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1. Introduction

A filtered algebra U is called a Poincaré-Birkhoff-Witt-deformation (abbr. PBW-deformation) of a
graded algebra A if its associated graded algebra gr(U) is isomorphic to .A. PBW-deformation theory
of graded algebras is extensively studied. For Koszul or N-Koszul algebras, a Jacobi type condition was
given for the determination of PBW-deformation (see e.g. [2,4,10,33]). While for an arbitrary graded
algebra A over a field, Cassidy and Shelton [6] extended the above results to a more general Jacobi
condition for deciding when certain deformations of .4 obtained by altering its defining relations are
PBW ones.

For all complex simple Lie algebras g, Drinfeld [9] and Jimbo [20] introduced the quantum de-
formations Ugq(g) of universal enveloping algebras U(g), which are very important in mathematical
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physics (see also [19,21]). Except the cases Uy (sl;) and Uy (sl3), the negative nilpotent subalge-
bras U, (g) of Uq(g) are graded algebras with defining relations in mixed degrees (the word ‘mixed’
means that there exist at least two defining relations whose degrees are different, cf. [6]). Some PBW-
deformations of U, (g) appeared in the investigation of coideal subalgebras of Uq(g) (cf. [24-2731,
32]) and non-standard quantum deformations of U(g) (cf. [12,17]). In the theory of quantum groups,
Lusztig [28,29] investigated braid group actions on Uq(g) which allow the definition of root vectors
and PBW bases. In analogy to the quantum group case, braid group actions on coideal subalgebras of
Uq(g) were also investigated by many authors (see e.g. [7,22,30]).

Assume that g is a complex simple Lie algebra of rank n. Let A = (ajj)nxn be the Cartan ma-
trix of g and H = (h(B;, Bj))nxn With h(B;j, Bj) in the free algebra generated by Bi, By, ..., By and
Deg(h(Bj, Bj)) < 2 — ajj. Denote by B4(g) the quantum algebra with generators B; (1 <i < n) and
defining relations

1—a,-j

Y (1) (1 ;aif)‘B,.]’”if”‘BjBff =h(B;,Bj), 1<i#j<n.
k=0

Motivated by the above mentioned research, in this present paper we mainly focus on the following
two problems:

(1) Determining when a given deformation Bq(g) of Uy (g) is a PBW-deformation.
(2) Constructing PBW bases for a class of PBW-deformations B4(g) of Ug (9.

For the problem (1), our main techniques are the Jacobi condition given in [6] and the Bernstein—
Gelfand-Gelfand resolution (abbr. BGG-resolution) established in [14]. The Jacobi condition in [6]
actually transforms the problem of determining PBW-deformations of a graded algebra A into a series
of linear algebra problems which we denote (x). Though it is a sufficient and necessary condition for
judging which deformations U of .4 are PBW ones, there is a homological constant c(.4) in it whose
accurate value is generally not easy to obtain. In [6], c(A) is called the complexity of A which in a
sense reflects the scale of the sets of linear equations in (x). By Definition 2.1, the size of c(A) is
deeply related with the bigraded Yoneda algebra E(A) = @Exti;f(@, C) of \A. For finite dimensional
semisimple Lie algebras the BGG-resolution was introduced in [3]. The quantum group version of the
BGG-resolution was established in [14]| and explicitly written down in [13]. In this paper, we com-
pute the complexity cUg (9) of Ug (9) by using the BGG-resolution of the trivial left Ug (g)-module
Uq-(g)(C. Based on the above ideas, we propose an algorithm to decide if a given algebra B,(g) is

a PBW-deformation of Uq (9). In practical use, our algorithm is very technical because the amount
of calculations in it is very large for hand computation. So the computer program realization of our
algorithm or more conceptional research on the classification of PBW-deformations of U (g) is inter-
esting.

The algebras 2B4(g) in problem (2) can be viewed as a uniform description of some coideal subal-
gebras of Ug(g) in [22] and lorgov-Klimyk’s non-standard quantum deformation U{I(so(n, C)) in [12].
In fact, they were studied by Letzter in more generality in [24-27], and proved to be coideal subal-
gebras of Ug(g) and PBW-deformations of Ug (9) in [24]. Our results indicate that Kolb-Pellegrini’s
braid group actions on B4 (g) also allow the definition of root vectors and some PBW bases B(wg)
for B4(g). The root vectors of B,(g) have the same form as those of Uq(g) for simply laced g, while
for non-simply laced g they have some additional terms of lower degree. In our proof of the PBW
theorems for B¢(g), it is crucial that B4(g) are coideal subalgebras of Ug4(g) and PBW-deformations
of Uy (9).

This paper is organized as follows. In Section 2, we fix some notations and collect the background
material that will be necessary in the sequel. In Section 3, we give an algorithm for problem (1)
after theoretical analysis, then apply it to the case g of type A, and B,. In Section 4 we explicitly
construct some PBW bases B(wg) for B4(g) in problem (2). In Section 4.1, we state some properties of
the algebra automorphisms 7; (1 <i < n) of By(g) given by Kolb and Pellegrini, then calculate some
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formulas about them. In Section 4.2, the root vectors and the set B(wg) for B4(g) are defined. In
Section 4.3, the relationship between B(wg) and Lusztig’'s PBW basis F(wg) for Ug(g) is described.
In Section 4.4, we establish PBW theorems for 28,4(g) with g of each type, that is, Theorem 4.4. In
Section 4.5, we show that lorgov-Klimyk’s PBW bases for the non-standard quantum deformation
U[] (so(n+ 1, C)) of the universal enveloping algebra U(so(n + 1, C)) can be recovered by ours.

Throughout, we denote by C, N and Z the complex number field, the set of positive integers and
the set of integers, respectively. The parameter g € C\{0} is not a root of unity.

2. Preliminaries
2.1. PBW-deformation theory of graded algebras

Let 7 be the free algebra C(x1,x2,...,x,) with a standard grading, that is, Deg(xj) =1 for 1 <
i <n. Denote by

A=C(x1,X2, ..., %) /(r1, T2, ..., Tmg)
the quotient algebra of 7~ with mg homogeneous relations ry, 1, ..., m,. Throughout this paper, we
assume that R ={rq,r2,...,n,} is @ minimal set of relations for A and that none of the relations is

linear. By a deformation of A we mean a C-algebra

U=C{x1,x2, ..., %) /{r1 + 11,12+ 1o, ..., Ting +Img)

with the set of relations P = {r1 +11,r2 + 12, ..., Tmy + Imy}, Where Iy, 15, ..., Iy, are (not necessar-
ily homogeneous) elements of 7 such that Deg(l;) < Deg(r;) for all i. The algebra A is graded
and the algebra U is filtered. We denote by F*(U) (k € Z) the filtration of U and define gr(U) =
DBrez Fk (IU)/}"‘*1 (U) to be the graded algebra associated with U.

Definition 2.1. (See [6].) The non-graded deformation U of the graded C-algebra A is said to be a
PBW-deformation if its associated graded algebra gr(U) is isomorphic to .A.

Let A-Mod be the category of Z-graded left A-modules. For each object M in .A-Mod and d € Z,
the notation M{d} denote the graded left .A—modgle M with grading shifted by d, i.e., M{d}; = Mgk
for k € Z. For the graded left A-module 4A and d = (d,d,,...,d} ) € Z'® we denote

—>

Ald} = Ald;} @ Aldy} @ - @ Aldy }.
For two objects M, N in A-Mod, we define

Hom/, (M, N) := {¢ € Hom 4(M, N) | ¢ (M;) € N;_j},

Hom , (M, N) := 5 Hom/, (M. N).
Jjez

Obviously, Hom 4 (M, N) is a Z-graded vector space. Fix a minimal projective resolution
P2 P1 &
io—>C—>C—C—C—0 (21)
of the trivial .A-module C in .A-Mod. The modules C; are free and can be expressed as the form

A{_ﬁ} = A{d}} @ A{d,}--- © A{d} ), where ro may be infinite. If we apply the functor Hom 4 (-, C) to
the truncated complex P, of the above resolution (2.1), then the cohomology of the resulting cochain
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complex Hom 4(P,,C) of abelian groups equals E(A) = @Exti‘;(({:, C), which is the associated bi-
graded Yoneda algebra of A with r the cohomology degree and —s the internal degree inherited from
the grading on A.

Definition 2.2. (See [6].) The complexity of the graded C-algebra A is defined by

c(A) = sup{s | Ext’(C,C) # 0} — 1
if the global dimension of A is at least 3. For global dimension less than 3 we set c(A) =0.

Denote by V the C-span of the generators x1, Xy, ..., Xn of 7 and take F¥(7) = @,-gk Ve Let

Py = Spanc(P N F1(T)), (2.2)
Py =VPy_1 + Pr_1V +Spanc(P N FX(T)), fork> 1. (2.3)

In [6], a necessary and sufficient condition was given for determining PBW-deformations of .4, which
is stated as follows.

