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1. Introduction

The classical Schur–Weyl duality [21] is a basic but very important result in rep-
resentation theory that connects the general Lie algebra glN of N × N matrices with 
the symmetric group Sr. If V ∼= CN is the vector representation of glN , Schur–Weyl 
duality states that the natural action of Sr on V ⊗r permuting the tensor factors is 
glN -equivariant, and hence induces a map

Φ : C[Sr] −→ EndglN

(
V ⊗r

)
, (1.1)

which is always surjective, and is injective if and only if N ≥ r.
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Many generalizations and variations of Schur–Weyl duality, in which one replaces for 
example the Lie algebra glN with some other reductive Lie algebra and/or the represen-
tations V ⊗r with other representations, have been studied in the past years. We would 
like to recall three of them (as a general reference, see [13, §4.2]).

First, there is a version connecting the semisimple Lie algebra g of type B, D (or C) 
and its vector representation W with the Brauer algebra Br(N) (or Br(−N)) [4]:

g

�

W⊗r � Br(±N). (1.2)

Second, there is a mixed version of (1.1) in which one considers mixed tensor products 
of the vector representation V and its dual:

glN

� (
V ⊗r ⊗ V ∗⊗t

)
� Brr,t(N). (1.3)

Here Brr,t(N) is the walled Brauer algebra, a subalgebra of the Brauer algebra Br+t(N)
which was introduced independently by Turaev [20] and Koike [15].

Finally, there is a higher version of Schur–Weyl duality (cf. [1]) in which one considers 
the tensor product of the representation V ⊗r with some (possibly) infinite dimensional 
module M ∈ O(glN ):

glN

� (
M ⊗ V ⊗r

)

� Hr. (1.4)

Here Hr is the degenerate affine Hecke algebra of Sr.
The goal of the present paper is to define a degenerate affine version of the walled 

Brauer algebra Brr,t(N) in such a way that we get a higher version of mixed Schur–Weyl 
duality that generalizes both (1.3) and (1.4):

glN

� (
M ⊗ V ⊗r ⊗ V ∗⊗t

)

� VVBrr,t(ω). (1.5)

For technical reasons, we will actually need M to be a highest weight module; the 
parameter ω is a sequence (ωi)i∈N of complex numbers which depend on M .

The passage V ⊗r � V ⊗r ⊗V ∗⊗t from (1.4) to (1.5) is quite natural and is motivated 
for example by the following reason. Brundan and Kleshchev [6] constructed an explicit 
isomorphism between cyclotomic quotients of the degenerate affine Hecke algebra Hr

and the KLR algebra R; but the KLR algebra R is in some sense only one half of the 
KLR 2-category U̇ [14]. The degenerate affine walled Brauer algebra VVBrr,t(ω) should 
correspond to the whole U̇ (see also (1.9) below).

We remark that in (1.3) we may permute the V ’s and the V ∗’s. In particular, we 
have a version of (1.3) for each (r, t)-sequence A = (a1, . . . , ar+t), by which we mean a 
permutation of the sequence

(1, . . . , 1︸ ︷︷ ︸,−1, . . . ,−1︸ ︷︷ ︸). (1.6)

r t
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If in (1.3) we replace V ⊗r ⊗ V ∗⊗t by V ⊗A = V a1 ⊗ · · · ⊗ V ar+t with the convention 
V 1 = V and V −1 = V ∗, then the walled Brauer algebra BrA(N) which acts on the right 
is of course isomorphic to Brr,t(N), but has a different natural presentation. If moreover 
we consider all these sequences A together, then it becomes natural to replace the walled 
Brauer algebra with the walled Brauer category Brr,t(N). In our setting, it is easier to 
define directly the degenerate affine walled Brauer category VVBrr,t(ω) and then get the 
degenerate affine walled Brauer algebras VVBrA(ω) as endomorphism algebras inside our 
category VVBrr,t(ω).

Our first main theorem is:

Theorem. (See Theorem 5.2.) Let M be a highest weight module for glN and A be an
(r, t)-sequence. Then there is a natural action of the algebra VVBrA(ω) on M ⊗ V ⊗A, 
which commutes with the action of glN . Here the parameter ω = ω(M) is determined by 
the highest weight of the module M .

The action given by the theorem is far from being faithful. To get a faithful action 
we need to consider cyclotomic walled Brauer algebras as endomorphism algebras inside 
a cyclotomic quotient of the category VVBrr,t(ω). In particular, we will study cyclotomic 
quotients of level two. Our second main result is:

Theorem. (See Theorem 6.9.) Let m, n, N, r, t ∈ N with m +n = N and m, n ≥ r+ t. Let 
p ⊂ glN be the standard parabolic subalgebra of glN corresponding to the two-blocks Levi 
glm ⊕ gln ⊂ glN . For δ ∈ Z with δ 	= m, n let Mp(δ) be the parabolic Verma module in 
Op(glN ) with highest weight δ = −δ(ε1 + · · · + εm). Then the action from above factors 
through some cyclotomic quotient VVBrA(ω; β1, β2; β∗

1 , β
∗
2), and we have an isomorphism 

of algebras

VVBrA
(
ω;β1, β2;β∗

1 , β
∗
2
) ∼= Endgln+m

(
Mp(δ) ⊗ V ⊗A

)
. (1.7)

The parameters ω, β1, β2, β∗
1 , β

∗
2 depend explicitly on δ, m, n.

As a direct corollary of the second theorem, we have that the cyclotomic quotient 
VVBrA(ω; β1, β2; β∗

1 , β
∗
2) inherits a natural grading and the structure of a graded cellular 

algebra. Note that the grading, however, depends on the chosen ordering of the factors, 
that is on the (r, t)-sequence A.

Our definition of the algebra VVBrr,t(ω) is inspired by Nazarov’s affine Wenzl algebra 
VVr(ω) [18], which can be thought as a degenerate affine version of the Brauer algebra 
Br(N). In particular, VVBrr,t(ω) is generated by the standard generators of the walled 
Brauer algebra Brr,t(ω0) together with a polynomial ring C[y1, . . . , yr+t]. As in [18] we 
use formal power series to handle the parameters ωk.

Our result has an analogue for types B, C and D of the form

g

� (
M ⊗ V ⊗r

)

� VVr(ω) (1.8)
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established in [12], see also [10]; the methods we use and our computations are similar 
to the ones of these two papers. Note however that although Brr,t(N) is a subalgebra 
of Br+t(N), the degenerate affine version VVBrr,t(ω) is not (at least in a natural way) a 
subalgebra of VVr+t(ω). This indicates that there is a close, but non-trivial relationship 
between type A and type B, C, D Lie algebras.

Using the diagrammatic description of category Op from [7] one can show that the 
KLR 2-category U̇ [14] acts on Op and moreover there is an isomorphism of algebras

EndU̇ (F1λ)/I ∼= VVBrA
(
ω;β1, β2;β∗

1 , β
∗
2
)
, (1.9)

where F is a 1-morphism in U̇ corresponding to the chosen sequence A, the weight λ is 
determined by the highest weight of the module Mp(δ) of (1.7) and the ideal I indicates 
that we have to take some cyclotomic quotient, determined also by the highest weight δ
or equivalently by the parameters β1, β2, β∗

1 , β
∗
2 . This result will appear as part of joint 

work with Ehrig and Stroppel.
We point out that degenerate affine walled Brauer algebras have been defined indepen-

dently by Rui and Su [19]. They prove another version of Schur–Weyl duality involving 
the Lie superalgebra gl(m|n) and their degenerate affine walled Brauer algebra. Our two 
approaches are connected via the super duality of [9] established in [8] relating gl(m|n)
with the classical Lie algebra glm+n.

Structure of the paper
We define the degenerate affine walled Brauer category and algebras in Section 2. 

In Section 3 we give a diagrammatic description that allows us to describe a set of 
generators as a vector space. In Section 4 we compute the center of the degenerate affine 
walled Brauer category. In Section 5 we define the action on glN -representations and 
state the first main theorem, whose proof will be presented as a series of lemmas in 
Section 8. In Section 6 we define cyclotomic quotients and prove our second main result. 
In Section 7 we will compute explicitly the generalized eigenvalues of the yi’s in the 
cyclotomic quotients.

2. The degenerate affine walled Brauer category

In this section we will define the degenerate affine walled Brauer category and the 
degenerate affine walled Brauer algebras. We will indicate by Sn the symmetric group of 
permutations of n elements; the simple reflections will be denoted by si for i = 1, . . . , n −1.

There is an easy correspondence between C-linear categories and C-algebras which we 
will use in the following and which we now recall.

First, note that a C-algebra A is the same as a C-linear category with only one object. 
Now, if the algebra A has a (for simplicity finite) set of pairwise orthogonal idempotents 
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11, . . . , 1n, then it can be more natural to identify it with a C-linear category C with n
objects M1, . . . , Mn, one for each idempotent, in such a way that

1iA1j = HomC(Mj ,Mi). (2.1)

Of course each idempotent truncation 1iA1i is itself an algebra, which corresponds to 
the full subcategory of C containing only the object Mi.

Depending from the situation, it can be preferable to use either the algebra or the 
category language. We will define our main object of study using the language of cate-
gories. Anyway, at some point we will need to consider structures and operations which 
are typical of algebras (like filtrations, gradings, quotients, homomorphisms, generators, 
central elements). We advise the reader that we will often alternate in considering the 
degenerate affine walled Brauer category as a category or as an algebra (although we 
will always call it category, because we will leave the term algebra for the idempotent 
truncations).

In the following by an (r, t)-sequence A = (a1, . . . , ar+t) we will mean a permutation 
of the sequence

(1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
t

). (2.2)

We let Seqr,t denote the set of (r, t)-sequences.

Definition 2.1. Let r, t ∈ N and fix a sequence ω = (ωk)k∈N of complex parameters. The 
degenerate affine walled Brauer category VVBrr,t(ω) is the category defined as follows. 
The objects are (r, t)-sequences A = (a1, . . . , ar+t) ∈ Seqr,t. Morphisms are generated as 
complex vector spaces by the following endomorphisms of A:

s
(A)
i for all 1 ≤ i ≤ r + t− 1 such that ai = ai+1,

e
(A)
i for all 1 ≤ i ≤ r + t− 1 such that ai 	= ai+1,

y
(A)
i for all 1 ≤ i ≤ r + t, (2.3)

and the following two morphisms A → A′

ŝ
(A)
j , ê

(A)
j , (2.4)

where A′ = sjA for some simple reflection sj ∈ Sr+t such that A′ 	= A (that is, aj 	= aj+1). 
We will often omit the superscript A.

