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In this paper some results on the Lie structure of prime
superalgebras are discussed. We prove that, with the exception
of some special cases, for a prime superalgebra A over a ring
of scalars Φ with 1/2 ∈ Φ, if L is a Lie ideal of A and W is a
subalgebra of A such that [W,L] ⊆ W , then either L ⊆ Z or
W ⊆ Z. Likewise, if V is a submodule of A and [V, L] ⊆ V ,
then either V ⊆ Z or L ⊆ Z or there exists an ideal of
A,M , such that 0 �= [M,A] ⊆ V . This work extends to prime
superalgebras some results of I.N. Herstein, C. Lanski and
S. Montgomery on prime algebras.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An associative superalgebra is just a superalgebra that is associative as an ordinary
algebra. If A = A0+A1 is a superalgebra, the elements in A0∪A1 are called homogeneous
elements.

It is known that, if we take an associative superalgebra A, and we change the product
in A by the superbracket product [a, b] = ab − (−1)āb̄ba, where ā, b̄ denote the degree
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of the homogeneous elements a and b in A = A0 + A1, we obtain a Lie superalgebra,
denoted by A−.

The Lie structure of prime associative superalgebras and simple associative super-
algebras was investigated by F. Montaner [19] and S. Montgomery [20]. Concerning
superalgebras with superinvolution, several papers have also appeared studying the Lie
structure of the skewsymmetric elements in relation to the ideals of the superalgebra
(see [6,7,12,14,15]).

The results obtained in the above papers have been an extension of a now classical
research, developed in the context of non-graded rings and rings with involution. This
research was first initiated by I.N. Herstein [8,9] and W.E. Baxter [1], and afterwards
several other authors made contributions to complete it: T.E. Erickson [5], C. Lanski [16],
W.S. Martindale III and C.R. Miers [18], etc.

The aim of this paper is to prove, in the setting of prime associative superalgebras
over a ring of scalars Φ with 1/2 ∈ Φ, the following results, which are well known in the
non-graded case. These results were proved by I.N. Herstein for semiprime, 2 torsion free
rings (see Lemma 4 and Theorems 3 and 5 in [10]), and by C. Lanski and S. Montgomery
for prime rings without restriction in the characteristic (see Lemma 11 and Theorems 12
and 13 in [17]).

Lemma 1.1. Let R be a prime, 2-torsion-free ring and U a Lie ideal of R. Suppose that
A is an additive subgroup such that [U,A] ⊆ A and [A,A] ⊆ Z. Then A ⊆ Z.

Theorem 1.2. Let R be a prime, 2-torsion-free ring and W a subring of R. Suppose that
U is a Lie ideal of R such that [W,U ] ⊆ W . Then either U ⊆ Z, or W ⊆ Z, or W

contains a nonzero ideal of R.

Theorem 1.3. Let R be a prime, 2-torsion-free ring and let U be a Lie ideal of R. Suppose
that V is an additive subgroup of R such that [V,U ] ⊆ V . Then either U ⊆ Z, or V ⊆ Z,
or there exists an ideal M of R such that 0 �= [M,R] ⊆ V .

These results have been very useful in rings (see for example [2,3,11], etc.), and have
also been used in superalgebras, for example, in the study of the Lie ideals of the set of
skewsymmetric elements of an associative superalgebra with superinvolution (see [7,14,
12,13]). As these results have never been proved in superalgebras, we are interested in
proving them here. To do that we take advantage of some of the ideas developed in the
proofs made in [10,12,17].

For a complete introduction to the basic definitions and examples of superalgebras,
superinvolutions and prime and semiprime superalgebras, we refer the reader to [4,6,19].

Throughout the paper, unless otherwise stated, A will denote a nontrivial prime as-
sociative superalgebra over a commutative unital ring φ of scalars with 1

2 ∈ φ. By a
nontrivial superalgebra we understand a superalgebra with a nonzero odd part. Z will
denote the even part of the center of A.
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If Z �= 0, one can consider the localization Z−1A = {z−1a: 0 �= z ∈ Z, a ∈ A}. If
A is prime, then Z−1A is a prime associative superalgebra over the field Z−1Z, whose
center is Z−1Z. We call this superalgebra the central closure of A. We also say that A is a
central order in Z−1A. This terminology is not the standard one, for which the definition
involves the extended centroid. We say that A is a central order in C(n) if Z �= 0 and
Z−1A is isomorphic to the Clifford superalgebra of a non-degenerate quadratic space of
dimension n over Z−1Z (see Example 1.5 in [6]).