Theorem 2.3. (See [6].) Let A be a graded C-algebra of finite complexity c(A) and let U be a deformation of
A. Then U is a PBW-deformation of A if and only if P1 = 0 and the following Jacobi condition is satisfied:

Pt NFXT) C P forall1 <k < c(A). (2.4)
2.2. Quantized enveloping algebras

Let g be a complex simple Lie algebra with Cartan subalgebra . We write g=n@® h & n~ for the
triangular decomposition, and b = n@¥ for the Borel subalgebra. Let @ C h* denote the corresponding
root system and @ the set of positive roots. Fix the set IT = {&; | 1 <i < n} of simple roots. For any
o =1 nja; € ZII, define the height of & by Ht(e) = Y I_; n;. Let W be the Weyl group of g, which
is generated by all simple reflections s; = sy, for «; € I1. The notation Br(g) denotes the braid group
corresponding to W, that is, Br(g) is generated by {o; | 1 <i <n} and satisfies the relation

0i0j---=0j0j---, (2.5)
—— ——
m;;j factors  my; factors

where mj; is the order of s;s; in W. Let (-,-) denote the W -invariant scalar product on Z& such that
2(ai,aj)
(@i, o)

(a, ) =2 for all short roots « € @. As usual, a;; =
A = (@ij)nxn of g.

are just the entries of the Cartan matrix

For each 1 <i < n one defines q; = qdi, where d; = w For n € N, the g-number is defined as
n_ g—n
= 1
qi — q;

and let [n];! = [n]ij[n — 11; - - - [2]i[1];. If (e, ¢j) = 2 then we will also write [n] and [n]! instead of [n];
and [n];!. Moreover, the g-binomial coefficient is defined for any a,b € Z with b > 0 by

<a> _ lalila—1]i---l[a—b+1J;
b);  [bklb—1)---[1
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Definition 2.4. (See [19].) The quantized enveloping algebra Uq(g) associated with g is defined as the
C-algebra with generators Kiil, E;i, F; (1 <i<n) and relations:

Kk '=1=K"Ki,  KiKj=K;Ki,
KiEjK ' =q“E;,  KiFjK;'=q @)F;,

Ki—K;!
EiFj — FjEi = §jj———,
i—q;
1—ajj

Z( 1)k< a,]> 1""f_kEj};‘iF:O fori# j,
i

pCa (1 _kaij> Fi N FFE=0 fori ).
i

Lusztig observed in [28] that there are a series of automorphisms T; (1 <i <n) on Ugq(g), which
we call Lusztig symmetries. These automorphisms are important in investigating PBW bases and
canonical bases of Ug(g). They are defined as follows:

Ti(E'):_Kith Ti(F;) = —EiK;, Ti(Ki):K,-717
Ti(Kj) = KK,

—ajj

TiEp = (—1°q EPEE o
—o for1<i#j<n,

—ajj

Ttk =3 (1 N T

where E = [E] ; and F® = [g] ; for any n € N. The following theorem holds.

Theorem 2.5. (See [19,28].) Lusztig symmetries T; (1 <i < n) of Uq(g) satisfy the braid relation (2.5).
Denote by Ug (9) the negative nilpotent subalgebra of Uq(g) and wq = s;, Si, e Sjpy A reduced ex-

pression of the longest element in W. Then the set {y; =sj,si, - - Si,_, (@;,) | 1 <t <lp} is just the set
of positive roots @*. For each y;, define the root vector Fy, of Uq(g) as follows:

Fy=TiTiy--- Ti,_, (Fi).
In [28] Lusztig proved the following PBW theorem for U, (g).
Theorem 2.6 (PBW theorem for Ug (9)). (See [19,28].) The set
a,
F(wo) = {Fy---FRF} |1, 0z, ..., a, € 27°) (2.6)

is a PBW basis of Uy (g).

For more details about unexplained concepts, we refer the readers to [5,6,15,19,23,28].
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3. PBW-deformation theory of Uz (9)
3.1. PBW-deformation theory of U, (g)

Assume that g is a complex simple Lie algebra of rank n. We choose A = (ajj)nxn to be the Car-
tan matrix of g and H = (h(Bj, Bj))nxn With h(B;, Bj) € T(B) = C(By,..., By) and Deg(h(B;, Bj)) <
2 — ajj.

With the above notations we define the quantum algebra B4(g) as follows.

Definition 3.1. For any given H = (h(B;, Bj))nxn, the deformation B4 (g) of Ug (9) is the C-algebra
with generators B; (1 <i < n) and relations:

l—a,-j

3 (-1 (1 _ka"f> B, B;BX=n(B;, B)) (3.1)
i

k=0

for all i # j.

In this subsection, our main aim is to determine when a given By(g) is a PBW-deformation of
Uq (9). To achieve our aim, we firstly calculate the complexity c(Uq (9)). For convenience, we fix
some notations. Let p be the half sum of positive roots of g. For w € W, denote by I(w) the length
of w and define w-0=w(p) — p.

Proposition 3.2. The complexity c(U; (g)) of the algebra U (g) satisfies

0, ifg=sl,

C(Uq_(g)) - {max{— Ht(w-0)|we W,l(w) =3} —1, otherwise. (32)

Proof. If g = sy, it is obvious that c(U, (g)) = 0 since the global dimension of U (s[2) is 1. Otherwise,

to obtain the complexity c(Uq (9)), we will calculate the i-th cohomology Extz,(g) (C, ©). Indeed, the
q
BGG-resolution of the trivial U (g)-module C

---—>C2£>C1ﬂ>C0—s>(C—>O (3.3)

with C; = @WeW,KW):i Uy (@) {Ht(w - 0)}, which was established in [14] and can be found in [13], is
a graded free one. It follows that the boundary maps of the complex

Homug(g)(P., C):=0— Homuqf(g)(Co, C) — Homuqf(g)(C],(C) —_—

where P, is the truncated complex of (3.3), are all zero. Moreover, we have

HO_qu—(g)(C,',(C) :HO_qu*(g)( @ Uq_(g){Ht(W '0)}s(c>

weW, [(w)=i

~C Q) P U @{H(w-0)}

Ug (9) weW, [(w)=i

~ @ C{Htw-0)}.

weW, l(w)=i
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Therefore,

Exty o CO= @ ClHw-0)}.
I weW, l[(w)=i

Since the definition of the bigraded Yoneda algebra E(Ug (9) = Q}Extr’S (C,C) implies that

Uq (9)
3,5 _ .
Ext;” , (C.0) = P c{Htw-0)},
weW, l(w)=3
Ht(w-0)=-—s

then by Definition 2.2 the formula (3.2) holds. O

According to (3.2), the accurate values of the complexity c(Uq (9)) can be obtained via case-by-case
calculations.

Corollary 3.3. For g of different types, the complexity c(U, (g)) of the algebra U, (g) is as follows:

Dynkin type of g Aq Ay Ay n>3),By, Dy (n2>4),E;, (n=6,7,8) By, Cp (n > 3), Fyg, Gy
c(Ug () 0 3 5 7

Now for the negative part U, (g) of the quantized enveloping algebra, we transform the Jacobi
condition (2.4) in Theorem 2.3 into some explicit linear algebra problems. Before doing it, we fix the
following notations:

1—(1,']'

1—a;\ 1-aj—k
f(Bi, Bj):= Z(—l)"( " ”).Bf BBt
k=0 !
fG, .ot jyiga, ... i) := By, -+ By, f(Bi, Bj)Bj,,, -+ Bi,.
h(117 ey lls lz, 37 ll+1a LK) lt) = Bl] e Bllh(Bla Bj)Bl'H,l e Bir’
Then considered as the elements in 7(B), f(i1,..., i1, . ii41,...,1¢) and h(iy, ..., i1, . i1, .., de)

have the following unique linear expressions:

. P S . i],...,i[,i,j,i[l ,,,,, i[
flr,ind, g, o= > g G B B (34)

: P : PRI TR NN TR
h(q, ..o i1, Joiige1, eenyie) = Z ni, i le---th[. (3.5)

Theorem 3.4. The algebra Bq(g) is a PBW-deformation of U, (g) if and only if for all 1 <k < c(Ug (9)), the
set of linear equations in the variables y (i1, ..., i1, 1, j, 141, ..., i) given by
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i],...,i],i,j,i1+1,...,it . LT . .
> gl Y. o)
1<iZj<n,
t+2—ajj=m, o<ILt,
1<i1 i <

i],...,i[,l;,j,iH],...,it . P .
= > n V(1o ooy in e ot i)

J1seendm
1<i#j<n,
m<t+2—a;; <k, 0KIKE,
1<iy,....ir<n

= > (G TR 1 TRTINN 50 M (3.6)
1<i#j<n,
t+270,'j=k+1, o<ILt,
1<i1,....ie<n

wherem < k+1and 1 < ji, ..., jm <n, is solvable for basic solutions of the set of linear equations in the
variables x(i1, ..., 1,1, j, 141, - .., 1) given by

S ey T i) =0 for 1< e <
1<i#j<n,
t+27(]ij=k+1, o<ILt,
1<it, . ic <

(3.7)
Proof. For the case B4(g), P1 =0 in (2.2) and for k > 1, in (2.3) one has
1<i#j<n,
t+2—a;; <k,
Py =Spang | By, --- B;,[ f (Bi, Bj) — h(Bi, B)]Bi,, - Bj, 1<i1,.?,1itgn, : (3.8)
oIt

Thus the Jacobi condition (2.4) in Theorem 2.3 is equivalent to

1<ij<n,
2=k 0 FR(T(B)) € Py, (3.9)

1<y, ie <,

Spang 1§ B, ---By,[ f(Bi, Bj) — h(Bi, Bj)]Bi., --- Bj,

oIt
for all 1 <k < c(Ug (g)). For any element
> X(it. ... i g, i) By -+ By [ f(Bi. Bj) — h(Bi. B))]
1<ij<n,
t+2—a;j=k+1, 0<I<L,
1<i1,....ir<n
x By, - Bi, € F*(T(B)),
where x(i1, ..., i1, j, 141, ..., ir) € C, we have
> X1, oyt dy ity oos i) f(1s o it by J ity oo, =0, (3.10)

1<i#j<n,
t+2—a;j=k+1, 0<I<L,
1<iy,..., i <n
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Then it can be obtained from (3.4) and (3.10) that the coefficients x(i1, ..., i, 1, j, ij41, ..., 1) satisfy
(3.7). Let

I= {1, oot d, o, i) [1<E# <Nt +2—a =k + 1,1 <1, .., B <n, 0<I< ),

and define

= . P .
X::(...,X(h,...,ll,l,],ll+1,...,lt),...)(il,m’i‘,l:j’ilﬂ el (3.11)

.....

