
Journal of Algebra 497 (2018) 199–218
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Nearly commuting matrices

Zhibek Kadyrsizova
Department of Mathematics, School of Science and Technology, 
Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, 010000, Kazakhstan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2017
Available online 20 November 2017
Communicated by V. Srinivas

Keywords:
Frobenius
Singularities
F -purity
Commuting matrices

We prove that the algebraic set of pairs of matrices with a 
diagonal commutator over a field of positive prime charac-
teristic, its irreducible components, and their intersection are 
F -pure when the size of matrices is equal to 3. Furthermore, 
we show that this algebraic set is reduced and the intersection 
of its irreducible components is irreducible in any character-
istic for pairs of matrices of any size. In addition, we discuss 
various conjectures on the singularities of these algebraic sets 
and the system of parameters on the corresponding coordinate 
rings.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

In this paper we study algebraic sets of pairs of matrices such that their commutator 
is either nonzero diagonal or zero. We also consider some other related algebraic sets. 
First let us define relevant notions.

Let X = (xij)1≤i,j≤n and Y = (yij)1≤i,j≤n be n ×n matrices of indeterminates over a 
field K. Let R = K[X, Y ] be the polynomial ring in {xij , yij}1≤i,j≤n and let I denote the 
ideal generated by the off-diagonal entries of the commutator matrix XY − Y X and J
denote the ideal generated by the entries of XY −Y X. The ideal I defines the algebraic 
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set of pairs of matrices with a diagonal commutator and is called the algebraic set of 
nearly commuting matrices. The ideal J defines the algebraic set of pairs of commuting 
matrices.

Let uij denote the (i, j)th entry of the matrix XY−Y X. Then I = (uij | 1 ≤ i �= j ≤ n)
and J = (uij | 1 ≤ i, j ≤ n).

Theorem 1 ([3]). The algebraic set of commuting matrices is irreducible, i.e., it is a 
variety. Equivalently, Rad(J) is prime.

The following results are due to A. Knutson [8], when the characteristic of the field 
is 0, and to H. Young [13] in all characteristics.

Theorem 2 ([8,13]). The algebraic set of nearly commuting matrices is a complete inter-
section, with the variety of commuting matrices as one of its irreducible components. In 
particular, the set {uij |1 ≤ i �= j ≤ n} is a regular sequence and the dimension of R/I

is n2 + n.

Theorem 3 ([8,13]). When K has characteristic zero, I is a radical ideal.

A. Knutson in his paper [8] conjectured that V(I) has only two irreducible components 
and it was proved in all characteristics by H. Young in his thesis, [13].

Theorem 4 ([13]). If n ≥ 2, the algebraic set of nearly commuting matrices has two 
irreducible components, one of which is the variety of commuting matrices and the other 
is the so-called skew component. That is, I has two minimal primes, one of which is 
Rad(J).

Let P = Rad(J) and let Q denote the other minimal prime of I, i.e., Rad(I) = P
⋂
Q.

The following conjecture was made in 1982 by M. Artin and M. Hochster.

Conjecture 1. J is reduced, i.e., J = P .

It was answered positively by Mary Thompson in her thesis in the case of 3 × 3
matrices.

Theorem 5 ([12]). R/J is a Cohen–Macaulay domain when n = 3.

Now let us go back to algebraic sets of nearly commuting matrices and their irreducible 
components. First, we take a look at what we have when n = 1, 2.

When n = 1, everything is trivial. More precisely, I = P = Q = (0) ⊂ K[x11, y11].
When n = 2, without loss of generality we may replace X and Y by X − x22In

and Y − y22In respectively. Here In is the identity matrix of size n. Denote x′
11 =

x11 − x22, y′11 = y11 − y22. Then the generators of I are 2 by 2 minors
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u12 =

∣∣∣∣∣ x′
11 x12

y′11 y12

∣∣∣∣∣ , u21 = −
∣∣∣∣∣ x′

11 x21
y′11 y21

∣∣∣∣∣ .
The diagonal entries of XY − Y X are

u11 =

∣∣∣∣∣ x12 x21
y12 y21

∣∣∣∣∣ , u22 = −
∣∣∣∣∣ x12 x21
y12 y21

∣∣∣∣∣ .
Then J is the ideal generated by size 2 minors of 

[
x′

11 x12 x21
y′11 y12 y21

]
and therefore, 

J = P is prime. We also have that Q = (x′
11, y

′
11). Moreover, I = P

⋂
Q is radical and 

P + Q = (x12y21 − x21y12, x′
11, y

′
11) is prime.

We have that

(u12u21)p−1 = (x′
11y12 − x12y

′
11)p−1(x′

11y21 − x21y
′
11)p−1 =

p−1∑
α=0

p−1∑
β=0

(−1)α+β

(
p− 1
α

)(
p− 1
β

)
(x′

11)α+β(y′11)2(p−1)−α−βxp−1−α
12 yα12x

p−1−β
21 yβ21.

Therefore, (u12u21)p−1 has a monomial term (x′
11y

′
11x12y21)p−1 with coefficient (−1)p−1. 

Since I [p] : I = (u12u21)p−1 + I [p], R/I is F -pure, see Fedder’s criterion Lemma 2. 
Furthermore, determinantal rings R/P , R/Q, R/(P + Q) are F -regular, see [6].

Therefore, for the rest of the paper we shall use the following notations.

Notation 1. Let n ≥ 3 be an integer. Let X = (xij)1≤i,j≤n and Y = (yij)1≤i,j≤n be 
n × n matrices of indeterminates over a field K. Let R = K[X, Y ] be the polynomial 
ring in {xij , yij}1≤i,j≤n and let I denote the ideal generated by the off-diagonal entries 
of the commutator matrix XY − Y X and J denote the ideal generated by the entries of 
XY − Y X. Let P denote the radical of J and Q be the other minimal prime of Rad(I).

