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Introduction

0.1. Let (W, S) be a Coxeter system, where S denotes the set of simple reflections. Let 
ms1,s2 ∈ N ∪ {∞}, such that (s1s2)ms1,s2 = 1 for s1, s2 ∈ S. We denote by �(·) the 
length function on W . Let T =

⋃
w∈W wSw−1 be the set of reflections. We denote by ≤

the Bruhat order on W . We denote by V (over R) the geometric representation of W
and denote by Φ = Φ+ ∪ Φ− the root system of W in the sense of [8, Section 5.4]. Let 
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{βs|s ∈ S} be the collection of simple roots. Let n(w) = Card(Φ+ ∩ w(Φ−)). We know 
that n(w) = �(w) for any w ∈ W .

A weight function L : W → Z is a function on W such that L(w1w2) = L(w1) +L(w2)
whenever �(w1w2) = �(w1) + �(w2) for w1, w2 ∈ W . It follows that L(s1) = L(s2) for any 
s1, s2 ∈ S such that ms1,s2 is odd.

In this note, we assume that a weight function L is fixed such that

L(s) = 0 or 1, for s ∈ S.

We define Se = S ∩ L−1(e) for e ∈ {0, 1}.

0.2. Let A = Z[v, v−1] with a generic parameter v. For s ∈ S, we set vs = vL(s) ∈ A. 
Let H = H(W,S,L) be the A-algebra generated by Ts(s ∈ S) subject to the relations:

(Ts − v−1
s )(Ts + vs) = 0, for s ∈ S

TsTs′Ts · · · = Ts′TsTs′ · · · ,

where both products in the second relation have ms,s′ factors for any s �= s′ ∈ S such that 
ms,s′ �= ∞. This algebra is called the Hecke algebra with unequal parameters associated 
to a weight function L. It was introduced and studied in [9].

We write

Tw = Ts1 · · ·Tsn , for any reduced expression w = s1 · · · sn with si ∈ S. (0.1)

The set {Tw|w ∈ W} forms an A-basis of H. Let ¯ : H → H be the A-semilinear bar 
involution such that Ts = T−1

s and v = v−1. Note that for any s ∈ S0, we have T 2
s = 1

and Ts = Ts.
It is shown in [9, Chap 5] that, for any w ∈ W , there is a unique element cw such that

(1) cw = cw;
(2) cw =

∑
y∈W py,wTy where

• py,w = 0 unless y ≤ w;
• pw,w = 1;
• py,w ∈ vZ[v] if y < w.

The set {cw|w ∈ W} forms an A-basis of H, called the canonical (or Kazhdan-Lusztig) 
basis.

Let s, r ∈ S with L(s) = 0 and L(r) = 1. Then we have cs = Ts and cr = Tr + v. In 
particular, we have c2s = 1 and c2r = (v + v−1)cr.

0.3. Soergel ([10]) categorified the Hecke algebras with equal parameters (that is, L = �) 
in terms of the category of Soergel bimodules. We briefly recall the construction here.
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Following [5, §3.1], we fix a Soergel realization (h, {αs}, {α∨
s }) of (W, S) over a field 

k (char k �= 2). This realization is faithful and Soergel’s techniques can be applied. Let 
R =

⊕
m≥0 S

m(h∗), which we view as a graded k-algebra with deg(h∗) = 2. For any 
s ∈ S, let Rs ⊂ R be the subring of s-invariants.

We work in the abelian category of finitely generated graded R-bimodules, where 
morphisms preserve gradings. For any s ∈ S, we define the graded R-bimodule Bs =
R⊗Rs R(1), where (1) denotes the grading shift. For any w ∈ W , we denote the standard 
bimodule associated with w by Rw. Recall that Rw is isomorphic to R as k-modules and 
the R-bimodule structure is defined as: f · a = a · w−1(f) for f ∈ R and a ∈ Rw.

