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RINGEL-HALL ALGEBRA CONSTRUCTION OF

QUANTUM BORCHERDS-BOZEC ALGEBRAS

SEOK-JIN KANG

Abstract. We give the Ringel-Hall algebra construction of the positive half of quantum
Borcherds-Bozec algebras as the generic composition algebras of quivers with loops.

Introduction

The Hall algebra, introduced by Steinitz [22] and rediscovered by Hall [8], is an associa-
tive algebra overC with a basis consisting of isomorphism classes of finite abelian p-groups.
The finite abelian p-groups are parametrized by partitions and the structure coefficients
of the Hall algebra are given by certain polynomials in p with integral coefficients, which
are called the Hall polynomials. It turned out that there is a close connection between the
Hall algebras and the theory of symmetric functions.

In [18], Ringel generalized the notion of Hall algebras to abelian categories with some
finiteness conditions such as the category of representations of a quiver. The Ringel-Hall
algebra is an associative algebra over C with a basis consisting of isomorphism classes
of objects in a given abelian category, where the multiplication is defined in terms of the
space of extensions. When we deal with the categories of representations of quivers without
loops, the Ringel-Hall algebras provide a realization of the positive half of quantum groups
associated with symmetric generalized Cartan matrices [18, 7]. The Ringel-Hall algebra
construction of quantum groups is one of the main inspirations for the Kashiwara-Lusztig
crystal/canonical basis theory [13, 14, 15].

Let us consider the quivers with loops. Then one can associate symmetric Borcherds-
Cartan matrices, which yield Borcherds algebras or generalized Kac-Moody algebras. The
Borcherds algebras were introduced by Borcherds in his study of the Monstrous Moonshine
[1]. A special example of these algebras, the Monster Lie algebra, played an important role
in the proof of the Moonshine Conjecture [2]. The quantum deformations of Borcherds
algebras and their modules were constructed in [11]. In [12], the Ringel-Hall algebra
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construction and the Kashiwara-Lusztig crystal/canonical basis theory were generalized
to the case of quantum Borcherds algebras (see also [10]).

The Borcherds-Bozec algebras are further generalizations of Borcherds algebras. They
are also defined by the generators and relations coming from Borcherds-Cartan matrices,
but they have far more generators than Borcherds algebras. That is, for each simple
root, there are infinitely many generators whose degrees are positive integral multiples
of the given simple root. Thus in addition to the Serre-type relations, we need to have
the Drinfel’d-type relations. The quantum Boecherds-Bozec algebras arise as a natural
algebraic structure behind the theory of perverse sheaves on the representation varieties
of quivers with loops and a lot of interesting progresses are still under way ([3, 4, 5], etc.).

In this paper, we give the Ringel-Hall algebra construction of the positive half of quan-
tum Borcherds-Bozec algebras as the generic composition algebras of quivers with loops.
The main ingredients of our work are Green’s Theorem on symmetric bilinear forms of
Green-Lusztig algebras (Theorem 1.2) and the representations of quivers given in (3.11)
that correspond to the higher degree generators of quantum Borcherds-Bozec algebras.

1. Green-Lusztig algebras

Let A be an integral domain containing Z and an invertible element v. Let X be a
set of alphabets (possibly countably infinite) and let Λ =

⊕
x∈X Zαx be the free abelian

group on X endowed with a symmetric bilinear form ( , ) : Λ × Λ → Z. The quadruple
(X, ( , ),A , v) is called a Green-Lusztig datum. We write Λ+ =

∑
x∈X Z≥0αx.

Definition 1.1. Let (X, ( , ),A , v) be a Green-Lusztig datum. We say that an associative
A -algebra L is a Green-Lusztig algebra belonging to the class L (X, ( , ),A , v) if the
following conditions are satisfied.

(a) L =
⊕

α∈Λ+ Lα is a Λ+-graded algebra such that
(i) L is generated by the elements ux (x ∈ X),
(ii) L0 = A 1, where 1 is the identity element of L.

(b) There is an A -bilinear map δ : L → L⊗A L such that
(i) δ(ux) = ux ⊗ 1 + 1⊗ ux for all x ∈ X,
(ii) δ is an A -algebra homomorphism, where the multiplication on L ⊗A L is

given by

(x1 ⊗ x2)(y1 ⊗ y2) := v(β2,γ1)(x1y1 ⊗ x2y2) for xi ∈ Lβi
, yi ∈ Lγi (i = 1, 2).