We prove the following results in this paper.

Theorem 6. Let R be a ring as in Notation 1. Assume also that the field K has posi-
tive prime characteristic. Then R/I, R/P , R/Q and R/(P +Q) are F -pure rings when 
n = 3. In other words, the algebraic set of nearly commuting matrices of size 3, its irre-
ducible components and their intersection are F -pure. In particular, the skew component 
is reduced in this case.

Theorem 7. Let R be a ring as in Notation 1. Then R/I is reduced. In other words, the 
algebraic set of nearly commuting matrices is reduced for matrices of all sizes and in all 
characteristics.

Theorem 8. The intersection of the variety of commuting matrices and the skew compo-
nent is irreducible, that is, Rad(P + Q) is prime.
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2. F -purity

In this section we show that the coordinate ring of the algebraic set of pairs of matrices 
with a diagonal commutator is F -pure in the case of 3 by 3 matrices. Moreover, we also 
show that it implies the corresponding fact for its irreducible components, the variety of 
commuting matrices and the skew-component, and their intersection.

First we state two lemmas due to R. Fedder and they include a criterion for F -purity 
for finitely generated K-algebras and which has a particularly convenient form for com-
plete intersections.

Lemma 1 (Fedder [2]). Let S be a regular local ring or a polynomial ring over a field. If S
has characteristic p > 0 and I is an unmixed proper ideal (homogeneous in the polynomial 
case) with the primary decomposition I =

⋂n
i=1 Ai, then I [p] : I =

⋂n
i=1(A[p] : A).

Lemma 2 (Fedder’s criterion [2]). Let (S, m) be a regular local ring or a polynomial ring 
over a field with its (homogeneous) maximal ideal. If S has characteristic p > 0 and I is 
a proper ideal (homogeneous in the polynomial case), then S/I is F -pure if and only if 
I [p] : I �⊂ m[p].

The next result is a straightforward consequence of the above two lemmas. It will 
prove to be quite useful for us.

Lemma 3. Let S be a regular local ring or a polynomial ring over a field. Suppose that 
S has characteristic p > 0 and I is an ideal of S (homogeneous in the polynomial case). 
Suppose also that S/I is F -pure and I =

⋂n
i=1 Ai is the primary decomposition. Then 

S/(Ai1 + . . . + Aim) is F -pure for all 1 ≤ i1 < ... < im ≤ n and for all 1 ≤ m ≤ n.

Proof. Observe first that (Ai1 + . . . + Aim)[p] :S (Ai1 + . . . + Aim) ⊇
⋂m

j=1(A
[p]
ij

: Aij ) ⊇⋂n
i=1(A

[p]
i : Ai) = (I [p] : I). The rest is immediate from Lemma 1 and Lemma 2. �

The above lemma is closely related to results on compatibly split ideals, cf. [11].
Immediately we get the corresponding result for our algebraic set.

Corollary 1. Suppose that the coordinate ring of the algebraic set of nearly commuting 
matrices R/I is F -pure. Then R/P , R/Q and R/(P + Q) are F -pure.

Next, we use Fedder’s criterion to show F -purity of R/I in case when n = 3.

Theorem 9. Let K be a field of characteristic p > 0 and let n = 3. Let R be a ring as in 
Notation 1. Then R/I is F -pure.

Proof. Recall that I is generated by a regular sequence {uij|1 ≤ i �= j ≤ n}. Therefore, 
I [p] : I =

(∏
1≤i�=j≤n up−1

ij

)
R + I [p]. Thus by Fedder’s criterion it is sufficient to prove 
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that 
∏

1≤i�=j≤n up−1
ij /∈ m[p], where m is the homogeneous maximal ideal in R. We show 

this by proving the following claim.

Claim. If μ = x12x13x21x23x31x33y11y12y23y31y32y33, then μp−1 is a monomial term of ∏
1≤i�=j≤3 u

p−1
ij with a nonzero coefficient modulo p.

Proof. We compute the coefficient of μp−1. It can be obtained by choosing a monomial 
from every uij in the following way:

u12: (−x12y11)α1(x13y32)β1

u13: (−x23y12)α2(x12y23)β2(−x13y11)γ2(x13y33)δ2

u21: (−x31y23)α3(x21y11)β3(x23y31)γ3

u23: (x23y33)α4(−x33y23)β4

u31: (−x21y32)α5(x33y31)β5(−x31y33)γ5(x31y11)δ5

u32: (x31y12)α6(−x12y31)β6(x33y32)γ6

Then the exponents Ast and Bst of each xst and yst respectively are

A12 = α1 + β2 + β6 A23 = α2 + γ3 + α4

A13 = β1 + γ2 + δ2 A31 = α3 + γ5 + δ5 + α6

A21 = β3 + α5 A33 = β4 + β5 + γ6

B11 = α1 + γ2 + β3 + δ5 B31 = γ3 + β5 + β6

B12 = α2 + α6 B32 = β1 + α5 + γ6

B23 = β2 + α3 + β4 B33 = δ2 + α4 + γ5

In addition, denote

C12 = α1 + β1, C23 = α4 + β4,

C13 = α2 + β2 + γ2 + δ2, C31 = α5 + β5 + γ5 + δ5,

C21 = α3 + β3 + γ3, C32 = α6 + β6 + γ6.

Our goal is to find all nonnegative integer tuples α = (α1, . . . , α6), β = (β1, . . . , β6), 
γ = (γ2, γ3, γ5, γ6), δ = (δ5, δ6) such that Ast = p − 1, Bst = p − 1 for all 1 ≤ s, t ≤ 3
and Cij = p − 1 for all 1 ≤ i �= j ≤ 3.