For any (not necessarily reduced) expression w = si1si2 · · · sin ∈ W , we define the 
Bott-Samelson bimodule as the tensor product

Bw = Bsi1
⊗R Bsi2

⊗R · · · ⊗R Bsin
,

viewed as a graded R-bimodule. Let BSBim denote the full monoidal subcategory of 
graded R-bimodules whose objects are Bott-Samelson bimodules. Let SBim denote the 
Karoubi envelope of BSBim, which is nowadays called the category of Soergel bimod-
ules. Following [6,10], we know that SBim categorifies the Hecke algebra H(W,S,�) with 
equal parameters. We have an algebra isomomorphism from the split Grothendieck group 
[SBim] to the Hecke algebra H(W,S,�), where the images of the indecomposable objects 
up to degree shift are the canonical basis elements.

0.4. Now let BSBimL be the full monoidal subcategory of the category of graded 
R-bimodules generated by Rs (s ∈ S0) and Bs′ (s′ ∈ S1). For any expression w =
si1 · · · sin ∈ W , we define the graded R-bimodule BL

w as the tensor product

BL
w = BL

si1
⊗R BL

si2
⊗R · · · ⊗R BL

sin
, where BL

sij
=

{
Rsij

, if sij ∈ S0;
Bsij

, if sij ∈ S1.

We denote by SBimL the Karoubi envelope of BSBimL. We prove the following the-
orem in this note (which follows from Proposition 1.14 and Proposition 1.17).

Theorem 1. For any w ∈ W , there exists a unique indecomposable bimodule (up to 
isomorphism) BL

w which occurs as a summand of BL
w for any reduced expression w of w

such that Rw(−L(w)) occurs in its Δ-filtration. The set {BL
w(ν)|w ∈ W, ν ∈ Z} gives a 

complete list of indecomposable bimodules in SBimL.
There is a unique isomorphism of A-algebras

ε : H −→ [SBimL],

cw �→ BL
w.

The inverse of ε is given by the character map chΔ : [SBimL] → H defined in (1.3).
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0.5. The only interesting case in this paper is when the weight function L is not con-
stant. When L is constant, we either obtain the Hecke algebra with equal parameters 
(L = �), or simply the group algebra A[W ] (L = 0). Note that L is necessarily constant 
for simply-laced Coxeter groups.

In the paper [7], Gobet and Thiel studied the generalized category of Soergel bimod-
ules, with focus on type A2. The category SBimL we constructed here is a subcategory 
of their category C.

Elias [4] studied the categorifications of Hecke algebras with unequal parameters via 
folding. The Hecke algebras categorified by Elias are different from this paper.

Acknowledgments: The author would like to thank Xuhua He for helpful comments. 
The author would like to thank the referee to careful reading and very helpful comments.

1. Proof of the theorem

1.1. Coxeter groups

In this section we review basics of Coxeter groups and their reflection subgroups. We 
refer to [8] for more details. Let e ∈ {0, 1} and w ∈ W . We define

Se = S ∩ L−1(e), Te =
⋃

w∈W

wSew
−1, Φe = {w(βs) ∈ V |w ∈ W, s ∈ Se},

Φ±
e = Φe ∩ Φ±, ne(w) = Card{β ∈ Φ+

e ∩ w(Φ−
e )}.

Let WS0 be the parabolic subgroup of W generated by s ∈ S0. We have T0 ∩ T1 =
S0 ∩ S1 = ∅. We are interested in the reflection subgroup W ′ = 〈T1〉 of W . For β ∈ Φ+, 
we denote by sβ ∈ T the reflection of V sending the root β to −β.

Proposition 1.1. [2,3] The subgroup W ′ of W is itself a Coxeter group with simple re-
flections S′ = {w ∈ T1|n1(w) = 1}. Moreover the restriction of n1 on W ′ coincides with 
the (new) length function of (W ′, S′).

It is clear that the subspace spanned by Φ1 equipped with the natural W ′-action 
coincides with the geometric representation of W ′. We shall generally use n1 to denote 
the (new) length function on W ′ and reserve �(·) (or n(·)) for the length function on W . 
Let mr1,r2 ∈ N ∪ {∞} such that (r1r2)mr1,r2 = 1 for r1, r2 ∈ S′.