More precisely, in this paper we prove three main results. Let A be a prime associative
superalgebra over a ring of scalars Φ with 1/2 ∈ Φ, such that A is not a central order
in C(n), n = 1, 2, 3, and let L be a Lie ideal of A then:

(1) If V is a Φ-submodule of A such that [V,L] ⊆ V and [V, V ] ⊆ Z, then either L ⊆ Z

or V ⊆ Z.
(2) If W is a subalgebra of A such that [W,L] ⊆ W , then either L ⊆ Z, or W ⊆ Z, or

W contains a nonzero ideal of A.
(3) If V is a Φ-submodule of A such that [V,L] ⊆ V , then either L ⊆ Z, or V ⊆ Z or

there exists an ideal M of A such that 0 �= [M,A] ⊆ V .

As in the nongraded case, we expect that these results will be useful in future studies
concerning Lie structures. For example, along the lines of [17] and [20].

In the superalgebra context, by a subalgebra, a submodule, or an ideal we respectively
mean a graded subalgebra, submodule and ideal.

Let A be an associative superalgebra and M be a Φ-submodule of A. Denote by M

the subalgebra of A generated by M . We will say that M is dense in A if M contains a
nonzero ideal of A.

The following results are instrumental for the paper:

Lemma 1.4. (See [9, Lemma 1.1.9].) Let A be a semiprime algebra and L a Lie ideal
of A. If [a, [a, L]] = 0, then [a, L] = 0.

Lemma 1.5. (See [19, Lemmata 1.2, 1.3].) If A = A0 ⊕A1 is a semiprime superalgebra,
then A0 and A are semiprime algebras. Moreover, if A is prime, then either A is prime
or A0 is prime (as algebras).

Lemma 1.6. (See [7, Theorem 2.1].) Let A be a prime nontrivial associative superalgebra.
If L is a Lie ideal of A, then either L ⊆ Z or L is dense in A, except if A is a central
order in C(2).

Lemma 1.7. (See [12].) Let A be a prime superalgebra, L a Lie ideal of A such that L is
dense in A, and v ∈ Ai such that vLv = 0, then v = 0.
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Lemma 1.8. (See [12].) Let A be a prime superalgebra, L a Lie ideal of A such that L is
dense in A, and V a Lie subalgebra of A such that [V,L] ⊆ V . If v2 = 0 for every v ∈ Vi,
then Vi = 0.

We point out that the bracket product in Lemma 1.1, Theorem 1.2, Theorem 1.3 and
Lemma 1.4 is the usual one: [a, b] = ab−ba, but the bracket product in Lemma 1.8 is the
superbracket [xi, yj ]s = xiyj− (−1)ijyjxi for xi ∈ Ai, yj ∈ Aj homogeneous elements. In
fact, the superbracket product coincides with the usual bracket if one of the arguments
belongs to the even part of A. In the following, to simplify the notation, we will denote
both in the usual way [ , ] but we will understand that it is the superbracket if we are
in a superalgebra. In other words, we could say that, when we are not using the prefix
‘super’, we are assuming that the graduation is the trivial one.

Also, from now on, by an element a ∈ M , with M any Φ-submodule of a superalge-
bra A, we will always understand a homogeneous element a ∈ M , that is, a ∈ M0 ∪M1,
unless otherwise stated.

2. Lie structure of an associative superalgebra

We begin with the following useful result.

Lemma 2.1. Let A be a prime superalgebra such that it is not an order in C(2). Let L be
a Lie ideal of A. Then either L ⊆ Z or C(L) ⊆ Z, where C(L) = {x ∈ A: [x, L] = 0}.

Proof. We notice that C(L) is a Lie ideal and a subalgebra of A. Since for, x, y ∈ C(L),
a ∈ A and u ∈ L, we have

[
[x, a], u

]
= −(−1)x̄ā+x̄ū

[
[a, u], x

]
− (−1)ūx̄+ūā

[
[u, x], a

]
= 0,

[xy, u] = x[y, u] + (−1)ūȳ[x, u]y = 0.