We impose the following relations on morphisms (where we use ṡi, ėi to denote both 
si, ̂si and ei, ̂ei respectively; the relations are assumed to hold for all possible choices 
that make sense):
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(1) ṡiṡi = 1,
(2) (a) ṡiṡj = ṡj ṡi for |i − j| > 1,

(b) ṡiṡi+1ṡi = ṡi+1ṡiṡi+1,
(c) ṡiyj = yj ṡi for j 	= i, i + 1,

(3) (e(A)
i )2 = ω0e

(A)
i ,

(4) e
(A)
1 yk1e

(A)
1 = ωke

(A)
1 for k ∈ N if a1 = 1, a2 = −1,

(5) (a) ṡiėj = ėj ṡi and ėiėj = ėj ėi for |i − j| > 1,
(b) ėiyj = yj ėi for j 	= i, i + 1,
(c) yiyj = yjyi,

(6) (a) ŝiėi = ėi = ėiŝi,
(b) ṡiėi+1ėi = ṡi+1ėi and ėiėi+1ṡi = ėiṡi+1,
(c) ėi+1ėiṡi+1 = ėi+1ṡi and ṡi+1ėiėi+1 = ṡiėi+1,
(d) ėi+1ėiėi+1 = ėi+1 and ėiėi+1ėi = ėi,

(7) (a) siyi − yi+1si = −1 and siyi+1 − yisi = 1,
(b) ŝiyi − yi+1ŝi = êi and ŝiyi+1 − yiŝi = −êi,

(8) (a) ėi(yi + yi+1) = 0,
(b) (yi + yi+1)ėi = 0.

Remark 2.2. Notice that the relation (5b) for êi is implied by the relations (7b), (5c) 
and (2c). Moreover, the relations (8a)–(8b) for êi are implied by the same relations for 
ei together with (6a) and the invertibility of ŝi.

Remark 2.3. Notice that we need to impose the relation (3) only for A, i such that ai = 1, 
ai+1 = −1. In fact, consider A′ = siA; we have (e(A′)

i )2 = e
(A′)
i e

(A′)
i = ŝie

(A)
i ŝiŝie

(A)
i ŝi =

ŝi(e(A)
i )2ŝi = ω0ŝie

(A)
i ŝi = ω0e

(A′)
i . In the same way we obtain more generally ėiėi = ω0ėi

for all possible choices.

Remark 2.4. One could give a more general definition taking the ωk’s to be formal central 
parameters. Definition 2.1 would then be a specialized version.

We stress again that we will try to omit the superscript A of the generators of 
VVBrr,t(ω) as often as possible. The formulas we write then hold for all choices which 
make sense.

Definition 2.5. Let A ∈ Seqr,t and fix a sequence ω of complex parameters. The degenerate 
affine walled Brauer algebra corresponding to A is

VVBrA(ω) = EndVVBrr,t(ω)(A). (2.5)

Remark 2.6. Notice that VVBrA(ω) is generated by the s(A)
i , e(A)

i , y(A)
i (for all i such 

that these elements exist). However, these generators satisfy some non-trivial relations 
that are implied by the relations defining the whole category (that involve also other 
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homomorphisms spaces). Of course, we could try to define the degenerate affine walled 
Brauer algebra without using Definition 2.1. But then the relations and the proofs that 
will follow would be much more complicated.

Let for example A = (1, 1, −1), and consider the element e(A)
2 y2e

(A)
2 ∈ VVBrA(ω). Let 

also A′ = (1, −1, 1). Then we have

e
(A)
2 y2e

(A)
2 = e

(A)
2 y2s

(A)
1 s

(A)
1 e

(A)
2

= e
(A)
2 s

(A)
1 y1s

(A)
1 e

(A)
2 + e

(A)
2 s

(A)
1 e

(A)
2

= ê
(A′)
2 e

(A′)
1 ŝ

(A)
2 y1ŝ

(A′)
2 e

(A′)
1 ê

(A)
2 + e

(A)
2 s

(A)
1 e

(A)
2

= ê
(A′)
2 e

(A′)
1 y1e

(A′)
1 ê

(A)
2 + e

(A)
2

= ê
(A′)
2 e

(A′)
1 y1e

(A′)
1 ê

(A)
2 + e

(A)
2

= ω1e
(A)
2 + e

(A)
2 . (2.6)

Notice in particular that in order to obtain the relation e(A)
2 y2e

(A)
2 = (1 + ω1)e(A)

2 in 
VVBrA(ω) we had to use relations involving elements of HomVVBrr,t(ω)(A, A′),
HomVVBrr,t(ω)(A′, A) and HomVVBrr,t(ω)(A′, A′).

The following result is straightforward:

Lemma 2.7. All degenerate affine walled Brauer algebras corresponding to (r, t)-sequences 
are isomorphic.

Proof. The isomorphisms are given by multiplication with a finite composition of 
ṡi’s. �

Let us now recall the definition of the walled Brauer category and of the walled Brauer 
algebras.

Definition 2.8. Let r, t ∈ N and fix a complex parameter δ ∈ C. The walled Brauer 
category Brr,t(δ) is the category which has as objects the (r, t)-sequences A ∈ Seqr,t. 
Morphisms are generated by the s(A)

i , e(A)
i , ̂s(A)

i , ̂e(A)
i as in (2.3) and (2.4) subject to the 

relations (1), (2a)–(2b), (3), (5a) and (6).
For a fixed (r, t)-sequence A ∈ Seqr,t, the corresponding walled Brauer algebra is

BrA(δ) = EndBrr,t(δ)(A). (2.7)

In particular, if A is the standard (r, t)-sequence (2.2) then we set BrA(δ) = Brr,t(δ). 
This is the usual walled Brauer algebra. Notice that, as in Lemma 2.7, all walled Brauer 
algebras (2.7) corresponding to different permutations of A are isomorphic.
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As a direct consequence of the definitions we have a homomorphism

ι : Brr,t(ω0) → VVBrr,t(ω) (2.8)

from the walled Brauer category of parameter ω0 to the degenerate affine walled Brauer 
category.

Notice that all relations defining the degenerate affine walled Brauer category are 
symmetric in i except for (4). We will spend the rest of this section to compute e(A)

i yki e
(A)
i

for all indices i. The following lemma generalizes the relations (7a)–(7b) to higher powers 
of yi:

Lemma 2.9. For all k ∈ N we have

siy
k
i − yki+1si = −

k∑
�=1

y�−1
i+1 y

k−�
i , (2.9)

siy
k
i+1 − yki si =

k∑
�=1

y�−1
i+1 y

k−�
i , (2.10)

ŝiy
k
i − yki+1ŝi =

k∑
�=1

y�−1
i+1 êiy

k−�
i , (2.11)

ŝiy
k
i+1 − yki ŝi = −

k∑
�=1

y�−1
i êiy

k−�
i+1 . (2.12)

Proof. Argue by induction, as in [2, Lemma 2.3]. �
Following [18], we introduce formal power series. Let u be a formal variable, and let 

us work with formal Laurent power series in u−1. Then from (2.9) we have

si
1

u− yi
= u−1si

( ∞∑
k=0

yki u
−k

)

= u−1
∞∑
k=0

(
yki+1si −

k∑
�=1

y�−1
i+1 y

k−�
i

)
u−k

= 1
u− yi+1

si −
1

(u− yi+1)(u− yi)
. (2.13)

Similarly, from (2.10), (2.11) and (2.12) we get respectively:

si
1

u− yi+1
= 1

u− yi
si + 1

(u− yi+1)(u− yi)
, (2.14)

ŝi
1

u− yi
= 1

u− yi+1
ŝi + 1

u− yi+1
êi

1
u− yi

, (2.15)

ŝi
1 = 1

ŝi −
1

êi
1

. (2.16)

u− yi+1 u− yi u− yi u− yi+1
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Set now

W1(u) =
∞∑
k=0

ωku
−k. (2.17)

Choose A ∈ Seqr,t with a1 = 1, a2 = −1. Then relation (4) can be rewritten in the 
compact form

e
(A)
1

1
u− y1

e
(A)
1 = u−1e

(A)
1

( ∞∑
k=0

yk1u
−k

)
e
(A)
1

= u−1

( ∞∑
k=0

ωku
−k

)
e
(A)
1 = W1(u)

u
e
(A)
1 . (2.18)

We remark that W1(u)
u = u−1W1(u) ∈ C�u−1�.

Lemma 2.10. Let A′ ∈ Seqr,t be such that a′1 = −1, a′2 = 1. Then

e
(A′)
1

1
u− y1

e
(A′)
1 = W ∗

1 (u)
u

e
(A′)
1 (2.19)

where
W ∗

1 (u)
u

= W1(−u)
u−W1(−u) . (2.20)

Proof. Let A = s1A′ and compute using (2.15):

e
(A′)
1

1
u− y1

e
(A′)
1 = ŝ1e

(A)
1 ŝ1

1
u− y1

ŝ1e
(A)
1 ŝ1

= ŝ1e
(A)
1

1
u− y2

ŝ1ŝ1e
(A)
1 ŝ1 + ŝ1e

(A)
1

1
u− y2

ê
(A′)
1

1
u− y1

ŝ1e
(A)
1 ŝ1

= ŝ1e
(A)
1

1
u + y1

e
(A)
1 ŝ1 + ŝ1e

(A)
1

1
u + y1

e
(A)
1 ŝ1

1
u− y1

ŝ1e
(A)
1 ŝ1

= W1(−u)
u

ŝ1e
(A)
1 ŝ1 + W1(−u)

u
ŝ1e

(A)
1 ŝ1

1
u− y1

ŝ1e
(A)
1 ŝ1

= W1(−u)
u

e
(A′)
1 + W1(−u)

u
e
(A′)
1

1
u− y1

e
(A′)
1 . (2.21)

The claim follows. �
Remark 2.11. Notice that the map ∗ : C�u−1� → C�u−1� defined by

f∗(u) = f(−u)
1 − u−1f(−u) (2.22)

is an involution, that is f∗∗(u) = f(u) for all u ∈ C�u−1�.
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Let R = C[y1, . . . , yr+t]. Then the same proof as for Lemma 2.10 gives the following 
more general result:

Lemma 2.12. Let A ∈ Seqr,t and suppose ai 	= ai+1 for some index i. Suppose that for 
A′ = siA the following holds:

e
(A′)
i

1
u− yi

e
(A′)
i = W

(A′)
i (u)
u

e
(A′)
i , (2.23)

for some W (A′)
i ∈ R�u−1�. Then

e
(A)
i

1
u− yi

e
(A)
i = W

(A)
i (u)
u

e
(A)
i , (2.24)

where

W
(A)
i (u)
u

= W
(A′)
i (−u)

u−W
(A′)
i (−u)

. (2.25)