- . LoD . . t
H:=(....hG1, ... 010, j i1, o0, .) (i1t it il (3.12)

.....

Then the condition (3.9) holds if and only if

X-He Py for any basic solution X of (3.7), (3.13)

which means that there exist y(i1, ..., 1,1, j, ij41, ..., i) € C such that

- = =S s =S
X-H= Z NZ(STS 11 B I [FE TR PO I i ( STAPUURN T8 8 18 I PR RO 13|
1<i#j<n,
t+2—a;;<k, OKI<E,
1<i,enie <

— Z Y@, ..o 0, Joiet, oo i1, i 1, Ju i1, -0 ). (3.14)
1<i#j<n,
t+2—a;; <k, 0<ILL,
1<it,...,it<n

Noting that {Bj, ---Bj, | 1< j1,..., jm <n} is a basis of 7™(7(B)), then by (3.4) and (3.5) we can
reexpress (3.14) as the solvability problem of (3.6) in the “only if” part. The proof is completed. O

For practical use, we give the following two-step algorithm for judging whether a given algebra
By (g) is a PBW-deformation of Ug (-

Step 1. Solve the set of linear equations (3.7) for k. The linear equations in (3.7) can be obtained
in the following process: (i) put (3.4) into (3.10), (ii) expand the formula got in (i) then combine like
terms, (iii) set the coefficients of the formula obtained in (ii) to be zero. If (3.7) is solvable, some basic
solutions X in the form (3.11) can be obtained.

Step 2. Determine the solvability of (3.6) for k if (3.7) for k in Step 1 is solvable, otherwise, skip this
step. The linear equations in (3.6) can be explicitly written down by the same process as described in
Step 1 modified by “(i) put (3.4), (3.5) and X obtained in Step 1 into (3.14)".

Iterate Step 1 and Step 2 for k=2,3,..., cUq (9) successively. If the set of linear equations (3.6)
is solvable for k=2,3,..., cUq (@), then B4 (g) is a PBW-deformation of Ugj(@. O

3.2. PBW-deformations of U, (g) with g of rank 2

Now we start to apply the above algorithm to the algebras B(g) for g of type A, and B,. To begin
with, we give a condition in the form (3.13) for determining PBW-deformations of Ug (), which
finishes all the work in Step 1 and 2 except that in Step 2 for k = c(U, (g)). In fact, the condition
(3.13) can be considered as a bridge combining Step 1 with Step 2.

Theorem 3.5. Suppose that the sets Py for 1 <k < c(Uq (9)) are given by (3.8). Then we have the following
results.
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(1) For g of type A, the algebra ®B4(g) is a PBW-deformation of U, (g) if and only if

h,1,1)+h(,2,2)—h(@1,2,1) —h(2,1,2) € P3. (3.15)

(2) For g of type By, the algebra Bq(g) is a PBW-deformation of U (g) if and only ifC; - V; € Ps for
1<i <3, where

a=(-1.¢+q%-1.1,-(¢*+q7).1),

G=(+q%-1,-1,-1,-1,-1,31,¢° +q*, —[31, 1),

G=(1,-1,81, -8l —(¢° +q72). 1,1, —[31, 131, =1, 131, 1, =31, -1, 1),

Vi = (h 2,1,1,2),h(1,2,1,2,1),h,2,2,1,1),h(1,1,2,1,2),h(1,2,1,1, 2), h(2,1,],1,2))
vy = (h(2,1,l,2) h2,1,2,1),h{d,2,2,2,2),h(1,2,1,2),h(1,2,2,1),h(2,2,1, 1),

h(2,1,2,2,2),h(2,1,2,1),h(2,2,1,2,2),h(2,2,2, T,é)) ,

=(h(2,1,1,1),h(1,2,1,2,2),h(1,2,2,1,2),h(1,2,2,2,1),h(1,2,1,1),h(1,1,2,2,2),
h(1,1,2,1),h(1,2,1,2,2),h(1,2,2,1,2),h(2,1,2,1,2),h(2,1,2,2,1),h(2,1,1,2,2),
h(2,1,2,1,2),h(2,2,1,2,1),h(2,2,1, T,i))t.

Proof. (1) For g of type A, the condition (3.13) for 1 <k < 2 is trivial, i.e., 0 € Py. For k = 3, the
linear problem (3.7) is equivalent to:

x(2,1,1) +x(2,1,2) =0,

x(1,2,2) +x(2,1,2) =0, (316)
x(1,2,1) —x(2,1,2) =0,

x2,1,2)=x(1,2, ) =x(1,1,2) =x(2,2,1) =0

Hence (3.16) has the umque basic solution X = (1,0,0,1,-1,0,0, —1), where the variables x(iy, ...,
i 4, Jo i1, -0 0e) in X are arranged in the lexicographic ordering of (i1, ..., 1, j,il+1,...,ir) with
2 <1 <1 < 2. Therefore, By(g) is a PBW-deformation of Ug (9) if and only if (3.15) holds.

(2) For g of type B,, the condition (3.13) for 1 <k < 4 is trivial, i.e., 0 € Py. For k =5, the linear
problem (3.7) can be simplified to be the following form:

x(1,2,1,1,2) —x(1,2,2,1,1) =0,
x(1,2,1,2, 1)+ (¢ +qH)x(1,2,2,1,1) =0,
x(1,2,2,1,1)+x(2,1,1,1,2) =0, (3.17)
x(1,1,2,1,2) —x(2,1,1,1,2) =0,

x(1,2,1,1,2) + (¢ + 97 2)x(2,1,1,1,2) =0,

x2,1,1,2)+ (> +972)[317'x(2,2,1,2,2) =0,

x(2,1,2,1)—[3]" 1x(z 2,1,2,2)=0,

x(1,2,2,2,2) - [317'x(2,2,1,2,2) =0,

x(l,i,T 2) —[31"1x(2,2,1,2,2) =0,

x(1,2,2,1) —[31"1x(2,2,1,2,2) =0, (3.18)
x(2,2,1,1) +x2,2,2,1,2) =0,

x(2,T,Z,2,2)+x(2,2, T,é,z)zo,

x(2,1,2, D)+ (¢> +q72)[317'x(2,2,1,2,2) =0,
x(2,2,1,2,2)+[31x(2,2,2,1,2) =0,
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x(2,1,1,1) +x(2,2,1,2,1) =0,

x(1,2,1,2,2) —x(2,2,1,2,1) =0,

x(1,2,2,1,2) +[31x(2,2,1,2,1) =0,

x(1,2,2,2,1) —[3]x(2,2,1,2,1) =0,

x(1,2,1,1) — (¢ +q7%)x(2,2,1,2,1) =0,

x(1,1,2,2,2)+x(2,2,1,2,1) =0,

x(1,1,2,1) +x(2,2,1,2,1) =0, (3.19)

x(1,2,1,2,2) — [31x(2,2,1,2,1) =0,

x(1,2,2,1,2) +[3]x(2,2,1,2,1) =0,

x(2,1,2,1,2)+x(2,2,1,1,2) =0,

x(2,1,2,2, 1)+ [31x(2,2,1,2,1) =0,

x(2,1,1,2,2)+x(2,2,1,2,1) =0,

x(2,1,2,1,2) — [31x(2,2,1,2,1) =0,

x(2,2,1,2,1)+x(2,2,1,1,2) =0,
and other x(iq, ..., i, 1, j,ij41...., i) are zero. Since the basic solutions of (3.17), (3.18) and (3.19) are
respectively ¢, ¢ and ¢3 (the variables x(iy, ..., i1, j,ij41,...,ir) in &, & and 3 are also arranged
according to the lexicographic ordering of (i1, ..., i1, j, 141, ...,ir) with 2 <1 <1 <2.), then in this
case (3.7) has the following three basic solutions:

