
Journal of Algebra 374 (2013) 1–26
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Demazure crystals and tensor products of perfect
Kirillov–Reshetikhin crystals with various levels

Katsuyuki Naoi

Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 February 2012
Available online 10 November 2012
Communicated by Masaki Kashiwara

Keywords:
Kirillov–Reshetikhin crystal
Demazure crystal
Energy function

In this paper, we study a tensor product of perfect Kirillov–
Reshetikhin crystals (KR crystals for short) whose levels are not
necessarily equal. We show that, by tensoring with a certain
highest weight element, such a crystal becomes isomorphic as
a full subgraph to a certain disjoint union of Demazure crystals
contained in a tensor product of highest weight crystals. Moreover,
we show that this isomorphism preserves their Z-gradings, where
the Z-grading on the tensor product of KR crystals is given by the
energy function, and that on the other side is given by the minus
of the action of the degree operator.
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1. Introduction

Crystal bases B(Λ) introduced by Kashiwara [13] can be viewed as bases at q = 0 of highest weight
modules V (Λ) of the quantized enveloping algebra Uq(g) associated with a Kac–Moody Lie algebra g.
Crystal bases reflect the internal structures of the modules, and are powerful combinatorial tools for
studying them.

Crystal bases are also useful for studying certain subspaces of V (Λ). For a Weyl group element w ,
the Demazure module V w(Λ), which is a module of a Borel subalgebra, is defined by the submodule
of V (Λ) generated by the extremal weight space V (Λ)wΛ . Kashiwara showed in [14] that there exists
a subset B w(Λ) ⊆ B(Λ) which is, in a suitable sense, a crystal basis of V w(Λ). The subset B w(Λ) is
called the Demazure crystal. Using Demazure crystals, he gave a new proof of the character formula
for Demazure modules in the article, which expresses the character using the Demazure operators
(see [14] or Section 4 of the present article).

When g is an affine Kac–Moody Lie algebra, there is another class of modules having crystal bases
called Kirillov–Reshetikhin modules W r,� (KR modules for short), where r is a node in the classical
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Dynkin diagram and � is a positive integer. KR modules are finite-dimensional irreducible U ′
q(g)-

modules, where U ′
q(g) is the quantum affine algebra without the degree operator. At least when g is

nonexceptional, it was proved that every W r,� has a crystal basis Br,� [12,24,25], which is called the
Kirillov–Reshetikhin (KR) crystal.

Demazure crystals and KR crystals are known to have strong relations, and the study of the rela-
tionship between them has been the subject of many articles. For example, see [4,16,18,19,22,28].

Among these articles, [28] by Schilling and Tingley is quite important for the present article. In
the article, they studied a tensor product of perfect KR crystals for nonexceptional g whose levels are
all the same (perfectness is a technical condition for a finite U ′

q(g)-crystal which allows one to use
the crystal to construct highest weight crystals, see [11] or Section 5.2 of the present article). They
proved that, by tensoring with a certain highest weight element, such a crystal becomes isomorphic
to a certain Demazure crystal as a full subgraph. Moreover, they also showed that this isomorphism
preserves their Z-gradings. Here, the tensor product of perfect KR crystals is Z-graded by the energy
function, which is a certain Z-function defined in a combinatorial way, and the Z-grading of the
Demazure crystal is given by the minus of the action of the degree operator. Since the Demazure
crystal has a character formula as stated above, these results imply that the weight sum with the
energy function of the tensor product of perfect KR crystals (with the same levels) can be expressed
by the Demazure character formula.

The aim of this article is to generalize the above results to a tensor product of perfect KR crystals
whose levels are not necessarily equal. In this case the tensor product of perfect KR crystals, tensored
with a highest weight element, is no longer isomorphic to a single Demazure crystal. We show in this
article, however, that it is isomorphic to a certain disjoint union of Demazure crystals contained in a
tensor product of B(Λ)’s, and that this isomorphism also preserves their Z-gradings.

Before stating our results, we prepare some notation. For a crystal B and a Dynkin automor-
phism τ , we define a new crystal τ̃ (B) = {τ̃ (b) | b ∈ B} whose weight function is wt(τ̃ (b)) = τ (wt(b))

and Kashiwara operators are

ei τ̃ (b) = τ̃ (eτ−1(i)b), f i τ̃ (b) = τ̃ ( fτ−1(i)b).

Let S be a subset of B , and w a Weyl group element with a reduced expression w = sik · · · si1 . We
denote by Fwτ (S) the subset of τ̃ (B) defined by

Fwτ (S) =
⋃

j1,..., jk�0

f jk
ik

· · · f j1
i1

τ̃ (S) \ {0}.

For a dominant integral weight Λ, we denote by uΛ the highest weight element of B(Λ).
Now let us mention our results. Assume that g is of nonexceptional type, and let Br1,cr1 �1 , . . . ,

Brp ,crp �p be perfect KR crystals. Here, cr is a particular constant which ensures the perfectness for the
KR crystal Br,cr� . We assume �1 � �2 � · · · � �p , and put μ j = cr j w0(�r j ) for 1 � j � p, where w0
is the longest element of the Weyl group of the simple Lie subalgebra g0 ⊆ g corresponding to the
classical Dynkin diagram, and �r are the fundamental weights of g0. Then the following theorem is
proved, which is the main theorem of the present article (Theorem 7.1):

Theorem 1.1. There exists an isomorphism

u�pΛ0 ⊗ Brp ,crp �p ⊗ · · · ⊗ Br1,cr1 �1

∼−→ Ftμp

(
u(�p−�p−1)Λ0 ⊗ · · · ⊗Ftμ2

(
u(�2−�1)Λ0 ⊗Ftμ1

(u�1Λ0)
) · · ·)

of full subgraphs, where tμ denotes the translation and Λ0 denotes the fundamental weight of g. Moreover,
this isomorphism preserves the Z-gradings up to a shift.
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Using the combinatorial excellent filtration theorem [20,8], it is easy to see that the right hand
side of the above isomorphism is a disjoint union of Demazure crystals. Then similarly as a Demazure
crystal, the weight sum of the right hand side can be expressed using Demazure operators. Hence, we
obtain the following corollary (Corollary 7.2), where we set B = Brp ,crp �p ⊗ · · · ⊗ Br1,cr1 �1 :

Corollary 1.2. Let aff : Pcl → P denote the canonical section of the projection from affine weight lattice P to
the classical weight lattice Pcl . Then we have

e�pΛ0+C Bδ
∑
b∈B

eaff◦wt(b)−δD(b)

= Dtμp

(
e(�p−�p−1)Λ0 · · · Dtμ2

(
e(�2−�1)Λ0 · Dtμ1

(
e�1Λ0

)) · · ·)
for some constant C B , where Dtμ is the Demazure operator associated with tμ (see Section 4), and D : B → Z

is the energy function.

Let X(B,μ,q) denote the one-dimensional sum [5,6] associated with the crystal B and a dominant
integral weight μ of g0. Then the above corollary is equivalent to the following (Corollary 7.3):

Corollary 1.3. Let P+
0 be the set of dominant integral weights of g0 and ch Vg0(μ) the character of the irre-

ducible g0-module with highest weight μ. Then we have

q−C B
∑

μ∈P+
0

X(B,μ,q) ch Vg0(μ)

= e−�pΛ0 Dtμp

(
e(�p−�p−1)Λ0 · · · Dtμ2

(
e(�2−�1)Λ0 · Dtμ1

(
e�1Λ0

)) · · ·), (1.1)

where we set q = e−δ .

Corollary 1.3 has an important application (and in fact this is one of the main motivations of this
work). The X = M conjecture presented in [5,6] asserts that a one-dimensional sum is equal to a
fermionic form which is defined as a generating function of some combinatorial objects called rigged
configurations. In [23], it is proved that when g is of type A(1)

n , D(1)
n or E(1)

n , the fermionic forms also
satisfy a similar equation as (1.1). Then we can prove the X = M conjecture in the cases g = A(1)

n , D(1)
n

from these equations (for details see [23]).
The plan of this article is as follows. In Section 2, we fix basic notation used in the article. In

Section 3, we briefly review the definition of crystals, and in Section 4, we review the results on
Demazure crystals. In Section 5, we review the results on KR crystals, and construct the isomorphism
in Theorem 1.1. In Section 6, we review the definition and some results on the energy functions, and
finally in Section 7, we show that the isomorphism constructed in Section 5 preserves the Z-gradings,
which completes the proof of Theorem 1.1.

2. Notation and basics

2.1. Affine Kac–Moody Lie algebra

Let g be a complex affine Kac–Moody Lie algebra with Cartan subalgebra h, Dynkin node set I =
{0, . . . ,n}, Dynkin diagram Γ and Cartan matrix A = (aij)i, j∈I . In this article, we use Kac’s labeling of
nodes of Dynkin diagrams in [9, Section 4.8]. Let αi ∈ h∗ and α∨

i ∈ h (i ∈ I) be the simple roots and
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the simple coroots respectively, and 	 ⊆ h∗ the root system of g. Let (a0, . . . ,an) (resp. (a∨
0 , . . . ,a∨

n ))
be the unique sequence of relatively prime positive integers satisfying∑

j∈I

ai ja j = 0 for all i ∈ I

(
resp.

∑
i∈I

a∨
i ai j = 0 for all j ∈ I

)
.