Notice that the linear system does not have a nonzero determinant: the sum of the 
first 12 equations is twice the sum of the rest 6 equations. Therefore, there is not a unique 
solution.

The above linear system can be solved using standard methods from linear algebra 
and has the following solution:
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⎡⎢⎢⎢⎣
α

β

γ

δ

⎤⎥⎥⎥⎦ =

⎡⎣ a b d p− 1 − b− a + d a p− 1 − b
p− 1 − a p− 1 − a− b p− 1 − a a + b− d p− 1 − a− b + d b

− a− c a− d − b + a− d− c 0
− c − − c− a −

⎤⎦

where the column vector [α, β, γ, δ] represents the matrix of solutions and a, b, c, d are 
arbitrary non-negative integers.

Since we look for non-negative integer solutions we must have that a = c and a, b ≥ d

and a + b ≤ p − 1. Hence we have that⎡⎢⎢⎢⎣
α

β

γ

δ

⎤⎥⎥⎥⎦ =

⎡⎣ a b d p− 1 − b− a + d a p− 1 − b
p− 1 − a p− 1 − a− b p− 1 − a a + b− d p− 1 − a− b + d b

− 0 a− d − b− d 0
− a − − 0 −

⎤⎦

Therefore, the coefficient of μp−1 is the sum of expressions of the form

(−1)α1+α2+γ2+α3+β4+α5+γ5+β6((p− 1)!)6/(α1! . . . α6!β1! . . . β6!γ2!γ3!γ5!γ6!δ5!δ6!)

where α = (α1, . . . , α6), β = (β1, . . . , β6), γ = (γ2, γ3, γ5, γ6), δ = (δ5, δ6) run over all 
solutions of the linear system above. That is,

(p−1)/2∑
d=0

∑
a,b≥d, a+b≤p−1

(−1)a−d

(
p− 1
a

)2(
p− 1
b

)2(
p− 1

a + b− d

)2(
p− 1 − b

a

)(
a + b− d

b

)(
b

d

)

which modulo p is equivalent to

(p−1)/2∑
d=0

∑
a,b≥d, a+b≤p−1

(−1)a−d

(
p− 1 − b

a

)(
a + b− d

b

)(
b

d

)

It also can be written as

(p−1)/2∑
d=0

∑
a,b≥d, a+b≤p−1

(−1)a−d

(
p− 1 − b

a

)(
a + b− d

a− d b− d d

)

or

p−1∑
b=0

b∑
d=0

p−1−b∑
a=d

(−1)a−d

(
p− 1 − b

a

)(
a + b− d

b

)(
b

d

)

The following lemma shows that the above expression is equal to 1 for all values of p. In 
fact, for this purpose p does not have to be prime. �
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Lemma 4. Let Cm =
∑m

b=0
∑b

d=0
∑m−b

a=d (−1)a−d
(
m−b
a

)(
a+b−d

b

)(
b
d

)
. Then Cm = 1 for all 

m ≥ 1.

Proof. We prove a stronger statement.

Claim. Let Bm,b =
∑b

d=0
∑m−b

a=d (−1)a−d
(
m−b
a

)(
a+b−d

b

)(
b
d

)
. Then for all m ≥ 1

Bm,b =
{

0 if 0 ≤ b ≤ m− 1;
1 if b = m.

Proof. First observe that Bm,m =
∑m

d=0
∑0

a=d(−1)a−d
(
m−b
a

)(
a+b−d

b

)(
b
d

)
= 1 and Bm,0 =∑m

a=0(−1)a
(
m
a

)
= 0. Hence we may assume that 0 < b < m.

Let Am,b,d =
∑m−b

a=d (−1)a
(
m−b
a

)(
a+b−d

b

)
, then Bm,b =

∑b
d=0(−1)d

(
b
d

)
Am,b,d. Consider 

the difference

Am,b,d −Am,b,d+1 =
m−b∑
a=d

(−1)a
(
m− b

a

)(
a + b− d

b

)
−

m−b∑
a=d+1

(−1)a
(
m− b

a

)(
a + b− d− 1

b

)
=

(−1)d
(
m− b

d

)
+

m−b∑
a=d+1

(−1)a
(
m− b

a

)
(
(
a + b− d

b

)
−

(
a + b− d− 1

b

)
) =

Using Pascal’s identity, we get

(−1)d
(
m− b

d

)
+

m−b∑
a=d+1

(−1)a
(
m− b

a

)(
a + b− d− 1

b− 1

)
=

m−b∑
a=d

(−1)a
(
m− b

a

)(
a + b− d− 1

b− 1

)
=

m−1−(b−1)∑
a=d

(−1)a
(
m− 1 − (b− 1)

a

)(
a + (b− 1) − d

b− 1

)
.

Thus we have that

Am,b,d −Am,b,d+1 = Am−1,b−1,d for all m− 1 ≥ b ≥ d + 1 and d ≥ 0.

Therefore,

Bm−1,b−1 =
b−1∑

(−1)d
(
b− 1
d

)
Am−1,b−1,d =

b−1∑
(−1)d

(
b− 1
d

)
(Am,b,d −Am,b,d+1) =
d=0 d=0
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b−1∑
d=0

(−1)d
(
b− 1
d

)
Am,b,d −

b−1∑
d=0

(−1)d
(
b− 1
d

)
Am,b,d+1 =

b−1∑
d=0

(−1)d
(
b

d

)
b− d

b
Am,b,d −

b∑
d=1

(−1)d−1
(
b− 1
d− 1

)
Am,b,d =

b−1∑
d=0

(−1)d
(
b

d

)
b− d

b
Am,b,d +

b∑
d=1

(−1)d
(
b

d

)
d

b
Am,b,d =

b−1∑
d=1

(−1)d
(
b

d

)
Am,b,d + Am,b,0 + (−1)bAm,b,b =

b∑
d=0

(−1)d
(
b

d

)
Am,b,d = Bm,b.