We first prove that the Bruhat order on W ′ (as a Coxeter group itself) is compatible 
with the Bruhat order on W . It follows from [3, Theorem 3.3] that the set of reflections 
(with respect to the Coxeter system (W ′, S′)) in W ′ is exactly T1. One can also see this 
fact from Corollary 1.4.

Lemma 1.2. Let w′ ∈ W ′ such that n1(w′sβ) > n1(w′) for some sβ ∈ T1 (β ∈ Φ+). Then
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(1) we have �(w′sβ) > �(w′);
(2) for any g1, g2 ∈ WS0 , we have �(g1w

′sβ) > �(g1w
′) and �(g1w

′sβg2) > �(g1w
′g2).

Proof. Thanks to Proposition 1.1, we know that n1(·) coincides with the length function 
on W ′. Then thanks to [8, Proposition 5.7], we see that w′(β) ∈ Φ+

1 ⊂ Φ+. Therefore we 
also have �(w′sβ) > �(w′) by [8, Proposition 5.7]. The first claim follows.

Now since w′(β) ∈ Φ+
1 and g1 ∈ WS0 , we must also have g1w

′(β) ∈ Φ+, hence 

�(g1w
′sβ) > �(g1w

′). On the other hand, we equivalently have g1w
′g2

(
g−1
2 (β)

)
∈ Φ+, 

which means �(g1w
′g2g

−1
2 sβg2) = �(g1w

′sβg2) > �(g1w
′g2). The second claim follows. �

We then give a description of the set S′.

Proposition 1.3. Let r ∈ T1. Then r ∈ S′ if and only if r = gsg−1 for some s ∈ S1 and 
g ∈ WS0 .

Moreover, the generator r ∈ S′ has a reduced expression (as an element in W ) of the 
form s1s2 · · · sk−1sksk−1 · · · s2s1, with sk ∈ S1 and s1, s2, . . . , sk−1 ∈ S0.

Proof. The necessary condition follows from the second statement, which we shall prove 
now. Let sβ = r ∈ S′ be a reflection of V sending the root β (∈ Φ+) to −β with reduced 
expression sβ = s1 · · · sn with si ∈ S. We know that

Φ+ ∩ sβ(Φ−) = {βsn , sn(βsn−1), . . . , snsn−1 · · · s2(βs1)}.

By the definition of S′, we have Φ+
1 ∩ sβ(Φ−) = {β}. Assume snsn−1 · · · sk+1(βsk) = β

with sk ∈ S1. It also follows that sn, sn−1, . . . , sk+1, sk−1, . . . , s1 ∈ S0.
Now we can write sβ = snsn−1 · · · sk+1sksk+1 · · · sn−1sn = s1 · · · sn. We obtain that 

snsn−1 · · · sk+1 = s1 · · · sk−1. Since we have reduced expressions on both sides, we must 
have n = 2k − 1 and r = sβ = s1s2 · · · sk−1sksk−1 · · · s2s1 being a reduced expression.

Then we prove the sufficient condition. By the deletion condition of Coxeter groups 
(cf. [8, Corollary 5.8]), r = gsg−1 must have the reduced expression of the form r =
s1s2 · · · slssl+1 · · · sm with s1, . . . sm ∈ S0. Hence we have

Φ+
1 ∩ sβ(Φ−) = {smsm−1 · · · sl+1(βs)},

that is n1(r) = 1. Then the statement follows from Proposition 1.1. �
Corollary 1.4. Let w ∈ WS0 . The conjugation action by w preserves the set S′.

