 be an E1-orbit in G1,k and let C2 be the E2-orbit containing f(C1). Let λ ∈
X∗(E2) be a character of E2 and denote by N1(λ ◦ f) and N2(λ) the integers attached 
to the pairs (C1, λ ◦ f) and (C2, λ) as in Remark 3.2. We get a map:

f̃ : H0
(
[E2\C2] ,L (λ)⊗N2(λ)

)
→ H0

(
[E1\C1] ,L (λ ◦ f)⊗N2(λ)

)

One sees readily that this map is injective. Since the space on the left has dimension one, 
we deduce that it is an isomorphism. In particular the integer N1(λ ◦ f) divides N2(λ).

Assume now that f is an embedding and that C1 is the open E1-orbit in G1,k. Define 
again C2 to be the E2-orbit containing f(C1). Let λ ∈ X∗(E2) be an ample character. 
Then λ ◦ f is again ample (Remark 3.5 in [11]). We deduce the following isomorphism:

H0
(
[E2\C2] ,L (λ)⊗N2(λ)

)
� H0

(
[E1\G1,k] ,L (λ ◦ f)⊗N2(λ)

)
.

Any nonzero element H in this space induces a function H : G1,k → A1
k which vanishes 

exactly outside C1 by Theorem 3.3. But by definition it does not vanish on the preimage 
of C2, so we get the following:

Proposition 3.5. Assume that f is an embedding. Let C1 denote the open E1-orbit in 
G1,k, and let C2 be the E2-orbit containing C1. Then we have the following:

C1 = f−1(C2).

4. Consequences

Throughout this section, we use the same notations as in section 1.

4.1. Nonemptiness of Ekedahl–Oort and Newton strata in the projective case

We recall briefly the Newton stratification of the special fiber SK . For more details, 
we refer to [18, §5.2]. Let k0 be any algebraically closed field containing Fp, and let 
W := W (k0) be its Witt ring endowed with the Frobenius σ, and let L be the fraction 
field of W . We denote by B(G) the set of σ-conjugacy classes in G(L). This set is 
independent of the choice of the algebraically closed field k0.

Let x ∈ S be any point and we take k0 to be an algebraic closure of the field of defi-
nition κ(x) of x. To the point x one can attach a “Dieudonné module with G-structure” 
(Dx, scris) (Construction 5.3 in [18]). It is a free W -module of finite type Dx endowed with 
a σ-linear map F , a σ−1-linear map V such that FV = V F = p, and a family of tensors 
scris stabilized by F and V . Furthermore, there is an isomorphism Dx � Λ ⊗Z(p) W car-
rying the tensors scris to the tensors s (see (1.2)). After choosing any such isomorphism, 
the linearization of the Frobenius of Dx induces an element of G(L). Taking its class in 
B(G) induces a well-defined map (between sets):
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Newt : SK −→ B(G). (4.1)

The Newton strata of SK are defined as the fibers of this map. One can be more precise 
and define a finite subset B(G, μ) ⊂ B(G) such that the image of (4.1) is contained in 
B(G, μ). See definition 5.6 in [18]. In particular, there are only finitely many Newton 
strata. One can also show that Newton strata are locally closed [15, 5.3.1.(ii)].

In this paragraph we will prove the following result:

Proposition 4.1. Assume SK is a projective variety. Then all Ekedahl–Oort strata and 
all Newton strata are nonempty.

It follows from the parametrization (1.4) that there exists a unique Ekedahl–Oort 
stratum of dimension zero (corresponding to the element 1 ∈ JW ), called the super-
special stratum. Since the map ζ is smooth, it is open. Hence the nonemptiness of the 
superspecial stratum implies that all Ekedahl–Oort strata are nonempty.

Lemma 4.2. Assume that S is projective. Let Sw be an Ekedahl–Oort stratum of positive 
dimension. Then Sw is not closed.

Proof. Since Sw is quasi-affine, it cannot be projective unless it is zero-dimensional. �
We deduce that for any nonempty Ekedahl–Oort stratum of positive dimension d ≥ 1, 

there is a nonempty Ekedahl–Oort stratum of dimension < d in its closure. Using this 
argument recursively (beginning at the μ-ordinary stratum, which is nonempty), we 
deduce that there is a nonempty Ekedahl–Oort stratum of dimension 0, which must be 
the superspecial one. This proves the nonemptiness of Ekedahl–Oort strata.

Now Corollary 1.6 in [10] shows that every Newton stratum contains a fundamental 
Ekedahl–Oort stratum. Note that the assumption in [10] that the Shimura variety is of 
PEL-type is unnecessary, since the proof is entirely group theoretic. Hence it follows that 
all Newton strata are nonempty.

Remark 4.3. The proof of the nonemptiness of Ekedahl–Oort strata will work for any 
Shimura variety of Hodge type, provided that the closure of an Ekedahl–Oort stratum 
in the minimal compactification Smin

K intersects the boundary in a closed subset of codi-
mension ≥ 2.

4.2. Embeddings of Shimura varieties

We set Λ̄ := Λ ⊗Zp
Fp, endowed with the symplectic form induced by ψ. We de-

note by G0 the group GSp(Λ̄). As explained in [8, 4.5], the embedding (1.2) induces a 
commutative diagram:
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SK

ζ
G-Zipχ

ι

SK̃(GSp(Λ), S±)κ
ζ0

G0-Zipι◦χ

where SK̃(GSp(Λ), S±) denotes the special fiber of the Siegel modular variety
SK̃(GSp(Λ), S±) and ζ0 the corresponding zip map. See diagram (4.9) in [8] for de-
tails. The cocharacter ι ◦ χ of G0 gives rise to a zip datum (G0, P0, Q0, ϕ) and we get a 
map between the quotient stacks:

[E\Gκ] −→ [E0\G0,κ].

Denote by U the open E-orbit in Gk and by U0 the E0-orbit containing ι(U). We deduce 
from Proposition 3.5 that U = ι−1(U0), and the following result follows:

Corollary 3. Let Sμ be the μ-ordinary Ekedahl–Oort stratum, and let Sμ
0 be the Ekedahl–

Oort stratum of the Siegel modular variety SK̃(GSp(Λ), S±) containing the image of Sμ

by the embedding ι : SK → SK̃(GSp(Λ), S±). Then one has the equality:

Sμ = ι−1(Sμ
0 ).

In particular the μ-ordinary locus Sμ is entirely determined in S by the isomorphism 
class of the p-divisible group A[p∞] (or by the group scheme A[p]), where A is the abelian 
variety over k attached to a k-point in SK.
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