Thus we have that Bm−1,b−1 = Bm,b for all m ≥ 1 and m − 1 ≥ b ≥ 1.
In case m = 1, we only have B1,0 = 0. Finally, use induction on m to conclude that 

Bm,b = 0 for all m ≥ 1 and m − 1 ≥ b.
Thus, Cm =

∑m
b=0 Bm,b = 1. �

Finally, we complete the proof of Theorem 9. We have that 
∏

1≤i�=j≤n up−1
ij /∈ m[p]

and R/I is F -pure when n = 3. �
Corollary 2. Let R be a ring as in Notation 1. When n = 3, R/P, R/Q and R/(P + Q)
are F -pure Cohen–Macaulay rings and R/(P + Q) is Gorenstein.

Proof. By [12], R/P is a Cohen–Macaulay ring when n = 3. Since the ideals P and Q are 
linked via I, that is I : P = Q and I : Q = P , we have that R/Q is also Cohen–Macaulay, 
see [10]. Moreover, the theory of linkage also implies that (P +Q)/P and (P +Q)/Q are 
isomorphic to the canonical modules of R/P and R/Q, respectively. Hence R/(P + Q)
is Gorenstein of dimension n2 + n − 1. �
Corollary 3. Let R be a ring as in Notation 1. Then P + Q is radical when n = 3.

Remark. We prove in the next section that for all n, the radical of P +Q is prime, which 
implies that P + Q is prime when n = 3. In particular, we have that R/(P + Q) is a 
domain when n = 3.

3. Irreducibility of P + Q

In this section we prove that the intersection of the variety of commuting matrices 
and the skew-component is irreducible. But first we define some notions.
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Definition. Let X be an n by n matrix of indeterminates. Then D(X) is an n by n matrix 
whose ith column is defined by the diagonal entries of Xi−1 numbered from upper left 
corner to lower right corner. Let P(X) denote the determinant of D(X).

Theorem 10 ([13]). P(X) is an irreducible polynomial.

Remark. P(X) = P(X − aI), where a ∈ K and I ∈ Mn(K) is the identity matrix.

The next two lemmas are due to H. Young. They give us the connection between the 
variety defined by P(X) and the algebraic set of nearly commuting matrices.

Lemma 5 ([13]). Given an n × n matrix A, if there exists a matrix B such that [A, B] is 
a non-zero diagonal matrix, then P(A) = 0.

Lemma 6 ([13]). There is a dense open set U in the variety defined by P(X) where 
for every point A in U , there exists a matrix B such that [A, B] is a nonzero diagonal 
matrix. �

The following notion of a discriminant is of significant importance in matrix theory. 
We use it in this section in order to reduce our study to the case when commuting 
matrices have a particularly simple characterization.

Definition. Let A ∈ Mn(K). Then the discriminant Δ(A) of A is the discriminant of its 
characteristic polynomial. That is, if K contains all the eigenvalues λ1, . . . , λn of A, then 
Δ(A) =

∏
1≤i<j≤n(λi − λj)2.

Fact. Let A ∈ Mn(K) be a matrix such that Δ(A) �= 0, or equivalently, A has distinct 
eigenvalues. Then a matrix B commutes with A if and only if B is a polynomial in A of 
degree at most n − 1, see Theorem 3.2.4.2 [7].

Remark. P(X) is an irreducible polynomial of degree n(n − 1)/2 and Δ(X) is a polyno-
mial of degree n(n −1). Moreover, when n ≥ 3, P(X) does not divide Δ(X). This can be 
proved by showing that there exists a matrix A with the property that P(A) = 0 while 
Δ(A) �= 0. For example, for this purpose one can use the following matrices.

En =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . .

0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎦ if p � n, and Ẽn =
[

0 0
0 En−1

]
, otherwise.

The characteristic polynomials are xn − 1 for En and x(xn−1 − 1) for Ẽn.
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Here is the outline for how we prove the main result of this section, that is, Rad(P+Q)
is prime.

(1) dimV(P + Q) = n2 + n − 1 and V(P + Q) is equidimensional.
(2) dimV(P +Q, Δ(X)) ≤ n2 +n −2, that is, Δ(X) is not in any of the minimal primes 

of P + Q.
(3) Rad(P + Q)RΔ(X) is a prime ideal.

We observe that P +Q has no minimal primes of height larger than one over P and Q. 
First we need the following theorem due to R. Hartshorne.

Theorem 11 ([5, Proposition 2.1]). Let A be a Noetherian local ring with the maximal 
ideal m. If Spec(A) − {m} is disconnected, then the depth of A is at most 1.

Lemma 7. Let P and Q be ideals as in Notation 1. Then every minimal prime of P +Q

has height n2 − n + 1.

Proof. Suppose that there exists a minimal prime ideal T of P + Q of height at least 
ht(I) +2. Localize at T . Then (P +Q)(R/I)T is T (R/I)T -primary. Moreover, V(P ) and 
V(Q) are disjoint on the punctured spectrum Spec((R/I)T ) −{T (R/I)T }. However, the 
above theorem shows that this is not possible. �

Now let us define the set-up which we need to state and prove our next result.
Let m be a positive integer such that m ≤ n. Fix a partition (h1, . . . , hm) of n, that 

is, choose positive integers h1, . . . , hm such that h1 + . . . + hm = n. Let Ji be an upper 
triangular Jordan form of a nilpotent matrix of size hi. For each hi there are finitely 
many choices of Ji. Let J = (J1, . . . , Jm) and let Ii denote the identity matrix of size hi.

