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1. Introduction and preliminaries

We work over a basic field k. A finite dimensional algebra A is called Frobenius if A
and its dual A∗ are isomorphic as left (or equivalently, as right) A-modules. Frobenius 
algebras arise in representation theory, Hopf algebra theory, quantum groups, coho-
mology of compact oriented manifolds, topological quantum field theory, the theory of 
subfactors and of extensions of C∗-algebras, the quantum Yang–Baxter equation, etc., 
see [13]. A rich representation theory has been uncovered for such algebras, see [14,19]. 
It was showed in [1,2] that A is Frobenius if and only if it also has a coalgebra structure 
whose comultiplication is a morphism of A, A-bimodules. This equivalent definition of 
the Frobenius property has the advantage that it makes sense in any monoidal cate-
gory. The study of Frobenius algebras in monoidal categories was initiated in [15,20,21], 
and such objects have occurred in several contexts, for example in the theory of Morita 
equivalences of tensor categories, in conformal quantum field theory, in reconstruction 
theorems for modular tensor categories, see more details and references in [11,12,16]; 
recent developments can be also found in [5].

The representation theory of Frobenius algebras uncovers several symmetry features, 
for example there is a duality between the categories of left and right finitely generated 
modules, and the lattices of left and right ideals are anti-isomorphic. Among Frobenius 
algebras there is a class of objects having even more symmetry. These are the symmet-
ric algebras A, for which A and A∗ are isomorphic as A, A-bimodules. The category of 
commutative symmetric algebras is equivalent to the category of 2-dimensional topolog-
ical quantum field theories, see [1]. Symmetric algebras appear in block theory of group 
algebras in positive characteristic, see [19, Chapter IV].

It is not clear how one could define symmetric algebras in an arbitrary monoidal 
category. Symmetric algebras in monoidal categories with certain properties were first 
considered in [10], as structures related to correlation functions in conformal field the-
ories. In [11] symmetric algebras are discussed in sovereign monoidal categories. In this 
paper we consider the monoidal category MH of right comodules (or corepresentations) 
over a Hopf algebra H. If A is an algebra in this category, i.e. a right H-comodule algebra, 
then A ∈ AMH

A , i.e. A is a left (A, H)-Doi–Hopf module and a right (A, H)-Doi–Hopf 
module. On the other hand, A∗ is a right (A, H)-Doi–Hopf module, but not neces-
sarily a left (A, H)-Doi–Hopf module; however A∗ has a natural structure of a left 
(A(S2), H)-Doi–Hopf module, where A(S2) is the algebra A with the coaction shifted 
by S2, where S is the antipode of H. If H is cosovereign, i.e. there exists a character u
on H such that S2(h) =

∑
u−1(h1)u(h3)h2 for any h ∈ H, then A � A(S2) as comod-

ule algebras, and this induces a structure of A∗ as an object in AMH
A , where the left 

A-action is a deformation of the usual one by u. Then it makes sense to consider when A
and A∗ are isomorphic in this category; in this case we say that A is symmetric in MH

with respect to u, or shortly that A is (H, u)-symmetric. As MH is a sovereign monoidal 
category for such H, this is a special case of the general concept of symmetric algebra 
considered in [11]. In Section 2 we give explicit characterizations of this property in MH . 
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We show that the definition of symmetry depends on the character (i.e. on the associ-
ated sovereign structure of MH). Also, we use a modified version of the trivial extension 
construction to give examples of (H, u)-symmetric algebras of corepresentations. In the 
case where H is involutory, i.e. S2 = Id, H is cosovereign if we take u = ε, the counit 
of H, and in this case it is clear that an (H, ε)-symmetric algebra is also symmetric as a 
k-algebra. However, we show that in general A may be (H, u)-symmetric, without being 
symmetric as a k-algebra.

Given a finite dimensional algebra A in the category MH , where H is a finite dimen-
sional Hopf algebra, one can construct the smash product A#H∗. Smash products are 
also called semidirect products, since the group algebra of a semidirect product of groups 
is just a smash product. Smash product constructions are of great relevance since they 
describe the algebra structure in a process of bosonization, which associates for instance 
a Hopf algebra to a Hopf superalgebra. It is proved in [4] that A is Frobenius if and only 
if so is A#H∗. On the other hand, we show in an example that such a good connection 
does not hold for the symmetric property. In Section 3 we show that if A is a Frobe-
nius algebra in MH , then A#H∗ is a Frobenius algebra in MH∗ , but the converse does 
not hold. In Section 4 we uncover a good transfer of the symmetry property between A
and A#H∗, more precisely we show that A is (H, α)-symmetric if and only if A#H∗ is 
(H∗, g)-symmetric, where g and α are the distinguished grouplike (or modular) elements 
of H and H∗, provided that H is cosovereign by α, and H∗ is cosovereign by g.