(c) There is a symmetric A -bilinear form ( , )L : L× L → A such that
(i) (Lα, Lβ)L = 0 if α �= β,
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(ii) (1,1)L = 1,
(iii) (ux, ux)L �= 0 for all x ∈ X,
(iv) (a, bc)L = (δ(a), b⊗ c)L for all a, b, c ∈ L, where

(x1 ⊗ x2, y1 ⊗ y2)L := (x1, y1)L (x2, y2)L for xi, yi ∈ L (i = 1, 2).

Let β =
∑

x∈X dxαx ∈ Λ+ with ht(β) :=
∑

x∈X dx = r. Set

X(β) := {w = (x1, . . . , xr) | αx1 + · · ·+ αxr = β}.
If L =

⊕
β∈Λ+ Lβ is a Green-Lusztig algebra in L (X, ( , ),A , v), then Lβ is the A -span

of monomials of the form uw = ux1 · · ·uxr such that w = (x1, . . . , xr) ∈ X(β). Note that
if w ∈ X(β), w′ ∈ X(β′) with β �= β′, by (c), we have (uw, uw′)L = 0.

Theorem 1.2. [7] Let β =
∑

x∈X dxαx ∈ Λ+ and w,w′ ∈ X(β). Then there exists a Lau-

rent polynomial Pw,w′(t) ∈ Z[t, t−1] such that for any Green-Lusztig datum (X, ( , ),A , v)
and any Green-Lusztig algebra in L (X, ( , ),A , v), we have

(uw, uw′)L = Pw,w′(v)Bβ(L),

where Bβ(L) =
∏

x∈X(ux, ux)
dx
L .

Remark. The point is that Bβ(L) depends only on β and L.

Lemma 1.3. [7] Let L be a Green-Lusztig algebra in L (X, ( , ),A , v) and let u =∑
w∈X(β) cwuw ∈ L (cw ∈ A ). Then u ∈ rad( , )L if and only if∑

w∈X(β)

cwPw,w′(v) = 0 for all w′ ∈ X(β), β ∈ Λ+.

2. Quantum Borcherds-Bozec algebras

Let I be an index set (possibly countably infinite). A square matrix A = (aij)i,j∈I is
called an even symmetrizable Borcherds-Cartan matrix if

(i) aii = 2, 0,−2,−4, . . .,
(ii) aij ∈ Z≤0 for i �= j,
(iii) aij = 0 if and only if aji = 0,
(iv) there is a diagonal matrix D = diag(si ∈ Z>0 | i ∈ I) such that DA is symmetric.

Set Ire := {i ∈ I | aii = 2}, the set of real indices and I im := {i ∈ I | aii ≤ 0}, the set
of imaginary indices. We denote by I iso := {i ∈ I | aii = 0} the set of isotropic indices.



4 SEOK-JIN KANG

A Borcherds-Cartan datum consists of

(a) an even symmetrizable Borcherds-Cartan matrix A = (aij)i,j∈I ,
(b) a free abelian group P , the weight lattice,
(c) P∨ := Hom(P,Z), the dual weight lattice,
(d) Π = {αi ∈ P | i ∈ I}, the set of simple roots,
(e) Π∨ = {hi ∈ P∨ | i ∈ I}, the set of simple coroots

satisfying the following conditions

(i) 〈hi, αj〉 = aij for i, j ∈ I,
(ii) Π is linearly independent over C,
(iii) for every i ∈ I, there is an element �i ∈ P such that 〈hj , �i〉 = δij for all j ∈ I.

We denote by R :=
⊕

i∈I Zαi the root lattice and set R+ :=
∑

i∈I Z≥0αi.

Let h := C⊗Z P∨. Since A is symmetrizable and Π is linearly independent, there is a
non-degenerate symmetric bilinear form ( , ) on h∗ such that

(2.1) (αi, λ) = si 〈hi, λ〉 for all i ∈ I, λ ∈ h∗.

Let v be an indeterminate and set

vi = vsi , v(i) = v(αi,αi)/2, [n]i =
vni − v−n

i

vi − v−1
i

.

Note that vi = v(i) if i ∈ Ire.