(1) X with x(i1, ..., i1, j,ij41,....i¢) zero except
x1,2,1,1,2)=-1, x(1,2,1,2,)=q¢*+q¢ %, x(1,2,2,1,1)=—1, (3.20)
x(1,1,2,1,2)=1, x(1,2,1,1,2)=—(¢*+q7?), x2,1,1,1,2)=1; :
(2) X with x(i1, ..., i1, j,ii41s ..., i¢) zero except

x2,1,1,2)=¢*+q2, x2,1,2,1)=-1, x(1,2,2,2,2) =—
x(1,2,1,2) = -1, x(l 2,2,)=-1, x2,2,1,1)=-1, x(2,1,2,2,2)=[3], (321)
x2,1,2, D) =¢*>+q %, x2,2,1,2,2)=—[3], x2,2,2,1,2)=1;

(3) X with x(i1, ..., i1, j,ij41s....i¢) zero except

x2,1,1,H)=1, x(1,2,1,2,2)=-1, x(1,2,2,1,2)=[3],
x(1,2,2,2,)=-[3], x(1,2,1,1)=—(¢* q_z), x(1,1,2,2,2) =1,
x(1,1,2,D =1, x(1,2,1,2,2)=—[3], x(1,2,2.1,2)=1[3], (3.22)
x(2,1,2,1,2)=-1, x2,1,2,2, 1) =[3], x(2,1,1,2,2)=1,
x(2,1,2,1,2)=—[3], x(2,2,1,2,1)=-1, x(2,2,1,1,2)=1;

Now the claim in (2) immediately follows from (3.13) in the proof of Theorem 3.4. O

Remark 3.6. The results in Theorem 3.5 seem more direct if we reformulate them by the coefficients
of h(i, j) = h(Bi, Bj) in (3.5). For g of type A, if we write out the set of linear equations (3.6) for
k = 3 according to the process in Step 2 in our algorithm, then we can deduce that (3.6) is solvable if
and only if the coefficients of h(B;, Bj) in (3.5) satisfy the following condition:
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f2_ 21 12, 2d_ 1 21 _ 21y
'71,11 ’71,21_2 '71]_,12 ’72,;2 q;l__qq (7:122 2211)
qtg (M3 —n21) =m3 — My = =31 + 1302
(03 =3 + (13— mn? ' =0, i=0.1.2 o)
(s =)+ s =) =0 i=12
(12 =230l 2+ (3 — 2 nt) = 0l =2, ) =a.2).@.1.

In other words, for g of type Ay, B4(g) is a PBW-deformation of Ug (9) if and only if (3.23) holds.
However, even for g of type B,, the condition like (3.23) is not easy to obtain because the amount of
calculations in our algorithm is very large for hand computation.

Next we present some examples of PBW-deformations of U, (g) for which we can do the work in

Step 2 for k= c(Ug (g)). The algebras Bq(g) in the third example will be the main research object in
Section 4.
Example 3.7. For any c € C, let h(B1, By) =cB1 and h(B3, B1) = cB;. Then by Theorem 3.5(1) or (3.23)
we can check that the algebra B4(sl3) is a PBW-deformation of Uq (sl3). Indeed the linear equations
(3.6) for k=3 in Step 2 only have the zero solution. In this case 2B4(sl3) is just the down-up algebra
A(@+q~1,—1,c) defined in [1] (see also [34]).

Example 3.8. For any c1,c; € C, let

{h(Bl, By) = B? + BBy + B3B1 + ¢1B2,
h(B2, B1) = 2B} + B1B2 + ByB1 + B3.

Then it follows from (3.23) that in this case B4(s(3) is also a PBW-deformation of Uq (sl3).

Example 3.9. Let

0, ifaij =0,
_qi_1Bj’ ifaij:—l,
h(Bi,Bj) = { —q~'[2]*(B;iBj — B;B)), ifajj = -2, (3.24)

—q~1([31> + 1)(B?B; + B;B?)
+q7'[21(121141 + ¢* + ¢~ »)BiBjB; —q~%[31*B;, ifa;j=—3.

Then one has:

(1) For g of type Ay, by Theorem 3.5(1) or (3.23), we can check that the algebra By(g) is a
PBW-deformation of Uy (9. In this case, the linear equations (3.6) only have the zero solution.

(2) For g of type By, by Theorem 3.5(2), we can check that the algebra B4(g) is a PBW-deformation
of Ug (@. Indeed, when k =5, corresponding to the basic solutions (3.20), (3.21) and (3.22) of (3.7),
the linear equations (3.6) in Step 2 respectively have the following solutions:

(1) y(1,2,2)=—q72, y(2,1,2) =q~? and other y(iy, ..., i1, 1, j,ij41, ..., i) are zero.

2) y(1,2,2)=—q'[21%, y(2,1,2) =q~'[2]? and other y(i1, ..., i, 1, J,ij41,..., i) are zero.

(3) y2, D =q2 y1,2,1) =—q [21%, y(1,1,2) =q~'[2]% and other y(i1,..., i1, j,ijz1,.... 1)
are zero.

Remarks 3.10. (1) Let 6:g — g be the Chevalley involution, and let t = {x € g | #(x) = x} be the
Lie subalgebra of g consisting of elements fixed under 6. If we set B; = F; — Kl.’]E,- for 1 <i<n
Then the algebra B4(g) in Example 3.9 is just the subalgebra Uc’I(t) defined in [22], which is called
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quantum symmetric pair coideal subalgebra of Ug(g). Letzter's work in [24] showed that U(’)(t) is a
PBW-deformation of U (g) (see the proof of Theorem 4.4 in Section 4).

(2) In [12] the authors gave another quantum deformation U’ (so(n+1,C)) of the universal en-
veloping algebra U(so(n + 1, C)). Recall that U/ (son+1,0C)) is generated by I; (1< n) which
satisfy the following relations:

Flivi = (q+a )ilig i+ il = —Iiga,
ol — (@ +q Yl + LI, =1,
Iilj —1jl; =0, forl|i— j|>1.

It is well known that U(/I(so(n +1,C)) = By(sl(n + 1,C)) which maps I; to q%Bi or q%BnH_,- for
1<i<n(seeeg. p.267 in [25]).

4. Root vectors and PBW theorem for quantum algebras 254(g)

In this section, we always assume that the elements h(B;, Bj) (1 <i# j <n) in the definition of
By (g) are given by (3.24). From now on, we are devoted to construct PBW bases for Bg(g).

4.1. The algebra automorphisms of B4(g)

Analogous as Lusztig’s construction, Kolb and Pellegrini in [22] established a series of algebra au-
tomorphisms 7; (1 <i<n) of By(g), which satisfy the braid relation (2.5). Precisely, setting

Bj, ifi=jora;=0,
BiBj—qujBi, ifaij:—l,
tB) =132 (-1)°¢°B® BB + Bj, ifa;; = —2, (41)

3— BiB;—q>B;B; .
Yioo (=10 By VBB + SR 4 (BiB; —qB By, ifay = 3.

B(")

for 1 <1, j <n, where for any n € N, we have

Proposition 4.1. (See [22].) (1) For each 1 < i < n, there exists a unique algebra automorphism t; of B4(g)
such that t;(Bj) is given by (4.1). The inverse of t; is given by

Bj, ifi:jora,-jzo,
» B;Bi —qiBiBj, ifaij =1,
T (B)=1Y2 (-1)°¢BYB;B* " + B, ifaij = —2,

(Bj Bl q BBJ)

Y2 o(~1°¢°B® BB + + (BjB; —qBiBj)), ifaj=—3.

(2) The algebra automorphisms t; (1 < i < n) satisfy the braid relation (2.5).
Proof. In [22] the authors gave the proof by the computer algebra package QuaGroup [8] within
GAP [11] for calculations with quantum enveloping algebras. In addition, the statement follows from

results in [30] if g is simply laced (see Remarks 3.4 and 3.5 in [22]). O

In the following we list some formulas about 7; which we will use in the sequel. For the verifica-
tion of them see Appendix A.

(1) If ajj = aj; = —1, we have 7;7;(B;) = Bj.
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(2) If ajj =—1 and aj; = -2,

i7j(Bi) =[2]"" (BiB? —q[2]B,BiB;j + ¢°B3B;) + Bi.  T;TiT;(Bi)=Bi.
tjti(Bj) = BjBi —¢*BiBj,  ttjTi(Bj) = Bj.

(3) If ajj =—1 and aj; = -3,

TTi(B) = <(3i’31‘ —a°B;Bi)*B; + B;(BiB; — q3BjBi)2>
CIPUT BN\ —121BiBj — ¢°BjBi)B;(BiB; — ¢°B;B))
1 3 q2 3
+ _Q[3]!+1 (BiBj —q’B;B;)B; — ﬁ+q Bi(BiBj —q’B;B;),
7ji(Bj) =1[2]""BIBi — q°B;BiB; + (2] 'q*BiB3 +q[3112] 'B;,
1 s 1 ] [2]
T;TiTj(Bj) = E j‘K,‘(Bj)(BjB,' —q B,‘Bj) — ﬁ( iBi—q BiBj)‘Cj'L'i(Bj) + ﬁBj,
©7jTi(Bj) = [217"'q*B3B;i — ¢*B;BiB; + [217' BiB} +q[3112] ' B;,

1
4T niTi(Bi) = —((BiBj — q°B;Bi)B3 — [21B;(BiB; — q°B;Bi)B; + B3 (BiB; — q°B;B;))

31!
1 [2] 3
—[217'(BjBi —qBiBj) + ——(BiBj — q"B;Bi),
q(3]
Tt TiTiTj(Bi) = Bj, ‘L’j‘L’i‘L’j‘E,‘(Bj)ZBjBi—q3BiBj, TiTiTiTjTi(Bj) = Bj.

