Journal of Algebra 546 (2020) 734-752

Contents lists available at ScienceDirect

JOURNAL OF

Journal of Algebra

www.elsevier.com/locate/jalgebra

Singular equivalences of functor categories via )

Check for

Auslander-Buchweitz approximations

Yasuaki Ogawa

Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku,
Nagoya, 464-8602, Japan

ARTICLE INFO ABSTRACT
Article history: The aim of this paper is to construct singular equivalences
Received 19 June 2019 between functor categories. As a special case, we show that

Available online 14 November 2019

) there exists a singular equivalence arising from a cotilting
Communicated by Volodymyr

module T, namely, the singularity category of (+T)/[T] and

Mazorchuk that of (modA)/[T] are triangle equivalent. In particular,
MSC: the canonical module w over a commutative Noetherian ring
primary 16G10 R induces a singular equivalence between (CMR)/[w] and
secondary 16G50, 18E35 (mod R)/[w], which generalizes Matsui-Takahashi’s theorem.
Our result is based on a sufficient condition for an additive
Keywords: category A and its subcategory X so that the canonical
Singular equivalence inclusion X — A induces a singular equivalence Dgg(A) ~
Cotilting subcategory Dsg (), which is a functor category version of Xiao-Wu Chen’s
Canonical module theoremn.
Functor category © 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an additive category with weak-kernels. Then the functor category mod A,
the category of finitely presented contravariant functors from A to the category of abelian
groups, is abelian. The notion of singularity category of A is defined to be the Verdier
quotient

E-mail address: m11019b@math.nagoya-u.ac.jp.

https://doi.org/10.1016/j.jalgebra.2019.10.052
0021-8693/© 2019 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jalgebra.2019.10.052
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:m11019b@math.nagoya-u.ac.jp
https://doi.org/10.1016/j.jalgebra.2019.10.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2019.10.052&domain=pdf

Y. Ogawa / Journal of Algebra 546 (2020) 734—752 735

b
Dog(A) = o,

(proj A)
where we denote by D(mod.A) the bounded derived category, and by KP(proj.A) the
homotopy category of bounded complexes whose terms are projective. This concept was
introduced as a homological invariant of rings by Buchweitz [6]. Recently it was applied
by Orlov to study Landau-Ginzburg models [21]. A lot of studies on singularity categories
has been done in various approaches (e.g. [13,17,22,24,25]).

For additive categories A and A’ with weak-kernels, we say that A is singularly equiv-
alent to A’ if there exists a triangle equivalence Dgg(A) ~ Dgg(A") [26]. If A is an
Iwanaga-Gorenstein ring, then the singularity category of A is triangle equivalent to
the stable category of Cohen-Macaulay A-modules. Thus the singular equivalence is a
generalization of the stable equivalence for Iwanaga-Gorenstein rings.

It is a basic problem to compare homological properties of a ring A with its subalgebra
ele given by an idempotent e € A (e.g. [2,9,10]). In this context, Xiao-Wu Chen investi-
gated a sufficient condition for a ring A and its idempotent subalgebra eAe so that they
induce a triangle equivalence Dgg(A) = Dsg(eAe) [8, Thm. 1.3]. The first aim of this
article is to provide its functor category version by using the following observations on
Serre and Verdier quotients: Let X be a contravariantly finite subcategory of an additive
category A with weak-kernels. Then X also admits weak-kernels, hence the canonical
functor @ : mod A — mod X induces an equivalence

mod A ~
mod( A& med (101

where the fraction denotes the Serre quotient (e.g. [7, Prop. 3.9]). Moreover, the equiv-
alence (1.0.1) induces a triangle equivalence

DP(mod ~
b(m—OA) =5 DP(mod &), (1.0.2)
DA/[X](mod A)
where Di /I X](mod A) is a thick subcategory consisting of objects whose cohomologies
belong to mod(A/[X]) (see [20, Thm. 3.2] and [9, Thm. 2.3]). The equivalence (1.0.2)
gives the following first result of this paper.

Theorem A (Lemma 2.1, Theorem 2.2). Let A be an additive category with weak-kernels
and X its contravariantly finite full subcategory. Suppose that pdy(A(—, M)|x) < oo for
any M € A and pd 4(F) < oo for any F € mod(A/[X]). Then the canonical inclusion
X — A induces a triangle equivalence Q : Dgg(A) — Dgg(X).