For basic concepts and notation on Hopf algebras we refer to [8,18].

2. Frobenius algebras and symmetric algebras of corepresentations

Let H be a Hopf algebra, and let A be a finite dimensional right H-comodule algebra, 
with H-coaction a �→

∑
a0⊗a1. Then there exists an element 

∑
i ai⊗hi⊗a∗i ∈ A ⊗H⊗A∗

such that 
∑

a0 ⊗ a1 =
∑

i a
∗
i (a)ai ⊗ hi for any a ∈ A; this element corresponds to 

the H-comodule structure map of A through the natural isomorphism A ⊗ H ⊗ A∗ �
Hom(A, A ⊗H). A right H-comodule structure is induced on A∗ by

a∗ �→
∑

i

a∗(ai)a∗i ⊗ S(hi), for any a∗ ∈ A∗.

If we consider the left H∗-actions on A and A∗ associated with these right H-comodule 
structures, denoted by h∗ · a and h∗ · a∗ for h∗ ∈ H∗, a ∈ A, a∗ ∈ A∗, we have

(h∗ · a∗)(a) =
∑

i

h∗(S(hi))a∗(ai)a∗i (a)

= a∗(
∑

i

h∗(S(hi))a∗i (a)ai)

= a∗((h∗S) · a)

so
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(h∗ · a∗)(a) = a∗((h∗S) · a) (1)

Moreover, A∗ ∈ MH
A , with the usual right A-action; this means that the A-module 

structure of A∗ is right H-colinear. It is known (see [6, Theorem 2.4]) that the following 
are equivalent: (1) A � A∗ in MH

A ; (2) There exists a nondegenerate associative bilinear 
form B : A × A → k such that B(h∗ · a, b) = B(a, (h∗S) · b) for any a, b ∈ A, h∗ ∈ H∗; 
(3) There exists a linear map λ : A → k such that λ(h∗ · a) = h∗(1)λ(a) for any a ∈ A, 
h∗ ∈ H∗, and Kerλ does not contain a non-zero right ideal of A; (4) There exists a 
linear map λ : A → k such that λ(h∗ · a) = h∗(1)λ(a) for any a ∈ A, h∗ ∈ H∗, and 
Kerλ does not contain a non-zero subobject of A in MH

A ; (5) A is a Frobenius algebra 
in the category MH . The connections between an isomorphism θ : A → A∗ as in (1), 
a bilinear map B as in (2) and a linear map λ as in (3), (4) are given by θ(a)(b) = B(a, b), 
λ(a) = B(1, a), B(a, b) = λ(ab).

On the other hand, A∗ is also a left A-module in a natural way, but in general A∗

is not an object of AMH (with a similar compatibility condition for the A-action and 
H-coaction). However, A∗ is an object in A(S2)MH , where A(S2) is just the algebra A, 
with the H-coaction shifted by S2, i.e. a �→

∑
a0 ⊗ S2(a1).

Assume now that H is a cosovereign Hopf algebra in the sense of [3], i.e. there exists a 
character u on H (in other words, u is a grouplike element of the dual Hopf algebra H∗, 
or equivalently, an algebra morphism from H to k) such that S2(h) =

∑
u−1(h1)u(h3)h2

for any h ∈ H; this is the same with (S2)∗ being an inner algebra automorphism of H∗

via u. Following [3], we say that u is a sovereign character of H. Then f : A → A(S2), 
f(a) = u−1 · a =

∑
u−1(a1)a0, is an isomorphism of right H-comodule algebras, and it 

induces an isomorphism of categories

F :
A(S2)MH → AMH

where for M ∈
A(S2)MH , F (M) is just M , with the same H-coaction, and A-action ∗

given by a ∗ m = f(a)m, for any a ∈ A and m ∈ M . By restriction, this induces an 
isomorphism of categories (and we denote it by F , too)

F :
A(S2)MH

A → AMH
A

Now A∗ ∈
A(S2)MH

A , so then F (A∗) ∈ AMH
A .

Definition 2.1. Let H be a cosovereign Hopf algebra with u as a sovereign character. 
A finite dimensional right H-comodule algebra A is a symmetric algebra in the category 
MH with respect to u if F (A∗) � A in the category AMH

A . In this case we simply say 
that A is (H, u)-symmetric.