1.2. Hecke algebras

We denote by H′ = H(W ′,S′,L) the Hecke algebra associated with the Coxeter sub-
group W ′ of W with generators T ′

r (r ∈ S′) subject to the relations (we write vr = vL(r)

for r ∈ S′):
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(T ′
r − v−1

r )(T ′
r + vr) = 0, for r ∈ S′

T ′
rT

′
tT

′
r · · · = T ′

tT
′
rT

′
t · · · ,

where both products in the second relation have mr,t factors for any r �= t ∈ S′ such that 
mr,t �= ∞. Note that we have vr = vt = v for any r, t ∈ S′, thanks to the definition of 
the function L and Proposition 1.3. So this is a Hecke algebra with the weight function 
L(r) = n1(r) = 1 for all r ∈ S′.

We write the canonical basis element in H′ as c′w for any w ∈ W ′ to distinguish it 
from the canonical basis element cw in H (since W ′ ⊂ W ). But we shall see very soon 
that they actually coincide.

Lemma 1.5. For any w ∈ W ′ and s ∈ S0, we have TwTs = Tws and TsTw = Tsw.

Proof. Let us prove the first identity. The second one is entirely similar.
If �(w) + �(s) = �(ws), then the statement is well-known ([9, §3.2]). If �(w) + �(s) >

�(ws), then w admits a reduced expression ending with s, that is w = s1s2 · · · sns. Hence 
we have

TwTs = Ts1Ts2 · · ·TsnTsTs = Ts1Ts2 · · ·Tsn = Tws,

since T 2
s = 1 for s ∈ S0. �

Lemma 1.6. For any w ∈ W ′ and r ∈ S′, we have TwTr = Twr if n1(w) +n1(r) = n1(wr).

Proof. Thanks to Proposition 1.3, we have a reduced expression

r = s1s2 · · · sk−1sksk−1 · · · s2s1 ∈ W,

with sk ∈ S1 and s1, s2, . . . , sk−1 ∈ S0. Therefore we have Tr = Ts1 · · ·Tsk · · ·Ts1 . Thanks 
to Lemma 1.5, we have

TwTs1 · · ·Tsk−1 = Tws1s2···sk−1 .

Note that since

n1(ws1s2 · · · sk−1) + n1(sk) = n1(w) + n1(r)

= n1(ws1s2 · · · sk−1sksk−1 · · · s2s1)

= n1(ws1s2 · · · sk−1sk),

we have �(ws1s2 · · · sk−1) + �(sk) = �(ws1s2 · · · sk−1sk) thanks to Lemma 1.2. Therefore 
we have

Tws1s2···sk−1Tsk = Tws1s2···sk−1sk .
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Then thanks to Lemma 1.5 again, we have

Tws1s2···sk−1skTsk−1 · · ·Ts1 = Twr.

The lemma follows. �
Theorem 1.7. We have the A-algebra embedding ρ : H′ → H such that

ρ(T ′
r) = Tr, for r ∈ S′,

where Tr is the element in H defined in (0.1). Moreover, we have ρ(T ′
w) = Tw and 

ρ(c′w) = cw for any w ∈ W ′ ⊂ W .

Proof. Let r ∈ S′. Thanks to Proposition 1.3, we have a reduced expression

r = s1s2 · · · sk−1sksk−1 · · · s2s1 ∈ W, (1.1)

with sk ∈ S1 and s1, s2, . . . , sk−1 ∈ S0. Therefore we have L(r) = L(sk), hence vr = vsk .
We write g = s1s2 · · · sk−1. Note that Tg−1 = T−1

g . We first check the quadratic 
relations. We have

ρ
(
(T ′

r − v−1
r )(T ′

r + vr)
)

= Tg(Tsk − v−1
sk

)(Tsk + vsk)T−1
g = 0.

It follows from Lemma 1.6 that ρ(T ′
w) = Tw hence the braid relations hold.

Following the reduced expression of r in (1.1), it is easy to see that we have ρ(T ′
r) = Tr, 

that is ρ commutes with the bar involutions. Now in order to prove that ρ(c′w) = cw, it 
suffices to prove that the Bruhat order on W ′ is compatible with the Bruhat order on 
W , which follows from Lemma 1.2. �

So from now on we shall omit the superscripts ′ for the generators T ′
r ∈ H′ and for 

the elements c′w ∈ H′.
The following corollary is also proved in [9, §6.1] and [1, §5.4.C].