Let I∞ := (Ire × {1}) ∪ (I im × Z>0). We will often identify Ire × {1} with Ire. Let
Λ :=

⊕
(i,l)∈I∞ Zαil be the free abelian group on I∞. Then we have a symmetric bilinear

form ( , ) : Λ× Λ → Z given by

(2.2) (αik, αjl) := kl(αi, αj) for all (i, k), (j, l) ∈ I∞.

Then (I∞, ( , ),C(v), v) is a Green-Lusztig datum.

Let E be the free associative algebra over C(v) generated by the symbols eil for (i, l) ∈
I∞. Set deg eil := lαi for (i, l) ∈ I∞. Then E becomes an R+-graded algebra E =⊕

β∈R+ Eβ , where Eβ is the C(v)-span of monomials of the form ei1,l1 · · · eir,lr such that

l1αi1 + · · ·+ lrαir = β. We will denote by |u| the degree of a homogeneous element u in E .

Define a twisted multiplication on E ⊗ E by

(2.3) (x1 ⊗ x2) (y1 ⊗ y2) = v(|x2|,|y1|)x1y1 ⊗ x2y2
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and a co-multiplication δ : E → E ⊗ E by

(2.4) δ(eil) =
∑

m+n=l

vmn
(i) eim ⊗ ein for all (i, l) ∈ I∞.

Since E is the free associative algebra on {eil | (i, l) ∈ I∞}, the map δ can be extended to
a well-defined algebra homomorphism.

Proposition 2.1. [3, 4, 17, 19] For any family ν = (νil)(i,l)∈I∞ of non-zero elements in
C(v), there exists a bilinear form ( , )L : E × E → C(v) such that

(a) (x, y)L = 0 if |x| �= |y|,
(b) (1,1)L = 1,
(c) (eil, eil)L = νil for all (i, l) ∈ I∞,
(d) (x, yz)L = (δ(x), y ⊗ z) for all x, y, z ∈ E .

We define Û to be the associative algebra over C(v) generated by the elements K±1
i

(i ∈ I), eil, fil ((i, l) ∈ I∞) with defining relations

(2.5)

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi (i, j ∈ I),

KiejlK
−1
i = v

laij
i ejl, KifjlK

−1
i = v

−laij
i fjl (i ∈ I, (j, l) ∈ I∞),

1−laij∑
k=0

(−1)ke
(k)
i ejl e

(1−laij−k)
i = 0 for i ∈ Ire, i �= (j, l),

1−laij∑
k=0

(−1)kf
(k)
i fjl f

(1−laij−k)
i = 0 for i ∈ Ire, i �= (j, l),

[eik, ejl] = 0 if aij = 0.

Here, we use the notation e
(k)
i = eki /[k]i!, f

(k)
i = fk

i /[k]i! for i ∈ Ire.

The algebra Û is endowed with the co-multiplication Δ : Û → Û ⊗ Û given by

(2.6)

Δ(Ki) = Ki ⊗Ki,

Δ(eil) =
∑

m+n=l

vmn
(i) eimKn

i ⊗ ein,

Δ(fil) =
∑

m+n=l

v−mn
(i) fim ⊗K−m

i fin.

We will use Sweedler’s notation to write

Δ(x) =
∑

x(1) ⊗ x(2) for x ∈ Û .
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Let Û+ be the subalgebra of Û generated by eil’s ((i, l) ∈ I∞).

Proposition 2.2. [3, 17, 20]
(a) If i ∈ Ire, i �= (j, l), then the elements

1−laij∑
k=0

(−1)ke
(k)
i ejle

(1−laij−l)
i

lie in the radical of ( , )L.

(b) If aij = 0, then the elements [eik, ejl] (k, l ≥ 1) lie in the radical of ( , )L.

Hence the bilinear form ( , )L is well-defined on Û+.

Let Û≥0 be the subalgebra of Û generated by Û+ and K±1
i (i ∈ I). We extend the

bilinear form ( , )L to Û≥0 via

(2.7) (xKi, yKj)L = v
aij
i (x, y)L = v

aji
j (x, y)L for all x, y ∈ Û+, i, j ∈ I.

Let ω : Û → Û be the involution defined by

(2.8) eil �→ fil, fil �→ eil, Ki �→ K−1
i .

