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A formation F of finite groups is called a lattice formation 
if the set of all F-subnormal subgroups is a sublattice of 
the lattice of all subgroups in every finite group. The main 
result of this paper describes the family of all subgroup-closed 
lattice formations, and it can be regarded as an important step 
towards the solution of Shemetkov’s classification problem.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
One of the most striking results in the theory of subnormal subgroups is the celebrated 

“join” theorem, proved by H. Wielandt in 1939 [12]: the subgroup generated by two 
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subnormal subgroups of a finite group is itself subnormal. As a result, the set sn(G) of 
all subnormal subgroups of a group G is a sublattice of the subgroup lattice.

Wielandt’s theorem was developed in formation theory using concepts of
F-subnormality and K-F-subnormality. We refer to [2, Chapter 6] for a convenient ac-
count on the topic.

The first concept was proposed by R. Carter and T. Hawkes [3]. Let F be a non-empty 
formation. A subgroup H of a group G is said to be F-subnormal in G if either H = G

or there exists a maximal chain of subgroups

H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G

such that HF
i ⊆ Hi−1 for all i = 1, . . . , n. Following [2], the set of all F-subnormal 

subgroups of a group G is denoted by snF(G).
It is rather clear that the N-subnormal subgroups of a group G for the formation N of 

all nilpotent groups are subnormal, and they coincide in the soluble universe. However 
the equality snN(G) = sn(G) does not hold in general.

To avoid the above situation, O.H. Kegel [7] introduced a somewhat different notion 
of F-subnormality. It unites the notions of subnormal and F-subnormal subgroup.

A subgroup H of a group G is called F-subnormal in the sense of Kegel (or simply 
K-F-subnormal) in G if there exists a chain of subgroups

H = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G

such that Hi−1 is either normal in Hi or HF
i ⊆ Hi−1 for all i = 1, . . . , n. We shall write 

H ∈ snK−F(G) and denote by snK−F(G) the set of all K-F-subnormal subgroups of a 
group G.

Obviously, snK−N(G) = sn(G) for every group G.
Let F be a formation. One might wonder whether the set of F-subnormal subgroups 

of a group forms a sublattice of the subgroup lattice. As the Example 6.3.1 in [2] shows, 
the answer is in general negative.

Therefore the following question naturally arises:
Which are the formations F for which the set snF(G) is a sublattice of the subgroup 

lattice of G for every group G?
This question was first proposed by L.A. Shemetkov in his monograph [9, Problem 12]

in 1978 and it appeared in the Kourovka Notebook [8, Problem 9.75] in 1984.
In 1992, A. Ballester-Bolinches, K. Doerk, and M.D. Perez-Ramos [1] gave the answer 

to that question in the soluble universe for subgroup-closed saturated formations. In 
1993, A.F. Vasil’ev, S.F. Kamornikov, and V.N. Semenchuk [11] published the solution 
of Shemetkov’s problem in the general finite universe for subgroup-closed saturated for-
mations. As a significant progress, in 2002, A.F. Vasil’ev and the second author in [10]
characterized the subgroup-closed lattice formations which are soluble.

In 1978, O.H. Kegel [7] showed that if F is a subgroup-closed formation such that 
FF = F, then the set of all K-F-subnormal subgroups of a group G is a sublattice of the 
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subgroup lattice of G for every group G. He also asks in [7] for other formations enjoying 
the lattice property for K-F-subnormal subgroups:

Which are the formations F for which the set snK−F(G) is a sublattice of the subgroup 
lattice of G for every group G?

In 1993, A.F. Vasil’ev, the second author, and V.N. Semenchuk [11] proved that the 
problems of O.H. Kegel and L.A. Shemetkov are equivalent for subgroup-closed saturated 
formations. An analogous result for subgroup-closed formations of soluble groups was 
obtained by A.F. Vasil’ev and the second author in [10].

This paper can be considered as a further big step of the programme aiming to the 
classification of all lattice and K-lattice formations. We say that F is a lattice (respec-
tively, K-lattice) formation if the set of all F-subnormal (respectively, K-F-subnormal) 
subgroups is a sublattice of the lattice of all subgroups in every group.

Here we solve the problems of Shemetkov and Kegel for all subgroup-closed formations. 
It may be worthwhile to note that the hypothesis on the formation being subgroup-closed 
seems to be quite natural within this framework, since otherwise F-subnormality (and 
K-F-subnormality) does not need to be persistent in intermediate subgroups, which looks 
as a relevant property for generalized subnormal subgroups. In this sense, the result 
obtained in the paper provides finally a quite satisfactory approach to the problems of 
Shemetkov and Kegel.

The main purpose of our paper is to prove the following theorem.