Corollary 1.8. For any w ∈ W and g ∈ WS0 , we have Tgcw = cgw and cwTg = cwg.

1.3. Soergel bimodules

For any reflection r = wsw−1 in W with s ∈ S, we define αr = w(αs) ∈ h and 
α∨
r = w(α∨

s ) ∈ h∗. We require that (h, {αr}, {α∨
r }) for r ∈ S′ is also a Soergel realization 

of the Coxeter system (W ′, S′). This is certainly true if we take (h, {αs}, {α∨
s }) with 

s ∈ S to be Soergel’s realization [10, Proposition 2.1]. Note that if h is a reflection 
faithful representation of W , then h is also a reflection faithful representation of W ′, 
since the set of reflections in W ′ is exactly T1 by [3, Theorem 3.3].
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We refer to [5, §3.1] for more discussion on realizations.

1.3.1. We summarize here Soergel’s construction of the Δ-filtration and the ∇-filtration 
of Soergel bimodules. We follow the short summary in [6, §3.5], while details can be found 
in [10]. We make minor modification on the grading shifts to accommodate the weight 
function L.

We identify R ⊗k R with the regular functions on h × h and any R-bimodule with a 
quasi-coherent sheaf on h × h. For any x ∈ W and A ⊂ W , we define:

Gr(x) = {(xv, v)|v ∈ h} ⊂ h× h and Gr(A) = ∪x∈AGr(x) ⊂ h× h.

For any R-bimodule M and A ⊂ W , we define the subbimodule

ΓA(M) = {m ∈ M | supp m ⊂ Gr(A)} ⊂ M.

For any x ∈ W , we shall abuse the notation and write ≤ x = {y ∈ W |y ≤ x, x ∈ W}, 
and we shall similarly define the sets < x, > x, and ≥ x for x ∈ W . For any x ∈ W , we 
define the graded R-bimodules Δx = Rx(−L(x)) and ∇x = Rx(L(x)).

In the case of equal parameters (L = �), each M ∈ SBimL(= SBim) admits a 
Δ-filtration (resp. ∇-filtration), that is, we have

Γ≥x(M)/Γ>x(M) ∼= Δ⊕hΔ
x (M)

x (resp. Γ≤x(M)/Γ<x(M) ∼= ∇⊕h∇
x (M)

x ), (1.2)

with hΔ
x (M) ∈ N[v, v−1] (resp. h∇

x (M) ∈ N[v, v−1]) describing the graded multiplicity. 
This is proved in [10, Proposition 5.7 & 5.9].

For any M ∈ SBimL with a Δ-filtration (resp. ∇-filtration) as in (1.2), we define the 
Δ-character (resp. ∇-character) of M in H(W,S,L) as follows:

chΔM =
∑
x∈W

hΔ
x (M)Tx (resp. ch∇M =

∑
x∈W

h∇
x (M)Tx). (1.3)

We shall see in Corollary 1.13 that any M ∈ SBimL admits both a Δ-filtration and a 
∇-filtration.

1.3.2. We shall establish here the categorification of the Hecke algebra H(W ′,S′,L) with 
equal parameters.

Lemma 1.9. Let s ∈ S and w ∈ W . We have Rw ⊗R Bs ⊗R Rw−1 ∼= R ⊗Rwsw−1 R(1) as 
R-bimodules.

Proof. Let r = wsw−1 be a reflection in W . We define ∂r = w∂sw
−1 : R → Rr(−2) such 

that
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∂r(f) = f − r(f)
αr

.

We obtain that R⊗Rr R(1) is a free left (or right) R-module with basis

dr1 = 1 ⊗ 1 ∈ R⊗Rr R(1), drr = 1
2(αr ⊗ 1 + 1 ⊗ αr) ∈ R⊗Rr R(1),

such that

xdrr = drrx, xdr1 = dr1r(x) + ∂r(x)drr, x ∈ R.