Then the subalgebra Û− generated by fil’s ((i, l) ∈ I∞) is endowed with a symmetric
bilinear form ( , )L by setting

(2.9) (x, y)L = (ω(x), ω(y))L for all x, y ∈ Û−.

Following the Drinfel’d double process, we take the algebra Ũ to be the quotient of Û
by the relations

(2.10)
∑

(a(1), b(2))L ω(b(1)) a(2) =
∑

(a(2), b(1))L a(1) ω(b(2)) for all a, b ∈ Û≥0.

Definition 2.3. The quantum Borcherds-Bozec algebra Uv(g) associated with the Borcherds-

Cartan datum (A,P, P∨,Π,Π∨) is the quotient algebra of Ũ by the radical of ( , )L
restricted to Ũ− × Ũ+.

Thus we have U±
v (g) = Ũ±/rad( , )L, where U+

v (g) (resp. U−
v (g)) is the subalgebra of

Uv(g) generated by eil’s (resp. fil’s) for (i, l) ∈ I∞.

From now on, we assume that

(2.11) (eil, eil)L ∈ 1 + v−1Z≥0[[v
−1]] for all i ∈ I im \ I iso, l ≥ 1.
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Then ( , )L is non-degenerate on E (i) :=
⊕

l≥1 Elαi
.

Proposition 2.4. [3, 4] For each i ∈ I im and l ≥ 1, there exists a unique element
sil ∈ Elαi

such that

(i) 〈si,1, . . . , si,l〉 = 〈ei,1, . . . , ei,l〉 as algebras,
(ii) (sil, z)L = 0 for all z ∈ 〈ei,1, . . . , ei,l−1〉,
(iii) sil − eil ∈ 〈ei,1, . . . , ei,l−1〉,
(iv) δ(sil) = sil ⊗ 1 + 1⊗ sil,

(v) Δ(sil) = sil ⊗ 1 +K l
i ⊗ sil.

Proposition 2.5. [3, 4] U±
v (g) = Ũ±. In particular, ( , )L is non-degenerate on U±

v (g).

Combining Proposition 2.4 and Proposition 2.5, we obtain

Corollary 2.6. The algebra U+
v (g) is a non-degenerate Green-Lusztig algebra belonging

to the class L (I∞, ( , )L,C(v), v).

Proof. Note that U+
v (g) is generated by sil and that δ(sil) = sil⊗1+1⊗sil for (i, l) ∈ I∞.

Since ( , )L is non-degenerate on E (i) for each i ∈ I im, we have

(sil, sil)L = (sil, eil)L �= 0,

which proves our claim. �

Remark. The algebra E is also a (degenerate) Green-Lusztig algebra belonging to the class
L (I∞, ( , )L,C(v), v).

3. Ringel-Hall algebras

Let I be an index set (possibly countably infinite) and let R =
⊕

i∈I Zαi be the free
abelian group on I. Let Q = (I,Ω) be a quiver, where I is the set of vertices and Ω is the
set of arrows. We have the functions out, in : Ω → I defined by

out(h)
h−→ in(h) for h ∈ Ω.

Definition 3.1. Let k be a field and let Q = (I,Ω) be a quiver. A representation of Q
over k consists of

(i) a family of finite dimensional k-vector spaces M = (Mi)i∈I such that Mi = 0 for
all but finitely many i,
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(ii) a family of k-linear maps x = (xh : Mout(h) → Min(h))h∈Ω.

For simplicity, we often write (M,x) for a representation of Q.

Definition 3.2. Let (M,x) and (N, y) be representations of a quiver Q = (I,Ω). A
morphism φ : (M,x) → (N, y) is a family of k-linear maps φ = (φi : Mi → Ni)i∈I such
that for all h ∈ Ω, the following diagram is commutative.

(3.1) Mout(h)

xh

��

φout(h)�� Nout(h)

yh
��

Min(h)

φin(h) �� Nin(h)

Let M = (Mi)i∈I be a representation of Q. We define the dimension vector of M by

(3.2) dimM =
∑
i∈I

(dimkMi)αi ∈ R+.

Let M and N be representations of Q. The (non-symmetric) Euler form of M and N
is defined by

(3.3) 〈M,N〉 = dimkHomkQ(M,N)− dimkExt1kQ(M,N).