Let d ∈ h be the degree operator, which is any element satisfying 〈αi,d〉 = δ0i for i ∈ I , K =∑
i∈I a∨

i α∨
i ∈ h the canonical central element, δ = ∑

i∈I aiαi ∈ h∗ the null root, and W the Weyl group
of g with simple reflections {si | i ∈ I}. Let � : W → Z�0 be the length function. Let Q be the root
lattice of g, and Q + = ∑

i∈I Z�0αi . In this article we fix a positive integer N , and define the weight
lattice of g by

P = {
λ ∈ h∗ ∣∣ 〈

λ,α∨
i

〉 ∈ Z (i ∈ I), 〈λ,d〉 ∈ N−1
Z

}
. (2.1)

(In the next subsection, we impose some condition on N so that P is preserved by the action of the
extended affine Weyl group W̃ .) Put P+ = {λ ∈ P | 〈λ,α∨

i 〉 ∈ Z�0 (i ∈ I)}, and let Λi ∈ P+ (i ∈ I) be
any element satisfying 〈

Λi,α
∨
j

〉 = δi j for j ∈ I.

(In the next subsection, we impose some conditions on Λi ’s.) Then we have P+ = ∑
i∈I Z�0Λi +

N−1
Zδ. For λ ∈ P , we call the integer 〈λ, K 〉 the level of λ, and for � ∈ Z we set P � = {λ ∈ P |

〈λ, K 〉 = �}. Let ( , ) be a W -invariant symmetric bilinear form on h∗ satisfying

(αi,α j) = a∨
i a−1

i ai j for i, j ∈ I, (αi,Λ0) = δ0ia
−1
0 for i ∈ I.

Let cl : h∗ → h∗/Cδ be the canonical projection, and put Pcl = cl(P ), P+
cl = cl(P+), P �

cl = cl(P �) for
� ∈ Z and (P+

cl )
� = P+

cl ∩ P �
cl. Since W fixes δ, W acts on h∗/Cδ and Pcl. For i ∈ I , define �i ∈ P 0

cl by
�i = cl(Λi) − a∨

i cl(Λ0). Note that �0 = 0 and �i for i ∈ I \ {0} satisfies〈
�i,α

∨
j

〉 = δi j for j ∈ I \ {0}, 〈
�i,α

∨
0

〉 = −a∨
i .

We define aff : h∗/Cδ → h∗ by the unique section of cl satisfying 〈aff(λ),d〉 = 0 for all λ ∈ h∗/Cδ.
When no confusion is possible, we omit the notation cl(∗) for simplicity. In particular, we often write
cl(Λi) and cl(αi) simply as Λi and αi .

Let I0 = I \ {0} and g0 ⊆ g be the simple Lie subalgebra whose Dynkin node set is I0 with Cartan
subalgebra h0 ⊆ h and Weyl group W0 ⊆ W . Let �∨

j ∈ h0 ( j ∈ I0) be the unique element satisfying〈
αi,�

∨
j

〉 = δi j for i ∈ I0,

which also satisfies 〈
α0,�

∨
j

〉 = −a j/a0. (2.2)

For the notational convenience, we put �∨
0 = 0. Denote by w0 the longest element of W0. Let P0

denote the weight lattice of g0, P+
0 ⊆ P0 the set of dominant integral weights, Q 0 ⊆ P0 the root

lattice, and Q +
0 = ∑

i∈I0
Z�0αi . We often identify P 0

cl and P0 in an obvious way.

The bilinear form ( , ) induces a bilinear form on P 0
cl, which is also denoted by ( , ). Then we have

(λ,�i) = a∨
i a−1

i

〈
λ,�∨

i

〉
(2.3)

for i ∈ I and λ ∈ P 0
cl.
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2.2. Dynkin automorphisms and extended affine Weyl group

As in [9, (6.5.2)], we define for λ ∈ P 0
cl an endomorphism tλ of h∗ by

tλ(μ) = μ + 〈μ, K 〉aff(λ) −
((

μ,aff(λ)
) + 1

2

(
aff(λ),aff(λ)

)〈μ, K 〉
)

δ. (2.4)

The map λ �→ tλ defines an injective group homomorphism from P 0
cl to the group of linear automor-

phisms of h∗ orthogonal with respect to ( , ). Let ci = max{1,ai/a∨
i } for i ∈ I0, and define sublattices M

and M̃ of P 0
cl by

M =
∑

w∈W0

Zw(α0/a0), M̃ =
⊕
i∈I0

Zci�i .

Let T (M) and T (M̃) be the subgroups of GL(h∗) defined by

T (M) = {tλ | λ ∈ M}, T (M̃) = {tλ | λ ∈ M̃}.

It is known that [9, Proposition 6.5]

W ∼= W0 � T (M).

Define the subgroup W̃ of GL(h∗) by

W̃ = W0 � T (M̃),

which is called the extended affine Weyl group. The action of W̃ preserves 	, and elements w ∈ W0
and λ ∈ M̃ satisfy

wtλw−1 = tw(λ).

In the sequel, we assume that the positive integer N in (2.1) satisfies

2−1(aff(λ),aff(λ)
) ∈ N−1

Z for all λ ∈ M̃,

which ensures that W̃ preserves P .
Let Aut(Γ ) be the group of automorphisms of the Dynkin diagram Γ , that is, the group of permu-

tations τ of I satisfying aij = aτ (i)τ ( j) for all i, j ∈ I . Note that τ ∈ Aut(Γ ) satisfies

aτ (i) = ai and a∨
τ (i) = a∨

i for all i ∈ I.

Let C ⊆ h∗
R

= R ⊗Z P be the fundamental chamber (i.e. C = {λ ∈ h∗
R

| (λ,αi) � 0 for all i ∈ I}), and
Σ ⊆ W̃ the subgroup consisting of elements preserving C . Then we have

W̃ ∼= W �Σ.

The length function � is extended on W̃ by setting �(wτ ) = �(w) for w ∈ W and τ ∈ Σ . Note that an
element w ∈ W̃ belongs to Σ if and only if w preserves the set of simple roots {α0, . . . ,αn}. Hence
τ ∈ Σ induces a permutation of I (also denoted by τ ) by τ (αi) = ατ(i) , which belongs to Aut(Γ ) since
( , ) is τ -invariant. By abuse of notation, we denote by Σ both the subgroup of W̃ and the subgroup
of Aut(Γ ).
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We shall describe the subgroup Σ ⊆ Aut(Γ ) explicitly. A node i ∈ I is called a special node if
i ∈ Aut(Γ ) · 0. Let I s ⊆ I be the set of special nodes. I s for nonexceptional g are as follows:

I s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{0,1, . . . ,n} for A(1)
n ,

{0,1} for B(1)
n , A(2)

2n−1,

{0,n} for C (1)
n , D(2)

n+1,

{0,1,n − 1,n} for D(1)
n ,

{0} for A(2)
2n .

Assume that i ∈ I s \ {0} (in particular g �= A(2)
2n ), and define τ i ∈ W̃ by

τ i = t�i wi,

where wi denotes the unique element of W0 which maps the simple system {α1,α2, . . . ,αn} of g0
to {−θ,α1, . . . , α̂i, . . . ,αn} with θ = δ − α0 ∈ 	. We put τ 0 = id. The following proposition is well-
known, but we give the proof for completeness:

Proposition 2.1.

(i) For all i ∈ I s , τ i belongs to Σ .
(ii) The map Is → Σ defined by i �→ τ i is bijective.

(iii) If τ ∈ Σ satisfies τ (i) = 0, then we have τ = (τ i)−1 .

Proof. If g is of type A(2)
2n , then I s = {0} and M̃ = M , which obviously imply the assertions. So we

may assume that g is not of this type. (i) Let i ∈ I s \ {0}, and recall that wi maps {α1,α2, . . . ,αn} to
{−θ,α1, . . . , α̂i, . . . ,αn}. Then wi(−θ) = αi also holds, and hence it is easily checked from Eq. (2.4)
that τ i = t�i wi preserves the set {α0, . . . ,αn}, which implies τ i belongs to Σ . (ii) The injectivity
is obvious. Let τ ∈ Σ \ {id} be an arbitrary element, and decompose it as τ = tλτ wτ where λτ ∈ M̃
and wτ ∈ W0. Since tλτ acts trivially on P 0

cl, we have wτ (cl(α j)) = cl(ατ( j)) for j ∈ I , which implies
wτ = wτ (0) . Then since

tλτ (α j) = τ w−1
τ (0)(α j) = τ (ατ−1( j) − δ j,τ (0)δ) = α j − δ j,τ (0)δ for j ∈ I0,

(2.4) forces λτ = �τ(0) , and the surjectivity follows. From the proof of (ii), we see that τ (0) = i
implies τ = τ i . Hence the assertion (iii) follows. �

For nonexceptional g, τ i for i ∈ I s \ {0} are as follows:

A(1)
n : τ i( j) = j + i mod n + 1 for all j ∈ I .

B(1)
n , D(2)

n+1: τ 1 = (0,1).

C (1)
n , A(2)

2n−1: τn( j) = n − j for all j ∈ I .

D(1)
n , n odd: τ 1 = (0,1)(n − 1,n), τn−1(0,1,n − 1,n) = (n − 1,n,1,0), τn−1( j) = n − j for j ∈ I \ I s ,

τn(0,1,n − 1,n) = (n,n − 1,0,1), τn( j) = n − j for j ∈ I \ I s .
D(1)

n , n even: τ 1 = (0,1)(n − 1,n), τn−1(0,1,n − 1,n) = (n − 1,n,0,1), τn−1( j) = n − j for j ∈ I \ I s ,
τn(0,1,n − 1,n) = (n,n − 1,1,0), τn( j) = n − j for j ∈ I \ I s .

In the sequel, we assume that the fundamental weights Λ0, . . . ,Λn are chosen to satisfy
〈Λ0,d〉 = 0 and τ (Λ j) = Λτ( j) for all τ ∈ Σ and j ∈ I (obviously this is always possible). Then each
element τ ′ ∈ Aut(Γ ) acts on P by τ ′(Λi) = Λτ ′(i) and τ ′(δ) = δ.
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3. Definition of crystals

Let Uq(g) be the quantum affine algebra associated with g and U ′
q(g) the one without the degree

operator. The weight lattices of Uq(g) and U ′
q(g) are P and Pcl respectively.