On the other hand, we know that Bs is a free left (or right) R-module with basis

ds1 = 1 ⊗ 1 ∈ R⊗Rs R(1), dss = 1
2(αs ⊗ 1 + 1 ⊗ αs) ∈ R⊗Rs R(1),

such that

xdss = dssx, xds1 = ds1s(x) + ∂s(x)dss, x ∈ R.

Hence by direct computation we see Rw ⊗R Bs ⊗R Rw−1 ∼= R⊗Rr R(1) as R-bimodules, 
where the isomorphism simply sends dr1 to 1 ⊗ ds1 ⊗ 1 and drr to 1 ⊗ dss ⊗ 1. �

Now for any r ∈ S′ such that r = wsw−1 with w ∈ WS0 and s ∈ S1, we define the 
R-bimodule (independent of the reduced expression of r)

B′
r = R⊗Rr R(1) ∼= Rw ⊗R Bs ⊗R Rw−1 .

Recall the definitions of BSBimL and SBimL in §0.4. Let SBimW ′ be the Karoubi en-
velope of the monoidal subcategory of SBimL generated by B′

r for r ∈ S′.
For any (not necessarily reduced) expression w = ri1ri2 · · · rin ∈ W ′ with rij ∈ S, we 

define the graded R-bimodule:

B′
w = B′

ri1
⊗R B′

ri2
⊗R · · · ⊗R B′

rin
.

Proposition 1.10. There is a unique isomorphism of A-algebras

ε : H′ −→ [SBimW ′ ],

cr �−→ B′
r, for r ∈ S′.

The inverse of ε is given by the character map chΔ : [SBimW ′ ] → H′.
For any w ∈ W ′, there exists a unique indecomposable bimodule (up to isomorphism) 

B′
w which occurs as a summand of B′

w for any reduced expression w of w (in W ′) such 
that Rw(−L(w)) occurs in its Δ-filtration. The set {B′

w(ν)|w ∈ W ′, ν ∈ Z} gives a 
complete list of indecomposable bimodules in SBimW ′ .
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Proof. This is exactly Soergel’s categorification theorem of the Hecke algebra H′ =
H(W ′,S′,L) with the Soergel realization (h, {αr}, {α∨

r }) of the Coxeter system (W ′, S′), 
since L(·) is the length function of W ′. �

1.3.3. The following lemma is the categorical analog of Corollary 1.4.

Lemma 1.11. Let w ∈ WS0 . The functor Rw ⊗ − ⊗ Rw−1 : SBimL → SBimL is an 
equivalence of monoidal category. In particular, the functor restricts to an equivalence 
Rw ⊗− ⊗Rw−1 : SBimW ′ → SBimW ′ .

Proof. The first statement is obvious. The second statement follows from the fact that 
the conjugation action by w preserves the set S′. �
Lemma 1.12. We have the following equivalence of additive categories

SBimL ∼=
⊕

w∈WS0

Rw ⊗ SBimW ′ ∼=
⊕

w∈WS0

SBimW ′ ⊗Rw.

Proof. Thanks to Lemma 1.11, any tensor product of Rs(s ∈ S0) and Bs′(s′ ∈ S1) lies in 
Rw ⊗SBimW ′ (or SBimW ′ ⊗Rw) for some uniquely determined w ∈ WS0 . On the other 
hand, since Rw⊗− (and − ⊗Rw) preserves indecomposibility, the category Rw⊗SBimW ′

(and SBimW ′ ⊗Rw) equals to its own Karoubi envelop. The lemma follows. �
Corollary 1.13. Any M ∈ SBimL admits both a Δ-filtration and a ∇-filtration.

Proof. We prove the existence of the Δ-filtration. Thanks to Lemma 1.12, we write 
M ∼= Rw ⊗R M ′ with M ′ ∈ SBimW ′ and w ∈ WS0 . Thanks to Proposition 1.10, M ′

admits a Δ-filtration. Hence we have

Γ≥x∩Gr(W ′)(M ′)/Γ>x∩Gr(W ′)(M ′) ∼= Δ⊕hΔ
x (M)

x , x ∈ W ′.