So, by Theorem 4.1 and its proof in [6] either C(L) ⊆ Z or C(L) is dense in A. But if
C(L) is dense in A, then there exists a nonzero ideal I of A such that [I, L] = 0, and
from Lemma 2.3 in [14] L ⊆ Z. �
Lemma 2.2. Let A be a prime superalgebra such that it is not an order in C(n), n = 1, 2, 3.
Let W be a subalgebra of A and a Lie ideal of [A,A]. Then either W ⊆ Z or W is dense
in A.

Proof. From Theorem 3.3 in [19], we know that either W ⊆ Z or there exists an ideal I
of A such that 0 �= [I, A] ⊆ W . So suppose that W � Z and let I be an ideal of A

such that 0 �= [I, A] ⊆ W . Notice that [I, A] is a nonzero Lie ideal of A. Therefore, by
Lemma 1.6, either [I, A] ⊆ Z or [I, A] is dense in A. In the later case, W is dense in A. If
[I, A] ⊆ Z, we can localize A by Z and consider Z−1A. Then 0 �= [Z−1I, Z−1A] ⊆ Z−1Z.
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Therefore Z−1I has invertible elements and so Z−1I = Z−1A. But then, since [I, A] ⊆ Z,
[Z−1A,Z−1A] ⊆ Z−1Z ∩ Z−1I, that is, [[Z−1A,Z−1A], Z−1A] = 0. From Lemma 2.6
in [19], A is C(n) with n = 1, 2 or 3, a contradiction. �
Lemma 2.3. Let A be a prime superalgebra which is not an order in C(n) with n = 1, 2, 3,
and L,U Lie ideals of A such that [L,U ] ⊆ Z. Then either L ⊆ Z or U ⊆ Z.

Proof. Suppose that L � Z. Since [L,U ] ⊆ Z, it follows that [L0, U1] = [L1, U0] = 0
and [L0, U0] + [L1, U1] ⊆ Z. So for every u ∈ U0 we have [u, [u, L]] = 0, and from
Lemmata 1.4 and 1.5 we deduce that [U0, L0] = 0. But [U0, L1] = 0 and so [U0, L] = 0.
From Lemma 2.1 U0 ⊆ Z, and [L,U ] = [L1, U1] ⊆ Z. If [L,U ] = 0, then by Lemma 2.1
U ⊆ Z. And if 0 �= [L,U ] ⊆ Z, then Z �= 0 and we can consider the localization Z−1A

and the Lie ideals Z−1ZL,Z−1ZU in Z−1A.
We suppose now that L � Z and U � Z. From Theorem 3.2 in [19] there exist nonzero

ideals I, J of A such that

0 �= [I,A] ⊆ L, 0 �= [J,A] ⊆ U.

Notice that if [I,A] = 0 or [J,A] = 0, then, by Lemma 2.3 in [14], A ⊆ Z, a contradiction.
Since [L,U ] ⊆ Z we have

[
Z−1ZL,Z−1ZU

]
⊆ Z−1Z,

and so

[[
Z−1I, Z−1A

]
,
[
Z−1J, Z−1A

]]
⊆ Z−1Z.

If [[Z−1I, Z−1A], [Z−1J, Z−1A]] �= 0 then Z−1I, Z−1J have invertible elements and
Z−1I, Z−1J = Z−1A. Therefore

[[[
Z−1A,Z−1A

]
,
[
Z−1A,Z−1A

]]
, Z−1A

]
= 0.

Now, from Lemma 2.6 in [19] we have a contradiction with our hypothesis about A not
being a central order in C(n) with n = 1, 2, 3 (notice that in [19] the product a ◦ b is our
product [a, b] when a, b ∈ A1).

And if [[Z−1I, Z−1A], [Z−1J, Z−1A]] = 0, then, by Lemma 2.1,

either
[
Z−1I, Z−1A

]
⊆ Z−1Z or

[
Z−1J, Z−1A

]
⊆ Z−1Z.