A Uq(g)-crystal (resp. U ′
q(g)-crystal) is by definition a set B equipped with weight function wt :

B → P (resp. wt : B → Pcl) and Kashiwara operators ei, f i : B → B � {0} for i ∈ I satisfying

wt(eib) = wt(b) + αi and f i(eib) = b for all i ∈ I, b ∈ B such that eib �= 0,

wt( f ib) = wt(b) − αi and ei( f ib) = b for all i ∈ I, b ∈ B such that f ib �= 0,

and 〈wt(b),α∨
i 〉 = ϕi(b) − εi(b) where

εi(b) = max
{
k � 0

∣∣ ek
i b �= 0

}
, ϕi(b) = max

{
k � 0

∣∣ f k
i b �= 0

}
.

In this article, we always assume that εi(b) < ∞ and ϕi(b) < ∞. We call B a crystal if B is either a
Uq(g)-crystal or a U ′

q(g)-crystal.

Remark 3.1. A Uq(g)-crystal B can be regarded naturally as a U ′
q(g)-crystal by replacing the weight

function wt : B → P by cl ◦ wt : B → Pcl.

For two crystals B1 and B2, their tensor product B1 ⊗ B2 = {b1 ⊗ b2 | b1 ∈ B1,b2 ∈ B2} is defined
with weight function wt(b1 ⊗ b2) = wt(b1) + wt(b2) and Kashiwara operators

ei(b1 ⊗ b2) =
{

eib1 ⊗ b2 if ϕi(b1) � εi(b2),

b1 ⊗ eib2 if ϕi(b1) < εi(b2),

f i(b1 ⊗ b2) =
{

f ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f ib2 if ϕi(b1) � εi(b2).

Note that it follows for i ∈ I that

εi(b1 ⊗ b2) = εi(b1) + max
{

0, εi(b2) − ϕi(b1)
}
,

ϕi(b1 ⊗ b2) = ϕi(b2) + max
{

0,ϕi(b1) − εi(b2)
}
. (3.1)

The following lemma is obvious:

Lemma 3.2. Let B1, B2 be crystals, b j ∈ B j ( j = 1,2) and i ∈ I . Put m = max{0, εi(b2) − ϕi(b1)}. Then we
have

em+1
i (b1 ⊗ b2) = eib1 ⊗ em

i b2.

For crystals B1, B2 and their subsets S j ⊆ B j , a bijection Ψ : S1 → S2 is said to be an isomorphism
of full subgraphs if wt(Ψ (b)) = wt(b) for b ∈ S1, Ψ (eib) = eiΨ (b) for b ∈ S1 such that eib ∈ S1 � {0},
and Ψ ( f ib) = f iΨ (b) for b ∈ S1 such that f ib ∈ S1 � {0}. Here Ψ (0) is understood as 0. If there exists
an isomorphism S1 → S2 of full subgraphs, we say S1 and S2 are isomorphic as full subgraphs and
write S1 ∼= S2.

For a crystal B and τ ∈ Aut(Γ ), we define a crystal τ̃ (B) as follows: as a set τ̃ (B) = {τ̃ (b) | b ∈ B},
where τ̃ (b) is just a symbol. Its weight function and Kashiwara operators are defined by
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wt
(
τ̃ (b)

) = τ
(
wt(b)

)
and

ei τ̃ (b) = τ̃ (eτ−1(i)b), f i τ̃ (b) = τ̃ ( fτ−1(i)b), (3.2)

where τ̃ (0) is understood as 0. Obviously we have

τ̃ (B1 ⊗ B2) ∼= τ̃ (B1) ⊗ τ̃ (B2)

for two crystals B1 and B2. For a subset S ⊆ B , a subset τ̃ (S) ⊆ τ̃ (B) is defined in the obvious way.
For J ⊆ I , we denote by Uq(g J ) the subalgebra of Uq(g) whose simple roots are J . If J = I0, we

denote Uq(g J ) by Uq(g0). Uq(g J )-crystals are defined in a similar way. For a crystal B and a proper
subset J of I , a connected component of B regarded as a Uq(g J )-crystal is called a Uq(g J )-component
of B .

Definition 3.3. (See [1].) We say a crystal B is regular if for every proper subset J of I , B regarded
as a Uq(g J )-crystal is isomorphic to a direct sum of the crystal bases of integrable highest weight
Uq(g J )-modules.

Let J ⊆ I . For a crystal B , we say that b ∈ B is Uq(g J )-highest weight if e jb = 0 for all j ∈ J .
For a proper subset J of I and a regular crystal B , every Uq(g J )-component of B contains a unique
Uq(g J )-highest weight element.

By [15], the actions of simple reflections on a regular crystal B defined by

Ssi (b) =
{

f
〈wt(b),α∨

i 〉
i b if 〈wt(b),α∨

i 〉 � 0,

e
−〈wt(b),α∨

i 〉
i b if 〈wt(b),α∨

i 〉 < 0

are extended to the action of W denoted by w �→ S w . For every w ∈ W and b ∈ B , we have
wt(S w(b)) = w(wt(b)). An element b ∈ B is called extremal if for every w ∈ W and i ∈ I ,

ei S w(b) = 0 if
〈
wt

(
S w(b)

)
,α∨

i

〉
� 0 and f i S w(b) = 0 if

〈
wt

(
S w(b)

)
,α∨

i

〉
� 0.

4. Demazure crystals

For a subset S of a crystal B and i ∈ I , we denote Fi S = { f k
i b | b ∈ S,k � 0} \ {0} ⊆ B .

For Λ ∈ P+ , let V (Λ) denote the integrable highest weight Uq(g)-module with highest weight Λ,
and B(Λ) its crystal basis with highest weight element uΛ . Let w be an element of W and w =
sik sik−1 · · · si1 its reduced expression. Then it is known that the subset

B w(Λ) = FikFik−1 · · ·Fi1{uΛ} ⊆ B(Λ)

is independent of the choice of the reduced expression of w [14].

Definition 4.1. The subset B w(Λ) of B(Λ) is called the Demazure crystal associated with Λ and w .

Remark 4.2. Let b be the standard Borel subalgebra of g and Uq(b) ⊆ Uq(g) the corresponding quan-
tized enveloping algebra. The Demazure module V w(Λ) is defined by the Uq(b)-submodule of V (Λ)

generated by the weight space V (Λ)w(Λ) . The Demazure crystal B w(Λ) is known to be the crystal
basis of V w(Λ) in a suitable sense [14], which is why it is so named.

For a subset S of a crystal and w ∈ W with a reduced expression w = sik · · · si1 , we write Fw S =
Fik · · ·Fi1 S if it is well-defined. For example, Fw{uΛ} = B w(Λ).
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Lemma 4.3. Let Λ ∈ P+ and w ∈ W .

(i) We have τ̃ B w(Λ) ∼= Bτ wτ−1 (τ (Λ)) for τ ∈ Aut(Γ ).
(ii) For i ∈ I , we have

Fi B w(Λ) =
{

B w(Λ) if �(si w) = �(w) − 1,

Bsi w(Λ) if �(si w) = �(w) + 1.
(4.1)

(iii) For every w ′ ∈ W , Fw ′ B w(Λ) is well-defined, and Fw ′ B w(Λ) = B w ′′ (Λ) for some w ′′ ∈ W . Moreover,
if �(w ′w) = �(w ′) + �(w), then w ′′ = w ′w.

Proof. Since τ̃ B(Λ) ∼= B(τ (Λ)) and τ̃ (Fi S) = Fτ (i)τ̃ (S) for every S ⊆ B(Λ), (i) follows. When
�(si w) = �(w) + 1, (4.1) follows by definition, and when �(si w) = �(w) − 1, this follows since

Fi B w(Λ) = Fi
(
Fi Bsi w(Λ)

) = Fi Bsi w(Λ) = B w(Λ).

The assertion (ii) is proved. To see that Fw ′ B w(Λ) is well-defined, it suffices to show the operators Fi

on Demazure crystals satisfy braid relations: if the order of si s j for i, j ∈ I (i �= j) is m < ∞, then
we have FiF jFi · · ·︸ ︷︷ ︸

m

B w(Λ) = F jFiF j · · ·︸ ︷︷ ︸
m

B w(Λ). Since the element si s j si · · ·︸ ︷︷ ︸
m

= s j si s j · · ·︸ ︷︷ ︸
m

is the longest

element of the subgroup W i, j = 〈si, s j〉 ⊆ W , (ii) implies

FiF jFi · · ·︸ ︷︷ ︸
m

B w(Λ) = B w1(Λ) = F jFiF j · · ·︸ ︷︷ ︸
m

B w(Λ),

where w1 is the unique element of the set {σ w | σ ∈ W i, j} whose length is maximal. Hence our
assertion is proved. The remaining statements of (iii) are obvious from (ii). �

For w ∈ W and τ ∈ Aut(Γ ), we write Fwτ = Fw τ̃ and B wτ (Λ) = B w(τ (Λ)) for the notational
convenience. The following proposition is immediate from Lemma 4.3.

Proposition 4.4. For every Λ ∈ P+ and w, w ′ ∈ W̃ , there exists w ′′ ∈ W̃ such that

Fw ′ B w(Λ) ∼= B w ′′(Λ).

Moreover, if �(w ′w) = �(w ′) + �(w), then w ′′ = w ′w.

Let C[P ] denote the group algebra of P with basis eλ (λ ∈ P ), and define for i ∈ I a linear opera-
tor Di on C[P ] by

Di( f ) = f − e−αi · si( f )

1 − e−αi
,

where si acts on C[P ] by si(eλ) = esi(λ) . The operator Di is called the Demazure operator associated
with i. Note that Di( f ) = f holds if f is si-invariant. From this, it is easily checked that D2

i = Di .
For every reduced expression w = sik · · · si1 of w ∈ W , the operator D w = Dik · · · Di1 on C[P ] is inde-
pendent of the choice of the expression [17]. The weight sum of a Demazure crystal is known to be
expressed using Demazure operators:
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Theorem 4.5. (See [14].) For Λ ∈ P+ and w ∈ W , we have∑
b∈B w (Λ)

ewt(b) = D w
(
eΛ

)
.