Our second result is an application of Theorem A, which provides examples of sin-
gularly equivalent categories. We denote by X the full subcategory of C consisting of
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objects M which admit an exact sequence
0=-X, - Xp-1—-=>Xg—>M—=0

with X,,,..., Xo € & for some n € Zx>(. Our result will be stated under the following
condition which is a generalization of the setting appearing in Auslander-Buchweitz
theory (see Condition 4.3 for details). A map f : N — M in C is called an X -epimorphism

if the induced map C(—, N)|» EkaN C(—, M)|x is surjective.

Condition 1.1. Let C be an abelian category with enough projectives and let A O X D w
be a sequence of full subcategories in C such that X and w are contravariantly finite in
A. We consider the following conditions:

(AB1) If a morphism f: N — M in A is an w-epimorphism, then the kernel of f belongs
to A.

(AB2) Exti(X,I) =0 for any X € X,I € w and i > 0.

(AB3) For any M € A, there exists an exact sequence 0 — Yy — X/ L Min A such
that f is a right X-approximation of M and Yy, € @.

For example, the classical Auslander-Buchweitz theory (Condition 4.3) provides us
with the triple (C = A, X,w) satisfies the Condition 1.1. Note that, in contrary to
Condition 4.3, they are not required that: w is a cogenerator of X'; each morphism f
appearing in 0 — Y3 — X Ly M of (AB3) is surjective.

Since X' /[w] can be regarded as an analog of the costable category, we denote by

A= A/lw] and X := X/[w].
Our main result is the following:

Theorem B (Theorem 5.1). Under Condition 1.1, the canonical inclusion X < A induces
a triangle equivalence Dsg(A) — Desg(X).

Typical examples satisfying Condition 1.1 come from cotilting theory. Let us recall
the notion of cotilting subcategories of C. For a subcategory X of C, we denote by +X
the full subcategory of C of objects M with Exty (M, X) =0 for any ¢ > 0 and X € X.

Definition 1.2. Let C be an abelian category with enough projectives. A full subcategory
T of C is called a cotilting subcategory of C, if it satisfies the following conditions:

o There exists an integer n € Z>¢ such that idl < n for any I € T;
o Exti(I,J) =0 forany I,J €T and i > 0;
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« For each M € T, there exists an exact sequence
0—-M-—=1T—-M -0

with I € T and M’ € L 7.

We call an object T' € C a cotilting object if add T is a cotilting subcategory of C.
The following result is immediate from Theorem B.

Corollary C (Corollary 3.9). Let A be an abelian category with enough projectives and
T its contravariantly finite cotilting subcategory. Then the canonical inclusion +T < A
induces a triangle equivalence Dsg(A) — Deg(+T).

As examples of Corollary C, we have the followings:

Example 1.3.

(a) Let A be a finite dimensional k-algebra over a field k and T a cotilting A-
module. Then the canonical inclusion -7 < modA induces a triangle equivalence
Deg(MmodA) =5 Deg (1 7).

(b) Let R be a commutative Cohen-Macaulay ring with a canonical R-module w
and CMR the full subcategory of maximal Cohen-Macaulay R-modules. Then the
canonical inclusion CMR < modR induces a triangle equivalence Dgs(modR) —
Dsg(CMR).

Theorem B also provides an alternative proof for Matsui-Takahashi’s theorem [19,
Thm. 5.4(3)] (Corollary 3.11): For an Iwanaga-Gorenstein ring A, the canonical inclusion
CMA < modA induces a triangle equivalence Dgz(modA) =+ Dg;(CMA).

Notation and convention. Throughout the paper all categories and functors are assumed
to be additive. The set of morphisms M — N in a category A is denoted by A(M, N).
Morphisms are composed from right-to-left. Let X be a subcategory of A. We denote
by A/[X] the ideal quotient category of A modulo the ideal [X] of A consisting of all
morphisms which factor through an object in X'. For each M € A, we denote by add M
the full subcategory consisting of direct summands of a finite direct sum of M and we
abbreviate A/[M] to indicate .A/[add M].

The word ring and algebra always mean ring with a unit and finite dimensional algebra
over a field k, respectively. Let A be a ring. The symbol mod A denotes the category of
finitely presented right A-modules. We denote by Hom 4 (M, N) the morphism-set from
M to N instead of (mod A)(M, N). The full subcategory of projective (resp. injective)
modules in mod A will be denoted by proj A (resp. inj A). The projective (resp. injective)
dimension of right A-module M will be denoted by pd 4 (M) (resp. id4(M)).
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2. A functor category version of Chen’s theorem

The aim of this section to provide a sufficient condition for an additive category A and
its subcategory X’ so that the canonical inclusion X — A induces a triangle equivalence
Dsg(A) ~ Dgg(X), which generalizes Xiao-Wu Chen’s theorem.