On the other hand, for α =
∑

i diαi, β =
∑

i d
′
iαi ∈ R+, we define

(3.4) 〈α, β〉 =
∑
i

(1− gi)did
′
i −

∑
i 	=j
i→j

cijdid
′
j ,

where gi is the number of loops at i and cij denotes the number of arrows from i to j in
Ω.

The following lemma is well-known (see, for example, [6, 9]).

Lemma 3.3. Let M and N be representations of Q. Then we have

〈M,N〉 = 〈dimM, dimN〉.

For α, β ∈ R+, we define

(3.5) (α, β) := 〈α, β〉+ 〈β, α〉.
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In particular, we have

(3.6) (αi, αj) =

{
2(1− gi) if i = j,

−cij − cji if i �= j.

Hence we obtain a symmetric Borcherds-Cartan matrix AQ = (aij)i,j∈I = ((αi, αj))i,j∈I
with R as the root lattice. We will denote by Uv(gQ) the quantum Borcherds-Bozec algebra
associated with AQ.

Let k be a finite field with q elements and choose a complex number v = vk ∈ C such
that v2 = q. Then (I, ( , ),C, v) is a Green-Lusztig datum.

Definition 3.4. The Ringel-Hall algebra Hk(Q) is the associative algebra over C with
a basis consisting of isomorphism classes of representations of Q endowed with the multi-
plication defined by

(3.7) [M ] [N ] :=
∑
L

v〈dimM, dimN〉αL
M,N [L],

where [M ] denotes the isomorphism class of M and

(3.8) αL
M,N = #{X ⊂ L | X ∼= N, L/X ∼= M}.

Let α ∈ R+ and let Hk(Q)α be the C-span of the isomorphism classes with dimM = α.
Then Hk(Q) =

⊕
α∈R+ Hk(Q)α becomes an R+-graded algebra ([7, 19], etc).

We define a twisted algebra structure on Hk(Q)⊗Hk(Q) by

(3.9) ([M1]⊗ [M2]) ([N1]⊗ [N2]) = v(dimM2, dimN1)([M1] [N1]⊗ [M2] [N2])

and a C-linear map δ : Hk(Q) → Hk(Q)⊗Hk(Q) by

(3.10) δ([L]) =
∑
M,N

v〈dimM,dimN〉αL
M,N

aMaN
aL

([M ]⊗ [N ]),

where aM = #(AutkQ(M)).

Proposition 3.5. [7]

(a) δ : Hk(Q) → Hk(Q)⊗Hk(Q) is a C-algebra homomorphism.

(b) There exists a non-degenerate symmetric bilinear form ( , )G : Hk(Q)×Hk(Q) → C
defined by

([M ], [N ])G = δ[M ],[N ]
1

aM
.
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(c) We have

(x, yz)G = (δ(x), y ⊗ z)G for all x, y, z ∈ Hk(Q).

Let (i, l) ∈ I∞. If i ∈ Ire, we define Ei to be the unique simple representation of Q with
dimension vector αi. By (3.10), we see that

δ([Ei]) = [Ei]⊗ 1 + 1⊗ [Ei].

Assume that i ∈ I im. For each l ≥ 1, we define a representation (Ei,l, x) of Q by setting

(3.11)
(Ei,l)j =

{
kl if j = i,

0 if j �= i,

xh = 0 for all h ∈ Ω.

Note that

(3.12)

aEi,l
= #(GLl(k)) = (ql − 1)(ql − q) · · · (ql − ql−1) = v

3
2
l(l−1)(v2 − 1)l [l]!,

α
Ei,m+n

Ei,m, Ei,n
= #Grk

(
m+ n

m

)
= vmn

[
m+ n

m

]
.

Therefore we obtain

δ([Ei,l]) =
∑

m+n=l

v〈dimEi,m, dimEi,n〉αEi,m+n

Ei,m, Ei,n

aEi,maEi,n

aEi,m+n

[Ei,m]⊗ [Ei,n]

=
∑

m+n=l

vmn〈αi,αi〉vmn

[
m+ n

m

]
v

3
2
(m(m−1)+n(n−1))(v2 − 1)m+n [m]! [n]!

v
3
2
((m+n)(m+n−1))(v2 − 1)m+n [m+ n]!

=
∑

m+n=l

vmn(1−gi−2) [Ei,m]⊗ [Ei,n]

=
∑

m+n=l

vmn(−1−gi) [Ei,m]⊗ [Ei,n].