For w ∈ W and τ ∈ Aut(Γ ), we define an operator D wτ on C[P ] by D wτ = D w ◦ τ , where τ acts
on C[P ] by τ (eλ) = eτ (λ) .

Corollary 4.6. Let S be a disjoint union of Demazure crystals and i ∈ I . For every w ∈ W̃ we have

∑
b∈Fw (S)

ewt(b) = D w

(∑
b∈S

ewt(b)

)
. (4.2)

Proof. We may assume that S is a single Demazure crystal, say S = B w ′ (Λ). By Proposition 4.4, it
suffices to show the assertion for w = τ ∈ Σ and w = si for i ∈ I . When w = τ , the assertion is
obvious from (3.2). Assume that w = si . If �(si w ′) = �(w ′) + 1, then we have Fi B w ′ (Λ) = Bsi w ′ (Λ),
and the assertion follows from Theorem 4.5. If �(si w ′) = �(w ′)−1, then we have Fi B w ′ (Λ) = B w ′ (Λ).
On the other hand, it follows that

Di

( ∑
b∈B w′ (Λ)

ewt(b)

)
=

∑
b∈B w′ (Λ)

ewt(b)

since the weight sum

∑
b∈B w′ (Λ)

ewt(b) = Di

( ∑
b∈Bsi w′ (Λ)

ewt(b)

)

is si -invariant. Hence the assertion follows. �
It is known that B(Λ)⊗ B(Λ′) for Λ,Λ′ ∈ P+ is isomorphic to a direct sum of the crystal bases of

integrable highest weight modules, that is,

B(Λ) ⊗ B
(
Λ′) ∼=

⊕
λ∈T

B(λ), (4.3)

where T is a possibly infinite multiset of elements of P+ . The following theorem, which was proved in
[20, Proposition 12] and [8, Theorem 2.11], is known as the combinatorial excellent filtration theorem:

Theorem 4.7. The image of the subset uΛ ⊗ B w(Λ′) of B(Λ)⊗ B(Λ′) under the isomorphism (4.3) is a disjoint
union of Demazure crystals.

For Λ ∈ P+ , B(Λ) is regular and uΛ is extremal. For w ∈ W and τ ∈ Aut(Γ ), set uwτ (Λ) =
S w(uτ (Λ)) ∈ B(τ (Λ)). By definition we have uwτ (Λ) ∈ B wτ (Λ). Later we need the following lemma:

Lemma 4.8. Let Λ ∈ P+ and w ∈ W̃ , and assume that 〈w(Λ),α∨
i 〉 � 0 for all i ∈ I0 . Then for any b ∈ B w(Λ),

we have b = uw(Λ) or

cl
(
wt(b)

) ∈ cl
(

w(Λ)
) + (

Q +
0 \ {0}).
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Proof. Assume that w = w ′τ with w ′ ∈ W and τ ∈ Σ . In view of Remark 4.2, it follows that wt(b) ∈
w(Λ) + Q + . Then since wt(b) is a weight of V (τ (Λ)), it is proved from [9, Proposition 11.3 (a)] that
wt(b) = w(Λ), or wt(b) ∈ w(Λ) + (Q +

0 \ {0}) +Z�0δ. Hence the assertion follows. �
5. Perfect Kirillov–Reshetikhin crystals

From this section to the end of the article, we assume that the type of g is nonexceptional (i.e., one of the
types A(1)

n , B(1)
n , C (1)

n , D(1)
n , A(2)

2n−1, A(2)
2n , D(2)

n+1). Note that some of the statements below on Kirillov–
Reshetikhin crystals may have not been proved or not be true for exceptional g.

5.1. Kirillov–Reshetikhin crystals

For a U ′
q(g)-crystal B , define two maps ε,ϕ : B → P+

cl by

ε(b) =
∑
i∈I

εi(b)Λi, ϕ(b) =
∑
i∈I

ϕi(b)Λi for b ∈ B.

Note that wt(b) = ϕ(b) − ε(b).
Kirillov–Reshetikhin modules W r,� (KR modules for short) are irreducible finite-dimensional

U ′
q(g)-modules parametrized by r ∈ I0 and � ∈ Z�1 (see [5] for the precise definition). For nonex-

ceptional g, the following theorem is known:

Theorem 5.1. (See [12,24,25].) For each r ∈ I0 and � ∈ Z�1 , the KR module W r,� has a crystal basis Br,� .

The crystals Br,� are called the Kirillov–Reshetikhin crystals (KR crystals for short). In this article we
denote by C the set consisting of tensor products of KR crystals.

Definition 5.2. (See [1].) A finite regular U ′
q(g)-crystal B is called simple if there exists λ ∈ P 0

cl such
that B has a unique element whose weight is λ, the weights of B are contained in the convex hull
of W λ, and the weight of each extremal element is in W λ.

Proposition 5.3. (See [21, Proposition.3.8 (1)].) Every B ∈ C is simple.

Since B ∈ C is simple, B has a unique extremal element u(B) such that wt(u(B)) ∈ −P+
0 . It is

known that u(Br,�) is the unique element with weight �w0(�r), and we have u(B1 ⊗ B2) = u(B1) ⊗
u(B2) for B1, B2 ∈ C . Every B ∈ C is connected by [1, Lemmas 1.9 and 1.10]. Then by [10], we have
the following:

Lemma 5.4. (See [10, Lemma 3.3(b)].) For B ∈ C and every b ∈ B, we have

B = {
eik · · · ei1(b)

∣∣ k � 0, i j ∈ I
} \ {0}.

The following proposition is important:

Proposition 5.5. Let B ∈ C . For every τ ∈ Σ , there exists a unique isomorphism ρτ : τ̃ (B)
∼→ B of U ′

q(g)-
crystals.

Proof. For a single KR crystal B = Br,� , τ̃ (Br,�) ∼= Br,� was proved in [28, Lemma 6.5]. This implies
τ̃ (B) ∼= B for general B ∈ C since τ̃ (B1 ⊗ B2) ∼= τ̃ (B1) ⊗ τ̃ (B2). Since B is connected and an element
of B with weight wt(u(B)) is unique, the uniqueness of the isomorphism holds. �
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Using the isomorphism ρτ in the above proposition, we define an action of Σ on B ∈ C by τ (b) =
ρτ (τ̃ (b)) for τ ∈ Σ . This action satisfies

τ ◦ ei = eτ (i) ◦ τ and τ ◦ f i = fτ (i) ◦ τ for all i ∈ I. (5.1)

Lemma 5.6. For every τ ∈ Σ , there exists some w ∈ W0 such that

τ
(
u(B)

) = S w
(
u(B)

)
for all B ∈ C.

Proof. Since τ ∈ W̃ = W0 � T (M̃) and T (M̃) acts on P 0
cl trivially, there exists w ∈ W0 such that

τ |P 0
cl

= w|P 0
cl

. Then since

wt
(
τ
(
u(B)

)) = τ
(
wt

(
u(B)

)) = w
(
wt

(
u(B)

)) = wt
(

S w
(
u(B)

))
,

τ (u(B)) = S w(u(B)) follows by Proposition 5.3. �
The Uq(g0)-crystal structure of a KR crystal is known by [2,7]. In particular, we have the following

proposition (for nonexceptional g):

Proposition 5.7. A KR crystal Br,� is multiplicity free as a Uq(g0)-crystal. In other words, any two distinct
Uq(g0)-components of Br,� are not isomorphic as Uq(g0)-crystals.

Corollary 5.8. Let b1,b2 ∈ Br,� be two distinct Uq(g0)-highest weight elements. Then we have

ϕ(b1) − ϕ(b2) /∈ ZΛ0.

Proof. For j = 1,2, let B j ⊆ Br,� be the Uq(g0)-component containing b j . Then as a Uq(g0)-crystal,
B j is isomorphic to the crystal basis of the integrable highest weight Uq(g0)-module with highest
weight

∑
i∈I0

ϕi(b j)�i . Now the assertion is obvious from the above proposition. �
5.2. Perfect KR crystals

For a U ′
q(g)-crystal B such that wt(B) ⊆ P 0

cl, we define the level of B by

lev(B) = min
b∈B

〈
ϕ(b), K

〉 = min
b∈B

〈
ε(b), K

〉
,

and the subset Bmin by

Bmin = {
b ∈ B

∣∣ 〈
ϕ(b), K

〉 = lev(B)
}

= {
b ∈ B

∣∣ 〈
ε(b), K

〉 = lev(B)
}
.

Definition 5.9. (See [11].) For a positive integer �, a U ′
q(g)-crystal B is called a perfect crystal of level �

if B satisfies the following conditions:

(i) B is isomorphic to the crystal basis of a finite-dimensional U ′
q(g)-module.

(ii) B ⊗ B is connected.
(iii) There exists λ ∈ P 0

cl such that wt(B) ⊆ λ − ∑
i∈I0

Z�0αi and there exists a unique element in B
with weight λ.

(iv) The level of B is �.
(v) Both the maps ε and ϕ induce bijections between the set Bmin and (P+

cl )
� .
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The following lemma is immediate:

Lemma 5.10. Let B1, B2 be perfect crystals.

(i) lev(B1 ⊗ B2) = max{lev(B1), lev(B2)}.
(ii) If lev(B1) � lev(B2), then b1 ⊗ b2 ∈ B1 ⊗ B2 belongs to (B1 ⊗ B2)min if and only if b1 ∈ (B1)min and

ϕ(b1) − ε(b2) ∈ P+
cl . Moreover if b1 ⊗ b2 ∈ (B1 ⊗ B2)min , then

ε(b1 ⊗ b2) = ε(b1), ϕ(b1 ⊗ b2) = ϕ(b1) + wt(b2).