The category mod A is not necessarily abelian, however, if every morphism in A has
weak-kernels, then mod.A is abelian ([12, Thm. 1.4]). Since we are interested in the
case that mod A is abelian. Throughout this section, let A be an additive category with
weak-kernels and X its contravariantly finite full subcategory. Then, the canonical functor
Q@ : mod A — mod X induces an equivalence

mod A

mod(A/TX]) — mod X. (2.0.1)

Moreover, by [20, Thm. 3.2], it induces a triangle equivalence

Db(mod A) ~
_7mod )~ b (mod ).
Da/[x](mod A)

Then we have the following commutative diagram

mod(A/[X]) ——— mod A ¢ mod X
| L
Da/[x](mod A)——— D"(mod . A) —— DP(mod X)

where the arrows of the shape — denote canonical inclusions, and @’ is the functor
induced from Q. Note that Da/[x](mod A) is the thick subcategory of D”(mod .A) con-
taining mod(.A/[X]). The following lemma gives a natural sufficient condition so that the
canonical functor D?(mod .A) — DP(mod X') induces a triangle functor Dgg(A) — Dsg(X).

Lemma 2.1. The following conditions are equivalent:

(i) pdy(A(—=, M)|x) < o0 for any M € A;
(ii) The canonical functor Q' : DP(mod A) — DP(mod X) restricts to Q" : K®(proj.A) —
K®(proj X).

If this is the case, we have an induced triangle functor Q : Dgg(A) — Dgg(X).

Proof. (i) < (ii): Since the functor Q' : D®(mod .A) — DP(mod X) restricts to Q'|mod 4 =
Q : mod A — mod X, the condition (i) holds if and only if Q’(proj.A) C K®(proj X) if and
only if the condition (ii) holds.

The latter statement follows from the universality of the Verdier quotient. O
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Since our aim is to compare the singularity categories Dsg(A) and Deg(X), it is natural
to assume that the equivalent conditions in Lemma 2.1 are satisfied. Our main result
gives a necessary and sufficient condition so that the canonical inclusion X — A induces
a triangle equivalence Dgg(A) — Deg(X).

Theorem 2.2. We assume that pd (A(—, M)|x) < oo for any M € A. Then the following
conditions are equivalent:

(i) pd4(F) < oo for any F € mod(A/[X]);
(ii) The induced functor Q : Dsg(A) — Dsg(X) is a triangle equivalence.

To prove Theorem 2.2, we firstly show Proposition 2.3 in a more general framework:
Let 7 be a triangulated category with a translation [1]. For a class S of objects in T,
we denote by tri S the smallest triangulated full subcategory of 7 containing S. For two
classes U and V of objects in T, we denote by U * V the class of objects X occurring in
a triangle U - X — V — U[l] with U € U and V € V. Note that the operation * is
associative by the octahedral axiom.

Proposition 2.3. Let U and V be triangulated full subcategories of T and consider the
Verdier quotients with respect to them:

UST T/ and VT 22 7)/V.

Then, there exist natural triangle equivalences

T T TV
tri(@Q1V) ~ tri(ld, V)  tri(QaU)’

where Q1V is the full subcategory of T /U consisting of objects isomorphic to @1V for
some V €V, and the symbol QU is used in a similar meaning.

Proof. We shall show an equality tri(Q1V) = tri(d,V)/U, where tri(l{,V) denotes the
smallest triangulated full subcategory of 7 containing & and V. We set S := U U V.
Obviously we have Q1S = Q1V. Since tri(ld,V) = U,,»,S™", we have the following
equalities: -

triUd, V) /U = Q1< U 5*"> = J@s)™ = J @) =ti(@).
n>0 n>0 n>0

T/U T U ~, T
tri(QLV)  tri(U,V)/U tri(ld, V)

Hence we have a desired triangle equivalence |

Now we are ready to prove Theorem 2.2.
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Proof of Theorem 2.2. Apply Proposition 2.3 for 7 = D°(mod A), U = Dbmod(A/[X])

(mod A) and V = KP(proj.A). Then 7 /U = D°(mod X) and T/V = Dy (A). The assump-
tion gives @1V = K®(proj X'). Hence % = Dg(X'). Thus we have a triangle equivalence
Dgg(X) =~ tﬁzgﬁj). This shows the condition (i) is equivalent to QU = 0, namely U C V,
which is nothing but the condition (ii). O

We end this section with recovering the following Chen’s theorem as a special case of
Theorem 2.2 and Lemma 2.1.