Lemma 2.13. Let A ∈ Seqr,t with either (ai, ai+1, ai+2) = (1, 1, −1) or (ai, ai+1, ai+2) =
(−1, −1, 1) for some index i. Suppose that for A′ = si+1A the following holds:

e
(A′)
i

1
u− yi

e
(A′)
i = W

(A′)
i (u)
u

e
(A′)
i , (2.26)

for some W (A′)
i ∈ R�u−1�. Then

e
(A)
i+1

1
u− yi+1

e
(A)
i+1 =

W
(A)
i+1 (u)
u

e
(A)
i+1, (2.27)

where W (A)
i+1 (u) is determined by

W
(A)
i+1 (u) + u

W
(A′)
i (u) + u

= (u− yi)2

(u− yi)2 − 1 . (2.28)

Proof. The proof is a direct calculation. First, we use s2
i = 1 and (2.14):

ei+1
1

u− yi+1
ei+1 = ei+1sisi

1
u− yi+1

ei+1

= ei+1si
1

siei+1 + ei+1si
1

ei+1. (2.29)

u− yi (u− yi+1)(u− yi)
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Since ei+1 = siŝi+1eiŝi+1si, and since yi commutes with ŝi+1, we can rewrite the first 
summand as

siŝi+1ei
1

u− yi
eiŝi+1si = Wi(u)

u
ei+1. (2.30)

For the second summand of (2.29), since yi+1ei+1 = −yi+2ei+1 and yi+2 commutes with 
si, we can write

ei+1si
1

(u− yi+1)(u− yi)
ei+1 = ei+1

1
u− yi+1

si
1

u− yi
ei+1 (2.31)

and using (2.13) we get

ei+1si
1

(u− yi)2
ei+1 + ei+1

1
(u− yi+1)(u− yi)2

ei+1, (2.32)

that by the commutativity of yi and ei+1 is

1
(u− yi)2

ei+1 + 1
(u− yi)2

ei+1
1

u− yi+1
ei+1. (2.33)

Putting all together, we obtain
(

1 − 1
(u− yi)2

)
ei+1

1
u− yi+1

ei+1 =
(
Wi(u)

u
+ 1

(u− yi)2

)
ei+1, (2.34)

that is equivalent to our claim. �
We have then the following generalization of relation (4):

Proposition 2.14. Let A ∈ Seqr,t and let i be an index such that ai 	= ai+1. Then we have

e
(A)
i

1
u− yi

e
(A)
i = W

(A)
i (u)
u

e
(A)
i , (2.35)

for some power series W (A)
i (u) ∈ C[y1, . . . , yi−1]�u−1� which can be determined recur-

sively using (2.28) and (2.25). Moreover, the power series W (A)
i (u) depends only on 

(a1, . . . , ai), that is W (A)
i = W

(A′)
i if the sequences A and A′ coincide up to the index i.

Proof. We prove by induction on i that (2.35) holds for all (r, t)-sequences such that 
ai 	= ai+1. If i = 1 then this follows from (2.18) or (2.19). Now let us suppose that 
the claim holds for i and consider i + 1. If ai = ai+1 then we can apply Lemma 2.13. 
Otherwise we can apply Lemma 2.13 and get the claim for si+1A, and then deduce the 
result for A using Lemma 2.12. �



A. Sartori / Journal of Algebra 417 (2014) 198–233 209
3. A diagrammatic description

We give now a graphical description of the degenerate affine walled Brauer category, 
that we will use to describe a set of generators as a vector space.

To A ∈ Seqr,t we assign a sequence of r + t oriented points on a horizontal line, 
numbered from 1 to r + t from left to right. Each point can be oriented upwards or 
downwards: the point i is oriented upwards if ai = 1 and downwards otherwise.

Given A, A′ ∈ Seqr,t, a morphism ϕ ∈ HomVVBrr,t(ω)(A, A′) is a C-linear combination 
of strand diagrams that connect the point sequence corresponding to A to the point 
sequence corresponding to A′. In each strand diagram the strands are oriented according 
to the orientations of the endpoints. The generating morphisms are:

s
(A)
i =

a1

a1

· · ·

ai−1

ai−1

ai

ai+1

ai+1

ai

ai+2

ai+2

· · ·

ar+t

ar+t

(3.1)

e
(A)
i =

a1

a1

· · ·

ai−1

ai−1

ai ai+1

ai ai+1

ai+2

ai+2

· · ·

ar+t

ar+t

(3.2)

ŝ
(A)
i =

a1

a1

· · ·

ai−1

ai−1

ai

ai

ai+1

ai+1

ai+2

ai+2

· · ·

ar+t

ar+t

(3.3)

ê
(A)
i =

a1

a1

· · ·

ai−1

ai−1

ai ai+1

ai+1 ai

ai+2

ai+2

· · ·

ar+t

ar+t

(3.4)

y
(A)
i =

a1

a1

· · ·

ai−1

ai−1

ai

ai

ai+1

ai+1

ai+2

ai+2

· · ·

ar+t

ar+t

(3.5)

We did not draw the orientations of all the strands, but as we said they are supposed to be 
oriented according to the (r, t)-sequences. Moreover, for each of the first four generators 
we have only depicted the case ai = 1; in the case ai = −1 the orientations are swapped.

Composition of morphisms is obtained by stacking diagram vertically, from the bottom 
to the top. We will say that a strand is decorated if there is at least one dot on it.

Let us now translate the defining relations of VVBrr,t(ω) into diagrams. Relations 
(1), (2a)–(2b), (5a) and (6a)–(6d) allow us exactly to stretch undecorated strands. By 
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relations (2c) and (5b)–(5c), dots can be moved vertically as long as they do not step 
over crossings; by relations (8a)–(8b), if they step over a maximum or minimum, a sign 
appears. By relation (3) we can remove each closed undecorated circle and multiply by 
ω0. Using Proposition 2.14 we can actually remove every decorated circle on the cost of 
multiplying by the corresponding term of the power series W (A)

i (u). The only relations 
we have not yet considered are (7a)–(7b), which we can use to make dots step over 
crossings.

We will call a diagram representing a morphism A → B an AB-Brauer diagram, or 
an A-Brauer diagram if A = B. It is undecorated if there are no dots on it, and it is 
actually an element of the corresponding walled Brauer algebra. An AB-Brauer diagram 
is called a monomial if it is of the type

yγ1
1 · · · yγr+t

r+t Dyη1
1 · · · yηr+t

r+t , (3.6)

where D is an undecorated AB-Brauer diagram. We say that such a monomial is regular
if ηi = 0 whenever the point ai on the bottom of D is the left endpoint of a horizontal arc, 
and γi 	= 0 implies that the point bi on the top of D is the left endpoint of a horizontal 
arc.

Example 3.1. Of the following four AB-Brauer diagrams representing monomials, only 
the first one is regular.

On VVBrr,t(ω) we define a filtration (as an algebra)

{0} = V−1 ⊆ V0 ⊆ V1 ⊆ · · · (3.7)

by letting Vi be the vector span of all strand diagrams with at most i dots. As always, 
given a filtered algebra we can consider the associated graded algebra. Let us denote 
by VVBrgradr,t (ω) the associated graded category. Let moreover G be the category with the 
same generators and the same relations of VVBrr,t(ω) except for (7a)–(7b), which are 
replaced by

(7′) ṡiyi = yi+1ṡi and ṡiyi+1 = yiṡi.

Clearly VVBrgradr,t (ω) is a quotient of G.
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Proposition 3.2. The regular monomials generate VVBrr,t(ω) as a vector space over C.

Proof. It is straightforward to see that the regular monomials generate G, because in G
dots can step over crossings thanks to the relation (7′). It follows that they also generate 
VVBrr,t(ω). �

It follows directly from [5, Theorem 1.2] that regular monomials (which are called 
normally ordered dotted oriented diagrams in [5]) actually give a basis of VVBrr,t(ω):

Theorem 3.3. (See [5, Theorem 1.2].) For all choices of parameters ω, regular monomials 
give a basis of VVBrr,t(ω) over C.

This also implies that regular monomials give a basis of G, and that G ∼= VVBrgradr,t (ω). 
It follows moreover that the map (2.7) is an embedding of algebras.

We will make use of Theorem 3.3 only in Section 4, in order to compute the cen-
ter of VVBrr,t(ω). Our main interest in this paper, however, is the action of degenerate 
affine walled Brauer algebras on modules in category O(glN ). Using such action, we 
will prove in Section 6, independently from the results of [5], that cyclotomic regular 
monomials give a basis of cyclotomic quotients of the degenerate affine walled Brauer 
category.

4. The center

We are now going to determine the center of the degenerate affine walled Brauer 
category. Our computations are analogous to the ones in [11]. In this section, we will 
use several times the fact the fact that regular monomials give a basis of VVBrr,t(ω), see 
Theorem 3.3.

Recall that the center of a category is by definition the endomorphism ring of its 
identity endofunctor. If A is a C-algebra with a finite number of pairwise orthogonal 
idempotents, then its center coincides with the center of the corresponding C-linear 
category (see the beginning of Section 2).

Let R be the polynomial ring R = C[y1, . . . , yr+t]. Observe that for each pair A, B ∈
Seqr,t, the vector space HomVVBrr,t(ω)(A, B) is an R-bimodule.

Definition 4.1. (See also [11].) We say that a polynomial p ∈ R satisfies Q-cancellation
with respect to the variables y1, y2 if

p(y1,−y1, y3, . . . , yr+t) = p(0, 0, y3, . . . , yr+t). (4.1)

Analogously we say that p satisfies Q-cancellation with respect to the variables yi, yj if 
w · p satisfies (4.1), where w ∈ Sr+t is the permutation that exchanges 1 with i and 2
with j and Sr+t acts on R permuting the variables.
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We have then the following:

Theorem 4.2. The center of VVBrr,t(ω) is isomorphic to the subring of (Sr×St)-invariant 
polynomials p ∈ RSr×St which satisfy Q-cancellation with respect to the variables yr, yr+1. 
The isomorphism is given by the map

p 
→
∑

A∈Seqr,t

(wA · p)idA, (4.2)

where for each A ∈ Seqr,t the element wA is a permutation such that wA ·(1r, (−1)t) = A.

Proof. Let Z be the center of VVBrr,t(ω). By definition an element f ∈ Z is an element

f ∈
⊕

A∈Seqr,t

EndVVBrr,t(ω)(A) (4.3)

such that fϕ = ϕf for all morphisms ϕ ∈ HomVVBrr,t(ω)(A, A′) and for all pairs A, A′ ∈
Seqr,t.