Therefore, since [I, A] �= 0 and [J,A] �= 0,

either Z−1I = Z−1A or Z−1J = Z−1A.
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Since [Z−1I, Z−1A], [Z−1J, Z−1A] ⊆ Z−1Z, in both cases we have
[[
Z−1A,Z−1A

]
, Z−1A

]
= 0.

Again from Lemma 2.6 in [19] we have a contradiction with our hypothesis. �
Lemma 2.4. Let A be a prime superalgebra such that it is not an order in C(n) with
n = 1, 2, 3, and L a Lie ideal of A such that [t, L] ⊆ Z for some t ∈ A. Then either t ∈ Z

or L ⊆ Z.

Proof. Consider U = {x ∈ A: [x,L] ⊆ Z}. We notice that U is a Φ-submodule of A, and
it is also a Lie ideal because for every u ∈ L, x ∈ U and y ∈ A

[
[x, y], u

]
= (−1)ūȳ

[
[x, u], y

]
+ (−1)ȳū

[
x, [y, u]

]
∈ Z.

So, U is a Lie ideal of A and from Lemma 2.3 either U ⊆ Z or L ⊆ Z. �
Lemma 2.5. Let A be a prime superalgebra such that it is not an order in C(n) with
n = 1, 2, 3, L a Lie ideal and V a Φ-submodule of A such that [V,L] ⊆ V and [V, V ] ⊆ Z.
Then either L ⊆ Z or V ⊆ Z.

Proof. Suppose that L � Z. Then, from Theorem 3.2 in [19], there exists a nonzero
ideal I of A such that [I, A] ⊆ L, and [I, A] �= 0 by Lemma 2.3 in [14].

If I ∩ Z �= 0, we localize A by Z and then Z−1Z ∩ Z−1I �= 0, so Z−1I has invertible
elements and Z−1I = Z−1A. Hence Z−1ZV is a Lie ideal of [Z−1A,Z−1A]. From The-
orem 3.3 in [19] either Z−1ZV ⊆ Z−1Z or there exists a nonzero ideal N of A such that
0 �= [Z−1N,Z−1A] ⊆ Z−1ZV . In the second case, since [V, V ] ⊆ Z, we have

[[
Z−1N,Z−1A

]
,
[
Z−1N,Z−1A

]]
⊆ Z−1Z.

From Lemma 2.4 we have [Z−1N,Z−1A] ⊆ Z−1Z, and since [Z−1N,Z−1A] �= 0,
Z−1N = Z−1A. So,

[
Z−1A,Z−1A

]
⊆ Z−1Z,

and by Lemma 2.3, Z−1A ⊆ Z−1Z, a contradiction with our assumptions. Therefore
Z−1ZV ⊆ Z−1Z and so V ⊆ Z.

If I ∩ Z = 0, then for every v ∈ V0 we have
[
v,
[
v, [I,A]0

]]
⊆ [V, V ] ∩ I ⊆ Z ∩ I = 0.

From Lemmata 1.4 and 1.5 we have
[
V0, [I, A]0

]
= 0.
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Now, we consider W = [V, [I, A]]. Notice that

[W,W ] ⊆ [V, V ] ∩ I ⊆ Z ∩ I = 0.

So for every w ∈ W1 we have w2 = 0. From Lemma 1.8 W1 = 0. Therefore

W1 =
[
V0, [I, A]1

]
+

[
V1, [I, A]0

]
= 0.

We have 0 �= [I, A], and also [I, A] � Z, because if [I, A] ⊆ Z, then [I, A] ⊆ Z ∩ I = 0,
a contradiction. Therefore, since [V0, [I, A]] = 0, we have V0 ⊆ Z because of Lemma 2.1.
But we have deduced that [V1, [I, A]0] = 0, and we observe that

[
V1, [I, A]1

]
⊆ V0 ∩ I ⊆ Z ∩ I = 0.

Therefore, we also obtain that [V1, [I, A]] = 0 and, again by Lemma 2.1, V1 ⊆ Z, that is,
V ⊆ Z. �

We prove now our first theorem.

Theorem 2.6. Let A be a prime superalgebra such that it is not an order in C(n) for
n = 1, 2, 3. Let W be a subalgebra of A, L a Lie ideal of A and [W,L] ⊆ W . Then either
L ⊆ Z, W ⊆ Z, or W is dense in A (that is, W contains a nonzero ideal of A).