Example 2.4. [8, Thm. 1.3] (see also [23, Thm. 5.2], [16, Prop. 3.3]). Let A be a Noetherian
ring and e its idempotent. Assume that pd_,.(Ae) < co. Then the canonical inclusion
eAe — A induces a triangle functor Q : Deg(A) — Dsg(eAe), and the following are
equivalent:

(i) pdy(M) < oo for any M € mod(A/AeA);
(ii) The induced functor Q : Dgg(A) = Dgg(eAe) is a triangle equivalence.

3. Sufficient conditions for singular equivalence

The aim of this section is to construct a singular equivalence from our generalized
Auslander-Buchweitz condition (Condition 1.1). First we introduce some terminology.
Let C denote an abelian category and let C O A D B be a sequence of full subcategories
of C. We call the kernel of a B-epimorphism the B-epikernel, for short. We assume that A
is closed under B-epikernels and B is contravariantly finite in A. Then the ideal-quotient
category A/[B] admits weak-kernels. In fact, for a morphism o : M — L of A, we obtain
its weak-kernel as follows: We take a right B-approximation 8 : By, — L of L, and
consider an induced exact sequence

0N yen B

in C. Since A is closed under B-epikernels and the morphism (§) is an B-epimorphism,
we have N € A. It is basic that the morphism v is a weak-kernel of « in .A/[B].

3.1. Singular equivalences from Auslander-Buchweitz approximation

In this subsection, we give a proof of the following main theorem.

Theorem 3.1. Under Condition 1.1, the canonical inclusion X — A induces a triangle
equivalence Deg(A) — Dgg(X).

Let C be an abelian category with enough projectives and consider a sequence A D
X D w of full subcategories in C such that X and w are contravariantly finite in 4. We
always assume (AB1) in Condition 1.1.
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Proposition 3.2. The ideal-quotient A admits weak-kernels and X is its contravariantly
finite full subcategory. Moreover, the canonical inclusion X — A induces the following
equivalence

mod A ~ —
7mod(A/[X]) — mod X.

Proof. Since A is closed under w-epikernels, A admits weak-kernels. Since X is con-
travariantly finite in A, so is X in A. Note that there exists an equivalence A/[X] ~
A/[X]. By (2.0.1), we have a desired equivalence. 0O

To prove that the inclusion X < A induces a triangle functor Deg(.A) — Desg(X), we
shall check a sufficient condition given in Lemma 2.1.

Lemma 3.3. Assume (AB2) and (AB3). Let X € X be given. Then:

(a) One has Exts(X,I) =0 for any I € & and i > 0.
(b) Every morphism f: X — I with I € @ factors through an object in w.

Proof. We only show the assertion (b). Since I € @, there exists an exact sequence
0—>I'—>W—=1—0with WewandI' €. Applying C(X, —), by (a), we conclude
that f factors through W. 0O

Proposition 3.4. Assume (AB2) and (ABS3). Then the canonical inclusion inc : X — A

admits a right adjoint R. Moreover, we have pd=(A(—, M)|5) = 0 for any M € A.

Proof. The proof is similar to one given in [5, Ch. V, Prop. 1.2], but we are in a slightly
different situation. So we include a detailed proof. By (AB3), for each M € A, there
exists an exact sequence in A

0=Yy > Xy S M

with a a right X-approximation of M and Y); € @. We shall show that the morphism
X(X, X)) 2= A(X,M) is a functorial isomorphism in X € X. Tts surjectivity is
clear, since « is a right X-approximation. To show its injectivity, take a morphism
h € X(X,Xp) such that a o h factors through an object I of w. Thus we have the

following commutative diagram:

h/
X%—

1 e

0— =Yy —= Xy —= M
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Since « is a right X-approximation, there exists a morphism «' : I — Xjs such that
aco’ = h”. The morphism h — o’h’ factors through Y3; € @. By Lemma 3.3(ii), this
implies that h — o’h’ factors through w. Hence h factors through w. By the Yoneda
lemma, the assignment M +— X, gives rise to a functor R : A — X. The bifunctorial
isomorphism X (X, R(M)) 2= A(X, M) says the pair of functors (inc, R) forms an
adjoint pair.