Theorem. Let F be a subgroup-closed formation. The following statements are pairwise 
equivalent:

1. The set of all K-F-subnormal subgroups is a sublattice of the subgroup lattice of every 
group.

2. The set of all F-subnormal subgroups is a sublattice of the subgroup lattice of every 
group.

3. F = M × K × L for some subgroup-closed formations M, K and L satisfying the 
following conditions:
(a) π(M) ∩ π(K) = ∅, π(K) ∩ π(L) = ∅ and π(M) ∩ π(L) = ∅;
(b) M = Sπ(M)M is a saturated formation, and it is an M2-normal Fitting class;
(c) every non-cyclic M-critical group G with Φ(G) = 1 is a primitive group of type 

2 such that G/Soc(G) is a cyclic group of prime power order.
(d) there exists a partition {πj |j ∈ J} of π(K) such that K = ×j∈JSπj

and |πj | > 1
for all j ∈ J ;

(e) L ⊆ Nπ(L).

As immediate deductions we have the following results.

Corollary 1. (See [2, Theorem 6.3.15], [6, Theorem 3.1.22], [11].) Let F be a subgroup-
closed saturated formation. Then F is a lattice formation if and only if F = M × H
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for some subgroup-closed saturated formations M and H satisfying the following condi-
tions:

(a) π(M) ∩ π(H) = ∅;
(b) M = Sπ(M)M, and M is an M2-normal Fitting class;
(c) every non-cyclic M-critical group G with Φ(G) = 1 is a primitive group of type 2

such that G/Soc(G) is a cyclic group of prime power order;
(d) there exists a partition {πi|i ∈ I} of π(H) such that H = ×i∈ISπi

.

Corollary 2. (See [2, Theorem 6.3.9], [6, Theorem 3.1.22], [11].) Let F be a subgroup-
closed saturated formation. Then F is a lattice formation if and only if F is a K-lattice 
formation.

Corollary 3. (See [2, Theorem 6.3.25], [10].) Let F be a subgroup-closed formation of 
soluble groups. The following statements are pairwise equivalent.

1. The set of all K-F-subnormal subgroups is a sublattice of the subgroup lattice of every 
group.

2. The set of all F-subnormal subgroups is a sublattice of the subgroup lattice of every 
group.

3. There exists a partition {πi|i ∈ I} of the set π(F) such that F = ×i∈IFπi
, where 

Fπi
= F ∩Sπi

. Moreover, Fπi
= Sπi

for all i ∈ I such that |πi| > 1.

Corollary 4. (See [1], [2, Corollary 6.3.16], [11].) Let F be a subgroup-closed saturated 
formation of soluble groups. Then F is a lattice formation if and only if there exists a 
partition {πi|i ∈ I} of π(F) such that F = ×i∈ISπi

.

2. Definitions and preliminary results

The notation and terminology agree with the books [2,4]. We refer the reader to these 
books for the results on formations.

Our aim in this section is to collect some definitions and results that are needed in 
the sequel.

Recall that a formation is a class of groups which is closed under taking homomorphic 
images and finite subdirect products. If F is a non-empty formation, then each group G
has the F-residual GF, the smallest normal subgroup whose quotient belongs to F.

We say that F is subgroup-closed if F is closed under taking subgroups.
We use E, S and N to denote the class of all groups, the class of all soluble groups 

and the class of all nilpotent groups, respectively. If π is a set of primes, Fπ denotes the 
class of all π-groups in F. In the sequel, π(F) is the set of primes p such that p divides 
the order of some group in F.



X. Yi, S.F. Kamornikov / Journal of Algebra 444 (2015) 143–151 147
Let F and G be formations such that π(F) ∩ π(G) = ∅. Denote π1 = π(F) and 
π2 = π(G). Then

F×G = (G|G = Oπ1(G) ×Oπ2(G), Oπ1(G) ∈ F, Oπ2(G) ∈ G)

is a formation. Moreover, if F and G are saturated, then F ×G is saturated and, if F and 
G are subgroup-closed, then F ×G is also subgroup-closed.

The construction F × G could be generalized along the following lines: Let I be a 
non-empty set. For each i ∈ I, let Fi be a formation. Assume that π(Fi) ∩ π(Fj) = ∅ for 
all i, j ∈ I, i �= j. Denote πi = π(Fi), i ∈ I. Then

×i∈IFi = (G = Oπi1
(G) × . . .×Oπin

(G)|Oπij
(G) ∈ Fij , 1 ≤ j ≤ n, {i1, . . . , in} ⊆ I)

is a formation.
The main properties of F-subnormal and K-F-subnormal subgroups are listed in the 

following lemma.