Proof. We suppose that L � Z. Because of Lemma 1.6 there exists a nonzero ideal N
of A such that N ⊆ L̄.

Let V = [W,L]. If V = 0, then from Lemma 2.1 we have either W ⊆ Z or L ⊆ Z.
Since L � Z we deduce that W ⊆ Z.

So, suppose now that V �= 0. Let 0 �= u ∈ V , w ∈ W . We notice that if u is even,
then [u, u] = 0, and if u is odd, then [u, u] = 0 means that u2 = 0. We will prove that if
t, s ∈ W and u ∈ V , with [u, u] = 0 satisfy [t, u][u, s] �= 0, then W is dense. First we see
that [t, u][u, s]A ⊆ W . We have

[u, s]a = [u, sa] − (−1)s̄ūs[u, a]

for every a ∈ A, therefore

[t, u][u, s]a = [t, u][u, sa] − (−1)ūs̄[t, u]s[u, a].

But

[t, u][u, sa] =
[
t, u[u, sa]

]
− (−1)t̄ūu

[
t, [u, sa]

]

= (−1)ū
[
t, [u, usa]

]
− (−1)t̄ūu

[
t, [u, sa]

]
∈ W,



J. Laliena / Journal of Algebra 404 (2014) 18–30 25
because W is a subring and L is a Lie ideal of A. And also

[t, u]s[u, a] = [t, u]
[
s, [u, a]

]
+ (−1)s̄(ū+ā)[t, u][u, a]s ∈ W,

because

[t, u][u, a] =
[
t, u[u, a]

]
− (−1)t̄ūu

[
t, [u, a]

]

= (−1)ū
[
t, [u, ua]

]
− (−1)t̄ūu

[
t, [u, a]

]
∈ W.

Therefore [t, u]s[u, a] ∈ W , and so

[t, u][u, s]a ∈ W for every t, s ∈ W, a ∈ A, u ∈ V, with [u, u] = 0.

Next we will show that

L[t, u][u, s]A ⊆ W.

Since [W,L] ⊆ W it follows that

L[t, u][u, s]A ⊆
[
L, [t, u][u, s]A

]
+ [t, u][u, s]AL ⊆ W.

Notice also that

L2[t, u][u, s]A ⊆ [L,W ] + [t, u], [u, s]A ⊆ W.

Using induction over i it is easy to prove that

Li[t, u][u, s]A ⊆ W for i > 0,

and so that

L̄[t, u][u, s]A ⊆ W.

Hence, since N is a nonzero ideal such that N ⊆ L̄, we have M = N [t, u][u, x]A, a
nonzero ideal such that M ⊆ W .

Therefore, either W is dense in A, or, if W is not dense in A,

[t, u][u, s] = 0 for every t, s ∈ W, u ∈ V such that [u, u] = 0,

because of the primeness of A.
We suppose now that W is not dense, and so

[t, u][u, s] = 0 for every t, s ∈ W, u ∈ V such that [u, u] = 0. (∗)



26 J. Laliena / Journal of Algebra 404 (2014) 18–30
We will show that V = [W,L] = 0, a contradiction with our assumption. We prove this
in 4 steps. Let K = [V, V ].

1. K = [V, V ] = [V1, V1]. Indeed, let x, y, u ∈ V such that u2 = 0. From our assump-
tion (∗), [u, x][u, y] = 0, and expanding this gives

uxuy − (−1)ȳūuxyu + (−1)x̄ū+ȳūxuyu = 0.

Right multiplication by u gives uxuyu = 0. Since [y, l] ∈ V for every l ∈ L, we obtain
that [y, [l, u]] ∈ V . So uxu[y, [l, u]]u = 0. Expanding this expression yields uxuluyu = 0.
From Lemma 1.7 we deduce that uV u = 0. If u, u′ ∈ V are homogeneous elements with
u2 = (u′)2 = 0, we conclude that

(
uu′)2 = uu′uu′ ∈ uV uu′ = 0.

If l ∈ L we have

0 = u
[
u′, l

]
uu′ = uu′luu′.