Hence for all (i, l) ∈ I∞, we have

(3.13) δ([Ei,l]) =
∑

m+n=l

vmn(−1−gi)[Ei,m]⊗ [Ei,n].

Moreover, by (3.12), we see that

(3.14) ([Ei,l], [Ei,l])G =
1

aEi,l

∈ v−2l2(1 + v−1Z[[v−1]]) for all (i, l) ∈ I∞.
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Set eil := vl
2
[Ei,l] ∈ Hk(Q). Then by (3.13), we obtain

(3.15) δ(eil) =
∑

m+n=l

vmn
(i) eim ⊗ ein,

where v(i) = v〈αi,αi〉 = v1−gi . Moreover, it is easy to see that

(3.16) eil, eil)G ∈ 1 + v−1Z[[v−1]] for all (i, l) ∈ I∞.

Definition 3.6. The subalgebra Ck(Q) of Hk(Q) generated by ei,l ((i, l) ∈ I∞) is called
the composition algebra of Q over k.

By (3.15), we see that δ(Ck(Q)) ⊂ Ck(Q)⊗k Ck(Q) and hence Ck(Q) is a bi-algebra.

For each i ∈ I, set Hk(i) :=
⊕

l≥1Hk(Q)lαi
. Then the restriction of ( , )G to Hk(i) is

non-degenerate. Hence, as in [3, Proposition 2.16], we have:

Proposition 3.7. For each (i, l) ∈ I∞, there exists a unique element sil ∈ Hk(Q) such
that

(a) 〈si,1, . . . , si,l〉 = 〈ei,1, . . . , ei,l〉 as algebras,
(b) (sil, x)G = 0 for all x ∈ 〈ei,1, . . . , ei,l−1〉,
(c) sil − eil ∈ 〈ei,1, . . . , ei,l−1〉,
(d) δ(sil) = sil ⊗ 1 + 1⊗ sil.

As in the proof of Corollary 2.6, by (b) and (c), we see that

(sil, sil)G �= 0 for all (i, l) ∈ I∞.

Therefore we obtain:

Proposition 3.8. The composition algebra Ck(Q) is a Green-Lusztig algebra belonging
to the class L (I∞, ( , )G,C, vk).

The following proposition and its corollary show that the quantum Serre relations hold
in the composition algebra Ck(Q).

Proposition 3.9. For every finite field k, the following relations hold.

(a) If aij = 0, then

[Ei,k][Ej,l] = [Ej,l][Ei,k].
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(b) If i ∈ Ire and i �= (j, l), then we have

1−laij∑
k=0

(−1)k[Ei]
(k)[Ej,l][Ei]

(1−laij−k) = 0,

where [Ei]
(k) := [Ei]

k
/
[k]!.

Proof. Set v = vk. If aii = 0, by the duality, we have

[Ei,k][Ei,l] =
∑
L

αL
Ei,k, Ei,l

[L] =
∑
L

αL∗
E∗

i,l, E
∗
i,k

[L∗] =
∑
L

αL
Ei,l, Eik

[L] = [Ei,l][Ei,k].

If i �= j, aij = 0 implies cij = cji = 0. Thus HomkQ(Ei,k, Ej,l) = 0 and

[Ei,k][Ej,l] = [Ei,k ⊕ Ej,l] = [Ej,l][Ei,k],

which proves (a).

To prove (b), by induction, we first verify

[Ei]
(k) =

1

[k]!
[Ei]

k = vk(k−1)[E⊕k
i ].

Now we have

[Ei]
(k)[Ej,l] = vk(k−1)v〈kαi,lαj〉

∑
L

αL
E⊕k

i , Ej,l
[L]

= vk(k−1)−klcij
∑
L

αL
E⊕k

i , Ej,l
[L],

where L runs over kQ-modules containing a submodule X such that

X ∼= Ej,l, L
/
X ∼= E⊕k

i .

Since HomkQ(Ei, Ej,l) = 0, such a submodule X is unique and hence

αL
E⊕k

i , Ej,l
= 1 for all L.