4.2. Root vectors of Bq(g)

In this subsection, we define and investigate root vectors of B4(g). For any w € W we set

‘L’W:{ld’ ifw=1, (42)

Ti, Tiy -+ Tip,  If W =5;,Sj, - - - Sj, is a reduced expression.

By Proposition 4.1(2), the right-hand side in (4.2) is independent of the reduced expression of w.
The following lemma makes it possible to define root vectors for B,(g). For convenience, we set
By; = Bi.

Lemma 4.2. (1) Let oj, oj € IT with i # j. Let w € W be in the subgroup W' of W generated by s; and s;.
Then tw (By;) is contained in the subalgebra generated by Bo,; and By;. If w(w) € 11, then Tw (Bo;) = Bwa;-
(2) Let w e W and ; € IT. If wa; € IT, then Ty (Bg;) = By,

Proof. (1) By the definition of 7,,, we easily see that 7y, (By;) is contained in the subalgebra generated
by By, and Bg;. Moreover, if w =1, then all the claims are trivial. Therefore, we only need to check
the second claim in the following four cases by assuming w # 1. Denote W; :={w € W' | w(«;) €
IT}\{1}. Let m be the order of s;s;. Then m =2,3,4 or 6. Firstly, if m =2, then a;; =a;; =0 and
Wi = {sj}. In this case the second claim holds because t;(B;) = B;. Secondly, when m = 3, one has
ajj =aj; = —1 and W; = {s;s;}. It follows from the formula for a;; = —1 and aj = —1 in Section 4.1
that 7;7;(B;) = B;. Hence we finish the proof of the second claim in case m = 3. Thirdly, in case
m =4, we have W; = {sjs;s;}. Therefore, our claim follows from the second and fourth formulas
when a;; = —1 and aj; = —2 in Section 4.1. Finally, if m =6, then W; = {sjs;s;s;s;} and our claim can
be obtained from the sixth and eighth formulas when a;; = —1 and aj; = —3 in Section 4.1.
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(2) This claim can be proved by induction on [(w). Since it is in complete analogy to the proof of
Proposition 8.20 in [19], we omit it. O

Lemma 4.2 indicates that we can define root vectors as follows. If w =s;;s;, - --s;, € W is a reduced
expression, we set yj =s;,Si, - -Si;_y (o)) and call

B)/j = Ti] Tiz e Tij,] (Bij)

a root vector of By(g). In particular, for a reduced expression wg = s;, s, - - - sj,  of the longest element

in W, we fix the notation

lo
a,
B(wo) = {B, ---BR B} [a1,az,..., 4, € Z°} < By (). (43)
4.3. Relationship between B(wg) and F (wg)

In this part, we describe the relationship between the PBW basis F(wg) of Ug (9 in (2.6) and
B(wp) in (4.3).

Proposition 4.3. There exist fiq;)(x1,...,Xn), f{/ai}(xl,...,xn) € T with the former homogeneous and
Deg(fig, (X1, ... xn)) < Deg(fiay(x1, ..., %)) = Zﬁ"ﬂ a; Ht(y;) such that

a —
ijg + FRFS = fla)(F1. Fa..... Fn) € Uy (9),

(110

By,() cee B%B?}] = f{a,-}(Bl’ Ba,...,Bp) + f{/ai}(BL By,...,Bp) € %q(G),
where f{/ai}(xl, ..., Xp) = 0 for simply laced g.

Proof. Our proof can be divided into two parts according to type of Lie algebra g.
(1) If g is a simple Lie algebra of type G, the longest element wqg has two reduced expressions:
515251525152 and s25152515251. The first one leads to the following root vectors for B4 (g) and Ug (9):

Bq, 71(B2), 7172(B1), T1T2T1(B2), T1T2T172(B1), By = 111211 T2T1(B2);

Fyq, T1(Fy), T1T2(F1), T1T2T1(F2), T1T2T1T2(Fr), F2 =T1T2T1TaT1(F2).

By calculations, when a1, = —1 and az; = -3,

T1(F2) = F1Fy — ¢*F2Fy,

1 ((F1F; — @3F2F1)*F3 + F2(F1F2 — ¢*F2F1)?
T1T2(F1) = —= 3 3 ,
B!\ —[2I(F1F2 —q’F2F1)F2(F1F2 — q°F2Fq)
T1T2T1(F2) =q4F§2)F1 — q*FyF1Fy + FiFY,
1
nhnhwnzEﬂwﬁrw%ﬁo%—mwﬂa&—f&aﬁﬁwﬂhh—fbﬂ»

while when aj; = —3 and ay; = —1,
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3
Ti(F2) =Y (-1)¢F FpFyY,
s=0

T1Ty(F1) = F\” Fy — ¢*F1 F2Fy + q*FoF?,

1
nh) =g [3] (FP'Fy — P F1FoFy + q*F2F\?) (F1F2 — g°Fo Fy)
-1
— q[T](Fl F2—q F2F1)(F§2)F2 — PF1F2Fy +q4F2F§2)),

T1T2T1Ta(F1) = FiF2 — ¢ FaF1,
Now we finish the proof by comparing the formulas for root vectors of U, (g) with those of Bq4(g)

in Section 4.1. Similarly, this proposition holds for the second reduced expression of wy.
(2) If g is not of type Gy, it is sufficient to show the following claim.

Claim. If w = sg,sg, - “SBiw) € W is a reduced expression, then there exist two elements g(x1,...,Xn),
g'(x1,...,%n) € T with the former homogeneous and

Deg(g' (X1, ..., X)) < Deg(g(x1, ..., xn)) =Ht(sg,5p, - Sy (Biw)))

such that

Tﬁ1 Tﬁz e Tﬂl(w)—l (Fﬂl(w)) :g(FL F27 ey Fn),

T8 Thiwy—1 (Bpiow)) = &(B1, B2, ..., Bn) + g'(B1, B2, ..., By).

To prove the claim, we use induction on I[(w). For I[(w) = 1, the claim is obvious. Suppose that the
claim holds for I(w) < 1. We will check the case I(w) =1+ 1. If (8], Bi+1) =0, the claim holds since
To Ty~ Tp(Fpi) =Tp Tp, -~ Tpyy (Fpy) and Tp,Tp, -~ Tp (Bpy o) = Tp, Tp, - Ty (B, )- Next we
will consider the case (B, Bi+1) = —2, while the case (8, Bi+1) = —1 can be treated analogously. The
proof can be done in the following two cases.

(i) If sg,Sp, ---Sp_,Sp., is a reduced expression, then by the formulas in Section 4.1, for ag, g,, =
—1 and Ap1.p = -2,

2
Tp, Tpy - Tp(Fpy) =T Tpy -+ Ty (FpFpy —°Fpyi Fa)s
2
T5,Tpy - T (Bpiy) = Tp1 Ty -~ Tp_y (BpBps — 4°Bpi Ba)

and for ag g,, = —2 and ag,,, 5 =—1,

B
—s) (s)
TpTpy - T (Fp) =Tp Ty~ Tp, (Z( USqSFm Fpq F )7

(2-s) (s)
Tp Ty T (Bp) = Tp Ty -~ Ty <§ :( 1)quB ’ Bg, Bﬂz + Bﬁm)'
s=0

Thus by induction the claim holds in this case.
(ii) If sg,Sp, -~ Sp_,Sp,, is not a reduced expression, by Bourbaki’s Exchange Condition (see [16,
Section 1.7]), there exists a B with 1 <k <I—1 such that sg,sg,---Sg_, =5p,58, 58 " SB_1SBs1
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where Sg, means that sg, is omitted. Then we have two reduced expressions w = sg,sg, -+ Sg_,Sg X
B = SBiSBy  Sp - SB_1584156 5,1~ NOow it can be seen from the formulas in Section 4.1, when
ag g, =—1and ag, g =-2,
TpTpy - Tp(Fpyy) =Tp T, ’fﬂ\k T Tp Ta(Fpyy)
=TpTp, Tﬁ o Tp, (Fﬂm Fg, _quﬁIFﬂl+1)
=TpTp, - fl;k T (Fa )T Tpy - f/;k o Tp ., (Fp)
~ 0Ty Tp, Ta To (Fp)To Ty T Ty (o),
T8 T (Bpy) =TT T Throy 6176 (Bpiyr)
=TpTh  Th  Thos (Bﬂ1+1Bﬂ1 - quﬂzBﬂm)
=TT T T Bpu ) g Tpo - T Ty (B)
— T T, T To Ba) Ty Ty T+ Ty (B

and when ag, g,, =—2 and ag,,, g =—1,

Tp Ty Tp(Fpy) =Tp Ty ff;k o Th Th Tﬂr(Fﬂl+1)
:TﬁlTﬁZ'“ff;k “Tp_ 1(Fﬂl+1 —qFpFp, Fp+q F()Fﬂm)’
61T T (Bpy) =TpiThy Th Tt Tt T (B
=Tp T f\ﬂk TR (Bﬁm Bf‘}z,) —qBgBp.,Bg +qu/(3?)Blgl+l + Bﬁm)'
Thus by induction the claim holds if sg,sg, ---Sg, ---Sg_,Sp is a reduced expression. Otherwise, by
Bourbaki's Exchange Condition, there exists a B with 1 <k #k' <I—1 such that
5/315/32"'5//'3;“'%14 =5p,58, ...%...%...5ﬂ1715ﬁ17
where Sﬁk and sﬁ,, mean that sg, and sg,, are omlttfii Then we have two reduced expressions w =
SPiSpa SP Sh tt SBySASPua SBISBLa = SBi1SB SPtShy * SBLt Shuua SBSAL Sp- SInCe
ToTay Ta(Fan) = Ta o Tpo - Toy - To TaTpu, Ta(Fay)
=Tg, Tp, fﬁ\kf;; - Tp (Fpp)s
T T T (Bpia) =TpiTh Thet Thy T T8 T T (Bpisy)
=Tp, Tp, "'f\m{"‘fﬁ?”‘fﬁmwﬂm)»

then by induction the claim also holds in this case. O
4.4. PBW theorem for B4(g)