Note that since supp M ′ ⊂ Gr(W ′), we have Γ≥x(M ′) = Γ≥x∩Gr(W ′)(M ′) and 
Γ>x(M ′) = Γ>x∩Gr(W ′)(M ′). Now thanks to Lemma 1.2, we have

Rw ⊗R Γ≥x(M ′) ∼= Γ≥wx(Rw ⊗R M ′), Rw ⊗R Γ>x(M ′) ∼= Γ>wx(Rw ⊗R M ′).

Now the corollary follows from the fact that Rw ⊗R − is exact. �
Proposition 1.14. There is a unique isomorphism of A-algebras

ε : H −→ [SBimL],

cs �−→
{
Bs, if s ∈ S1;
Rs, if s ∈ S0.
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The inverse of ε is given by the character map chΔ : [SBimL] → H.
For any w ∈ W , there exists a unique indecomposable bimodule (up to isomorphism) 

BL
w which occurs as a summand of BL

w for any reduced expression w of w such that 
Rw(−L(w)) occurs in its Δ-filtration. The set {BL

w(ν)|w ∈ W, ν ∈ Z} gives a complete 
list of indecomposable bimodules in SBimL.

Proof. Note that we have Bs
∼= BL

s for s ∈ S1. The statement about indecomposable 
bimodules follows from Lemma 1.12 and Proposition 1.10. One can also establish those 
statements following [10] thanks to Corollary 1.13. The statement about the character 
map chΔ follows from Corollary 1.13 and a similar argument to [10, Proposition 5.7]. 
Let us prove that ε is an algebra homomorphism.

It suffices to consider the case when W is a dihedral group with S = {s, r}. We can 
assume L(s) = 0 and L(r) = 1. The other two cases are either trivial (when L(s) =
L(r) = 0) or a consequence of [10] (when L(s) = L(r) = 1).

We first prove the quadratic relation. Algebraically we have

c2s = 1, and c2r = (v + v−1)cr.

Categorically, we first have BL
s ⊗RBL

s = Rs⊗RRs
∼= R. Secondly, since R ∼= Rr⊕Rr(−2)

as Rr-modules, we have

BL
r ⊗R BL

r = R⊗Rr R⊗R R⊗Rr R(2) ∼= R⊗Rr R⊗Rr R(2)
∼=
(
R⊗Rr (Rr ⊕Rr(−2)) ⊗Rr ⊗RrR

)
(2) = R⊗Rr R(2) ⊕R⊗Rr R = BL

r (1) ⊕BL
r (−1).

This finishes the proof of the quadratic relations.
We then prove the braid relation

TrTsTrTs · · · = TsTrTsTr · · · ,

where both products have mr,s factors. Note that mr,s is necessarily even, since L(s) �=
L(r).

Let us first consider the subalgebra H′ generated by Tsrs = TsTrTs and Tr. Note that 
L(r) = L(srs) = 1. Using the relation T 2

s = 1, we rewrite the braid relation as

TsrsTrTsrsTr · · · = TrTsrsTrTsrs · · · ,

where both products have msrs,r = mr,s/2 factors. Thanks to Proposition 1.10, we have 
the algebra homomorphism

ε : H′ −→ [SBimW ′ ] ↪→ [SBimL],

Tr + v �−→ [B′
r] ∼= [Br];

Tsrs + v �−→ [B′
srs].
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Thanks to Lemma 1.9, we have Rs⊗R Br ⊗R Rs
∼= R⊗Rsrs R(1). This finishes the proof 

that ε is an algebra homomorphism. �
The following corollary can be regarded as the categorical analog of Corollary 1.8.

Corollary 1.15. For g ∈ WS0 , we have Rg ⊗BL
w
∼= BL

gw and BL
w ⊗Rg

∼= BL
wg in SBimL.