It follows that

[Ei]
(k)[Ej,l] = vk(k−1)−klcij

∑
L

[L],

where L contains a (unique) submodule X such that X ∼= Ej,l, L
/
X ∼= E⊕k

i .
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Hence for any n ≥ 0, we have

[Ei]
(k)[Ej,l][Ei]

(n) = (vk(k−1)−klcij
∑
L

[L])E
(n)
i

= vk(k−1)−klcij v〈kαi+lαj ,nαi〉 vn(n−1)
∑
L

∑
P

αP
L,E⊕n

i
[P ]

= vk(k−1)+n(n+1)+kn−klcij−lncji
∑
P

(
∑
L

αP
L,E⊕n

i
) [P ],

where

αP
L,E⊕n

i
= #{Y ⊂ P | Y ∼= E⊕n

i , P
/
Y ∼= L}.

Set

KP :=
⋂

h:i→j

Ker(xh : k⊕(k+n) → kl) ⊂ Pi,

JP :=
∑

h′:j→i

Im(xh′ : kl → k⊕(k+n)) ⊂ Pi,

mP := dimKP , nP := dim JP .

Note that P
/
Y ∼= L if and only if

(i) dimY = nαi,

(ii) xh = 0 for all h : i → j,

(iii) Imxh′ ⊂ Y for all h′ : j → i.

Hence we have

βP,n :=
∑
L

αP
L,E⊕n

i
=

∑
L

#{Y ⊂ P | Y ∼= E⊕n
i , P/Y ∼= L}

= #{n-dimensional subspaces Y of KP containing JP }
= #{(n− nP )-dimensional subspaces of KP /JP }

= #Grk

(
mP − nP

n− nP

)
= v(mP−n)(n−nP )

[
mP − nP

n− nP

]
,

which implies

[Ei]
(k)[Ej,l][Ei]

(n) = vk(k−1)+n(n−1)+kn−klcij−lncji
∑
P

v(mP−n)(n−nP )

[
mP − nP

n− nP

]
[P ].
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By setting n = 1− laij − k and summing up, we obtain

1−laij∑
k=0

(−1)k[Ei]
(k)[Ej,l][Ei]

(1−laij−k) =
∑

P : JP⊂KP

γP [P ],

where

γP =

1−laij∑
k=0

(−1)kvk(k−1)+n(n−1)+kn−klcij−lncji+(mP−n)(n−nP )

[
mP − nP

n− nP

]

=

1−laij∑
n=0

(−1)1−laij−nvlcji(1−laij)+n(−2lcji+mP+nP−1)−mPnP

[
mP − nP

n− nP

]

= (−1)1−laijvlcji(1−laij)−mPnP

mP∑
n=nP

(−1)nvn(−2lcji+mP+nP−1)

[
mP − nP

n− nP

]
.

Let

γ0P :=

mP∑
n=nP

(−1)nvn(−2lcji+mP+nP−1)

[
mP − nP

n− nP

]
.

Note that dim Imxh ≤ lcij and nP = dim JP ≤ lcji. Hence we have

mP = dimKP ≥ 1− laij − lcij = 1 + lcji > nP

and obtain

(mP − nP − 1)− (−2lcji +mP + nP − 1) = 2(lcji − nP ) ≥ 0,

(−2lcji +mP + nP − 1)− (−mP + nP + 1) = 2(mP − lcji − 1) ≥ 0,

which yield

−mP + nP + 1 ≤ −2lcji +mP + nP − 1 ≤ mP − nP − 1.

It is well-known that
m∑
k=0

(−1)kvdk
[
m

k

]
= 0

for all m ≥ 1, −m+ 1 ≤ d ≤ m− 1, d ≡ m− 1 (mod 2) (see, for example, [13]).
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Therefore, since −2lcji +mP + nP − 1 ≡ mP − nP − 1 (mod 2), we have

γ0P =

mP∑
n=nP

(−1)nvn(−2lcji+mP+nP−1)

[
mP − nP

n− nP

]

=

mP−nP∑
r=0

(−1)r+nP vr+nP (−2lcji+mP+nP−1)

[
mP − nP

r

]

= (−1)nP vnP (−2lcji+mP+nP−1)
mP−nP∑

r=0

(−1)rvr(−2lcji+mP+nP−1)

[
mP − nP

r

]
= 0.

Hence we conclude γP = 0 for all P , which proves our assertion. �

Corollary 3.10. For every finite field k, the following relations hold.

(a) If aij = 0, then

eik ejl = ejl eik.