Now we are ready to state our main result which gives a PBW basis for B4(g) via root vectors
defined by the algebra automorphisms ; (1 <i < n).
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Theorem 4.4 (PBW theorem for B4(g)). Let wo = si;Sj, " Siy be a reduced expression of the longest el-
ement in W, and By, = T, Ti, -~ Ti;_, (Bi}) be the root vector corresponding to the positive root y; =
Siy iy Sij_y (ozij)forl < j<lo. Then

_ [p%o a pay >0
B(wo)_{Bylo-uBysz ai,ay,...,a, € Z7°}

is a basis of B4(g) for g of each type.

Proof. We will show the claim in two steps. In the following the symbol F* is also used to denote
the filtrations of B4(g) and Ug (-

In the first step, we prove that the dimension of 7™ (2B4(g)) coincides with that of }""(Uq*(g)),
that is,

dim(F™(Bq(9)) = dim(}‘m(Uq’ (®)). (4.4)

On one hand, it can be seen from the defining relations of B4(g) that the associated graded al-
gebra gr(%Bq(g)) is a quotient of Ug (9). Thus dim(F™(Bq(9)) < dim(]—'m(Uq‘(g))). On the other
hand, noting that 2B4(g) is a coideal subalgebra of Ug4(g) for g of each type (see Remarks 3.10(1)),
we can deduce from the arguments in [24] (see the explanations after formula (7.17) in [24]) that
dim(F"(Bq(g))) > dim(F™(Ug (g))). Hence the formula (4.4) holds and B4(g) is a PBW-deformation
of Uy (9).

In the second step, we verify that the elements in B(wg) are linearly independent and that they
span Bg(g). Define U’(wo) := Spanc B(wg) and F™(U’'(wq)) := U’(wo) () F™(Bq(g)). By Proposi-
tion 4.3 and (4.4) we know that the canonical map

v P FHU (we) /F (U (wo)) = @D FH(Bg(@) /7 (By(e) = F" (U ()

k=0 k=0

; di ay pary _ g% ay pa 4l a pai
satisfies lI/(BJ,,0 ~-ByBy) = FVIO ---F)2 Fy,, where the degree of BVfo ---By; By, is no more than m.

It follows from the PBW theorem of U, (g) that ¥ is surjective and that the elements in B(wg) are
linearly independent. Moreover, by (4.4) we obtain that

dim(F™(B4(9))) = dim(F" (U, (9))) < £(B(wo) N F"(Bq(9))).
which implies that B(wg) N F™ (Bq(g)) spans F™(Bq(g)). Therefore, B(wg) spans By(g). O

Remark 4.5. Applying the same procedure in this section to the algebra automorphisms ti” of B4(g)
in Proposition 4.1, we can obtain another PBW basis

B~ (wo) = {z;, 5, - r ! (B) - m o (BE) g, (BB anda. .y € Z70),

4.5. Realization of lorgov-Klimyk’s PBW theorem for Ué(so(n +1,0))

For the algebra U[](so(n 4+ 1,C)) described in Remarks 3.10(2), lorgov and Klimyk gave two PBW

bases in [18]. Recall that they used the notation 1111.1 =l =1 and for k > [+ 1 defined recursively
+ _ i gt I+ g+
L= a? L e —a 2L I (4.5)

1 _ 1 _
I

L =a 21 e — P Lol (4.6)

Then they obtained the following PBW theorem for U(’Z (so(n+1,C)) by Bergman’s Diamond Lemma.
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Theorem 4.6 (PBW theorem for U(’Z (so(n+1,C))). (See [18].) The following subsets of U(’) (son+1,C))

+ _ [+ M2 4 M3 + Mp+1.1 + Mpn-1 7+ Mp+1.n-1 7+ Mp41,n .. >0
Pwo)= {31 131 " Iy ol AT Livin |mj ; € 27},
- _ [y M2 ,— M3 — Mp41,1 — Mpp—1;— Mpt1n-17— Mp41,n o >0
I"(wo) = {12,1 13,1 ”'In-H,l e In,n—] In+1,n—l In+1,n | mj j € 2= }

are PBW bases of U{] (son+1,0)).

As a matter of fact, we can prove this theorem by Theorem 4.4. Noting that U{J(so(n +1,C)H =
By (sl(n+ 1, C)), we choose the reduced expression

Wo= Sn Sn—1SnSn—2Sn—1Sn---S2°*-SnS1S2 - Sn,
P N NS — —_———— — —

1 2 3 n—1 n

of the longest element wq in the symmetry group Sp. Set

Yn+1,n = Qn,
Ynt1n—1 = Sn(0th—1) = 0tp_1 + Qy,
Yn.n—1 = SnSn—1(0tn) = oty—1,
Vn+1,1 = SnSn—15nSn—25n—1Sn - S2- - Sn(001) =01 + 02 + -+ - + Oy,
¥3,1 = SnSn—1SnSn—2Sn—1Sn - - S2 - - SnS1 - - - Sn—2(An—1) = A1 + 2,
Y21 = SnSn—1SnSn—2Sn—1Sn*++S2+++SnS1 -+ Sp—1(0tn) = 0¢1.
Then {y; ;| 1< j<i<n+ 1} is exactly the positive root set of sl(n 4+ 1, C). The corresponding root
vectors Bj j = By, ; of Bg(sl(n+ 1, C)) are as follows:
Bn+1,n = Bn,
Bni1n—1=1th(Bn-1),
Bnn—1=TnTn—1(Bn) = Bn_1,
b
Bni11 =T 1TaTn—2Tn—1Tn - T2 - - Tn(B1),
B31=TaTh—1TnTh—2Tn-1Tn -T2 - TnT1 - Tn—2(Bn-1),
Bo 1 =TnTh1ThTn—2Tn—1Tn -T2 TnT1 - Tn—1(Bn) = B1.

It follows from Theorem 4.4 that

_ ma1 pM3 1 Mpt1,1 pM3,2 pM4,2 Mnp41,2 Mpn—1 pMn+1.n-1 pMn+1.n . >0
B(wo)={By7'B37" -+ B, B33 Baz - Buyiy o Bunot Buvin—1Bnran |mi ;€ 277}

forms a basis of B4 (sl(n+ 1, C)).
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Let us give some accurate relations between root vectors of B4(sl(n + 1, C)). They are similar to
the relation (4.5).

Lemma 4.7. For k > | + 1, we have

By = —qBiy1,1Bik,1+1 + Bi i1 Biy1,- (4.7)

Proof. Since

Bii+1 = TnTn—1TnTn—2Tn—1Tn - T41 " * Tng1— (k=D Brp1—k=i=1)),
Bi410=hTn-1TaTa—2Tn—1Tn -+ T1 " ** Tnp1—k=1) Tnb1—(k—I1=1) ** * Tn T Tn—1(Bn),
Bri=TnTn-1TnTn—2Tn-1Tn" " T1** Tntl— k=) Tnt1—(k—1=1) =" Tn T Tk 1 — (k—t+1) (B 1— k=) »

the relation (4.7) is equivalent to

Tnp1—(k—I=1) " TnTl - Tngp1—(k—t1) Bnp1—k—1)
= —(qTnr1—(k—I—1) - TnT - - Tn—1(Bn) Bnp1—(k—i-1)
+ Bni1—(k—1-1) Tt 1= (k—I=1) - - - Tn Tt - - - Tn—1(Bn). (4.8)

The relation (4.8) can be checked by induction on k — (I + 1).
Indeed, for k — (I+ 1) =1, (4.8) holds since

—qTnT -+ Tn—1(Bn)Bn + BnTn T - - - Th—1(Bn)
=TT Th-2 [_qfn—1 (Bn)Bn] + Ty Tn—Z[BnTn—l (Bn)]
=TT Th-2 [_qfn—1 (Bn)Bn + BnTh—1 (Bn)] =TnT - Tn—2(Bn-1).

Assume that (4.8) holds for k — (I+ 1) =r, that is,

Tn—r+1"TnT " Tnmr—1(Bn—r) = —qTn—r+1- - TaT - - - Tn—1(Bn) Bn—r41
+ Bn—r+1Tn—r+1- - TnT - Tn—1(Bn).