Let us pick an A ∈ Seqr,t. As in the proof of [11, Theorem 4.3], it is easy to show 
using Theorem 3.3 that for such an f to commute with all endomorphisms of A the 
component of f in EndVVBrr,t(ω)(A) has to be a polynomial pA ∈ R. In particular, we 
must have f =

∑
A∈Seqr,t

pAidA.
Let us now fix A0 = (1r, (−1)t). Since pA0 has to be central in VVBrA0(ω) =

EndVVBrr,t(ω)(A0), it follows from Lemmas 4.4 and 4.5 below that pA0 ∈ RSr×St and 
pA0 has to satisfy Q-cancellation with respect to yr, yr+1. On the other side, it follows 
by the same lemmas and the fact that the si’s, ei’s and yi’s generate VVBrA0(ω) that 
such a pA0 is central in VVBrA0(ω).

Finally, it follows from Lemma 4.6 below that such an f is central in the whole category 
if and only if pA = wA · pA0 for all A = wA ·A0. �

As a corollary of the theorem (and of its proof), we can describe the center of the 
degenerate affine walled Brauer algebras:

Corollary 4.3. Let A ∈ Seqr,t and WA ⊂ Sr+t be the subgroup that fixes A. Let also i, j
be two indices such that ai 	= aj. Then the center of VVBrA(ω) = EndVVBrr,t(ω)(A) is the 
image under p 
→ p · idA of the polynomials p ∈ RWA that satisfy Q-cancellation with 
respect to the variables yi, yj.

We conclude the section with the technical lemmas which we used for the proof of 
Theorem 4.2.

Lemma 4.4. Let A ∈ Seqr,t with ai = ai+1. The polynomial p ∈ R commutes with si in 
VVBrA(ω) if and only if si · p = p.
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Proof. For notational convenience let us suppose i = 1. Let p ∈ R and write

p =
∑
a,b∈N

ya1y
b
2pa,b with pa,b ∈ C[x3, . . . , xr+t]. (4.4)

Using (2.9) and (2.10) we get

s1y
a
1y

b
2 = ya2y

b
1s1 −

ya1y
b
2 − ya2y

b
1

y1 − y2
(4.5)

and hence

s1p = (s1 · p)s1 −
p− s1 · p
y1 − y2

. (4.6)

It follows, using Theorem 3.3, that p commutes with s1 if and only if s1 · p = p. �
Lemma 4.5. Let A ∈ Seqr,t with ai 	= ai+1. The polynomial p ∈ R commutes with ei in 
VVBrA(ω) if and only if it satisfies Q-cancellation with respect to yi, yi+1.

Proof. Let us suppose i = 1 and write p as in (4.4). We have

e1p− pe1 = e1

( ∑
a,b∈N
a+b>0

ya1y
b
2pa,b

)
−
( ∑

a,b∈N
a+b>0

ya1y
b
2pa,b

)
e1. (4.7)

It follows from Theorem 3.3 that the two vector subspaces generated by the elements 
{e1y

a
1y

b
2pa,b | a, b ∈ N, a + b > 0} and {ya1yb2pa,be1 | a, b ∈ N, a + b > 0}, respectively, 

have trivial intersection. Hence (4.7) = 0 if and only if both summands of the r.h.s. 
vanish. Now

e1

( ∑
a,b∈N
a+b>0

ya1y
b
2pa,b

)
= e1

( ∑
a,b∈N
a+b>0

ya1 (−y1)bpa,b
)

= e1
(
p(y1,−y1, y3, . . . , yr+t) − p(0, 0, y3, . . . , yr+t)

)
(4.8)

vanishes if and only if p satisfies Q-cancellation with respect to y1, y2, and similarly for 
the second summand. �
Lemma 4.6. Let A ∈ Seqr,t with ai 	= ai+1. Then there exists a polynomial q ∈ R such 
that ŝip = qŝi if and only if p satisfies Q-cancellation with respect to yi, yi+1. In this 
case we have q = si · p.

Proof. Again, let us suppose i = 1, and let us write p as in (4.4). Using (2.11) and (2.12)
we get
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ŝ1y
a
1y

b
2 = ya2y

b
1ŝ1 + (−1)a

a+b∑
�=1

(−1)�ya+b−�
1 ê1y

�−1
1 (4.9)

and hence

ŝ1p = (s1 · p)ŝ1 +
∑

k∈Z>0

(
r∑

�=1

(−1)�yr−�
1 ê1y

�−1
1

)(
k∑

b=0

(−1)k−bpk−b,b

)
. (4.10)

Using Theorem 3.3, the claim follows since 
∑k

b=0(−1)bpk−b,k = 0 for every k > 0 if and 
only if p satisfies Q-cancellation with respect to yi, yi+1. �
5. Action on glN -representations

In this section we will define an action of the degenerate affine walled Brauer category 
on glN -representations.

Let us fix an integer N ≥ 2 and let I = {1, . . . , N}. Let glN be the Lie algebra of 
N×N matrices. We denote by Eij the matrix that has a one at position (i, j) and zeroes 
elsewhere. We let h ⊂ glN be the standard Cartan subalgebra of diagonal matrices and 
glN = n+ ⊕ h ⊕ n− the triangular decomposition of glN . A basis of h is given by the 
matrices Hi = Eii. Let εi be the basis of h∗ dual to Eii.

The set of roots of glN is Π = {εi − εj | i 	= j}; a root is positive if i > j, negative 
otherwise. The set of positive (resp. negative) roots will be denoted by Π+ (resp. Π−). 
The simple roots are αi = εi − εi+1 for all i = 1, . . . , N − 1. We will denote the root 
vectors by Xij for all i 	= j or Xα for α ∈ Π.

On glN we consider the non-degenerate symmetric bilinear form defined by

(A|B) = tr(AB). (5.1)

Notice that the set {Hi, Xα | i ∈ I, α ∈ Π} gives an orthonormal basis of glN .
The vector representation of glN is the N -dimensional vector space V with basis 

{vi | i ∈ I} on which the action of glN is given by

Xijvk = δjkvi, Hivk = δikvk, (5.2)

where δij is the Kronecker delta. The dual vector representation V ∗ has basis {v∗i | i ∈ I}, 
and the action of glN is given explicitly by

Xijv
∗
k = −δikv

∗
j , Hiv

∗
k = −δikv

∗
k. (5.3)

We have linear homomorphisms σW,Z : W ⊗Z → Z ⊗W , τW : W ⊗W ∗ → W ⊗W ∗, 
τ̂W : W ⊗W ∗ → W ∗ ⊗W , where W, Z are either V or V ∗ and V ∗∗ = V , defined by
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σW,Z : wi ⊗ zj 
−→ zj ⊗ wi (5.4)

τW : wi ⊗ w∗
j 
−→ δij

∑
k∈I

(
wk ⊗ w∗

k

)
(5.5)

τ̂W : wi ⊗ w∗
j 
−→ δij

∑
k∈I

(
w∗

k ⊗ wk

)
(5.6)

where wi, zi are either vi or v∗i , and v∗∗i = vi. It is immediate to check that these are 
indeed homomorphisms of glN -representations.

For an (r, t)-sequence A we let V ⊗A = V a1⊗· · ·⊗V ar+t , where V 1 = V and V −1 = V ∗. 
Let also M be a glN -module. The linear homomorphisms (5.4), (5.5) and (5.6) induce 
the following endomorphisms of M ⊗V ⊗A for all 1 ≤ i, j ≤ r+ t −1 such that ai = ai+1, 
aj 	= aj+1:

si = id ⊗ id⊗(i−1) ⊗ σV ai ,V ai+1 ⊗ id⊗(r+t−i−1) (5.7)

ej = id ⊗ id⊗(i−1) ⊗ τV aj ⊗ id⊗(r+t−i−1) (5.8)

and the following homomorphisms M ⊗ V ⊗A → M ⊗ V ⊗A′ where A′ = sjA for some 
simple transposition sj ∈ Sr+t:

ŝi = id ⊗ id⊗(i−1) ⊗ σV ai ,V ai+1 ⊗ id⊗(r+t−i−1) (5.9)

êj = id ⊗ id⊗(i−1) ⊗ τ̂V aj ⊗ id⊗(r+t−i−1). (5.10)

Let U(glN ) be the universal enveloping algebra of glN . The Casimir operator of 
U(glN ) ⊗ U(glN ) is

Ω =
∑
i∈I

Hi ⊗Hi +
∑
α∈Π

Xα ⊗X−α. (5.11)

The Casimir element of U(glN ) is C = m(Ω), where m : U(glN ) ⊗ U(glN ) → U(glN ) is 
the multiplication. Writing Ω =

∑
x(1) ⊗ x(2), we define for 0 ≤ i < j ≤ r + t

Ωij =
∑

1 ⊗ · · · ⊗ 1 ⊗ x(1) ⊗ 1 ⊗ · · · ⊗ 1 ⊗ x(2) ⊗ 1 ⊗ · · · ⊗ 1, (5.12)

where x(1) is at position i and x(2) is at position j, starting with position 0. Multiplication 
by Ωij defines an element of EndglN

(M ⊗ V ⊗A), and we set for 1 ≤ i ≤ r + t

yi =
∑

0≤k<i

Ωki + N

2 . (5.13)

Lemma 5.1. Let M be a highest weight module. Let A ∈ Seqr,t with a1 = 1, a2 = −1. 
For all k ∈ N there exist ωk(M) ∈ C with ω0(M) = N such that e1y

k
1e1 = ωk(M)e1 as 

elements in Endgl (M ⊗ V ⊗A).

N
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Proof. Consider the composition

f : M = M ⊗ C −→ M ⊗ V ⊗ V ∗ yk
1−→ M ⊗ V ⊗ V ∗ −→ M ⊗ C = M, (5.14)

where the first map is the canonical inclusion and the last one is the evaluation. Since M
is a highest weight module, f must be a multiple, say ωk(M), of the identity. It is then 
clear that e1y

k
1e1 = ωk(M)e1 as elements in EndglN

(M ⊗ V ⊗ V ∗). Adding identities on 
the following tensor factors, the identity holds also for M ⊗ V ⊗A as in the statement.

The fact that ω0(M) = N follows by elementary direct computation, and is true for 
every module M . �

We are ready to state our first main theorem; the computations needed for the proof 
are collected in Section 8.

Theorem 5.2. Let M be a highest weight module for glN , and let ω = (ωk(M))k∈N

be the sequence of complex numbers given by Lemma 5.1. Then the assignment A 
→
M ⊗ V ⊗A and formulas (5.7), (5.8), (5.9), (5.10), (5.13) define a functor VVBrr+t(ω) →
O(glN ). In particular, we have a well-defined action of VVBrA(ω) on M ⊗V ⊗A for every 
(r, t)-sequence A.