For any m-tuple λ = λ1, . . . , λm of distinct elements of K, let J(λ) = J(λ1, . . . , λm)
be a matrix such that for all 1 ≤ i ≤ m, the blocks λiIi + Ji are on the main diagonal. 
That is, J(λ) is the direct sum of matrices λiIi + Ji.

Let Λ = {(λ1, . . . , λm) ∈ Am | λi �= λj for all 1 ≤ i �= j ≤ m}. It is an open subset of 
Am and therefore is irreducible and has dimension m. Let

WJ = {A ∈ Mn(K) | A is similar to some J(λ1, . . . , λm) with

λ1, . . . , λm ∈ K distinct}.

Let cJ denote the dimension of the set of matrices that commute with J(λ), for some λ. 
This number is independent of the choice of λ, since J(λ) commutes with a matrix A
if and only if A is a direct sum of matrices Ai such that each Ai has size hi and Ai

commutes with Ji. Moreover, cJ is the dimension of the set of invertible matrices that 
commute with J(λ), for some λ.

Lemma 8. The dimension of WJ is n2 − cJ + m.
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Proof. Define a surjective map of algebraic sets

θ : GLn(K) × Λ → WJ

such that

(U, λ1, . . . , λm) → U−1J(λ1, . . . , λm)U.

Fix λ = (λ1, . . . , λm). Then

θ−1(J(λ)) = {(U, μ) ∈ GLn(K) × Λ |U−1J(μ)U = J(λ)}

and it has the dimension of the set

{U ∈ GLn(K) | J(λ)U = UJ(λ)},

that is, it is the set of all invertible matrices commuting with J(λ).
Let M = U−1J(λ)U ∈ WJ and let (V, μ) ∈ θ−1(M). Then U−1J(λ)U = V −1J(μ)V

for some μ and J(μ) = (UV −1)−1J(λ)(UV −1). Hence, (V, μ) ∈ θ−1(J(λ))U . Therefore, 
θ−1(J(λ)) and θ−1(M) have the same dimension. Since the dimension of WJ is the 
dimension of GLn(K) × Λ minus the dimension of a generic fiber θ−1(J(λ)), we have 
that the dimension of WJ is n2 − cJ + m.

Moreover, the set of pairs of matrices (A, B) ∈ Mn(K) ×Mn(K) such that A and B
commute has dimension (n2 − cJ + m) + cJ = n2 + m ≤ n2 + n. �
Claim. Let

W = {(A,B) ∈ Mn(K) ×Mn(K)| [A,B] = 0, Δ(A) = 0, P(A) = 0, P(B) = 0},

then there is an injective map

Ψ : V(P + Q,Δ(X)) → W

so that

(A,B) → (A,B).

Proof. Let (A, B) ∈ V(Q, Δ(X)) − V(P + Q, Δ(X)). Then by Lemma 5, P(A) =
P(B) = 0. Therefore, (A, B) ∈ W . Since V(Q) is the closure of V(Q) −V(P +Q) we have 
that P(A) = P(B) = 0 for all (A, B) ∈ V(Q, Δ(X)). Hence, V(P + Q, Δ(X)) ⊆ W . �
Claim. The dimension of the set W = {(A, B) ∈ Mn(K) ×Mn(K)| [A, B] = 0, Δ(A) =
0, P(A) = 0, P(B) = 0} is at most n2 + n − 2.
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Proof. Let V = {(A, B) ∈ Mn(K) × Mn(K)| [A, B] = 0, Δ(A) = 0} and Vm =
{(A, B) ∈ V | A has m distinct eigenvalues}. Then we have that dimVm = n2 + m and 
V =

⋃n−1
m=1 Vm. Therefore, dimV ≤ n2 + n − 1. Notice that since Δ(A) = 0, m ≤ n − 1.

Similarly, let Wm = {(A, B) ∈ W | A has m distinct eigenvalues}. Then W =⋃n−1
m=1 Wm. For each value of m, Wm ⊆ Vm. Therefore, the dimension of W is at most 

n2 + n − 1. Moreover, W is a closed subset of V defined by the vanishing of P(X) and 
P(Y ). To prove the claim we need to show that dimW cannot be n2 + n − 1. We do 
this by showing that W does not contain any component of V of dimension n2 + n − 1. 
In other words, we show that there are pairs of matrices (A, B) ∈ V but not in W , i.e., 
either P(A) �= 0 or P(B) �= 0.

Let A ∈ Mn(K) be a matrix with distinct eigenvalues λ = λ1 = λ2, λ3, . . . , λn. Then 
A is similar to a Jordan matrix in two possible forms.

Case 1. A is similar to J =

⎡⎢⎢⎢⎢⎢⎣
λ 0 0 0 . . . 0
0 λ 0 0 . . . 0
0 0 λ3 0 . . . 0
. . . . . . . . .

0 0 0 0 . . . λn

⎤⎥⎥⎥⎥⎥⎦
Take B = diag(a1, . . . , an) be a diagonal matrix with distinct entries on the diagonal. 

Then [A, B] = 0 and P(B) =
∏

1≤i<j≤n(aj − ai) �= 0.

Case 2. A is similar to J =

⎡⎢⎢⎢⎢⎢⎣
λ 1 0 0 . . . 0
0 λ 0 0 . . . 0
0 0 λ3 0 . . . 0
. . . . . . . . .

0 0 0 0 . . . λn

⎤⎥⎥⎥⎥⎥⎦

Write J =
[
J0 0
0 J1

]
, where J0 =

⎡⎢⎣ λ 1 0
0 λ 0
0 0 λ3

⎤⎥⎦ and J1 =

⎡⎢⎢⎢⎣
λ4 0 . . . 0
0 λ5 . . . 0

. . .

0 0 . . . λn

⎤⎥⎥⎥⎦.