For the case k — (I+ 1) =r+ 1, we will check

Tn—rTn—r+1- " TnT -+ Tn—r—2(Bn—r-1) = —qTh—rTn—r+1- - TnT - Tn—1(Bn) Bu—r
+ BarTh—rTa—r+1- - TnT -+ Tn—1(Bp). (4.9)

In fact,

Bn—r—1=Bn—rTh—r—1(Bn—r) — qTn—r—1(Bn—r) Bn—r.

It follows that
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Ta—rTn—r+1-" T Tn—r—2(Bn—r—1)
=Tn—rTn—r+1"""TnT " Tn—r-2 [Bn—rfn—r—l (Bn—r) —qTn—r—1 (Bn—r)Bn—r]
=Tn—rTn—r4+1-"TnT " Tn—r-2 [Bn—rfn—r—l (Bn—r)]
+ (DT—rTn—r+1-TnT - Tn—r-2 [Tnfrfl (anr)anr]
=Bn—r+1Ta—rTh—r+1-- T Ta—r—2Tn—r—1(Bn—r)
+ (=D Th—rTn—r+1" TaT** Tn—r—2Tn—r—1(Bn—r) Bn—r+1
=Bn—rt1 Tnfr(_qfnfrJrl cTpT e Tn—1(Bn) Ban—r—1 + Bn—r41Tn—r1 - T -+ - Tt (Bn))
+ (D Th—r (_qfnfrJrl c T Tn—1(Bn) Bn—r1 + Bn—r4+1Tn—r+1- - Tn T -+ - Tn—1 (Bn))anrJrl
=—qBn—r+1Ta—rTa—r+1 - T Tn—1(Bn) Tn—r (Bn—r+1)
+ Bn—r+1Tn—rBa—r+ 1) Tn—rTn—r+1- - a7 - - Tn—1(Bn)
+ qunfrfnfr+1 o TnT e Tn—1(Bn) Tn—r (Bn—r+1) Bn—r+1
+ D T—rBn—r+1)Tn—rTn—r+1 T Tn—1(Bn) Bn—r41-

Similarly,

By—+ = —qth—r(Bn—r+1)Bn—ry1 + Bnr11Tn—r(Ba—rs1),

we have

Tt Tart1 -+ T+ Tn1 (Bn) Bnor + BrerTaer Tnors1 -~ Tn Tt -+~ Tn1 (Bn)
= —qTn—rTn—r+1---TaT - Tn—1(Bn) (—qTn—r(Bn—r+1) Ba—r+1 + Ba—r+1Tn—r(Bn—r+1))
+ (=qTn—r(Ba—r+1)Bn—r+1 + Bo—r1Tn—r(Bnr41)) Tn—r Tn—r+1 - - Tu Ty - - Ta—1(Bn)
= —qTn—rTa—r+1" " TaT " Tn—1(Bn) Ba—r4+1Ta—r (Bn—r+1)
+ Bn—r+1Tn—r(Bn—r+1) Th—rTn—r+1"** TaT - - - Tn—1(Bn)
+ @ Taer Tners1 - TaTi - Ta1(Bn) Tner (Bn—r4+1) Bn—r+1
+ (= T—r(Ba—r+1)Bn—r+1Tn—rTn—r41- - T - - - Tn—1(Bn).

Moreover,

Bn—r+1Tn—rTn—r+1-- a7 - Tn—1(Bn)
=Tn—rTn—r+1" T Tn—r—2Bn—r)Tn—rTn—r+1- - T - - Tn—1(Bn)
=T—rTn—r+1""TnT " Tn—r-2 (Bn—rfn—r—lfn—rfn—r-&-] © T (Bn))
=Tn—rTn—r+1" " U Tn—r—2Tn—r—1Tn—rTn—r+1 " Tn—1(Bn—r—1Bn)
=TnrTn—r+1 " TnT - Tn—r—2Tn—r—1Tn—rTn—r+1 - Tnm1(BnBn—r—1)
= Tn—rTn—r+1-*TnT* Tn(Bn) Bn—r+1.

Therefore, (4.9) holds for the case k— (I+1)=r+1. O
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If identifying I; with q% B; under the algebra isomorphism U(’Z (so(n+1,C)) =By(sl(n+1,C)) (see
Remarks 3.10(2)), we have

Lemma4.8.Forn+ 1>k >1>1, we have
_ 1
L= (D) g2 By (4.10)

Proof. We show (4.10) by induction on k — I.

For k —1=1, (4.10) holds since I,*H’, —qB =q? Bty

Assume that (4.10) holds for k — [ =r. In the case k — I =r + 1, by induction and Lemma 4.7 we
have

+ R o _
W= 00 — 4

=2 (a2 Bipr) [(=D™q? By ip1] — 4 2 [(= 1702 Brargr141](@% Bisy)

r+1 3 r+1,1
=(=1)"""q2Biy1,1Bisr1,041 — (=17 q2Biyri1,41Bi31y

I+

_1
21 11,1

+
[+r+1,14+1

1
= (—=1)"*2q2 (—qB41.1Bisrs1.41 + Bier1.i41Bi1.0)
1
= (—=1)""?q> Bryri1-
The proof of the lemma is finished. O

In the end, it can be seen from Lemma 4.8 that up to nonzero scalars IT(wg) is just B(wg) in
Theorem 4.4. On the other hand, if we choose

Wo = S1 5251535251°°+Sn—1---515nSp—-1"""51,
S —— —_— —— —
1 2 3 n—1 n

then I~ (wg) equals B~ (wp) in Remark 4.5 up to nonzero scalars. Therefore, lorgov-Klimyk's PBW
theorem for U[I(so(n +1,QC)), i.e,, Theorem 4.6, is recovered by Theorem 4.4. O
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Appendix A

The calculations of the formulas about ; in Section 4.1.
(1) If ajj =aji=—1, then

TiTj(Bi) = T7i(BjBi —qB;Bj)
= (BijBj —qB;B;)B;i —qB;(BiBj —qBjB;)
= —q(BfBj— (¢+4q7")BiB;B; + B;B})

(31)

(324)
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(2) If ajj =—1 and aj; = —2, we will check the formulas in (2) one after another.
Firstly, since B;(B;iBj —q?B;Bi) =q 2(B;iBj — q°B;B;)B; — q~2Bj, then one has

(BiBj —q*B;B;)Bi(BiB; —q*B;Bi) =q *(BiBj — q°B;B:)*Bi — ¢ 2(BiB; — q*B;Bi)Bj,
Bi(BiBj — q*BB;)? (A1)
=q *(BiBj —q*B;B)*Bi —q *(BiBj — q*B;Bi)Bj — g *B;(BiBj — ¢°B,B).

It follows that

57j(Bi) = 7i([217"(B3Bi —qI21B;BiB; + q°B;iB?) + B;)

[2]-! (BiBj —q*B;Bi)*Bi + q*Bi(BiBj — q*B;B:)* 1 B,
—q[21(BiBj — q*B;B;)B;(BiBj — q*B;B;) !

Al —
"2 12171 (B;B? — q[21B;B;B; + q*B2B;) + B;. (A2)

Secondly, one has

T;jTi(Bj) = ‘L’j(B,‘B]‘ —qujBi)

= T;(B))Bj —¢*B;Tj(B))

(1217 (B%Bi — q[2]B,BiB; + q*B;B3) + B;) B,

—¢”B;(1217 ' (B3Bi — qI21B;BiB; + q*B;B?) + B;)

= BiBj—q”*B;Bi —q°[2]"'(B}B; — [31B%B;B; + [31B;B;B? — B;B})
(31)

=’ BiB; —q°B;B; +q[21(B;B; — B;B;
(3.24)11 q° BB+ q[2](BB; iBj)

= BjBi—quiBj. (A3)
Thirdly, noting that B;7;(B;) = q~27;(B;)Bj + BiBj — g 2B;B;, we have

B;Tj(Bi)Bj =q °7;(Bi)B} + BiB; —q °B;BiBj,

A4
B?rj(si) = q*4rj(Bi)B? + q*2B,-B§ +(1—q*B;jB;Bj — q*23§3i, (A4)

Then we obtain
A2 _
vt (B) ) (12171 (BiB2 — q[21B;BiB; + ¢*B2B;) + By)
= [2]7"7;(Bi)B3 — qB,T;(Bi)B; + [217'¢*Bi;(By) + 7;(By)

") (217" (¢°BiB? — q[21B;B:B; + B2B;) + 7;(By)
= Bj.

Finally, we have
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A3
TiTiTi(Bj) (A3) ‘Ci(BjBi —quiBj)

(BiBj — q°B;B;)B; — q*B;(BiB; — q*B;B;)

= —q*(B?Bj — (¢ +q *)BiB;B; + B,B?)
(31)

2 2(_42p.
(3.24) q°(~a7B;)

= Bj.