Proof. We need to show that the relations of the degenerate affine walled Brauer category 
are satisfied by definitions (5.7), (5.8), (5.9), (5.10), (5.13) for a highest weight module M . 
The relations are checked in details in Section 8.

Relation (1) is obvious, as are relations (2a)–(2b). Relation (2c) follows from 
Lemma 8.1. Relation (3) follows because ω0(M) = N . Relation (4) is implied by 
Lemma 5.1 and our choice of ω. Relation (5a) is trivial. Relation (5b) follows from 
Lemma 8.3 and Remark 2.2. Relation (5c) is Lemma 8.5. Relation (6a) is straightfor-
ward, while relations (6b)–(6d) are shortly discussed as Lemma 8.6. Relations (7a) are 
Lemma 8.8, while relations (7b) are Lemma 8.10. �

As a corollary, we have a non-triviality result for VVBrr,t(ω), independent from Theo-
rem 3.3:

Corollary 5.3. Suppose N ≥ r+t. If ω is chosen as in Lemma 5.1 then the homomorphism 
ι from (2.8) is injective. In particular, VVBrr,t(ω) is non-trivial.

Proof. Composing ι with the action of VVBrr,t(ω) on M⊗V ⊗A and forgetting the highest 
weight module M one obtains the standard action of the walled Brauer category Brr,t(N)
on V ⊗A. It is known (see [3]) that this action is injective if N ≥ r + t. In particular, 
ι has to be injective. �
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6. Cyclotomic quotients

We will consider in this section cyclotomic quotients of the degenerate affine walled 
Brauer category of level two.

Fix two positive integers m, n ∈ N and let N = m + n and I = {1, . . . , m + n}. Let 
glm+n be the complex general linear Lie algebra with its Levi subalgebra glm ⊕ gln; let 
p = (glm ⊕ gln) + n+ be the corresponding standard parabolic subalgebra.

Let us set

ρ = −ε2 − 2ε3 − · · · − (m + n− 1)εm+n. (6.1)

Let O(m, n) = O
p

int(glm+n) be the category of finitely generated gln+m-modules that 
are locally finite over p, semisimple over h, and have all integral weights (when regarded 
as slm+n-modules). This category is studied extensively in [7]. A full set of representatives 
for the isomorphism classes of irreducible modules in O(m, n) is given by the modules 
{L(λ) | λ ∈ Λ(m, n)}, where

Λ(m,n) =

⎧⎪⎨
⎪⎩λ ∈ h∗

∣∣∣∣∣∣∣
(λ + ρ, εi − εj) ∈ Z for all 1 ≤ i, j ≤ m + n,

(λ + ρ, ε1) > · · · > (λ + ρ, εm),
(λ + ρ, εm+1) > · · · > (λ + ρ, εm+n)

⎫⎪⎬
⎪⎭ (6.2)

and L(λ) is the irreducible gln+m-module of highest weight λ. The module L(λ) is the 
irreducible head of the parabolic Verma module Mp(λ). This parabolic Verma module is 
also the largest quotient of the (non-parabolic) Verma module M(λ) ∈ O(glm+n) which 
lies in the parabolic subcategory O(m, n).

Notice that the weights of the vector representation V are ε1, . . . , εn+m, while the 
weights of V ∗ are −ε1, . . . , −εn+m. By the tensor identity, the module M(λ) ⊗ V (resp. 
M(λ) ⊗ V ∗) has a filtration with sections isomorphic to M(λ + εj) (resp. M(λ − εj)) 
for all j ∈ I. It follows, by the characterization of the parabolic Verma modules and 
because tensoring with V and V ∗ are endofunctors of O(m, n) (see [7, Lemma 4.3]), that 
Mp(λ) ⊗ V has a filtration with sections isomorphic to Mp(λ + εj) for all j such that 
λ + εj ∈ Λ(m, n); similarly, Mp(λ) ⊗ V ∗ has a filtration with sections isomorphic to 
Mp(λ − εj) for all j such that λ − εj ∈ Λ(m, n).

For δ ∈ Z we set

δ = −δ(ε1 + · · · + εm). (6.3)

Lemma 6.1. Suppose m, n ≥ 1 and δ 	= m. Then there is an isomorphism of 
gln+m-modules

Mp(δ) ⊗ V ∼= Mp(δ + ε1) ⊕Mp(δ + εm+1). (6.4)
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This is also an eigenspace decomposition for the action of y1, with eigenvalues

β1 = −δ + m + n

2 and β2 = n−m

2 . (6.5)

Proof. By the discussion above and the definition of δ, we have that Mp(δ) ⊗ V has a 
filtration with parabolic Verma modules Mp(δ + ε1) and Mp(δ + εm+1). Since δ + ε1 >

δ + εm+1, the term Mp(δ + ε1) is a submodule, hence we have

0 → Mp(δ + ε1) → Mp(δ) ⊗ V → Mp(δ + εm+1) → 0. (6.6)

Let C be the Casimir element of glm+n as defined in Section 5. By a straightforward 
computation, C acts as 〈λ, λ +2ρ〉 on the highest vector of Mp(λ), and hence on the whole 
module. In particular, as V is the irreducible head of Mp(ε1), C act as 〈ε1, ε1+2ρ〉 on V . If 
we denote by Δ the comultiplication of U(glm+n), note that Δ(C) = C⊗1 +1 ⊗C+2Ω. 
Hence using the action of the Casimir element we can compute the action of Ω on 
Mp(δ + ε1), that is given by the scalar

1
2
(
〈δ + ε1, δ + ε1 + 2ρ〉 − 〈δ, δ + 2ρ〉 − 〈ε1, ε1 + 2ρ〉

)
= 1

2
(
〈δ, δ + 2ρ〉 + 〈ε1, ε1 + 2ρ〉 + 2〈δ, ε1〉 − 〈δ, δ + 2ρ〉 − 〈ε1, ε1 + 2ρ〉

)
= 〈δ, ε1〉 = −δ, (6.7)

so that the action of y1 is given by −δ + m+n
2 .

Analogously, the action of Ω on (Mp(δ) ⊗ V )/Mp(δ + ε1) ∼= Mp(δ + εm+1) is given 
by the scalar

1
2
(
〈δ + εm+1, δ + εm+1 + 2ρ〉 − 〈δ, δ + 2ρ〉 − 〈ε1, ε1 + 2ρ〉

)
= 1

2
(
〈δ, δ + 2ρ〉 + 〈εm+1, εm+1 + 2ρ〉 + 2〈δ, εm+1〉 − 〈δ, δ + 2ρ〉 − 〈ε1, ε1 + 2ρ〉

)
= 1

2
(
1 + 〈εm+1, 2ρ〉 + 2〈δ, εm+1〉 − 1 − 〈ε1, 2ρ〉

)
= 〈εm+1 − ε1, ρ〉 + 〈δ, εm+1〉 = −m, (6.8)

and the action of y1 is given by −m + m+n
2 .

Since the two factors (6.7) and (6.8) are different, they are indeed eigenvalues for the 
action of Ω and the exact sequence (6.6) splits. �
Remark 6.2. If δ = m then the two eigenvalues β1 and β2 coincide. In this case, the short 
exact sequence (6.6) does not split. The element (y1 − β1)2 vanishes on Mp(δ) ⊗ V .
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Lemma 6.3. Suppose m, n ≥ 1 and δ 	= n. Then there is an isomorphims of 
gln+m-modules

Mp(δ) ⊗ V ∗ ∼= Mp(δ − εm+n) ⊕Mp(δ − εm). (6.9)

This is also an eigenspace decomposition for the action of y1, with eigenvalues

β∗
1 = m + n

2 and β∗
2 = δ + m− n

2 . (6.10)

Proof. The proof is analogous to the previous one. We just note that the highest weight 
of V ∗ is −εm+n and compute the action of Ω on the summand Mp(δ − εm):

1
2
(
〈δ − εm, δ − εm + 2ρ〉 − 〈δ, δ + 2ρ〉 − 〈−εm+n,−εm+n + 2ρ〉

)
= 1

2
(
〈δ, δ + 2ρ〉 − 〈εm,−εm + 2ρ〉 − 2〈δ, εm〉

− 〈δ, δ + 2ρ〉 + 〈εm+n,−εm+n + 2ρ〉
)

= −〈εm − εm+n, ρ〉 − 〈δ, εm〉 = −n + δ, (6.11)

so that the action of y1 is given by δ + m−n
2 , and on the summand Mp(δ − εm+n):

1
2
(
〈δ − εm+n, δ − εm+n + 2ρ〉 − 〈δ, δ + 2ρ〉 − 〈−εm+n,−εm+n + 2ρ〉

)
= 1

2
(
〈δ, δ + 2ρ〉 − 〈εm+n,−εm+n + 2ρ〉 − 2〈δ, εm+n〉

− 〈δ, δ + 2ρ〉 + 〈εm+n,−εm+n + 2ρ〉
)

= −〈δ, εm+n〉 = 0, (6.12)

and the action of y1 is given by m+n
2 . �

Remark 6.4. Also in this case, if δ = n then β∗
1 = β∗

2 and instead of (6.9) we have a short 
exact sequence that does not split. The element (y1 − β∗

1)2 vanishes on Mp(δ) ⊗ V ∗.

We define now the cyclotomic walled Brauer category of level two:

Definition 6.5. Let r, t ∈ N and fix a sequence ω of complex parameters. Let also β1, 
β2, β∗

1 , β∗
2 be complex numbers. The cyclotomic walled Brauer category VVBrr,t(ω; β1, β2;

β∗
1 , β

∗
2) is the quotient of VVBrr,t(ω) obtained imposing to the degenerate affine walled 

Brauer category VVBrr,t(ω) the following relations:

(
y
(A)
1 − β1

)(
y
(A)
1 − β2

)
= 0 for every A ∈ Seqr,t with a1 = 1, (6.13)(

y
(A′)
1 − β∗

1
)(
y
(A′)
1 − β∗

2
)

= 0 for every A′ ∈ Seqr,t with a′1 = −1. (6.14)
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If A is an (r, t)-sequence, we define the cyclotomic walled Brauer algebra

VVBrA
(
ω;β1, β2;β∗

1 , β
∗
2
)

= EndVVBrr,t(ω;β1,β2;β∗
1 ,β

∗
2 )(A). (6.15)

Remark 6.6. We remark that we really need to quotient out both (6.13) and (6.14) in 
order to be sure that we get a finite dimensional quotient. Moreover, we point out that 
it is important to first take the cyclotomic quotient of the whole category and then 
define the cyclotomic walled Brauer algebras to be the endomorphism algebras in the 
cyclotomic category: if we would define the cyclotomic algebras to be the cyclotomic 
quotients of the degenerate affine algebras by relations (6.13) or (6.14), then they would 
not be in general finite dimensional.