The latter statement is obvious. O

Proposition 3.5. Let B be a contravariantly finite full subcategory of A and assume that
A is closed under B-epikernels. Let F € mod(A/[B]) be given. Then there exists an exact
sequence

0>NLMLL (3.5.1)

in A which satisfies the following conditions:

(a) The morphism f is a B-epimorphism;
(b) The induces sequence

0= A(—, N) L= A(—, M) L°=5 A(—,L) > F >0
s exact.
In particular, pd 4(F) < 2.

Proof. First F' is a finitely presented .A-module. Indeed, a right B-approximation By —
Y of any Y € A induces a projective presentation

A(—,By) = A(—,Y) — A/[B](—,Y) =0

of the A-module A/[B](—,Y). This shows that A/[B](—,Y") belongs to mod A, hence so
does F'.

Thus we have a projective presentation A(—, M) oo, A(—,L) —» F — 0 of the
A-module F'. Since F' vanishes on B, the induced morphism f is a B-epimorphism. Thus
we have an exact sequence 0 — N ENG VI ™ A. Applying the Yoneda embedding,
we have a projective resolution 0 — A(—,N) - A(—, M) — A(—,L) - F — 0 of the
A-module F. O

Let M € Aand f : Byy — M be a right B-approximation of M. Then we write
Qp(M) = Ker f. We define QE(M) inductively for n > 1. We prove the following
key-proposition which generalizes the well-known result given in [3, Prop. 4.1, 4.2] and
[4, Prop. 1.2]. The proof is similar but a bit different from the original ones.
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Proposition 3.6. For F' € mod(A/[B]), the exact sequence (3.5.1) in Proposition 3.5
induces a projective resolution

QFgo— QF fo—
- A/[B](=, Q}(N)) ——= A/[B|(—, Q(M)) —— A/[B](-,Q%(L))

Qpgo—

— A/[B|(=,Q5(N)) ——= A/[B|(—,Q5(M)) ke A/B](—, 2s(L))

s B N) — S B M) — D A/B)(- L) F 0
(3.6.1)

of the A/[B]-module F.

Proof. For the sequence (3.5.1), we take right B-approximations ay, : By, — L and ay :
By — N. Since the morphism f is B-epimorphism, we have a morphism 5 : By, — M
such that oy, = f o 8. The induced morphism aps := (,£,): By := B ® By — M is a
right B-approximation of M. Since A is closed under B-epikernels, we have the following
commutative diagram in A:

Q
0 —— Qs(N) 22 (M) 221 (L)

b b
(

¢ } }

0 B By, 0
¢ anN ¢a]\l ¢0¢L

0 N A L

where all columns and rows are exact, and the middle row splits. Applying the Yoneda
embedding and the Snake Lemma, we have the following commutative diagram in mod A.

O .A(—,BN) A(—,B]W) A(— BL) —_— O
¢(XNO_ o ¢011\l°— fou ¢(XLO_
0 A(=,N) A(=, M) A(=, L) F 0
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In particular, we have an exact sequence

0 —= A(=Qs(N)) —= A(=,Q5(M)) — A(-,25(L))
—" A/[B)(=, N) —= A/[B)(—, M) —= A/[B](~,L) —= F —= 0

in mod A. We have an exact sequence 0 — Qp(N) — Qp(M) SLLEN Qp(L) such that
Qpf is an B-epimorphism. Inductively, we have a desired projective resolution of the
A/[B]-module F. O

Lemma 3.7. Under Condition 1.1,

(a) For any L € A, there exists n > 0 such that Q% (L) € X.
(b) For each I' € mod(A/[X]), we have pd 4/ (F) < oc.

Proof. (a) For an object L € A, due to (AB3), we get an exact sequence

05Y = Xo 2% 1

such that fq is a right X-approximation of L and Y € @. Since Y € @, we get an exact
sequence

0Ty Iny 225 o I x 2o

with I; € w for 1 < ¢ < n. By Lemma 3.3, each morphism f; : I; — Im f; is a right
X-approximation of Im f; for each 1 <4 < n hence I,, = Q% (L) € X.

(b) We consider the projective resolution (3.6.1) of the A/[X]-module F given
in Proposition 3.6 by setting B := X. Then the assertion follows from (a), since

A/[X] (=, Q%(L)) =0. O
Proposition 3.8. Under Condition 1.1, for each F' € mod(A/[X]), one has pdz(F) < .