(iii) If lev(B1) � lev(B2), then b1 ⊗ b2 ∈ B1 ⊗ B2 belongs to (B1 ⊗ B2)min if and only if b2 ∈ (B2)min and
ε(b2) − ϕ(b1) ∈ P+

cl . Moreover if b1 ⊗ b2 ∈ (B1 ⊗ B2)min , then

ε(b1 ⊗ b2) = ε(b2) − wt(b1), ϕ(b1 ⊗ b2) = ϕ(b2).

The significance of the perfectness is due to the following theorem:

Theorem 5.11. (See [11].) Let B be a perfect crystal of level �, Λ ∈ P+ a dominant integral weight of level �,
and b the unique element of B satisfying ε(b) = cl(Λ). Then for all Λ′ ∈ P+ such that ϕ(b) = cl(Λ′), we have

B(Λ) ⊗ B
∼→ B

(
Λ′)

as U ′
q(g)-crystals, and this isomorphism maps uΛ ⊗ b to uΛ′ . (Here both B(Λ) and B(Λ′) are regarded as

U ′
q(g)-crystals. See Remark 3.1.)

If B is a perfect crystal of level �, then ε ◦ ϕ−1 induces a bijection (P+
cl )

� → (P+
cl )

� , which is called
the associated automorphism of B .

For i ∈ I , we denote by τ i ∈ Σ the unique element satisfying tci�i (τ
i)−1 ∈ W . Note that this

definition is the same as that of Section 2.2 for i ∈ I s . For i ∈ I \ I s , τ i are as follows: for B(1)
n , D(1)

n ,
A(2)

2n−1, τ i = id if i is even, and τ i = τ 1 if i is odd. For C (1)
n , A(2)

2n , D(2)
n+1, τ i = id for all i ∈ I \ I s .

Theorem 5.12. (See [3].)

(i) The level of a KR crystal Br,� is ��/cr� (= min{m ∈ Z | m � �/cr}), where cr is defined in Section 2.2.
(ii) Br,� is perfect if and only if �/cr ∈ Z.

(iii) The associated automorphism of Br,cr� coincides with the action of (τ r)−1 on (P+
cl )

� .

Proof. The assertions (i) and (ii) were proved in [3]. The associated automorphism of each Br,cr� is
explicitly described in [3], and we can check the assertion (iii) directly from them. We remark that
the equation in [3, Subsection 4.3] for the associated automorphism τ of Bn,� for D(1)

n is misprint. It
should be modified as follows:

τ

(
n∑

i=0

�iΛi

)
= �nΛ0 + �n−1Λ1 +

n−2∑
i=2

�iΛn−i +
{

�0Λn−1 + �1Λn n even,

�1Λn−1 + �0Λn n odd.
�

Let B = Br,� be a (not necessarily perfect) KR crystal. B is known to have a unique element be-
longing to Bmin, which we denote by m(B), such that

ε
(
m(B)

) = lev(B)Λ0.



14 K. Naoi / Journal of Algebra 374 (2013) 1–26
(If B is perfect, this fact follows from the definition. For non-perfect ones, see [21, Lemma 3.11].)
Similarly, B has a unique element m′(B) ∈ Bmin such that

ϕ
(
m′(B)

) = lev(B)Λ0.

If B is perfect, we have from Theorem 5.12(iii) that

ϕ
(
m(B)

) = lev(B)Λτ r(0).

The first assertion of the following theorem was proved in [28], and the second one is obvious from
Lemma 4.8:

Theorem 5.13. (See [28, Theorem 6.1].) Let B = Br,cr� be a perfect KR crystal. Then the isomorphism
B(�Λ0) ⊗ B

∼→ B(�Λτ r (0)) given in Theorem 5.11 maps the subset u�Λ0 ⊗ B onto the Demazure crystal
Btcr w0(�r )

(�Λ0). Moreover, the image of the element u�Λ0 ⊗ u(B) under this isomorphism is the extremal
element utcr w0(�r )(�Λ0) .

Later we need the following lemma:

Lemma 5.14. Let B1, B2 be perfect KR crystals, and assume that lev(B1) � lev(B2). If b1 ⊗b2 ∈ (B1 ⊗ B2)min ,
then for every b′

2 ∈ B2 there exists a sequence i1, . . . , ik of elements of I such that

eik · · · ei1

(
b1 ⊗ b′

2

) = b1 ⊗ (
eik · · · ei1 b′

2

)
= b1 ⊗ b2. (5.2)

Proof. By Lemma 5.10(iii), b2 ∈ (B2)min and

ε(b2) − ϕ(b1) ∈ P+
cl . (5.3)

Set Λ = aff(ε(b2)) and Λ′ = aff(ϕ(b2)). By Theorem 5.11, there exists an isomorphism

B(Λ) ⊗ B2
∼−→ B

(
Λ′)

which maps uΛ ⊗ b2 to uΛ′ . Therefore, there exists a sequence i1, . . . , ik of elements of I such that

eik · · · ei1

(
uΛ ⊗ b′

2

) = uΛ ⊗ (
eik · · · ei1 b′

2

)
= uΛ ⊗ b2.

This equation implies for each 1 � q � k that

εiq

(
eiq−1 · · · ei1 b′

2

)
> ϕiq (uΛ) = 〈

cl(Λ),α∨
iq

〉 = εiq (b2).

Hence we have εiq (eiq−1 · · · ei1 b′
2) > εiq (b2) � ϕiq (b1) for each 1 � q � k by (5.3), and (5.2) is

proved. �



K. Naoi / Journal of Algebra 374 (2013) 1–26 15
5.3. Isomorphism as full subgraphs of U ′
q(g)-crystals

We need the following elementary lemma:

Lemma 5.15. Let B1, B2 be crystals, and b j ∈ B j ( j = 1,2) arbitrary elements. If f ib1 �= 0 for some i ∈ I , then
there exist some b′

2 ∈ B2 and m ∈ Z>0 such that

f ib1 ⊗ b2 = f m
i

(
b1 ⊗ b′

2

)
.

Proof. When ϕi(b1) > εi(b2), m = 1 and b′
2 = b2 satisfy the assertion. When ϕi(b1) � εi(b2), m =

εi(b2) − ϕi(b1) + 2 and b′
2 = em−1

i b2 satisfy this. �
Now we show the following proposition (the notion of an isomorphism of full subgraphs has been

defined in Section 3):

Proposition 5.16. Let B j = Br j ,cr j � j for 1 � j � p be perfect KR crystals with �1 � �2 � · · · � �p , and set
� j = � j − � j−1 with �0 = 0. We put μ j = cr j w0(�r j ) and B = B p ⊗ · · · ⊗ B2 ⊗ B1 . Then there exists an
isomorphism

ΨB : u�pΛ0 ⊗ B ∼−→ Ftμp

(
u�pΛ0 ⊗ · · · ⊗Ftμ2

(
u�2Λ0

⊗Ftμ1
(u�1Λ0

)
) · · ·)

of full subgraphs of U ′
q(g)-crystals, where the right hand side is a subset of B(�pΛτ p(0))⊗· · ·⊗ B(�1Λτ p ···τ 1(0))

(regarded as a U ′
q(g)-crystal). Moreover, the isomorphism ΨB maps the element u�pΛ0 ⊗ u(B) to the tensor

product of the extremal elements utμp (�pΛ0) ⊗ · · · ⊗ utμp+···+μ2 (�2Λ0) ⊗ utμp+···+μ1 (�1Λ0) .

Proof. If p = 1, the assertion follows from Theorem 5.13. Assume p > 1. We put τ = τ rp and w =
tμp τ

−1 ∈ W . Since u�pΛ0 ⊗ B p
∼→Fw(u�pΛτ(0)

), we have

u�pΛ0 ⊗ B p ⊗ · · · ⊗ B1
∼−→ Fw(u�pΛτ(0)

) ⊗ B p−1 ⊗ · · · ⊗ B1,

and the right hand side is equal to Fw(u�pΛτ(0)
⊗ B p−1 ⊗ · · · ⊗ B1) by Lemma 5.15. Then since it

follows from Proposition 5.5 that

u�pΛτ(0)
⊗ B p−1 ⊗ · · · ⊗ B1 ∼= τ̃ (u�pΛ0 ⊗ B p−1 ⊗ · · · ⊗ B1)

∼= τ̃
(
u�pΛ0 ⊗ (u�p−1Λ0 ⊗ B p−1 ⊗ · · · ⊗ B1)

)
,

we obtain an isomorphism ΨB by the induction hypothesis. For each 1 � j � p, we have tμp · · · tμ j =
tμp+···+μ j and �(tμp+···+μ j ) = ∑p

k= j �(tμk ) since �(w) = #{α ∈ 	 ∩ Q + | w(α) ∈ −Q +} for w ∈ W̃ .
Therefore it follows from Proposition 4.4 that the right hand side of ΨB is contained in the set

Btμp

(
�pΛ0

) ⊗ · · · ⊗ Btμp+···+μ2

(
�2Λ0

) ⊗ Btμp+···+μ1

(
�1Λ0

)
by definition. Then the second assertion is easily proved from Lemma 4.8, since we have

〈
tμp+···+μ j

(
� jΛ0

)
,α∨

i

〉 = � j
p∑

k= j

crk

〈
w0(�rk ),α

∨
i

〉
� 0 for all i ∈ I0, and

cl

( p∑
j=1

tμp+···+μ j

(
� jΛ0

)) =
p∑

j=1

cr j � j w0(�r j ) = wt
(
u(B)

)
. �
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Remark 5.17. (i) Put B p−1 = B p−1 ⊗ · · · ⊗ B2 ⊗ B1. We see from the construction of the isomor-
phism ΨB that the following diagram commutes (where we set τ = τ rp ):

u�p−1Λ0 ⊗ B p−1 ⊗ · · · ⊗ B1
ΨB p−1

∼=

ϕ

Ftμp−1
(u�p−1Λ0

⊗ · · ·)
ψ

u�pΛ0 ⊗ m(B p) ⊗ B p−1 ⊗ · · · ⊗ B1 τ̃ (u�pΛ0 ⊗Ftμp−1
(u�p−1Λ0

⊗ · · ·))

u�pΛ0 ⊗ B p ⊗ B p−1 ⊗ · · · ⊗ B1
ΨB

∼= Ftμp
(u�pΛ0 ⊗Ftμp−1

(u�p−1Λ0
⊗ · · ·))

where ϕ and ψ are bijective maps of sets defined by

ϕ(u�p−1Λ0 ⊗ b) = u�pΛ0 ⊗ m(B p) ⊗ τ (b) for b ∈ B p−1, and

ψ(b) = τ̃ (u�pΛ0 ⊗ b) for b ∈ Ftμp−1
(u�p−1Λ0

⊗ · · ·)

respectively.
(ii) By Proposition 4.4 and Theorem 4.7, the right hand side of the isomorphism ΨB is isomorphic

as a full subgraph to a disjoint union of Demazure crystals.
(iii) The right hand side of ΨB also appeared in [20] as the crystal basis of a generalized Demazure

module.