(3) When a;j = —1 and aj; = —3, we also verify the formulas in (3) successively.
To begin with, noting that

Bi(BiB;j — q3BjBi) =q_3(BiBj - q3BjBi)Bi —q_3Bj,
(BiBj—q°B;B;)Bi(BiBj —q’B;B;) =q >(BiBj — ¢°B;B{)*Bi —q >(BiB; — q°B;B;)Bj,
Bi(BiBj — q°B;B;)*
=q °(BiBj — ¢°B;Bi)*Bi —q ®(BiBj — ¢°B;B;)Bj —q>B;(BiBj — ¢°B;B)), (A.5)
Bi(BiBj — q*B;jB;)?
=q °(BiBj —q°B;B;)*B; —q °(BiB; — ¢°B;jB;)*B; —q >B;(B;iBj — q>B;jB))*
— q_e(BiBj - QBBjBi)Bj(BiBj —q3BjBi),

then we obtain that

B 1
5Tj(Bi) = rf<Z(—1)squ§3 ”&-Bj-”) —l—ﬁr,(B Bi —q*BiB;) + Ti(B,Bi — qBiB))

s=0
1
= [3],(3 iBj— q3BjBi)3B, 0] (B Bj— q3BjBi)zB[(B,-Bj—q3BjBi)
2 3
[qZ] (BiBj —a°B;Bi)Bi(BiB) — a°B;Bi)’ [Z]vB (BiBj — ¢°B;B;)’

7 P P B:—a3B.:B:
+<q[3]‘+1>(3,31 q°BjB;i)B, <[3]‘+q> i(BiBj — q’B;B;)

@L((BiBj—q3BjBi)ZBj+Bj(BiBj—q BjBi)2>

~ B1'\ —[21(BiBj —¢*B;B)B;(BiB; — q>B;B;)
1 o 3povn (4 .
+<W+1>(B,BJ q*B;Bi)B; ([3] +q> i(BiB; — 4°B;By). (A6)

Next, one has

T;iTi(Bj) = 'L'j(BiBj - q3BjB,-)

3
1
(Z( 1°¢°BY VB, B(S)+—[3]'(B Bi — QBBiBj)—F(BjBi—QBiBj))Bj
s=0

3

_ 1

—q3BJ<Z<—1>SqSB§3 ”B,-B;MW(B Bi—q B,-Bj)+(BjBi—qBiBj>>
s=0
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3
4113
= [3?1’ <B4B, [41B3B;Bj + %B»B,B?— [4]BJ-B,-B-}+B,-B;‘>
1
——(BjBi —q*BiB;)B;
q[3]'
2
+ (BjBi —qBiB;)B; — ﬁBj(BjBi—q3B,~Bj)—q33,4(13]~B,~—qB,'Bj)
61 =

(3.24)ﬁ(_q (131 + 1) (B}Bi — BiBj)

+q7'121(121[4] + ¢* + 9~ *)B;BiB; — ¢ *[3]°B;)
2 -1 5 2
q g2p, 4 (114 4\g.pp (9 B2
_ (ﬁ +q ) B, +< il +1+4¢q )B]B,B] — <ﬁ+q)3,31
= [2]7'B3Bi —q°B;BiBj+q*[21”' BB +q[31[2] ' B:. (A7)
Moreover, if we denote D :=7;7;(Bj) = 7j(BiBj — q3BjB,~), and note that
B;D —q 'DB;j =[31tj(Bi) — q '[21(B;Bi — ¢*BiB;), (A.8)
then we have

r-r-r-(3~)(:6)i- (BiBj —q>BjB;)?Bj+ Bj(B;Bj — q>B;B;)>
JE B31' '\ —[21(BiB; —q*B;B;)B;(BiBj — ¢°B;B;)

1 q>
+< i +1)r](3 Bj—q BjB,-)rj(B,-)—<[3]' ~|—q>r](B )7i(BiBj — ¢*B;B;)
= Lths»—lDB-DJr ! B; D2+<L+1>Dr-(3»)—<q2 + )t(B)D
I E I & T RN €1 [3]! 2 B 1)u

- () (o (£ 40
- [3]!<+(B‘D—q*1DBj)D + [3],“ Tj(Bi) ETRE 7j(B)D

(A8) - 3 1
= D3I (B) — a7 [21(B1Bi — °BiB;) + o (B3I (B)
—q7'[21(BjBi —¢’BiB))D
( . 1)9 (By) (qz ) (Bi)D
+ WJF 7 (B0) — (537 9 TiBi
— L D(B;Bi — 4*BiB;) — = (B;B; — °BiB,)D + - (Dt;(By) — g1,(B)D)
[3] 21 iPj [3] i iDj a3 j i(Bi
L . .
= [3]13(3,3, q°BiBj) — [3] ——(BjBi — ¢*B;iB;)D
+ﬂr< (BiBj — q°B;Bi)Bi )
ETR —q3Bi<BiBj—q33-B,-)
(€AY 1 3p g _— ﬂ ‘
e D(BjBi —q°BiB;) — [3] —(BjBi—q B,B])D+q[3]Bj, (A.9)
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B — iy Ao (- [217'BIBi —q”B;BiB;
TIT]TI(B]) = TI(D) - <+q [2] 1B BZ+q[3][2] ]B)

= [21"'(BiB; — ¢°B,B:)*Bi — q*(BiB; — q*B,B:)Bi(BiB,; — ¢*B,B;)

— 2 —
+4*1217"Bi(BiB; — ¢°B;B;)” +q(3112] ' B;
"2 q='(BiB; — ¢°B;Bi)B; —q (21" (BiB; — ¢*B,Bi)B;
—ql217'B;(BiBj — q°B;Bi) +q[3112] ' B;
= [217'q*B3Bi — q°B;BiBj +[2]7'BiB3 + q[3][2] ' B:. (A10)

It follows that

TTiTiTj(B;)

(a9 1 ( D(B;B; — ¢*B;B)) >+[2] t(By)
= ; i(Bj

317\ —q(8;8; —¢*B;iB)D ) " q3]
(A10) 1 ( [2]_1q43?3i—q23j3i3j )B-
(31).3:24) 131 \+1217"B; B2 +q31(2]'B; )
_LB([2]-1q4B§Bf—qujBfBj) 2]
ai31 " \+1217'BiB? +q(3121'B; ) q[3]
(BiBj — q*B;Bi)B}
= o7 —[2]Bg(B,~Bj—qujBi)Bj —[217"(BjB; — qB;Bj)
+B5(BiBj —q’BBi)

—(BiBj — q°B;B;)

(2] .
+ [3](3 iBj —q’B;B;). (A11)

and
B:B: —a3B;iB;)B2
1) (BiBj —q’B;Bj) i

A. 1 _
T (B 2 BT —[21B;(BiB; — q3B;B)B; | —[21'7;(B;Bi — qB;B))
+B3(BiBj —q’BjBi)

(2]

T3 [3] (B B] q BjBi)

1 f 2 -1 -1 [2]
= [3],(DB —[2]B;DBj + B;D) — [2]”'B;T;(Bi) +ql2] Tj(Bi)B]-i-ﬁD
As8) 1 3 1 , 2]

3y (P35~ 0 BiBa) B = gy B (BB =07 BiB) g
(A7)

Furthermore, we have

A10 _ - _
tntnB) = (2] 'q*B3Bi — ¢*B;BiB; + [2]7" BiB% + q[31[2] ' B;)
(217 'q*B? 1 (B}Bi—ql31B3BiB; +q°[3]B;B;B}
= [3]' 3B B3+q—1(B iBj — q3BlBJ)
1 (B3Bi—q[3 32.3 B +q*[3]B;B;B?
_q23.<_< i 13 q[3] 17; i+l ]3] i 1>+(BjBi—qB,~Bj)>Bj

[31'\ —¢°BiB; +q~'(BjBi —q°B;B))

) + (BjBi — qBiBj)>
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1 (B3B; —q[3]B%B;B; + q2[3]BiB;B2
o (g (i o )+ BsBi—aBiB) )3
BI'\' —¢°BiB;+q " (BjBi —q°BiB))
1 B3B,- q[3]BZB»Bj+q2[3]BjB,-BZ.
+q[3][2 1 J)+ B:B: — B-B'>
iz ([3]'< BB + 4~ (BB —q?B;py) ) T PIBTIBED
Gy _—¢ -
(3.24) [3]'[2]
+q '[21(12114] + ¢* + q *)B;B;B; — q *[3]*B;)B;
4

~'(137° + 1) (B3B; — B;B?)

@
* P

+q7'[121(121141 + ¢* +q~%)B;BiB; — g *[31°B;)

~(137* + 1) (B3B; — B;B?)

q

—1,4p2
+1[2]1" '¢q Bj<[3],

(BjBi—q B,-B,~)+(BjB,-—qBiBj)>
—quj<([J3]'(B Bi—q BfBj)+(BjBi—qBiBj))Bj

“1(4
+12] 1({3]‘(3 Bi — q3B,-Bj)+(BjB,-—qB,-BJ-)>B§

_ B3B,' q[3]BzB‘B~+q2[3]B ‘BiBz.
1 J J j B ‘B
q13112] ([3]‘ ( 3B 83 +q_] (BjBi — 3B,'Bj) ) (BjBi —qB BJ))

= B;jBi —q’B;Bj, (A12)

where the last equality is obtained by combining like terms.
Finally, one has

TTiTTjTi(B ) r,(B B; — q3BiBj)

(BiBj - q3BjB,')B,' — q3B,‘(B,‘B]’ - q3BjBi)
= —q°(B?Bj— (¢* +q°)BiB;B; + B;B})

G 3/ _—3p.
o a°(—qB))

= Bj.
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