Proof. Since pd,y)(F) < oo by Lemma 3.7 and the canonical inclusion ¢

mod(A/[X]) < mod(A) is exact, it is enough to check the case of F' = A/[X](—, M)

for some M € A. By (AB3), there exists an exact sequence 0 — Ya; 2 X Ly Min
A with f a right X-approximation of M and Yy, € @. Applying the Yoneda embedding
yields a projective resolution

0= A(—, Yar) L= A=, Xar) £°55 A(—, M) — AJ[X](~, M) = 0

of the A-module A/[X](—, M). Applying Proposition 3.6 to B := w, we have a projective
resolution of the A-module A/[X](—, M):
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Qugo— _

e A Q0 (V) 2 A (X)) = A ()

- Z(_vYM) L’ Z(_vXM) ; -/_4(_7M)

A/|X](—,M) —— 0.

Since Y € @, one has Q7 (Ya) € w for some n > 0. Thus A(—, 2% (Yas)) = 0 and hence
pd(A/[X](—, M) < 0. O

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 2.1 and Proposition 3.4, the canonical inclusion X <
A induces a triangle functor Q : Deg(A) — Dsg(X). By Theorem 2.2 and Proposition 3.8,

the triangle functor @ is an equivalence. 0O
3.2. Singular equivalences from cotilting objects

In this subsection we construct a singular equivalence from a given cotilting subcate-
gory, using Theorem 3.1. We denote by P(C) (resp. GP(C)) the full subcategory of C con-
sisting of projective (resp. Gorenstein projective) objects. We abbreviate QM := Qp )M
for each M € C and denote by Q" A the full subcategory of C consisting of objects iso-
morphic to Q"M for some M € A. Moreover we define 2~ M to be the kernel of a left
P(C)-approximation of M. Inductively we define Q="M for any n > 1.

Corollary 3.9. Let A be an abelian category with enough projectives and T its con-
travariantly finite cotilting subcategory. Then the canonical inclusion LT — A induces
a triangle equivalence Dgg(A) — Dsg(L+T).

Proof. Setting X := +7 and w := 7T, we shall show that the sequence A O X D w
satisfies conditions (AB1)-(AB3). The condition (AB1) is obvious, because A = C. The
condition (AB2) holds by definition.

(AB3): By [1, Thm. 1.1], for any M € X, there exists an exact sequence

0—=Yy—+Xy—-M—=0
with Y € @ and X ;s € X. It remains to show X = A. Since there exists an integer
n > 0 such that idIl < n for all I € w, it follows that Q"M € X holds for all M € A.
This shows X = A. Thanks to Theorem 3.1, we have a desired triangle equivalence. 0O
3.3. Matsui-Takahashi’s singular equivalence

We provide an alternative proof for Matsui-Takahashi’s singular equivalence.

Definition 3.10. Let C be an abelian category with enough projectives. A full subcategory
A of C is called quasi-resolving if it is closed under kernels of epimorphisms and contains
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all projectives. A quasi-resolving subcategory is called resolving if it is closed under
extensions and direct summands.

Corollary 3.11. [19, Thm. 5.4(3)] Let A be a quasi-resolving subcategory of an abelian
category C with enough projectives. Assume that A together with an integer n € Z>g
satisfies the condition

Q" A is contained in GP(C) and closed under cosyzygies (%)

and set X := Q" A. Then the canonical inclusion X — A induces a triangle equivalence
Deg(A) = Dy ().

Proof. Setting X := Q" A and w := P(C), we shall show that the sequence A D X D w
of subcategories in C satisfies the conditions (AB1)-(AB3). (AB1): Since P(C)-epikernels
are epimorphisms, the condition (AB1) follows from the definition of quasi-resolving
subcategories.

(AB2): Since X C GP(C), we have X C ‘tw.

(AB3): Let M € A. By the condition (x), we have an exact sequence

0-G—P,1—--Fh—>M—=0
with G € X and P,_1,---, Py € P(C). Since G € GP(C), we have an exact sequence
0G5 Qs &5 5 Q20 (G) =0
with the canonical morphisms Im g; — Q; being left P(C)-approximations for each 1 <

i < n. Thus we have the following chain map, where Q7 "(G) € Q" A = X by the
condition ().