For general parameters ω, β1, β2, β∗
1 , β

∗
2 we cannot say anything about the cyclotomic 

quotient VVBrr,t(ω; β1, β2; β∗
1 , β

∗
2), which could even be trivial. However, if the parameters 

are chosen carefully, we will prove that the cyclotomic walled Brauer algebras are finite 
dimensional of dimension 2r+t(r + t)!, as one would expect.

We have the following consequence of the definition and of Theorem 5.2:

Corollary 6.7. Fix integers r, t with r ≥ 1, and let A ∈ Seqr,t. Fix also δ ∈ Z and 
m, n ≥ 1. Then the action of Theorem 5.2 factors through the cyclotomic quotient, 
defining a functor

VVBrr,t
(
ω;β1, β2;β∗

1 , β
∗
2
)
−→ O(m,n)

A 
−→ Mp(δ) ⊗ V ⊗A (6.16)

and in particular an action of VVBrA(ω; β1, β2; β∗
1 , β

∗
2) on Mp(δ) ⊗ V ⊗A, where ω is as 

in Theorem 5.2, while β1, β2, β∗
1 , β

∗
2 are given by Lemmas 6.1 and 6.3.

We will need a finite set of generators for the cyclotomic walled Brauer category:

Proposition 6.8. The regular monomials

yγ1
1 · · · yγr+t

r+t Byη1
1 · · · yηr+t

r+t with γi, ηj ∈ {0, 1} for all i, j (6.17)

generate the cyclotomic walled Brauer category VVBrA(ω; β1, β2; β∗
1 , β

∗
2).

Proof. As in the proof of Proposition 3.2, it is enough to prove the statement for the 
associated graded category G′ (since the filtration on the degenerate affine walled Brauer 
category descends to a filtration on the cyclotomic quotient). Of course all regular mono-
mials generate the cyclotomic quotient by Proposition 3.2. Consider a regular monomial: 
we can move the strands so that every strand at some level happens to be the leftmost 
strand. Now if some γi or ηi is bigger than 1, then there are at least two dots on some 
strand. Using relations (7′) for G′, we can move the two dots along the strand until they 
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reach the level at which there are no other strands on their left. By the graded cyclotomic 
relation, this monomial is zero in the cyclotomic quotient. �

We will call the elements (6.17) cyclotomic regular monomials. We are now ready to 
prove our second main result:

Theorem 6.9. Let m, n, r, t, δ be integer numbers with m, n, r ≥ 1, t ≥ 0 and m, n ≥ r+ t. 
Let ω = ω(Mp(δ)) be given by Lemma 5.1 and

β1 = −δ + m + n

2 , β2 = n−m

2 , (6.18)

β∗
1 = m + n

2 , β∗
2 = δ + m− n

2 (6.19)

as given by Lemmas 6.1 and 6.3.
Then the cyclotomic regular A-monomials of Proposition 6.8 form a basis of VVBrA(ω;

β1, β2; β∗
1 , β

∗
2) and we have an isomorphism of algebras

VVBrA
(
ω;β1, β2;β∗

1 , β
∗
2
) ∼= Endgln+m

(
Mp(δ) ⊗ V ⊗A

)
. (6.20)

In particular dimC VVBrA(ω; β1, β2; β∗
1 , β

∗
2) = 2r+t(r + t)!.

Before proving the theorem, let us state the following important corollary:

Corollary 6.10. With the hypotheses of Theorem 6.9, the cyclotomic walled Brauer algebra 
VVBrA(ω; β1, β2; β∗

1 , β
∗
2) inherits a grading and a graded cellular algebra structure, where 

the graded decomposition numbers are given by parabolic Kazhdan–Lusztig polynomials 
of type A.

Proof. By Theorem 6.9 we need to prove the claim for the endomorphism algebra

EndO(m,n)
(
Mp(δ) ⊗ V ⊗A

)
. (6.21)

Notice that the weight δ is either a dominant weight or an anti-dominant weight for the 
parabolic category O(m, n) (it is dominant if δ ≤ n and it is anti-dominant weight if 
δ ≥ m, but it could also happen that it is both dominant and anti-dominant). Hence 
the parabolic Verma module Mp(δ) is either a projective module or a tilting module in 
O(m, n).

If Mp(δ) is projective then Mp(δ) ⊗V ⊗A is also a projective module. If Mp(δ) is tilting, 
then Mp(δ) ⊗ V ⊗A is also tilting. Since the blocks of O(m, n) are Ringel self-dual (for 
the regular blocks this is [17, Proposition 4.4], and since p ⊂ glN is a maximal parabolic 
subalgebra the singular blocks are equivalent to regular blocks for smaller N ’s), the 
endomorphism algebra of this tilting module is isomorphic to the endomorphism algebra 
of a projective module.
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In both cases, (6.21) is then isomorphic to an idempotent truncation of the endomor-
phism algebra of a projective generator of a sum of blocks of O(m, n). Since blocks of 
O(m, n) are graded quasi-hereditary, this idempotent truncation inherits the structure 
of a graded cellular algebra (see [16, Proposition 4.3]). �
Proof of Theorem 6.9. First, let us compute the action of y1 on Mp(δ) ⊗V . We indicate 
with z the highest vector of Mp(δ), and note that glm ⊕ gln ⊂ p acts as 0 on z, since 
Mp(δ) = U(gln+m) ⊗p E(δ) where E(δ) is the simple glm ⊕ gln-module with highest 
weight δ, that by our choice of δ is one-dimensional. Hence Xijz = 0 whenever both 
i, j ≤ m or i, j > m, and we obtain:

y1(z ⊗ vi) =
{

(−δ + m+n
2 )z ⊗ vi if i ≤ m

(m+n
2 )z ⊗ vi +

∑
k∈I,k≤m Xikz ⊗ vk if i > m.

(6.22)

Analogously, let us compute the action of y1 on Mp(δ) ⊗ V ∗:

y1
(
z ⊗ v∗j

)
=

{
(δ + m+n

2 )z ⊗ v∗j −
∑

k∈I,k>m Xkjz ⊗ v∗k if j ≤ m

(m+n
2 )z ⊗ vi if i > m.

(6.23)

Fix now an index 1 ≤ h ≤ r + t and consider the action of yh on Mp(δ) ⊗ V ⊗A. By 
Lemmas 8.7 and 8.9, yh acts as Ω0h plus some linear combination of A-walled Brauer 
diagrams. By the PBW Theorem, Mp(δ) ⊗ V A has basis

{
pz ⊗ va1

b1
⊗ · · · ⊗ v

ar+t

br+t

}
(6.24)

for 1 ≤ bi ≤ m + n (where as usual v1
i = vi and v−1

i = v∗i ) and for p that runs over all 
monomials in the Xij ’s for m < i ≤ n, 1 ≤ j ≤ m. (Notice that such Xij ’s commute with 
each other.) By looking at the degree of the monomial p we get a grading on Mp(δ) ⊗V A. 
Then we have

yh
(
z ⊗ · · · vχi · · ·

)
=

⎧⎨
⎩

∑
k∈I,k≤m Xikz ⊗ · · · vk · · · if i > m, χ = 1,

−
∑

k∈I,k>m Xkiz ⊗ · · · v∗k · · · if i ≤ m, χ = −1,
0 otherwise

(6.25)

up to terms of degree zero.
Now consider a cyclotomic regular monomial, and draw it as a decorated A-walled 

Brauer diagram ℵ. Remember that we read diagrams from the bottom to the top. We are 
going to explain a way to label the endpoints of ℵ. We consider the oriented arcs of ℵ as 
arrows, having a source and a target. Order in some way the sources of the arrows of ℵ, 
labeling them sequentially with numbers m +1, . . . , m +r+t. Now for every undecorated 
arrow label the target with the same label as the source. For every decorated arrow such 
that the source is labeled with p, label the target with p −m. Let τi be the label of the 
target of the arrow with source i + m. For an example, see Fig. 1.
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Fig. 1. This figure illustrates the labeling of the proof of Theorem 6.9. Here we suppose m = 10.

In this way, we obtain sequences 1 ≤ bh, ck ≤ m +n for h, k = 1, . . . , r+t, respectively, 
on the bottom and on the top of our diagram. (This is true because of the assumption 
m, n ≥ r + t.)

Let now v⊗A
b = va1

b1
⊗ · · · ⊗ v

ar+t

br+t
. Take a zero linear combination 

∑
ג
fג = ג 0 of 

cyclotomic regular monomials. Pick a diagram ℵ with all arcs decorated and let b =
b(ℵ), c = c(ℵ), τ = τ(ℵ) be the sequences constructed as before. By (6.25) and by our 
construction, we have

〈∑
ג

fג ג
(
z ⊗ v⊗A

b(ℵ)
)
, Xm+1,τ1 · · ·Xm+r+t,τr+t

z ⊗ v⊗A
c(ℵ)

〉
= ±fℵ, (6.26)

where we have fixed on M ⊗ V ⊗A the scalar product with respect to which the basis 
(6.24) is orthonormal. Hence fℵ = 0.

Now pick a diagram ℵ with all but one arcs decorated, let b, c, τ be the sequences 
as above. Then Eq. (6.26) again holds, if we do not write the Xi,τi corresponding to 
the undecorated arrow. Proceeding in this way, we have that all coefficients fג are zero, 
hence the representation is faithful, or in other words the map

VVBrA
(
ω;β1, β2;β∗

1 , β
∗
2
)
−→ Endgln+m

(
Mp(δ) ⊗ V ⊗A

)
(6.27)

is injective.
To prove surjectivity, we use a dimension argument. On one side, note that there are 

2r+t(r + t)! cyclotomic regular monomial, hence

dim VVBrA
(
ω;β1, β2;β∗

1 , β
∗
2
)
≤ 2r+t(r + t)! (6.28)

By the injectivity of (6.27), this is actually an equality. On the other side, by adjunction 
we have

Endglm+n

(
Mp(δ) ⊗ V ⊗A

) ∼= Endglm+n

(
Mp(δ) ⊗ V ⊗(r+t)) (6.29)

as vector spaces; the dimension of the r.h.s. of (6.29) can be computed counting standard 
tableaux, and is well-known to be 2r+t(r + t)!. �

Putting together the isomorphisms (6.20) for all A ∈ Seqr,t one gets the following:
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Corollary 6.11. With the hypotheses of Theorem 6.9, the cyclotomic regular monomials 
(6.17) give a basis of VVBrr,t(ω; β1, β2; β∗

1 , β
∗
2) and we have an isomorphism of algebras

VVBrr,t
(
ω;β1, β2;β∗

1 , β
∗
2
) ∼= Endgln+m

( ⊕
A∈Seqr,t

Mp(δ) ⊗ V ⊗A

)
. (6.30)

We conclude this section giving an explicit formula to compute the parameters ωk in 
term of β1, β2 (and hence in term of m, n and δ).