Note that the right hand side of ΨB is a subset of a tensor product of the crystal bases of Uq(g)-
modules. Hence each element b of this set has a natural Z-grading given by 〈wt(b),d〉. The goal of
this article is to show that, under the isomorphism ΨB , the minus of this natural grading coincides
up to a shift with the grading on the left hand side given by the energy function introduced in the
next section.

6. Energy function

Similarly as [11], the following proposition is proved from the existence of the universal R-matrix
and Theorem 5.1:

Proposition 6.1. Let B1, B2 ∈ C .

(i) There exists a unique isomorphism σ = σB1,B2 : B1 ⊗ B2
∼→ B2 ⊗ B1 of U ′

q(g)-crystals called the combi-
natorial R-matrix.

(ii) There exists a unique map H = H B1,B2 : B1 ⊗ B2 → Z called the local energy function such that H(u(B1 ⊗
B2)) = 0, H is constant on each Uq(g0)-component, and for b1 ⊗ b2 ∈ B1 ⊗ B2 mapped to b̃2 ⊗ b̃1 ∈
B2 ⊗ B1 under σ , we have

H
(
e0(b1 ⊗ b2)

)
=

⎧⎨⎩ H(b1 ⊗ b2) + 1 if e0(b1 ⊗ b2) = e0b1 ⊗ b2, e0(b̃2 ⊗ b̃1) = e0b̃2 ⊗ b̃1,

H(b1 ⊗ b2) − 1 if e0(b1 ⊗ b2) = b1 ⊗ e0b2, e0(b̃2 ⊗ b̃1) = b̃2 ⊗ e0b̃1,

H(b1 ⊗ b2) otherwise.
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For B1, B2 ∈ C , we have σ(u(B1) ⊗ u(B2)) = u(B2) ⊗ u(B1) by the weight consideration. Recall
that for every τ ∈ Σ , there exists some w ∈ W0 such that τ (u(B1) ⊗ u(B2)) = S w(u(B1) ⊗ u(B2)) by
Lemma 5.6. Hence we have

σ ◦ τ
(
u(B1) ⊗ u(B2)

) = σ ◦ S w
(
u(B1) ⊗ u(B2)

)
= S w

(
u(B2) ⊗ u(B1)

) = τ
(
u(B2) ⊗ u(B1)

)
,

which together with (5.1) implies that σ commutes with the action of τ . The following lemma is a
consequence of the definition of the local energy function:

Lemma 6.2. Let B1, B2 ∈ C , b j ∈ B j for j = 1,2 be such that σ(b1 ⊗ b2) = b̃2 ⊗ b̃1 , and let j1, . . . , j� be an
arbitrary sequence of elements of I satisfying e j� · · · e j1(b1 ⊗ b2) �= 0. If

e j� · · · e j1(b1 ⊗ b2) = ei′
�−k

· · · ei′1 b1 ⊗ eik · · · ei1 b2 and

e j� · · · e j1(b̃2 ⊗ b̃1) = eĩm
· · · eĩ1

b̃2 ⊗ eĩ′�−m
· · · eĩ′1

b̃1

hold where

{ j1, . . . , j�} = {i1, . . . , ik} � {
i′1, . . . , i′�−k

} = {ĩ1, . . . , ĩm} � {
ĩ′1, . . . , ĩ′�−m

}
as multisets, then we have

H
(
e j� · · · e j1(b1 ⊗ b2)

) − H(b1 ⊗ b2) = #{1 � q � m | ĩq = 0} − #{1 � q � k | iq = 0}.

For B ∈ C , the energy function D = D B : B → Z is defined as follows:
(i) If B is a single KR crystal, then define

D B(b) = H B,B
(
m′(B) ⊗ b

) − H B,B
(
m′(B) ⊗ u(B)

)
.

(ii) If B1, B2 ∈ C and B = B1 ⊗ B2, then define

D B(b1 ⊗ b2) = D B1(b1) + D B2(b̃2) + H B1,B2(b1 ⊗ b2),

where σB1,B2 (b1 ⊗ b2) = b̃2 ⊗ b̃1.
By definition, D B is constant on each Uq(g0)-component of B and we have

D B
(
u(B)

) = 0. (6.1)

Proposition 6.3. (See [27].)

(i) For B1, B2, B3 ∈ C , we have

D(B1⊗B2)⊗B3 = D B1⊗(B2⊗B3).

Hence for every B ∈ C , the function D B is well-defined.
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(ii) Let B = B1 ⊗ · · · ⊗ B p ∈ C . For b1 ⊗ · · · ⊗ bp ∈ B and 1 � i � j � p, define b(i)
j ∈ B j by

Bi ⊗ · · · ⊗ B j−1 ⊗ B j
∼−→ B j ⊗ Bi ⊗ · · · ⊗ B j−1,

bi ⊗ · · · ⊗ b j−1 ⊗ b j �→ b(i)
j ⊗ b̃i ⊗ · · · ⊗ b̃ j−1.

Then we have

D B(b1 ⊗ · · · ⊗ bp) =
∑

1� j�p

D B j

(
b(1)

j

) +
∑

1� j<k�p

H B j,Bk

(
b j ⊗ b( j+1)

k

)
.

Lemma 6.4. Let B ∈ C and � = lev(B). If b ∈ B satisfies ε0(b) > �, then we have

D(e0b) = D(b) − 1.

Proof. We show the assertion by the induction on the number p of tensor factors of B . The case
p = 1 follows since we have

D(e0b) = H
(
m′(B) ⊗ e0b

) − t = H
(
m′(B) ⊗ b

) − 1 − t = D(b) − 1,

where we set t = H(m′(B) ⊗ u(B)). Assume p > 1, and write B = B1 ⊗ B2, b = b1 ⊗ b2 and b̃2 ⊗ b̃1 =
σ(b1 ⊗ b2). We can show the assertion by computing case by case, using lev(B1) � � and lev(B2) � �.
For example, assume that e0(b1 ⊗b2) = e0b1 ⊗b2 and e0(b̃2 ⊗ b̃1) = e0b̃2 ⊗ b̃1. Then we have ε0(b1) =
ε0(b1 ⊗ b2) > � and ε0(b̃2) = ε0(b̃2 ⊗ b̃1) > �, which imply by the induction hypothesis that

D(e0b) = D(e0b1) + D(e0b̃2) + H
(
e0(b1 ⊗ b2)

)
= (

D(b1) − 1
) + (

D(b̃2) − 1
) + (

H(b1 ⊗ b2) + 1
)

= D(b) − 1.

The other cases are proved similarly. �
7. Main theorem

7.1. Statement and corollaries

Now, we state the main theorem of this article. This theorem is a generalization of [28, Theo-
rem 7.4], in which �1 = �2 = · · · = �p is assumed.

Theorem 7.1. Let B j = Br j ,cr j � j for 1 � j � p be perfect KR crystals with �1 � �2 � · · · � �p , and set � j = � j −
� j−1 with �0 = 0. We put μ j = cr j w0(�r j ) and B = B p ⊗ · · · ⊗ B2 ⊗ B1 . Then there exists an isomorphism

ΨB : u�pΛ0 ⊗ B ∼−→ Ftμp

(
u�pΛ0 ⊗ · · · ⊗Ftμ2

(
u�2Λ0

⊗Ftμ1
(u�1Λ0

)
) · · ·)

of full subgraphs of U ′
q(g)-crystals satisfying

D(b) = −〈
wt ΨB(u�pΛ0 ⊗ b),d

〉 + C B (7.1)
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for every b ∈ B, where C B ∈ N−1
Z is a constant defined by

C B = −1

2

p∑
j=1

� j

( p∑
k= j

μk,

p∑
k= j

μk

)
.

Recall that, as stated in Remark 5.17(ii), the right hand side of ΨB is isomorphic as a full subgraph
to a disjoint union of Demazure crystals. Hence we can see inductively using Corollary 4.6 that the
following equation holds:

Corollary 7.2. Under the notation and the assumptions of Theorem 7.1, we have

e�pΛ0+C Bδ
∑
b∈B

eaff◦wt(b)−δD(b) = Dtμp

(
e�pΛ0 · · · Dtμ2

(
e�2Λ0 · Dtμ1

(
e�1Λ0

)) · · ·).
As in [6,5], the one-dimensional sum X(B,μ,q) ∈ Z[q,q−1] for μ ∈ P+

0 is defined by

X(B,μ,q) =
∑
b∈B

eib=0 (i∈I0)
wt(b)=μ

qD(b).