So uu′Luu′ = 0, and, from Lemma 1.7,

uu′ = 0 for every homogeneous elements u, u′ ∈ V , with u2 =
(
u′)2 = 0. (∗∗)

Now consider x, y ∈ V1, u, v ∈ V0. We have [x, u]2 = 0 = [y, v]2, and so [x, u][y, v] = 0,
because of (∗∗). Since [V0, V1] is additively generated by the elements [x, u] with x ∈
V1, u ∈ V0, we have v2 = 0 for every v ∈ [V0, V1]. From Lemma 1.8,

[V0, V1] = 0,

and

[V, V ] = [V0, V0] + [V1, V1].

Now consider X = [V0, V0]. We notice that X is a Lie subalgebra of A and [X,L] ⊆ X.
From our assumption (∗), for every x, y, u, v ∈ V0 we have [x, u]2 = [y, v]2 = 0, and so,
by (∗) we obtain that [x, u][y, v] = 0. Again, since [V0, V0] is additively generated by the
elements [x, u] with x, u ∈ V0, we deduce that for every v ∈ X, v2 = 0. From Lemma 1.8,

X = [V0, V0] = 0.

Therefore [V, V ] = [V1, V1].
2. K = [V1, V1] ⊆ Z. From Lemma 1.5, A0 is semiprime. Also, we notice that L0 is a

Lie ideal of A0, and it is satisfied that

K = [V, V ] = [V1, V1] ⊆ L0, [K,L0] ⊆ K and [K,K] ⊆ [V0, V0] = 0.
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From Lemma 4 in [10], [K,L0] = 0. Moreover, since

[K,L1] ⊆
[
[V1, V1], L1

]
⊆ [V1, V0] = 0,

we deduce that [K,L] = 0. From Lemma 2.4, K ⊆ Z.
3. K = [V, V ] = 0. Indeed, if K �= 0, then Z �= 0, and we can localize A by Z and

consider Z−1A,Z−1ZW and Z−1ZL. From Theorem 3.2 in [19], there exists an ideal
of A, I, such that 0 �= [Z−1I, Z−1A] ⊆ Z−1ZL. Notice that [Z−1I, Z−1A] is a Lie ideal
of Z−1A. We claim that Z−1I = Z−1A.

To prove this, we distinguish two cases: when [Z−1I, Z−1A] ⊆ Z−1Z, and when
[Z−1I, Z−1A] � Z−1Z.

If [Z−1I, Z−1A] ⊆ Z−1Z, Z−1I has invertible elements and then Z−1I = Z−1A.
If [Z−1I, Z−1A] � Z−1Z, then, since K ⊆ Z, we have

[[[
Z−1I, Z−1A

]
, Z−1ZW

]
,
[[
Z−1I, Z−1A

]
, Z−1ZW

]]
⊆ Z−1Z.

Notice that if [[[Z−1I, Z−1A], Z−1ZW ], [[Z−1I, Z−1A], Z−1ZW ]] = 0, using Lemma 2.5
for L = [Z−1I, Z−1A] and V = [[Z−1I, Z−1A], Z−1ZW ], we obtain that

[[
Z−1I, Z−1A

]
, Z−1ZW

]
] ⊆ Z−1Z.

If [[Z−1I, Z−1A], Z−1ZW ] �= 0, then, since [[Z−1I, Z−1A], Z−1ZW ] ⊆ Z−1I we
have Z−1I = Z−1A. And if [[Z−1I, Z−1A], Z−1ZW ] = 0, then, by Lemma 2.1,
[Z−1I, Z−1A] ⊆ Z−1Z or Z−1ZW ⊆ Z−1Z. Since V �= 0, Z−1ZW � Z−1Z, and
so

0 �=
[
Z−1I, Z−1A

]
⊆ Z−1Z ∩ Z−1I,

that is, Z−1A = Z−1I. So, finally,

0 �=
[[[

Z−1I, Z−1A
]
, Z−1ZW

]
,
[[
Z−1I, Z−1A

]
, Z−1ZW

]]
⊆ Z−1Z.