Lemma 6.12. The elements ωk in VVBrr,t(ω; β1, β2; β∗
1 , β

∗
2) satisfy the following recursion 

formula

ωk = (β1 + β2)ωk−1 − β1β2ωk−2 (6.31)

with initial data ω0 = m + n, ω1 = −δm + (m+n)2
2 .

Proof. By Lemma 5.1, ω0 = m + n. Let A = (1, −1); we have

e
(A)
1 y1e

(A)
1

(
z ⊗ vi ⊗ v∗i

)
=

m+n∑
j=1

e
(A)
1 y1

(
z ⊗ vj ⊗ v∗j

)

=
m∑
j=1

e
(A)
1

(
−δz ⊗ vj ⊗ v∗j

)
+ m + n

2

m+n∑
j=1

e
(A)
1

(
z ⊗ vj ⊗ v∗j

)

=
(
−δm + (m + n)2

2

)
e
(A)
1

(
z ⊗ vj ⊗ v∗j

)
, (6.32)

hence ω1 = −δm + (m+n)2
2 .

The recursion relation follows from

e
(A)
1 yn1 e

(A)
1 = (β1 + β2)e(A)

1 yn−1
1 e

(A)
1 − β1β2e

(A)
1 yn−2

1 e
(A)
1 . � (6.33)

Using the standard elementary theory of power series defined by recurrence relations, 
we can explicitly compute W1(u):

W1(u) = ω0 + (ω1 − (β1 + β2)ω0)u−1

1 − (β1 + β2)u−1 + β1β2u−2 . (6.34)

7. Diagram and partition calculus

We explain now how one can determine which composition factors appear in Mp(δ) ⊗
V ⊗A using a partition calculus.

Recall that a Young diagram is a collection of boxes arranged in left-justified rows 
with a weakly decreasing number of boxes in each row. The content of the box in the 
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Fig. 2. A Young diagram and a rotated Young diagram, with the contents written in the boxes.

Fig. 3. A 4-Young diagram with the contents in the boxes. The corresponding weight is 3ε1 + ε2 − εm−1 −
3εm + 3εm+1 + εm+2 − εm+n−1 − 3εm+n.

r-th row and c-th column (counting from the left to the right and from the top to the 
bottom, and starting with 0) is r − c.

A rotated Young diagram is a Young diagram rotated of 180 degrees. The content of 
a box in a rotated Young diagram is the same as the content of the original box in the 
original Young diagram (Fig. 2).

Let us now fix positive integers m and n and an integer δ. In a plane let us consider 
the infinite vertical strip of width equal to m +n boxes. Fix a horizontal line o. Fix also 
a vertical line v in such a way that there is a space for exactly n boxes on the left of v
and for m boxes on the right of v. The lines o and v divide our strip into four regions. 
Let us number the columns of our vertical strip by the integers 1, . . . , m + n from the 
right to the left. We define a 4-Young diagram to be a collection of boxes in this strip, 
such that in the two regions under the horizontal line o we have two Young diagrams 
and in the two regions above o we have two rotated Young diagrams, and such that in 
no column there are boxes both above and under o (see Fig. 3).

By definition a 4-Young diagram is made of four Young diagrams, and every box 
belongs to exactly one of these. We define the content of a box to be the content in the 
corresponding Young diagram, translated by the following values:

• the lower left Young diagram by m+n
2 ,

• the upper left Young diagram by n−m
2 ,

• the lower right Young diagram by m−n
2 + δ,

• the upper right Young diagram by m+n
2 − δ.

See Fig. 3.
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Given a 4-Young diagram Y , let bi(Y ) be equal to the number of boxes in the column 
i of Y , multiplied by −1 if the boxes are under the horizontal line o.

To λ ∈ Λ(m, n) we associate the 4-Young diagram Y (λ) determined by bi(Y (λ)) =
〈λ, εi〉. More generally, in the same way, to any weight for glm+n we could associate 
a diagram consisting of boxes in our infinite vertical strip: one can check that this diagram 
is a 4-Young diagram if and only if the weight is in Λ(m, n).

Given a 4-Young diagram Y , we may obtain another 4-Young diagram Y ′ by adding 
a box to it (we also say that Y is obtained by removing a box to Y ′). Notice that we use 
the expressions adding and removing boxes only if the result is again a 4-Young diagram. 
For an (r, t)-sequence A let us define YA to be the set of sequences

{
Y• = (Y0, Y1, . . . , Yr+t)

}
(7.1)

of 4-Young diagrams such that Y0 = Y (δ) and Yi+1 is obtained from Yi by

• adding a box above o or removing a box below o if ai = 1,
• removing a box above o or adding a box below o if ai = −1.

From the construction and the properties of the functors of tensoring with V and V ∗

on O(m, n) we have the following result:

Lemma 7.1. There is a bijection between YA and the composition factors of Mp(δ) ⊗V ⊗A

(counted with multiplicity). The element Y• = (Y0, . . . , Yr+t) ∈ YA corresponds to a 
composition factor isomorphic to M(λ), where Yr+t = Y (λ).

Notice that as a consequence we have the following non-trivial combinatorial state-
ment:

Corollary 7.2. The cardinality of YA is 2r+t(r + t)!.

We can now compute the generalized eigenvalues of the yi’s:

Proposition 7.3. Let Y• ∈ YA. For j = 1, . . . , r+ t let ηj = 1 if Yj has been obtained from 
Yj−1 by adding a box of content ij, otherwise let ηj = −1 if Yj has been obtained from 
Yj−1 by removing a box of content ij. Then the composition factor M(λ) corresponding 
to Y• is contained in the generalized eigenspace for the yi’s with generalized eigenvalues 
(η1i1, . . . , ηr+tir+t).

Proof. Remember that we denote by C the Casimir element of glm+n. We have

Δ�(C) = Δ�−1(C) ⊗ 1 + Δ�−1(1) ⊗ C + 2
�−1∑

Ωp�. (7.2)

p=0
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For h = 1, . . . , r+ t let λh be the weight such that Yh = Y (λh). Let also ψh = λh − δ, 
and notice that ψh −ψh−1 = (−1)ahεκh

for a unique κh ∈ {1, . . . , n +m}. Also, in other 
words we have

ψh = (−1)a1ε1 + · · · + (−1)ahεκh
(7.3)

for all h = 1, . . . , r + t.
Suppose first that a� = 1. Then the action of 2 

∑�−1
p=0 Ωp� on M(λ) = M(δ + ψr+t) is 

given by

〈δ + ψ�, δ + ψ� + 2ρ〉 − 〈δ + ψ�−1, δ + ψ�−1 + 2ρ〉 − 〈ε1, ε1 + 2ρ〉. (7.4)

Hence y� acts as

〈εκ�
, δ〉 + 〈εκ�

, ψ�−1〉 + 〈εκ�
− ε1, ρ〉 + m + n

2 . (7.5)

Now suppose instead that a� = −1. Then the action of 2 
∑�−1

p=0 Ωp� on M(δ+ψr+t) is 
given by

〈δ + ψ�, δ + ψ� + 2ρ〉 − 〈δ + ψ�−1, δ + ψ�−1 + 2ρ〉 + 〈εm+n,−εm+n + 2ρ〉. (7.6)

Hence y� acts as

−〈εκ�
, δ〉 − 〈εκ�

, ψ�−1〉 + 〈εm+n − εk�
, ρ〉 + m + n

2

= −〈εκ�
, δ〉 − 〈εκ�

, ψ�−1〉 − 〈εκ�
− ε1, ρ〉 −

m + n

2 + 1. (7.7)

Let us now examine (7.5) and (7.7): in both of them, the second term is the index 
and the third term is (up to a shift) the column index of the box being added/removed 
at the �-th step. The claim then follows by the definition of the shifts of the contents of 
the boxes in the 4-Young diagram. �
8. Proofs

We collect in this section the steps of the proof of Theorem 5.2.
First, note that

ṡiΩjk = Ωsi(j)si(k)ṡi (8.1)

for every 0 ≤ j < k ≤ r + t, where we define Ωkj = Ωjk for k > j.

Lemma 8.1. For all glN -modules M and all A ∈ Seqr,t, on M⊗V ⊗A we have ṡiyj = yj ṡi
for j 	= i, i + 1.
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Proof. The statement is obvious for j < i. Suppose j > i + 1: we have

ṡiyj = ṡi

[ ∑
0≤k<j

Ωkj + N

2

]
=

[ ∑
0≤k<j

Ωsi(k)j + N

2

]
ṡi = yj ṡi. �

Lemma 8.2. On V ⊗V ∗⊗V and on V ⊗V ∗⊗V ∗ the elements (Ω13 +Ω23)(τV ⊗ id) and 
(τV ⊗ id)(Ω13 +Ω23) act as zero. Analogously, on V ∗ ⊗ V ⊗ V and on V ∗ ⊗ V ⊗ V ∗ the 
elements (Ω13 + Ω23)(τV ∗ ⊗ id) and (τV ∗ ⊗ id)(Ω13 + Ω23) act as zero.

Proof. We prove only that the two actions on V ⊗V ∗⊗V are zero. The other assertions 
follow analogously. We compute:

(Ωij + Ω(i+1)j)(τV ⊗ id)
(
va ⊗ v∗b ⊗ vc

)
= (Ωij + Ω(i+1)j)

(
δab

∑
d∈I

vd ⊗ v∗d ⊗ vc

)

= δab
∑
d,e∈I

(
Hevd ⊗ v∗d ⊗Hevc + vd ⊗Hev

∗
d ⊗Hevc

)
+ δab

∑
d∈I,α∈Π

(
Xαvd ⊗ v∗d ⊗X−αvc + vd ⊗Xαv

∗
d ⊗X−αvc

)
= δab

(
vc ⊗ v∗c ⊗ vc − vc ⊗ v∗c ⊗ vc

)
+ δab

∑
d∈I

(
(1 − δcd)

(
vc ⊗ v∗d ⊗ vd

)
− δcd

∑
e∈I,e 	=c

(
vd ⊗ v∗e ⊗ ve

))

= δab
∑
d	=c

(
vc ⊗ v∗d ⊗ vd

)
− δab

∑
e 	=c

(
vc ⊗ v∗e ⊗ ve

)
= 0.