Lemma 2.1. (See [2, 6.1.6 and 6.1.7].) Let F be a non-empty formation. Let e ∈
{snF, snK−F}. Let H and N be subgroups of a group G. Suppose that N is normal 
in G. Then:

(1) If H ∈ e(G), then HN/N ∈ e(G/N).
(2) If N ⊆ H, then H ∈ e(G) if and only if H/N ∈ e(G/N).
(3) If F is subgroup-closed and H ∈ e(G), then H ∩ K ∈ e(K) for every subgroup K

of G.
(4) If F is subgroup-closed and H contains the F-residual of G, then H ∈ e(G).
(5) If H ∈ e(K) and K ∈ e(G), then H ∈ e(G).

Let us denote by F(sub) the class of all groups G such that every subgroup of G is 
F-subnormal in G. We will need the following information about the properties of the 
class F(sub).

Lemma 2.2. (See [2, Proposition 6.3.23], [10, Lemmas 2.8, 2.9, 2.10 and 2.14].) Let F
be a subgroup-closed lattice formation. Then:

(1) F(sub) is a subgroup-closed formation.
(2) F ⊆ F(sub) and π(F) = π(F(sub)).
(3) G ∈ F(sub) if and only if 1 ∈ snF(G) and P ∈ snF(G) for every Sylow subgroup P

of G.
(4) If F is soluble, then F(sub) is a saturated formation.

A formation F is called saturated if G/Φ(G) ∈ F always implies G ∈ F.
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A formation F is said to be solubly saturated if G/Φ(GS) ∈ F always implies G ∈ F

(the symbol GS denotes the largest soluble normal subgroup of G). Obviously, every 
saturated formation is solubly saturated. The converse is not true.

Lemma 2.3. (See [5, Theorem A].) Any solubly saturated subgroup-closed lattice formation 
is saturated.

Lemma 2.4. Let H be a subgroup of a group G and H ∈ {S, Eπ}, where π is a set of 
primes. Then H is H-subnormal in G if and only if GH ⊆ H.

Proof. The result follows easily from the definition of H-subnormal subgroup and the 
fact that H2 = H. �
Lemma 2.5. Let F be a subgroup-closed formation and H ∈ {S, Eπ}, where π is a set of 
primes. Then

(F ∩ H)(sub) = F(sub) ∩ H.

Moreover, if F is lattice, then F ∩H is also a subgroup-closed lattice formation.

Proof. For any group G, it follows from Lemma 2.4 that

snF∩H(G) = snF(G) ∩ {H ⊆ G|GH ⊆ H}.

It is also known that F ∩H is a subgroup-closed formation. If F is lattice, it is clear now 
that F ∩ H is also lattice.

To complete the proof, we note that, in any case,

F(sub) ∩ H ⊆ (F ∩ H)(sub).

For the converse, if G ∈ (F ∩H)(sub), then 1 ∈ snF∩H(G), which implies G ∈ H. Therefore 
G ∈ F(sub) ∩ H. Hence (F ∩ H)(sub) = F(sub) ∩ H. �
Lemma 2.6. Let F be a subgroup-closed lattice formation. Then F(sub) is a subgroup-closed 
lattice saturated formation.

Proof. By Lemma 2.2, the class F(sub) is a subgroup-closed formation. It is clear that 
a subgroup H of a group G is F-subnormal in G if and only if H is F(sub)-subnormal 
in G. It follows that F(sub) is a lattice formation.

We claim that F(sub) is solubly saturated. It will follow then that it is saturated by 
Lemma 2.3.

By Lemma 2.5, we have that F ∩ S is a subgroup-closed lattice formation. Hence 
(F ∩S)(sub) = F(sub) ∩S is saturated by Lemma 2.2(4).
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To prove the claim we consider a group G such that G/Φ(GS) ∈ F(sub). In order to 
deduce that G ∈ F(sub) it is enough to prove that 1 ∈ snF(G) and P ∈ snF(G) for every 
Sylow subgroup P of G by Lemma 2.2(3).

Let P be a Sylow subgroup of G. We note that Φ(GS) ⊆ Φ(GSP ), and GSP/Φ(GS) ∈
F(sub) ∩S because F(sub) is subgroup-closed and GSP is soluble. Consequently, GSP ∈
F(sub). Therefore, 1, P ∈ snF(GSP ) and GSP ∈ snF(G), which implies that 1, P ∈
snF(G) and the claim follows. �
Lemma 2.7. Let F be a subgroup-closed formation, π = π(F) and |π| > 1. If F(sub) =
SπF(sub), then F(sub) = F.