Take an n by n block-diagonal matrix U =
[
U0 0
0 U1

]
such that U0 =

⎡⎢⎣ 0 0 1
1 1 0
0 1 1

⎤⎥⎦
and U1 ∈ Mn−3(K) is the identity matrix.

Then U−1 =
[
U−1

0 0
0 U−1

1

]
and U−1JU =

[
U−1

0 J0U0 0
0 J1

]
.

Our goal is to show that P(U−1JU) �= 0. First, we prove it for the case of 3 by 3 
matrices, i.e., for U−1

0 J0U0.
Observe that P(U−1

0 J0U0) = P(U−1
0 J0U0 − λI) = P(U−1

0 (J0 − λI)U0).
Denote M = U−1(J − λI)U and M0 = U−1

0 (J0 − λI)U0.
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We have that

U−1
0 =

⎡⎢⎣ 1 1 −1
−1 0 1
1 0 0

⎤⎥⎦
and

M0 = U−1
0 (J0 − λI)U0 =

⎡⎢⎣ 1 1 − (λ3 − λ) −(λ3 − λ)
−1 −1 + (λ3 − λ) (λ3 − λ)
1 1 0

⎤⎥⎦ .

Moreover,

M2
0 =

⎡⎢⎣ 0 −(λ3 − λ)2 −(λ3 − λ)2
0 (λ3 − λ)2 (λ3 − λ)2
0 0 0

⎤⎥⎦ .

In particular, the diagonal diag(M i
0) = (0, (λ3 − λ)i, 0) for all i ≥ 2. Then

P(M0) = det

⎡⎢⎣ 1 1 0
1 −1 + (λ3 − λ) (λ3 − λ)2
1 0 0

⎤⎥⎦ = (λ3 − λ)2 �= 0.

Finally,

P(M) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 . . . 0
1 −1 + λ3 − λ (λ3 − λ)2 (λ3 − λ)3 . . . (λ3 − λ)n−1

1 0 0 0 . . . 0
1 λ4 − λ (λ4 − λ)2 (λ4 − λ)3 . . . (λ4 − λ)n−1

. . . . . . . . .

1 λn − λ (λn − λ)2 (λn − λ)3 . . . (λn − λ)n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

=
n∏

i=3
(λi − λ)2

∏
3≤i<j≤n

(λj − λi) �= 0.

The final expression for the determinant is nonzero. Hence dimW ≤ n2 + n − 2.
Thus we have that Δ(X) is not in any of the minimal primes of P + Q. �
Now we prove that P + Q has only one minimal prime.

Theorem 12. Let P and Q be as in Notation 1. Then V(P + Q) is irreducible, i.e., 
Rad(P + Q) is prime.
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Proof. Let U be a dense open subset in the algebraic set defined by P(X) as in Lemma 6. 
Let A ∈ Mn(K) be such that P(A) = 0. Suppose that A ∈ U . Then by Lemma 6 there 
exists a matrix B such that (A, B) is in the skew-component of the algebraic set of 
nearly commuting matrices, that is (A, B) ∈ V(Q). Let K[t] be a polynomial ring in one 
independent variable t. Fix any f ∈ K[t]. Then (A, cB+f(A)) ∈ V(Q) for all c ∈ K−{0}. 
Since Q defines a closed set, we must have that (A, f(A)) ∈ V(Q), i.e., when c = 0 as 
well. Since U is a dense subset in V(P(X)), (A, f(A)) ∈ V(Q) for all A ∈ V(P(X)). 
Recall that f was an arbitrary element of K[t].

Now assume also that Δ(A) �= 0. Then every matrix B that commutes with A is a 
polynomial in A of degree at most n − 1. Thus

V(P )Δ(X) = {(A, f(A)) |Δ(A) �= 0 and f is a polynomial of degree at most n− 1}.

Moreover, since V(P + Q) ⊂ V(P ), every element of V(P + Q)Δ(X) is of the form 
(A, f(A)), where P(A) = 0 and f is a polynomial of degree at most n − 1.

Identify polynomials f ∈ K[t] of degree at most n − 1 with An. Then we can consider 
a map

V(P(X))Δ(X) × An → V(P + Q)Δ(X)

such that

(A, f) → (A, f(A)).

Moreover, this map is a bijective morphism. Therefore, V(P + Q)Δ(X) is irreducible. 
If V(P + Q) is not irreducible, then its nontrivial irreducible decomposition will give us 
a nontrivial irreducible decomposition of V(P +Q)Δ(X), since Δ(X) is not in any of the 
minimal primes of P + Q. Thus the result. �
Corollary 4. Let P and Q be as in Notation 1. Then, when n = 3, P + Q is prime. �
4. The ideal of nearly commuting matrices is a radical ideal

In this section we prove that I is a radical ideal in all characteristics. We know that 
Rad(I) = P

⋂
Q and I is unmixed as the heights of P and Q are equal to n2 − n. To 

prove the result it is sufficient to show that I becomes prime or radical once we localize 
at P or Q.

Theorem 13. The defining ideal of the algebraic set of nearly commuting matrices is 
radical.

Proof. For simplicity of notation, let P denote P(X).
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We have that K[X] 
⋂
P = (0), since every f ∈ K[X] 

⋂
P must vanish when we set 

X = Y . Therefore, W = K[X] −{0} is disjoint from P and hence from I. Localize at P . 
Then we have an injective homomorphism of K[X, Y ]/I-modules

(K[X,Y ]/I)P ↪→ (K(X)[Y ]/I)P ∼= (L[Y ]/I)P ,

where L = K(X) and now I is an ideal generated by n2−n linear equations in the entries 
of Y with coefficients in L. We can always choose at least n variables yij , (i, j) ∈ Λ, and 
write the rest of them as L-linear combinations of the chosen ones. Thus (K[X, Y ]/I)P ↪→
L[yij ](i,j)∈Λ and IK[X, Y ]P is prime.