Then Z−1I has invertible elements and Z−1I = Z−1A.
So Z−1I = Z−1A, and then [Z−1A,Z−1A] ⊆ Z−1ZL. Therefore Z−1ZW is a sub-

algebra and a Lie ideal of [Z−1A,Z−1A]. From Lemma 2.2, either Z−1ZW ⊆ Z−1Z or
Z−1ZW is dense in Z−1A. If Z−1ZW ⊆ Z−1Z, then W ⊆ Z, a contradiction because
then V = 0. Therefore Z−1ZW is dense in Z−1A, and there exists a nonzero ideal J
of A such that Z−1J ⊆ Z−1ZW . Hence, since K ⊆ Z,

[[
Z−1J, Z−1ZL

]
,
[
Z−1J, Z−1ZL

]]
⊆ Z−1Z.

We observe that if [[Z−1J, Z−1ZL], [Z−1J, Z−1ZL]] = 0, then by Lemma 2.1
[
Z−1J, Z−1ZL

]
⊆ Z−1Z.
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From Lemma 2.3, either Z−1J ⊆ Z−1Z or Z−1ZL ⊆ Z−1Z. In the first case, we obtain
that (Z−1L)(Z−1(A1 + A2

1)) = 0, a contradiction with the primeness. In the second,
L ⊆ Z and V = 0, again a contradiction.

And if [[Z−1J, Z−1ZL], [Z−1J, Z−1ZL]] �= 0, since [[Z−1J, Z−1ZL], [Z−1J, Z−1ZL]] ⊆
Z−1Z, then Z−1J has invertible elements, and Z−1J = Z−1A. That is,

Z−1ZW = Z−1A.

But then

[
Z−1A,Z−1A

]
=

[
Z−1I, Z−1A

]
⊆ Z−1ZL,

and

K = [V, V ] =
[
[W,L], [W,L]

]
⊆ Z,

implies that

[[
Z−1A,

[
Z−1A,Z−1A

]]
,
[
Z−1A,

[
Z−1A,Z−1A

]]]
⊆ Z−1Z.

From Lemma 2.3,

[
Z−1A,

[
Z−1A,Z−1A

]]
⊆ Z−1Z,

and again by Lemma 2.3, Z−1A ⊆ Z−1Z, a contradiction. So K = [V, V ] = 0.
4. Finally, we reach a contradiction. V is Φ-submodule of A and [V,L] ⊆ V and

[V, V ] = 0 by step 3. From Lemma 2.5 we have V = [W,L] ⊆ Z, because L � Z. Then
by Lemma 2.4 W ⊆ Z, a contradiction because V �= 0. �

And, now, to finish, we prove our second theorem.

Theorem 2.7. Let A be a prime superalgebra such that it is not an order in C(n) with
n = 1, 2, 3. Let L be a Lie ideal of A and V a Φ-submodule of A such that [V,L] ⊆ V .
Then either L ⊆ Z or V ⊆ Z or there exists an ideal M of A such that [M,A] ⊆ V .

Proof. Let K = [V, L], and T = {x ∈ A: [x,A] ⊆ V }. Then T is a subalgebra of A

because for every t, s ∈ T and a ∈ A

[ts, a] = [t, sa] + (−1)t̄s̄+āt̄[s, at] ∈ V.

Since

[
[K,K], A

]
⊆

[
[K,A],K

]
⊆ [L, V ] ⊆ V,
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it follows that [K,K] ⊆ T . If we consider T ′, the subring generated by [K,K], we have
[T ′, L] ⊆ T ′, because

[[
[K,K], L

]
, A

]
⊆

[
[K,K], [L,A]

]
+
[[

[K,K], A,
]
, L

]

⊆
[
[K,K], L

]
+ [V,L] ⊆ V,

and because for every t, s ∈ [K,K] and u ∈ L we have

[ts, u] = t[s, u] + (−1)s̄ū[t, u]s ∈ T ′.

Now, T ′ is a subalgebra of A and [T ′, L] ⊆ T ′. From Theorem 2.6 either L ⊆ Z, or
T ′ ⊆ Z or T ′ contains a nonzero ideal M of A. If L ⊆ Z we have finished. If L � Z

and T ′ ⊆ Z, then [K,K] ⊆ Z and then K ⊆ Z by Lemma 2.5. So [V,L] ⊆ Z, but
then by Lemma 2.4 V ⊆ Z. If M is an ideal of A such that M ⊆ T ′, then M ⊆ T and
[M,A] ⊆ V . �
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