(b) If i ∈ Ire and i �= (j, l), then we have

1−laij∑
k=0

(−1)ke
(k)
i ejl ei

(1−laij−k) = 0,

where e
(k)
i := eki

/
[k]!.

4. Ringel-Hall algebra construction of U+
v (gQ)

Let K be an infinite set of mutually non-isomorphic finite fields. For each k ∈ K, choose
vk ∈ C such that v2k = #(k) and set

(4.1) H(Q) :=
∏
k∈K

Hk(Q),

the generic Ringel-Hall algebra.

Let v be an indeterminate. Then H(Q) can be regarded as a C[v, v−1]-module via

v±1 �−→ (v±1
k )k∈K .
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For each (i, l) ∈ I∞, let Ei,l;k be the representation of Q over k defined in (3.11) and let
si,l;k be the element in Hk(Q) given in Proposition 3.7. Set

(4.2) Ei,l := (ei,l;k)k∈K = (vl
2

k [Ei,l;k])k∈K , Si,l := (si,l;k)k∈K .

Definition 4.1. The generic composition algebra of Q is the C[v, v−1]-subalgebra C(Q)
of H(Q) generated by Ei,l for all (i, l) ∈ I∞.

By Proposition 3.8, the generic composition algebra C(Q) is a Green-Lusztig algebra
belonging to the class L (I∞, ( , )G,C[v, v−1], v). We now state and prove the main
theorem of this paper.

Theorem 4.2. There exists a natural isomorphism of C(v)-bialgebras

Φ : U+
v (gQ) → C(v)⊗C[v,v−1] C(Q)

given by
eil �−→ Ei,l for all (i, l) ∈ I∞.

Proof. By Corollary 3.10, Φ defines a surjective C(v)-bialgebra homomorphism.

To prove the injectivity of Φ, we will use Theorem 1.2. Let Λ :=
⊕

(i,l)∈I∞ Zαi,l and let

Λ+ :=
∑

(i,l)∈I∞ Z≥0αi,l. For β =
∑

di,l αi,l ∈ Λ+, set

I∞(β) := {w = ((i1, l1), . . . , (ir, lr)) | αi1,l1 + · · ·+ αir,lr = β}.
For each w = ((i1, l1), . . . , (ir, lr)) ∈ I∞(β), we denote the generating monomials by

sw := si1,l1 · · · sir,lr ∈ U+
v (gQ)β ,

sw;k := si1,l1;k · · · sir,lr;k ∈ Ck(Q)β ,

Sw := (sw;k)k∈K = Si1,l1 · · ·Sir,lr ∈ C(Q)β .

Then one can see that sw is mapped onto Sw under the homomorphism Φ.

By Theorem 1.2, for all β =
∑

di,l αi,l ∈ Λ+, w,w′ ∈ I∞(β), there exists a polynomial
Pw,w′(t) ∈ Z[t, t−1] such that for all k ∈ K, we have

(i) (sw, sw′)L = Pw,w′(v)
∏

(i,l)∈I∞(si,l, si,l)
di,l
L ,

(ii) (sw;k, sw′;k)G = Pw,w′(vk)
∏

(i,l)∈I∞(si,l;k, si,l;k)
di,l
G .

Let u =
∑

w cw(v)sw ∈ KerΦ ⊂ U+
v (gQ). Thus

∑
w cw(v)Sw = 0, which implies∑

w

cw(vk) sw;k = 0 for all k ∈ K.
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Then, for any w′ ∈ I∞(β), we have

0 =
∑
w

cw(vk)(sw;k, sw′;k)G =
∑
w

cw(vk)Pw,w′(vk)
∏

(i,l)∈I∞
(si,l;k, si,l;k)

di,l
G .

It follows that ∑
w

cw(vk)Pw,w′(vk) = 0 for all w′ ∈ I∞(β), k ∈ K.

Therefore
∑

w cw(v)Pw,w′(v) = 0 for all w′ ∈ I∞(β).

By Lemma 1.3, we have

u =
∑
w

cw(v)sw ∈ rad( , )L.

Since ( , )L is non-degenerate on U+
v (gQ), we conclude u = 0 and hence Φ is injective. �

Remark. Using the theory of perverse sheaves on the representation varieties of quivers
with loops [3], it is expected that one can construct the isomorphism Φ as the Frobenius
trace map given in [16]. (See [21] for the details.)
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