Next compute:

(τV ⊗ id)(Ωij + Ω(i+1)j)
(
va ⊗ v∗b ⊗ vc

)
= (τV ⊗ id)

[∑
d∈I

(
Hdva ⊗ v∗b ⊗Hdvc + va ⊗Hdv

∗
b ⊗Hdvc

)

+
∑
α∈Π

(
Xαva ⊗ v∗b ⊗X−αvc + va ⊗Xαv

∗
b ⊗X−αvc

)]

= (τV ⊗ id)
[(
δacva ⊗ v∗b ⊗ va − δbcva ⊗ v∗b ⊗ vb

)
+ (1 − δac)

(
vc ⊗ v∗b ⊗ va

)
− δbc

∑
d∈I,d	=b

(
va ⊗ v∗d ⊗ vd

)]

=
∑

δacδabve ⊗ v∗e ⊗ va −
∑

δbcδabve ⊗ v∗e ⊗ vb

e∈I e∈I
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+
∑
e∈I

δcb(1 − δac)
(
ve ⊗ v∗e ⊗ va

)
− δbc

∑
d∈I,d	=b

δad
∑
e∈I

(
ve ⊗ v∗e ⊗ vd

)
= δbc(1 − δac)

∑
e∈I

(
ve ⊗ v∗e ⊗ va

)
− δbc(1 − δab)

∑
e∈I

(
ve ⊗ v∗e ⊗ va

)
= 0. �

Lemma 8.3. For all modules M and (r, t)-sequences A, on M ⊗V ⊗A we have eiyj = yjei
for j 	= i, i + 1.

Proof. The case j < i is obvious, and we are left with the case j > i + 1. It suffices to 
prove that

(Ωij + Ω(i+1)j)ei = ei(Ωij + Ω(i+1)j),

since ei commutes with all other summands of yj . This follows immediately from 
Lemma 8.2. �
Lemma 8.4. We have [Ω12, Ω34] = 0 and [Ω12 + Ω23, Ω13] = 0.

Proof. The first equation is obvious. For the second, we explicitly compute the expression 
Ω12Ω13 + Ω23Ω13 −Ω13Ω12 −Ω13Ω23 and we get:

∑
a,b,c∈I
b	=c

(HaXbc ⊗Ha ⊗Xcb + Xbc ⊗Ha ⊗HaXcb

−HaXbc ⊗Xcb ⊗Ha −Ha ⊗Xbc ⊗HaXcb)

+
∑

a,b,c∈I,b 	=c

(XbcHa ⊗Xcb ⊗Ha + Ha ⊗Xbc ⊗XcbHa

−XbcHa ⊗Ha ⊗Xcb −Xbc ⊗Ha ⊗XcbHa)

+
∑

a,b,c,d∈I
a	=b,c 	=d

(XabXcd ⊗Xba ⊗Xdc + Xcd ⊗Xab ⊗XbaXdc

−XabXcd ⊗Xdc ⊗Xba −Xab ⊗Xcd ⊗XbaXdc)

=
∑

a,b,c∈I
b	=c

(
[Ha, Xbc] ⊗Ha ⊗Xcb + Xbc ⊗Ha ⊗ [Ha, Xcb]

− [Ha, Xbc] ⊗Xcb ⊗Ha −Ha ⊗Xbc ⊗ [Ha, Xcb]
)

+
∑

a,b,c,d∈I
a	=b,c 	=d

(
[Xab, Xcd] ⊗Xba ⊗Xdc −Xab ⊗Xcd ⊗ [Xba, Xdc]

)

=
∑
b,c∈I

(
(Xbc −Xbc) ⊗Ha ⊗Xcb + Xbc ⊗Ha ⊗ (Xcb −Xcb)
b	=c
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− (Xbc −Xbc) ⊗Xcb ⊗Ha −Ha ⊗Xbc ⊗ (Xcb −Xcb)
)

+
∑

a,b,c,d∈I
a	=b,c 	=d

((
δbc(1 − δad)Xad − δad(1 − δbc)Xcb

)
⊗Xba ⊗Xdc

−Xab ⊗Xcd ⊗
(
δad(1 − δbc)Xbc − δbc(1 − δad)Xda

))
=

∑
a,b,d∈I

a	=b,b	=d,a	=d

(Xad ⊗Xba ⊗Xdb) −
∑

a,b,c∈I
a	=b,a	=c,b	=c

(Xcb ⊗Xba ⊗Xac)

−
∑

a,b,c∈I
a	=b,a	=c,b	=c

(Xab ⊗Xca ⊗Xbc) +
∑

a,b,d∈I
a	=b,b	=d,a	=d

(Xab ⊗Xbd ⊗Xda) = 0,

that proves our claim. �
Lemma 8.5. For 1 ≤ i, j ≤ r + t we have yiyj = yjyi.

Proof. Let us assume i > j, and compute

[yi, yj ] =
[ ∑

0≤h<i

Ωhi,
∑

0≤k<j

Ωkj

]
=

∑
0≤k<j

[ ∑
0≤h<i

Ωhi, Ωkj

]

=
∑

0≤k<j

[Ωki + Ωji, Ωkj ] = 0

using Lemma 8.4. �
Lemma 8.6. Relations ṡiėi+1ėi = ṡi+1ėi, ėiėi+1ṡi = ėiṡi+1, ėi+1ėiṡi+1 = ėi+1ṡi, 
ṡi+1ėiėi+1 = ṡiėi+1, ėi+1ėiėi+1 = ėi+1 and ėiėi+1ėi = ėi hold for 1 ≤ i ≤ r + t − 2.

Proof. These relations are very easy to check by hand. Alternatively, they are implied 
by the standard (trivial) ribbon Hopf algebra structure of U(glN ). �
Lemma 8.7. We have σV,V = Ω on V ⊗ V and σV ∗,V ∗ = Ω on V ∗ ⊗ V ∗.

Proof. We compute

Ω(vi ⊗ vj) =
∑
a∈I

Havi ⊗Havj +
∑
α∈Π

Xαvi ⊗X−αvj

= δijvi ⊗ vi + (1 − δij)vj ⊗ vi = vj ⊗ vi.

Similarly we obtain the second equality. �
Lemma 8.8. We have siyi − yi+1si = −1 and siyi+1 − yisi = 1.
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Proof. This is a standard fact (see [1, Lemma 2.1]), but we repeat the proof for com-
pleteness. We compute, using (8.1) and Lemma 8.7:

si
∑

0≤k<i

Ωki −
∑

0≤k<i+1

Ωk(i+1)si =
∑

0≤k<i

Ωk(i+1)si −
∑

0≤k<i+1

Ωk(i+1)si

= −Ωi(i+1)si = −s2
i = −1

and

∑
0≤k<i

Ωkisi − si
∑

0≤k<i+1

Ωk(i+1) =
∑

0≤k<i

Ωkisi −
∑

0≤k<i

Ωkisi − siΩi(i+1)

= −s2
i = −1. �

Lemma 8.9. We have τV = −Ω on V ⊗ V ∗ and τV ∗ = −Ω on V ∗ ⊗ V .

Proof. We compute

Ω
(
vi ⊗ v∗j

)
=

∑
a∈I

Havi ⊗Hav
∗
j +

∑
α∈Π

Xαvi ⊗X−αv
∗
j

= −δijvi ⊗ v∗i − δij
∑
k 	=i

vk ⊗ v∗k = −δij
∑
k∈I

vk ⊗ v∗k.

Similarly we obtain the second equality. �
Lemma 8.10. We have ŝiyi − yi+1ŝi = êi and ŝiyi+1 − yiŝi = −êi.

Proof. We compute, using (8.1) and Lemma 8.9:

ŝi
∑

0≤k<i

Ωki −
∑

0≤k<i+1

Ωk(i+1)ŝi =
∑

0≤k<i

Ωk(i+1)ŝi −
∑

0≤k<i+1

Ωk(i+1)ŝi

= −Ωi(i+1)ŝi = eiŝi = êi

and

∑
0≤k<i

Ωkiŝi − ŝi
∑

0≤k<i+1

Ωk(i+1) =
∑

0≤k<i

Ωkiŝi −
∑

0≤k<i

Ωkiŝi − ŝiΩi(i+1)

= ŝiei = êi. �
Lemma 8.11. Let M be a highest weight module with one-dimensional highest weight 
space. Then for all 1 ≤ i < r + t we have ei(yi + yi+1) = 0 and (yi + yi+1)ei = 0.
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Proof. We start expanding the first relation:

ei(yi + yi+1) = ei

( ∑
0≤k<i

(Ωki + Ωk(i+1)) + Ωi(i+1) + N

)

= ei

( ∑
0≤k<i

(Ωki + Ωk(i+1))
)
− e2

i + Nei.

We know that e2
i = Nei. Moreover, by Lemma 8.2 we know that ei(Ωki+Ωk(i+1)) acts as 

0 if k > 0. Hence we are left to show that ei(Ω0i+Ω0(i+1)) acts as 0. Let m be a non-zero 
vector in the highest weight space of M and suppose that at the place i we have V and 
at the place i +1 we have V ∗ (the other case being analogous). We write only the factors 
0, i and i + 1 of the tensor product, and compute ei(Ω0i + Ω0(i+1))(m ⊗ vh ⊗ v∗k):

ei
∑
a∈I

(
Ham⊗Havh ⊗ v∗k + Ham⊗ vh ⊗Hav

∗
k

)
+ ei

∑
α∈Π−

(
Xαm⊗X−αvh ⊗ v∗k + Xαm⊗ vh ⊗X−αv

∗
k

)
= δhk

∑
b∈I

(
Hhm⊗ vb ⊗ v∗b −Hhm⊗ vb ⊗ v∗b

)
+ ei(1 − δhk)

(
Xhkm⊗ vk ⊗ v∗k −Xhkm⊗ vh ⊗ vh

)
= 0,

where in the fourth line we have written only the terms from the second line that survive 
after applying ei.

Analogously, for the second relation, we consider

(yi + yi+1)ei =
( ∑

0≤k<i

(Ωki + Ωk(i+1)) + Ωi(i+1) + N

)
ei

=
( ∑

0≤k<i

(Ωki + Ωk(i+1))
)
ei − e2

i + Nei

and as before we just need to compute (Ω0i+Ω0(i+1))ei(m ⊗vh⊗v∗k): this can be non-zero 
only if h = k and in this case we get

(Ω0i + Ω0(i+1))
(∑

l∈I

m⊗ vl ⊗ v∗l

)
=

∑
a,l∈I

(
Ham⊗Havl ⊗ v∗l + Ham⊗ vl ⊗Hav

∗
l

)
+

∑
α∈Π−

(
Xαm⊗X−αvl ⊗ v∗l +Xαm⊗ vl ⊗X−αv

∗
l

)
=

∑
b,l∈I
b	=l

(
Xblm⊗ vb ⊗ v∗l −Xblm⊗ vl ⊗ v∗b

)
= 0. �
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