Let ch Vg0(μ) denote the character of the irreducible g0-module with highest weight μ. Since∑
b∈B

qD(b)ewt(b) =
∑

μ∈P+
0

X(B,μ,q) ch Vg0(μ)

holds, we have the following corollary:

Corollary 7.3. Under the notation and the assumptions of Theorem 7.1, we have

q−C B
∑

μ∈P+
0

X(B,μ,q) ch Vg0(μ)

= e−�pΛ0 Dtμp

(
e�pΛ0 · · · Dtμ2

(
e�2Λ0 · Dtμ1

(
e�1Λ0

)) · · ·),
where we set q = e−δ and consider ch Vg0 (μ) as an element of C[P ] via the map aff : Pcl → P .

Remark 7.4. Let η be a permutation of the set {1, . . . , p}, and put Bη = Bη(1) ⊗ · · · ⊗ Bη(p) . We have
from [27, Lemma 2.15] that

D Bη

(
ση(b)

) = D B(b) for every b ∈ B,

where ση : B
∼→ Bη is the unique isomorphism. In particular, we have

X(B,μ,q) = X(Bη,μ,q).

Hence for every η, the above theorem and corollaries with B replaced by Bη (and the right hand
sides unchanged) also hold.
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7.2. Proof of the main theorem

In order to prove the main theorem, it remains to show that the isomorphism ΨB constructed in
Proposition 5.16 satisfies (7.1). To show this, we prepare several lemmas.

Lemma 7.5. Let B1, B2 ∈ C and τ ∈ Σ . For b1 ⊗ b2 ∈ B1 ⊗ B2 mapped to b̃2 ⊗ b̃1 ∈ B2 ⊗ B1 under σ , we
have

H(b1 ⊗ b2) − H
(
τ (b1 ⊗ b2)

) = 〈
wt(b2) − wt(b̃2),�

∨
τ−1(0)

〉
. (7.2)

Proof. Although the proof is carried out in a similar way as that of [21, Lemma 8.2], we give it for
the reader’s convenience.

The case τ = id is trivial. We assume otherwise, and put t = τ−1(0) ∈ I s \ {0}. If b1 = u(B1) and
b2 = u(B2), we have from Lemma 5.6 that

H
(
τ
(
u(B1) ⊗ u(B2)

)) = H
(
u(B1) ⊗ u(B2)

) = 0,

and hence the left hand side of (7.2) is 0. On the other hand, the right hand side is also 0 since
we have σ(u(B1) ⊗ u(B2)) = u(B2) ⊗ u(B1), and the assertion is proved in this case. Therefore by
Lemma 5.4, it suffices to show for each i ∈ I that if (7.2) holds and ei(b1 ⊗ b2) �= 0, then (7.2) with
b1 ⊗ b2 replaced by ei(b1 ⊗ b2) also holds. If i �= 0, t , it is easy to see that the both sides of (7.2) do
not change when b1 ⊗ b2 is replaced by ei(b1 ⊗ b2). Assume that i = 0. Since t �= 0, we have

(
H

(
e0(b1 ⊗ b2)

) − H
(
τ ◦ e0(b1 ⊗ b2)

)) − (
H(b1 ⊗ b2) − H

(
τ (b1 ⊗ b2)

))
= (

H
(
e0(b1 ⊗ b2)

) − H(b1 ⊗ b2)
) − (

H
(
et ◦ τ (b1 ⊗ b2)

) − H
(
τ (b1 ⊗ b2)

))
=

⎧⎨⎩1 if e0(b1 ⊗ b2) = e0b1 ⊗ b2, e0(b̃2 ⊗ b̃1) = e0b̃2 ⊗ b̃1,

−1 if e0(b1 ⊗ b2) = b1 ⊗ e0b2, e0(b̃2 ⊗ b̃1) = b̃2 ⊗ e0b̃1,

0 otherwise.

(7.3)

On the other hand, putting e0(b1 ⊗ b2) = b′
1 ⊗ b′

2 and e0(b̃2 ⊗ b̃1) = b̃′
2 ⊗ b̃′

1, we easily check using

〈α0,�
∨
t 〉 = −1 (see (2.2)) that 〈wt(b′

2)−wt(b̃′
2),�

∨
t 〉−〈wt(b2)−wt(b̃2),�

∨
t 〉 is equal to (7.3), which

implies the assertion for i = 0. The case i = t is similar. �
For B ∈ C and � ∈ Z>0, we define a subset hw��

I0
(B) ⊆ B by

hw��
I0

(B) = {
b ∈ B

∣∣ b is Uq(g0)-highest weight, ε0(b) � �
}
.

Lemma 7.6. Let B j = Br j ,cr j � j ( j = 1,2) be two perfect KR crystals, and assume that �1 � �2 . For every b2 ∈
hw��1

I0
(B2), we have

σB1,B2

(
m(B1) ⊗ τ r1(b2)

) = b2 ⊗ b1

for some b1 ∈ B1 .

Proof. Put τ = τ r1 . Since

ϕ
(
m(B1)

) = �1Λτ(0) and ε
(
τ (b2)

) = ε0(b2)Λτ(0),
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we have from Lemma 5.10(ii) that m(B1) ⊗ τ (b2) ∈ (B1 ⊗ B2)min, ε(m(B1) ⊗ τ (b2)) = �1Λ0, and

ϕ
(
m(B1) ⊗ τ (b2)

) = (
�1 − ε0(b2)

)
Λτ(0) + τ

(
ϕ(b2)

)
.

Put Λ = (�1 − ε0(b2))Λτ(0) + τ (ϕ(b2)), and b′
2 ⊗ b′

1 = σ(m(B1) ⊗ τ (b2)). Since b′
2 ⊗ b′

1 ∈ (B2 ⊗ B1)min,
we have from Lemma 5.10(iii) that b′

1 ∈ (B1)min and ϕ(b′
1) = ϕ(b′

2 ⊗ b′
1) = Λ. Hence from Theo-

rem 5.12(iii), we have

ε
(
b′

1

) = τ−1(Λ) = (
�1 − ε0(b2)

)
Λ0 + ϕ(b2). (7.4)

Note that ε(b′
2 ⊗ b′

1) = ε(m(B1) ⊗ τ (b2)) = �1Λ0, and this also implies ε(b′
2) = �Λ0 with � � �1

by (3.1). Hence we have that

ϕ
(
b′

2

) = wt
(
b′

2

) + ε
(
b′

2

) = ε
(
b′

1

) − ε
(
b′

2 ⊗ b′
1

) + ε
(
b′

2

) ∈ ϕ(b2) +ZΛ0,

where the second equality follows from Lemma 5.10(iii). Then we have b2 = b′
2 by Corollary 5.8, as

required. �
Lemma 7.7. Let B j = Br j ,cr j � j ( j = 1,2) be two perfect KR crystals, and assume that �1 � �2 . Then there exists
some global constant C such that

H
(
m(B1) ⊗ τ (b2)

) = −〈
wt(b2),�

∨
τ−1(0)

〉 + C

for every b2 ∈ hw��1
I0

(B2), where we put τ = τ r1 .

Proof. Although the proof of this lemma is basically the same as that of [26, Lemma 4.7], we include
it for the reader’s convenience.

It suffices to show for b2,b†
2 ∈ hw��1

I0
(B2) that

H
(
m(B1) ⊗ τ

(
b†

2

)) − H
(
m(B1) ⊗ τ (b2)

) = −〈
wt

(
b†

2

) − wt(b2),�
∨
τ−1(0)

〉
.

By Lemma 7.6, we have

σ
(
m(B1) ⊗ τ (b2)

) = b2 ⊗ b1 and σ
(
m(B1) ⊗ τ

(
b†

2

)) = b†
2 ⊗ b†

1

for some b1,b†
1 ∈ B1. By Lemma 5.4, there exists a sequence i1, . . . , ik of elements of I such that

eik · · · ei1 b2 = b†
2.

We choose such a sequence so that k is minimal. Using Lemma 3.2, we can take a sequence
j1, . . . , j� ∈ I satisfying

e j� · · · e j1(b2 ⊗ b1) = eik · · · ei1 b2 ⊗ ei′
�−k

· · · ei′1 b1

= b†
2 ⊗ ei′

�−k
· · · ei′1 b1.

Since b†
2 ⊗ b†

1 ∈ (B2 ⊗ B1)min, we may assume ei′
�−k

· · · ei′1 b1 = b†
1 by Lemma 5.14. Then we have

e j� · · · e j1

(
m(B1) ⊗ τ (b2)

) = m(B1) ⊗ τ
(
b†

2

)
.
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We define the two sequences ĩ1, . . . , ĩm and ĩ′1, . . . , ĩ′�−m of elements of I by

e j� · · · e j1

(
m(B1) ⊗ τ (b2)

) = eĩ′�−m
· · · eĩ′1

m(B1) ⊗ eĩm
· · · eĩ1

τ (b2)

= m(B1) ⊗ τ
(
b†

2

)
.