0 G Qn-1 Qo Q(G) —=0
0 G Py Py M 0

By taking the mapping cone of the above chain map, we have an exact sequence
O_>G_>Qn71@G_>Qn72€9Pnfl_>"'—>Q0@P1 %Q_n(G)@PoﬁM—)O

Since the left-most morphism G — Q,_1 & G is a split-monomorphism, we have the
following exact sequence

02Qun1—>Qro®PPr1—>-—>Qo®P — Q_n(G) ® Py i) M — 0. (3.11.1)
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Obviously Ker f € @ holds. The exact sequence 0 — Ker f — Q7 "(G) & P, Lm0
is a desired one. Indeed, f is a right X-approximation by Lemma 3.3. O

Recall that an additive category A with weak-kernels is said to be Iwanaga-Gorenstein
if idg(A(—, M)),id e (A(M,—)) < oo for any M € A. Typical examples of Iwanaga-
Gorenstein rings are finite dimensional selfinjective algebras over a field £ and com-
mutative Gorenstein rings of finite Krull dimension. As an obvious consequence of
Corollary 3.9 or 3.11, we have:

Example 3.12. Let A be an Iwanaga-Gorenstein ring with idy(A) = n and CMA :=
+A. Then the canonical inclusion CMA <+ modA induces a triangle equivalence
Dsg(modA) =+ Dgg(CMA).

4. More results and examples

In this section, we provide further investigations on Condition 1.1. First we give suf-
ficient conditions so that X' /[w] is Iwanaga-Gorenstein and of finite global dimension,
respectively.

Theorem 4.1. Let A be a ﬁnfz’te dimensional algebra and T € mod A a cotilting module.
We set 2T := +T/[A] and LT := +T/[T]. Then the followings hold:

(a) If A is Iwanaga-Gorenstein, then so is LT. Moreover, one has id(ﬁ)F <
3max{pd,T,idyA} for any projective (L T)-module F.

(b) If gl.dimA = n, then we have gl.dim(+T) < 3n — 1.

The assertion (b) can be found in [18, Thm. 6.1]. Let us recall from [14, Thm. 3.4]
(see also [11,15]), there exist Auslander-Reiten translations on L7, that is, mutually
equivalences

72T S5 AT and 7 AT S AT
Moreover, they induce functorial isomorphisms
DExtY(M,N)=*T(r—N,M) = LT(N,7M)
in M, N € T which are known as Auslander-Reiten dualities, where D := Homy(—.k).

Proof of Theorem 4.1. (a) Since there exists an equivalence 1T~ LT, we shall show
that L7 is Iwanaga-Gorenstein. Thanks to Auslander-Reiten duality, every injective
(+T)-module is of the form Ext} (—, M) for some M € +T. Since T is a cotilting module,
we get an exact sequence 0 — M — T' — N — 0 with 7/ € addT and N € +T. The
induced sequence



748 Y. Ogawa / Journal of Algebra 546 (2020) 734—752

0 — Homy (—, M) — Homp(—,T") — Homy (—, N) — Extj(—, M) — 0

gives a projective resolution of (+7)-module Ext}(—, M). By Proposition 3.6, we have
a projective resolution

—= ZT(—, Qp(M)) —= 2L (=, Q(T")) — ZI(—, Qa(N))

M)~ T(~,T") —— LT(~,N) —= Exth(~.M) — 0
(4.1.1)

— 1T(~,

of the (XT)-module Ext} (—, M). Since A is Iwanaga-Gorenstein, 7T is a tilting module,
in particular pd, (7) < co. Thus there exists an integer n > 0 such that Q} (7”) € proj A.
Hence every injective (=T')-module Ext} (—, M) is of finite projective dimension. Next we
shall show that every projective (+T)-module ~T(—, M) is of finite injective dimension.
Considering the first syzygy of M, namely an exact sequence 0 — Q\M — P — M — 0
with P € proj A, we get an injective resolution

0— LT(—, M) — Ext)(—, QuM) — BExt} (-, P) — Exth(—, M) — --- (4.1.2)

of the (1T)-module LT (—, M). Since A is Iwanaga-Gorenstein, we have idy P < co. We
have thus concluded that L7 is Iwanaga-Gorenstein. The latter formula follows from the
sequence (4.1.1) and (4.1.2).

(b) We shall show that gl.dim(*T) < 3n — 1. Let F € mod(+T) with a projective
presentation *7(—, M) — *T(—,L) — F — 0. Since F vanishes on proj A, the corre-
sponding morphism f : M — L is an epimorphism in mod A. Since +7" is closed under
epimorphisms, we have an exact sequence 0 — N — M — L — 0 in +7 which induces
a projective resolution

—= 2T(—, QaA(N)) — T (=, Qp(M)) — 2T(=, 2 (L))
— T(-,N) —— T(-,M) —— *T(-,L) ——= F —=0

of the (1T)-module F. The assumption gl.dimA = n implies Q% (L) € projA. Hence

Theorem 4.1 contains the following well-known result.