Next observe that K[X] 
⋂
Q = (P). Clearly, (P) ⊆ Q. To prove the other direction, let 

f ∈ K[X] 
⋂
Q be nonzero. Then by Lemma 5, f ∈ (P). In other words, for all A ∈ Mn(K)

such that A ∈ V(Q) and such that there exists a matrix B with the property that [A, B]
is nonzero diagonal, then P(A) = 0.

Therefore, we have an injective homomorphism of K[X, Y ]/I-modules

(K[X,Y ]/I)Q ↪→ (V [Y ]/I)Q,

where V = K[X](P) is a discrete valuation domain. Then generators of I become linear 
polynomials in the entries of Y with coefficients in V . Let B be the matrix of coefficients 
of this linear system such that its rows are indexed by (i, j) for 1 ≤ i �= j ≤ n and 
columns are indexed by (h, k) for all 1 ≤ h, k ≤ n. Then for i �= h and k �= j B has an 
entry xih in the (i, k), (h, k) spot, has an entry −xkj in the (i, j), (i, k) spot, and xii−xjj

in the (i, j)(i, j) spot and zero everywhere else. Let y1, . . . , yn2 denote the entries of Y
such that y(i−1)n+j = yij . In V [Y ], I is generated by the entries of the matrix

B

⎡⎢⎢⎢⎣
y1
y2
. . .

yn2

⎤⎥⎥⎥⎦ .

By doing elementary row operations over V , we can transform B into a diagonal 
matrix C. This gives new generators of I. To prove that IV [Y ] is radical, it is sufficient 
to show that the diagonal entries in C have order at most one in V . To this end it 
reduces to show that C has rank n2 − n and the ideal generated by the minors of C of 
size n2 − n cannot be contained in P2V . But then it is sufficient to prove this for the 
original matrix B. Hence it suffices to show:

Claim.

(1) The submatrix B0 of B obtained from the first n2 − n columns has nonzero determi-
nant in V .

(2) The determinant of B0 is in (P) − (P2).
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Proof. (1) It is sufficient to prove the first part of the claim over K(X) = frac(V ), i.e., 
after we invert P. In this case, since X and Y nearly commute, they must commute, see 
Lemma 5. Moreover, X is a generic matrix, hence its discriminant is nonzero and is not 
divisible by P. Thus X has distinct eigenvalues and Y is a polynomial in X of degree at 
most n − 1. Write B = [B0|B1], then our equations become

B0

⎡⎢⎢⎢⎣
y1
y2
. . .

yn2−n

⎤⎥⎥⎥⎦ + B1

⎡⎢⎢⎢⎣
yn2−n+1
yn2−n+2

. . .

yn2

⎤⎥⎥⎥⎦ = 0.

Notice that B0 is invertible if and only if for every choice of the values for 
[yn2−n+1, . . . , yn2 ] there is a unique solution for the above equation.

Furthermore, the bottom rows of X0, X, . . . , Xn−1 are linearly independent for a 
generic matrix X. This is true because it even holds for the permutation matrix

E =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . .

0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎦
for which the bottom rows of E0, E, . . . , En−1 are the standard basis vectors ei for 
1 ≤ i ≤ n.

Thus, given any bottom row ρ of Y , there exist α0, . . . , αn−1 ∈ K(X) such that ρ
equals the bottom row of α0 + α1X + . . . + αn−1X

n−1. That is, such a Y is uniquely 
determined by the entries of its bottom row. Therefore, B0 is invertible in K(X).

(2) First, let us show that detB0 ∈ (P). For any matrix A in an open dense subset of 
the closed set defined by P, there exists a matrix A′ such that the commutator [A, A′] is 
a nonzero diagonal matrix, see Lemma 6. Hence, for all c ∈ K−{0} and for all f ∈ K[X]
polynomials of degree at most n − 1, (A, cA′ + f(A)) ∈ V(I). Therefore, the space of 
solutions of

B ·

⎡⎢⎢⎢⎣
y1
y2
. . .

yn2

⎤⎥⎥⎥⎦ = 0

has dimension n + 1, but we showed in (1) that it must be n. Therefore, the minors of 
B must vanish whenever P vanishes.

Notice that the degree of the polynomial P is n(n −1)/2, while the degree of detB0 is 
n(n −1). Therefore, to prove part (2) it is sufficient to show that detB0 is not a K-scalar 
multiple of P2.
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Now let us put grading on the entries of X and Y . Let deg xij = deg yij = i −j. Then 
their products XY and Y X and sums have this property as well: deg (XY )ij = i − j

and deg (X + Y )ij = i − j. Therefore, so does the commutator matrix XY − Y X. In 
fact, any polynomial in X and Y has this property. Notice that the diagonal entries have 
degree 0, thus P has degree 0. However, this is not the case for the determinant of the 
matrix B0. The nonzero entry corresponding to (i, j), (k, h) has degree i − j + h − k. 
Therefore, if a product of the entries is a nonzero term of the determinant of B0, then 
its degree is 

∑
1≤i�=j≤n

∑
1≤h≤n

∑
1≤k<n(i − j +h − k) = n2(n − 1)2/2 �= 0 for all n ≥ 2. 

Hence detB0 cannot be a K-scalar multiple of P2. That is, when we factor out P from 
the minors of B, the remaining expression is not divisible by P. �

Now we are ready to finish our discussion. Let C = [C0|C1] be a matrix that is obtained 
from B by elementary row transformations so that C0 = diag(cii)1≤i≤n2−n is a diagonal 
matrix. We proved that there exists 1 ≤ k ≤ n2 − n with the property that cii is a unit 
in V for all i �= k and ckk ∈ (P) − (P2). Denote ckk = αP, where α is a unit in V .