Proof. We prove the first isomorphism. Since Rg⊗− : SBimL → SBimL is an equivalence 
of additive categories, Rg⊗BL

w is indecomposable. On the other hand, Rg⊗BL
w is a direct 

summand of Rg ⊗BL
w
∼= BL

gw for any reduced expression gw of gw where Rgw(−n1(gw))
(recall n1(gw) = n1(w)) occurs in the standard filtration. Then by Proposition 1.14, we 
have Rg ⊗BL

w
∼= BL

gw. �
1.3.4. Recall that we have identified SBimW ′ with a full subcategory of SBimL, thanks 
to the isomorphism of bimodules in Lemma 1.9. It is straightforward that we have B′

w
∼=

BL
w ∈ SBimL for w ∈ W ′.

Corollary 1.16. We have the following commutative diagram of A-algebras

[SBimW ′ ]

chΔ

[SBimL]

chΔ

H′ ρ
H

1.3.5. We now assume that (h, {αs}, {α∨
s }) (s ∈ S) is Soergel’s realization [10, Propo-

sition 2.1] of (W, S) over R. In this setting we can apply results from [6].
Recall that (h, {αr}, {α∨

r }) (r ∈ S′) is also a reflection faithful realization of (W ′, S′)
over R. Note that h is not of minimal dimension here (cf. [6, §3.1]). But thanks to [5, 
Remark 3.19], results in [6] still apply.

Proposition 1.17. The map chΔ : [SBimL] → H sends [BL
w] to cw for any w ∈ W .

Proof. Thanks to [6], we know the character map chΔ : SBimW ′ → H′ sends BL
w to cw

for w ∈ W ′. Then thanks to Theorem 1.7, we know that ρ ◦ chΔ(BL
w) = cw. Then by the 

commutative diagram in Corollary 1.16, we see that chΔ(BL
w) = cw for any w ∈ W ′ ⊂ W .

Hence thanks to the following commutative diagram (s ∈ S0)

[SBimL]
[Rs⊗−]

chΔ

[SBimL]

chΔ

H
Ts·

H

,

and Corollary 1.8 & 1.15, we have chΔ(BL
w) = cw for any w ∈ W . �



38 H. Bao / Journal of Algebra 537 (2019) 26–38
References

[1] C. Bonnafé, Kazhdan-Lusztig cells with unequal parameters, Algebr. Appl. 24 (2017).
[2] V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. 53 (1989) 

543–546.
[3] M. Dyer, Reflection subgroups of Coxeter systems, J. Algebra 135 (1990) 57–73.
[4] B. Elias, Folding with Soergel bimodules, Categorification and Higher Representation Theory, 2017, 

pp. 287–332.
[5] B. Elias, G. Williamson, Soergel calculus, Represent. Theory 20 (2016) 295–374.
[6] B. Elias, G. Williamson, The Hodge theory of Soergel bimodules, Ann. Math. 180 (2014) 1089–1136.
[7] T. Gobet, A.-L. Thiel, On generalized categories of Soergel bimodules in type A2, arXiv :1711 .08814.
[8] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathe-

matics, vol. 29, Cambridge University Press, Cambridge, 1990.
[9] G. Lusztig, Hecke Algebras With Unequal Parameters, CRM Monographs Ser., vol. 18, Amer. Math. 

Soc., Providence, RI, 2003.
[10] W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. 

Math. Jussieu 6 (3) (2007) 501–525.

http://refhub.elsevier.com/S0021-8693(19)30399-0/bib426F3137s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib44653839s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib44653839s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib44793930s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib456C3137s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib456C3137s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib45573133s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib45573134s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib47543137s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib48756D3930s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib48756D3930s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib4C753033s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib4C753033s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib536F653037s1
http://refhub.elsevier.com/S0021-8693(19)30399-0/bib536F653037s1

	A categoriﬁcation of Hecke algebras with parameters 1 and v
	Introduction
	1 Proof of the theorem
	1.1 Coxeter groups
	1.2 Hecke algebras
	1.3 Soergel bimodules

	References