Proof. Since F is subgroup-closed we have, by Statement (2) of Lemma 2.2, that F ⊆
F(sub). Assume that F �= F(sub) and let G ∈ F(sub) \ F of minimal order. Since F(sub)
is closed under taking factor groups and F is a formation, we can deduce that G has a 
unique minimal normal subgroup, say N . Set q ∈ π. If N is a p-group for a prime p, take 
q �= p, which is possible since |π| > 1. Let V be an irreducible and faithful G-module over 
the finite field of q elements (such module exists by [4, Theorem B.10.9], and consider 
X = [V ]G the corresponding semidirect product. Then X is a primitive group, and G is 
a maximal subgroup of X with CoreX(G) = 1. Since X ∈ SπF(sub) = F(sub), we deduce 
that G is F-subnormal in X, which implies that X 	 X/CoreX(G) ∈ F. Consequently, 
G 	 X/V ∈ F, a contradiction which concludes the proof. �
3. Proof of the main theorem

Proof. 1 ⇒ 2. Applying [2, Lemma 6.3.7], we have that 1 implies 2.
2 ⇒ 3. Let F be a subgroup-closed lattice formation. Consider the formation 

F(sub). By Lemma 2.6, F(sub) is a subgroup-closed lattice saturated formation. Hence, 
by [6, Theorem 3.1.22] (see also [2, Theorem 6.3.15]), F(sub) = M × H for some 
subgroup-closed saturated formations M and H satisfying the following conditions: 
π(M) ∩ π(H) = ∅; there exists a partition {πi|i ∈ I} of π(H) such that H = ×i∈ISπi

; 
M = Sπ(M)M, and M is an M2-normal Fitting class; every non-cyclic M-critical group 
G with Φ(G) = 1 is a primitive group of type 2 such that G/Soc(G) is a cyclic group of 
prime power order.

Since F ⊆ F(sub) by Statement (2) of Lemma 2.2, the formation F is represented in 
the form F = Fω × Fσ, where ω = π(M), σ = π(H). If J = {i ∈ I| | πi |> 1}, then 
Fσ = (×j∈JFπj

) × (×i∈I\JFπi
). Write K = (×j∈JFπj

) and L = (×i∈I\JFπi
).

It is clear that L ⊆ Nπ(L).
By Lemma 2.5,

Fω(sub) = (F ∩Gω)(sub) = F(sub) ∩Gω = M.

Applying Lemma 2.7, Fω = M.
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By Lemma 2.5,

Fπj
(sub) = (F ∩Gπj

)(sub) = F(sub) ∩Gπj
= Sπj

.

Applying Lemma 2.7, Fπj
= Sπj

. Thus K = ×j∈JFπj
= ×j∈JSπj

.
So F is represented in the form F = M × K × L, and the following conditions hold:

(1) M, K and L are subgroup-closed formations.
(2) π(M) ∩ π(K) = ∅, π(K) ∩ π(L) = ∅ and π(M) ∩ π(L) = ∅.
(3) M = Sπ(M)M is a saturated formation, and it is an M2-normal Fitting class.
(4) Every non-cyclic M-critical group G with Φ(G) = 1 is a primitive group of type 2 

such that G/Soc(G) is a cyclic group of prime power order.
(5) There exists a partition {πj | j ∈ J} of π(K) such that K = ×j∈JSπj

. Moreover, 
|πj | > 1 for all j ∈ J .

(6) L ⊆ Nπ(L).

3 ⇒ 1. Assume that F = M × K × L. Moreover, M, K and L are subgroup-closed for-
mations, and the conditions (a)–(e) of the Theorem hold. Consider the subgroup-closed 
formation H = M ×K ×Nπ(L). By [2, Theorem 6.3.15], H is a saturated lattice formation 
and π(H) = π(F). We aim to show that snK−H(G) = snK−F(G) for every group G. 
Assume, arguing by contradiction, there exists a group G of minimal order such that 
snK−H(G) �= snK−F(G). Clearly snK−F(G) ⊆ snK−H(G) because F ⊆ H. Hence there 
exists a subgroup H ∈ snK−H(G) \ snK−F(G). Then H is a proper subgroup of G and 
thus there exists a subgroup M of G such that either M is normal in G or M is an 
H-normal maximal subgroup of G. Since H is K-H-subnormal in M , it follows that H is 
K-F-subnormal in M by minimality of G. If M were normal in G, we would have that 
H would be K-F-subnormal in G. This would contradict our choice of H. Hence M is an 
H-normal maximal subgroup of G and so GH is contained in M . Then G/CoreG(M) is 
a primitive H-group. Thus G/CoreG(M) ∈ {M, K} because M is not normal in G. This 
means that M is F-normal in G and H is K-F-subnormal in G, contrary to our initial 
supposition. Therefore snK−F(X) = snK−H(X) for all groups X. By [2, Theorem 6.3.9], 
the set snK−F(X) is a sublattice of the subgroup lattice of X for all groups X. �
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