Example 4.2. [3, Prop. 10.2] Let A be a finite dimensional algebra with gl.dimA = n.
Then we have gl.dim(modA) < 3n — 1.

Next we explain that (AB1)-(AB3) in Condition 1.1 are satisfied in the classical
Auslander-Buchweitz theory: Let C be an abelian category with enough projectives and
X O w a sequence of full subcategories in C. We say that w is a cogenerator of X if, for
each X € X, there exists an exact sequence 0 - X — 1 - X' - 0with [ e w, X' € X.
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Condition 4.3. [1, p. 9, 17] For a sequence X D w of full subcategories in C, we consider
the following conditions:

« X=C;

e X is closed under direct summands and extension;

Exte(X,1) =0 for any X € X, I € w and i > 0;

e w is a cogenerator of X which is closed under direct summands.

Under these conditions, it is known that, for each M € C, there exists an exact
sequence

0=>Yy—>Xy—>M—0 (4.3.1)

with Xy € X, Yy € @ [1, Thm. 1.1]. The sequence (4.3.1) is called the Auslander-
Buchweitz approximation of M. As a benefit of our generalized Auslander-Buchweitz
approzimation in (AB3), we shall show Proposition 4.4. Notice that, in the proposition,
the subcategory w is not necessarily a cogenerator of X', and right X-approximations of
objects of A appearing in (AB3) are not necessarily surjective.

Proposition 4.4. Let A be an abelian category with enough projectives and X 2 w a
sequence of full subcategories of A. Suppose that X is a torsion class of A and w is
contravariantly finite in A and satisfies Extf‘l(X, I) =0 forany X € X,I € w and
i > 0. Then the sequence A D X D w satisfies (AB1)-(ABS3).

Proof. The conditions (AB1) and (AB2) are obvious. Since X is a torsion class, for
any M € A there exists an exact sequence 0 — X — M with X € X, hence (AB3)
holds. O

We end this section by giving examples of singularly equivalent categories using Corol-
lary 3.9.

Example 4.5. Fix an integer n € Z~o. Let A be the algebra defined by the following
quiver with relations.

We describe the Auslander-Reiten quiver of A. Since A is a Nakayama algebra, an in-
decomposable module is determined by the pair (m,!) of the socle m and the Loewy
length [. We shall denote the module by [m];.
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P Ah - === - ———————
(11 [2]2 1]2n+1
[1]2 [2]4 [2]277 [1]2n+2
(2] (1]s [2]2n+1
S P Rl - == - === ===~
We can easily check that the module T := [1]; @ [1]ant2 is a cotilting module of
idy(T) = 1. Due to Corollary 3.9, we conclude that modA := (mod A)/[T] is singu-
larly equivalent to -7 := (LT)/[T]. Their Auslander-Reiten quivers are described as
follows:
i - ey Th-— === [(Hoa — — —
[2]2 [2]2n—1 [1]2n+1
modA [1)2 [2]4 [2]2n
[2]1 [1}3 [1]2n—1 [2}2n+1
St P - B - === [(Hoa — — —
e £ Ty LS e [(Honm — — —
d (1]2 (15 [1]2n—2 [12n+1
()3 (s [H2n—1
~ e N
******** Ble ===~~~ = (s — =~~~ —[lzn

Claim. If n = 1, both modA and LT are of finite global dimension, otherwise they are
non ITwanaga-Gorenstein.

Proof. We only check the case of n > 2. By calculations, the injective (+7")-module
DLT([1]3, —) has the following projective resolution:

"'%P5*>P3*>P2n+1*>P2n_1%P2n+14)P3*>P4*>P2n+1*>13*>0,

where we set Iy := DLT([1]3,—) and P, := LT(—,[1];) for each 1 < I < 2n + 1. We

~

notice that Q215 = Q8I5. Hence 1T is non Iwanaga-Gorenstein. It remains to check
the assertion for modA. We denote by @ : mod(modA) — mod(+T) the canonical func-
tor. There exists an injective object J € inj(modA) such that QJ 2= I3. If modA is
Iwanaga-Gorenstein, then J is of finite projective dimension. Moreover, since @) is exact
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and preserves projectives, it turns out that I3 is of finite projective dimension. This is a
contradiction. O
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