Since

eĩm
· · · eĩ1

τ (b2) = τ (eτ−1(ĩm)
· · · eτ−1(ĩ1)

b2) = τ
(
b†

2

)
,

we have eτ−1(ĩm)
· · · eτ−1(ĩ1)

b2 = b†
2, which implies∑
1�q�m

ατ−1(ĩq)
−

∑
1�q�k

αiq ∈ Z�0δ (7.5)

by the minimality of k.
By repeating the above procedure interchanging the roles of b2 and b†

2, we obtain sequences of
elements of I satisfying the following:

e j∗
�∗ · · · e j∗1

(
b†

2 ⊗ b†
1

) = ei∗k∗ · · · ei∗1 b†
2 ⊗ ei′ ∗

�∗−k∗ · · · ei′ ∗1
b†

1

= b2 ⊗ b1,

e j∗
�∗ · · · e j∗1

(
m(B1) ⊗ τ

(
b†

2

)) = eĩ′ ∗
�∗−m∗ · · · eĩ′ ∗1

m(B1) ⊗ eĩ∗m∗ · · · eĩ∗1
τ
(
b†

2

)
= m(B1) ⊗ τ (b2),∑

1�q�m∗
ατ−1(ĩ∗q)

−
∑

1�q�k∗
αi∗q ∈ Z�0δ. (7.6)

By Lemma 6.2, we have

0 = (
H

(
m(B1) ⊗ τ

(
b†

2

)) − H
(
m(B1) ⊗ τ (b2)

)) + (
H

(
m(B1) ⊗ τ (b2)

) − H
(
m(B1) ⊗ τ

(
b†

2

)))
= (

#{1 � q � k | iq = 0} − #{1 � q � m | ĩq = 0})
+ (

#
{

1 � q � k∗ ∣∣ i∗q = 0
} − #

{
1 � q � m∗ ∣∣ ĩ∗q = 0

})
= (

#{1 � q � k | iq = 0} + #
{

1 � q � k∗ ∣∣ i∗q = 0
})

− (
#{1 � q � m | ĩq = 0} + #

{
1 � q � m∗ ∣∣ ĩ∗q = 0

})
.

This equation together with (7.5) and (7.6) implies that k = m, k∗ = m∗ , and{
τ−1(ĩ1), . . . , τ

−1(ĩm)
} = {i1, . . . , ik},

{
τ−1(ĩ∗1

)
, . . . , τ−1(ĩ∗m∗

)} = {
i∗1, . . . , i∗k∗

}
as multisets. Hence we have

H
(
m(B1) ⊗ τ

(
b†

2

)) − H
(
m(B1) ⊗ τ (b2)

) = #{1 � q � k | iq = 0} − #{1 � q � m | ĩq = 0}
= #{1 � q � k | iq = 0} − #

{
1 � q � k

∣∣ iq = τ−1(0)
}

= −〈
wt

(
b†

2

) − wt(b2),�
∨
τ−1(0)

〉
,

and the assertion is proved. �
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The following lemma is crucial for the proof of our theorem:

Lemma 7.8. Let B j = Br j ,cr j � j (0 � j � p) be perfect KR crystals, and put B = B1 ⊗ B2 ⊗· · ·⊗ B p. We assume
that �0 � � j for every 1 � j � p. Then there exists some global constant C such that

D
(
m(B0) ⊗ τ (b)

) = D(b) − 〈
wt(b),�∨

τ−1(0)

〉 + C

for every b ∈ hw��0
I0

(B), where we put τ = τ r0 .

Proof. Let b = b1 ⊗· · ·⊗bp ∈ hw��0
I0

(B), and define b(i)
j ∈ B j for 1 � i � j � p as in Proposition 6.3(ii).

Note that, since the combinatorial R-matrix and the action of τ commute, the first tensor factor of
the image of τ (bi ⊗ · · · ⊗ b j) under the isomorphism

Bi ⊗ · · · ⊗ B j−1 ⊗ B j
∼−→ B j ⊗ Bi ⊗ · · · ⊗ B j−1

is τ (b(i)
j ). For each 1 � j � p, since b ∈ hw��0

I0
(B) implies b(1)

j ∈ hw��0
I0

(B j) by (3.1), we have that

σB0,B j

(
m(B0) ⊗ τ

(
b(1)

j

)) = b(1)
j ⊗ b j

for some b j ∈ B0 by Lemma 7.6. Hence by Proposition 6.3(ii), we have

D
(
m(B0) ⊗ τ (b)

) = D
(
m(B0)

) +
∑

1� j�p

D
(
b(1)

j

) +
∑

1� j�p

H
(
m(B0) ⊗ τ

(
b(1)

j

))
+

∑
1� j<k�p

H
(
τ (b j) ⊗ τ

(
b( j+1)

k

))
. (7.7)

For each 1 � j � p we have by Lemma 7.7 that

H
(
m(B0) ⊗ τ

(
b(1)

j

)) = −〈
wt

(
b(1)

j

)
,�∨

τ−1(0)

〉 + C j

with some constant C j independent of b(1)
j , and for each 1 � j < k � p we have by Lemma 7.5 that

H
(
τ (b j) ⊗ τ

(
b( j+1)

k

)) = H
(
b j ⊗ b( j+1)

k

) − 〈
wt

(
b( j+1)

k

) − wt
(
b( j)

k

)
,�∨

τ−1(0)

〉
.

Hence, it follows with some global constant C that

(7.7) =
∑

1� j�p

D
(
b(1)

j

) +
∑

1� j<k�p

H
(
b j ⊗ b( j+1)

k

) −
∑

1� j�p

〈
wt

(
b(1)

j

)
,�∨

τ−1(0)

〉
−

∑
1� j<k�p

〈
wt

(
b( j+1)

k

) − wt
(
b( j)

k

)
,�∨

τ−1(0)

〉 + C

= D(b) −
∑

1�k�p

〈
wt(bk),�

∨
τ−1(0)

〉 + C

= D(b) − 〈
wt(b),�∨

τ−1(0)

〉 + C .

The assertion is proved. �
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Now we give the proof of our main theorem:

Proof of Theorem 7.1. Let ΨB be the isomorphism constructed in Proposition 5.16, and set D(b) =
D(b) + 〈wt ΨB(u�pΛ0 ⊗ b),d〉 for b ∈ B . It remains to verify that D(b) = C B for every b ∈ B . First we
show the following claim.

Claim. If there is some constant C such that D(b) = C holds for all b ∈ hw
��p
I0

(B), then C = C B , and D(b) = C B
holds for all b ∈ B.

By the second assertion of Proposition 5.16 and (6.1), we have

D
(
u(B)

) =
p∑

j=1

〈
tμp+···+μ j

(
� jΛ0

)
,d

〉 = C B .

Hence it suffices to show that D(b) = C for all b ∈ B . Since u�pΛ0 ⊗ B is isomorphic to a disjoint union
of Demazure crystals (see Remark 5.17(ii)), there exists a sequence i1, . . . , ik of elements of I such that
eik · · · ei1(u�pΛ0 ⊗ b) is a nonzero Uq(g)-highest weight element. We show D(b) = C by the induction

on k. If k = 0, then u�pΛ0 ⊗ b itself is Uq(g)-highest weight, which is equivalent to b ∈ hw
��p
I0

(B).
Hence there is nothing to prove. Assume k > 0, and set b′ = ei1(b). Note that if i1 = 0, then ε0(b) > �p
holds since e0(u�pΛ0 ⊗ b) = u�pΛ0 ⊗ e0b. Hence we have D(b′) = D(b) − δ0i1 by Lemma 6.4. On the
other hand, it follows that

wtΨB
(
u�pΛ0 ⊗ b′) = wt ◦ei1

(
ΨB(u�pΛ0 ⊗ b)

)
= wt ΨB(u�pΛ0 ⊗ b) + αi1 .

Therefore we have

D
(
b′) = (

D(b) − δ0i1

) + (〈
wt ΨB(u�pΛ0 ⊗ b),d

〉 + δ0i1

) = D(b),

and D(b) = C follows from the induction hypothesis. The claim is proved.
In particular, since the set hw��1

I0
(B1) contains only a single element m(B1), the theorem for p = 1

follows from the claim. Assume p > 1. We show the theorem by the induction on p. Put B p−1 =
B p−1 ⊗ · · · ⊗ B1 and τ = τ rp . Let b ∈ hw

��p
I0

(B) be an arbitrary element, and write b = bp ⊗ bp−1 ∈
B p ⊗ B p−1. Since lev(B p) � lev(B p−1), b ∈ hw

��p
I0

(B) implies by Lemma 5.10(ii) that

bp ∈ hw
��p
I0

(B p) and ε
(
bp−1) ∈ ϕ(bp) − P+

cl .

Since lev(B p) = �p , these are equivalent to

bp = m(B p) and ε
(
bp−1) ∈ �pΛτ(0) − P+

cl .

Hence if we put b′ = τ−1(bp−1), we have

b = m(B p) ⊗ τ
(
b′) with b′ ∈ hw

��p
I0

(
B p−1).

We see from the diagram in Remark 5.17(i) that

ΨB
(
u�pΛ0 ⊗ m(B p) ⊗ τ

(
b′)) = τ̃

(
u�pΛ0 ⊗ ΨB p−1

(
u�p−1Λ0 ⊗ b′)).
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Put t = τ−1(0). Since ΨB p−1 is a U ′
q(g)-crystal isomorphism, it follows from the above equality and

the induction hypothesis that

wt ΨB
(
u�pΛ0 ⊗ m(B p) ⊗ τ

(
b′)) = τ

(
aff ◦ wt

(
b′) + �pΛ0 + (−D

(
b′) + C B p−1

)
δ
)

= aff ◦ wt
(
τ
(
b′)) + �pΛτ(0) + (−D

(
b′) + (

wt
(
b′),�t

) + C B p−1

)
δ

= aff ◦ wt
(
τ
(
b′)) + �pΛτ(0) + (−D

(
b′) + 〈

wt
(
b′),�∨

t

〉 + C B p−1

)
δ,

where the second equality follows since

τ = (
τ t)−1 = (t�t wt)

−1 = w−1
t t−�t

by Lemma 2.1(iii), and the third one follows from (2.3). On the other hand, we have from Lemma 7.8
that

D
(
m(B p) ⊗ τ

(
b′)) = D

(
b′) − 〈

wt
(
b′),�∨

t

〉 + C ′

with some global constant C ′ . Hence it is proved for all b ∈ hw
��p
I0

(B) = m(B p) ⊗ {τ (b′) | b′ ∈
hw

��p
I0

(B p−1)} that

D(b) = D(b) + 〈
wt ΨB(u�pΛ0 ⊗ b),d

〉 = �p〈Λτ(0),d〉 + C B p−1 + C ′.

Now the theorem follows from the claim. �
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