The ideal I is generated by the following equations

⎡⎢⎢⎢⎢⎢⎣
c11 0 0 . . . 0
0 c22 0 . . . 0

. . . . . .

0 0 0 . . . cn2−n−1,n2−n−1 0
0 0 0 . . . 0 cn2−n,n2−n

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

y1
y2
. . .

yn2−n

⎤⎥⎥⎥⎦ + C1

⎡⎢⎢⎢⎣
yn2−n+1
yn2−n+2

. . .

yn2

⎤⎥⎥⎥⎦ .

Then V [Y ]/I ∼= V [yn2−n+1, yn2−n+2, . . . , yn2 ][ykk]/(αP −
∑n

j=1(C1)kjyn2−n+j) is re-
duced. To show this we consider two cases. If all (C1)kj ∈ P, then the last factor ring 
is isomorphic to V [yn2−n+1, yn2−n+2, . . . , yn2 ][z]/(zP). If there is j so that (C1)kj is a 
unit, then the factor ring is isomorphic to V [yi]n2−n+1≤i�=j≤n2 [ykk]. In either case, it 
is reduced. Therefore, since we have an injective map (R/I)Q ↪→ (V [Y ]/I)Q, IRQ is 
radical. �
5. Conjectures

In this section we state conjectures that we have made while doing the research. Many 
of them appeared as a result of computations performed on a computer algebra program 
Macaulay2, [4].

Conjecture 2. Let R be as in Notation 1. Then R/P , R/Q and R/(P +Q) are F -regular.

Remark. In the case when n = 2 the conjecture is true.

The following lemma allows us to reduce the above conjecture to the F -regularity of 
R/(P + Q).
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Lemma 9. Let R be a Noetherian local or N-graded ring of prime characteristic p > 0 and 
let I be an ideal (homogeneous in the graded case) generated by a regular sequence. Let 
P and Q be ideals of R of the same height such that P and Q are linked via I = P

⋂
Q. 

Let R/P be Cohen–Macaulay. Suppose that R/(P + Q) is F -regular (or equivalently, 
F -rational). Then R/P and R/Q are F -regular.

Proof. By [10], R/Q is Cohen–Macaulay and has the canonical module isomorphic to 
(P + Q)/Q. Similarly, the canonical module of R/P is (P + Q)/P . Then R/(P + Q) is 
Gorenstein, hence it is F -rational if and only if it is F -regular.

Recall that a graded ring R is F -regular if and only if Rm is F -regular, [9]. Then 
R/(P + Q) is F -rational if and only if its localization at the homogeneous maximal 
ideal is F -rational. Then by applying Corollary 2.9 in [1] we have that F -rationality of 
R/(P + Q) implies F -regularity of R/P and R/Q. �

Thus if we want to prove that the variety of commuting matrices and the skew com-
ponent are F -regular, it is sufficient to prove the statement for their intersection. Of 
course we need to know whether R/P is Cohen–Macaulay.

Conjecture 3. R/I is F -pure for all n.

The above conjecture can be solved by proving the following one.

Conjecture 4. Let μ =
∏n

i=1,j=1 xijyij∏n−1
i=1 xiiyi,n−i+1·xn,n−1·yn−1,1

.

Then μp−1 is a monomial term of 
∏

1≤i�=j≤n up
ij with coefficient equal to 1 modulo p.

Remark. The above monomial can be obtained taking the product of all the variables 
and dividing by the variables according to the following pattern: denote by 
 the variable 
to be divided out.

X =

∣∣∣∣∣∣∣∣∣∣∣∣∣


 x12 . . . x1,n−2 x1,n−1 x1n
x21 
 . . . x2,n−2 x2,n−1 x2n

. . . . . .

xn−2,1 xn−2,2 . . . 
 xn−2,n−1 xn−1,n
xn−1,1 xn−1,2 . . . xn−1,n−2 
 xn−1,n
xn,1 xn,2 . . . xn,n−2 
 xn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Y =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 y12 y1,3 . . . y1,n−1 


y21 y22 y2,3 . . . 
 y2n
. . . . . .

yn−2,1 yn−2,2 
 . . . yn−2,n−1 yn−2,n

 
 yn−1,3 . . . yn−1,n−1 yn−1,n

yn,1 yn,2 yn,3 . . . yn,n−1 yn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
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Conjecture 5. Let X be a matrix of indeterminates of size n over a field K. Let P(X)
be the irreducible polynomial as in Definition 3. Then K[X]/P(X) is F -regular.

Conjecture 6. The following is a regular sequence on R/I and hence a part of a system 
of parameters on R/J and R/Q.

xst − yt,θ(s,t), x1n, xnn, x11 − y2n

for all 1 ≤ s, t, ≤ n and where θ(s, t) =
{

(s + t)mod n, if s + t �= n;
n, if s + t = n.

Remark. The conjecture was verified by using Macaulay2 software when n = 3, 4 over 
K = Q and in some small prime characteristics.

In the case when n = 3, this is equivalent to the following identifications of variables 
in matrices X and Y

X =

∣∣∣∣∣∣∣
x11 x12 0
x21 x22 x22
x31 x32 0

∣∣∣∣∣∣∣ , Y =

∣∣∣∣∣∣∣
x31 x11 x21
x22 x32 x12
0 x22 0

∣∣∣∣∣∣∣ .
Conjecture 7. Let Z ⊆ {uij | 1 ≤ i �= j ≤ n} be any subset of cardinality at most n2−n −1. 
Let IZ be the ideal of R generated by the elements of Z. Then R/IZ is F -regular. In 
particular, IZ is a prime ideal.
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