Now we give equivalent characterizations of this property. The next result can be 
derived from [11, Proposition 4.6], using the structure of duals in a category of corepre-
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sentations. In our sketch of proof, explicit description is given for several ways to describe 
symmetry of algebras of corepresentations.

Proposition 2.2. Let A be a right H-comodule algebra, where H is a cosovereign Hopf 
algebra. Keeping the above notation, the following are equivalent.

(1) A is (H, u)-symmetric.
(2) There exists a nondegenerate bilinear form B : A × A → k such that B(b, ca) =

B(bf(c), a), B(b, a) = B(f(a), b), and B(b, h∗ ·a) = B((h∗S) ·b, a) for any a, b, c ∈ A, 
h∗ ∈ H∗.

(3) There exists a linear map λ : A → k such that λ(ba) = λ(af(b)) and λ(h∗ · a) =
h∗(1)λ(a) for any a, b ∈ A, h∗ ∈ H∗, and also Kerλ does not contain a non-zero 
right ideal of A.

(4) There exists a linear map λ : A → k such that λ(ba) = λ(af(b)) and λ(h∗ · a) =
h∗(1)λ(a) for any a, b ∈ A, h∗ ∈ H∗, and also Kerλ does not contain a non-zero 
subobject of A in MH

A .

More equivalent conditions can be added if we change right ideal with left ideal in (3), 
and MH

A with AMH in (4).

Proof. We combine the proof of the equivalent characterizations of a symmetric algebra 
in the category of vector spaces, see [14, Theorem 16.54], and [6, Theorem 2.4], recalled 
above. Thus for (1) ⇔ (2), if θ : A → F (A∗) is a linear map, then let B : A ×A → k be 
the bilinear map defined by B(a, b) = θ(b)(a). Then it is straightforward to check that θ
is left A-linear if and only if

B(b, ca) = B(bf(c), a) for any a, b, c ∈ A, (2)

and θ is right A-linear if and only if

B(b, ac) = B(cb, a) for any a, b, c ∈ A. (3)

We see that if (2) and (3) hold, then B(b, a) = B(b, a1) = B(bf(a), 1) = B(f(a), b), thus

B(b, a) = B(f(a), b) for any a, b ∈ A. (4)

Moreover, if (2) and (4) hold, then B(b, ac) = B(f(ac), b) = B(f(a)f(c), b) =
B(f(a), cb) = B(cb, a), so (3) holds.

We have that θ is H-colinear if and only if B(b, h∗ ·a) = B((h∗S) ·b, a) for any a, b ∈ A, 
h∗ ∈ H∗, and θ is bijective if and only if B is non-degenerate, thus (1) ⇔ (2) is clear.

For (1) ⇔ (3), λ and B determine each other by the relations λ(a) = B(1, a) for any 
a ∈ A, respectively B(a, b) = λ(ba) for any a, b ∈ A. �
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Example 2.3. 1) If H = kG, the group Hopf algebra of a group G, then S2 = Id, so 
H is cosovereign with ε as a sovereign character. A right H-comodule algebra is just a 
G-graded algebra A, and A is (H, ε)-symmetric if and only if A is graded symmetric in 
the sense of [6, Section 5].

2) More generally, if H is an involutory Hopf algebra, i.e. S2 = Id, then H is obviously 
cosovereign with ε as a sovereign character. In this case, if A is a finite dimensional algebra 
in MH , then A∗ ∈ AMH

A , so F (A∗) is just A∗, with the usual left and right A-actions. 
Thus A is (H, ε)-symmetric if and only if A∗ � A in AMH

A .

Remark 2.4. The definition of symmetry depends on the cosovereign character. Thus it 
is possible that a cosovereign Hopf algebra H has two sovereign characters u and v, and 
a right H-comodule algebra A is (H, u)-symmetric, but not (H, v)-symmetric. Indeed, 
let H = kC2, where C2 = {e, g} is a group of order 2 (e is the neutral element), 
and the characteristic of k is 	= 2. Let A be a commutative C2-graded division algebra 
with support C2; for example one can take A = kC2. Then H is involutory, so it is 
a cosovereign Hopf algebra with two possible sovereign characters ε = pe + pg and 
u = pe − pg, where {pe, pg} is the basis of H∗ dual to the basis {e, g} of H. We have 
u2 = ε, so u−1 = u.

It is easy to see that A is (H, ε)-symmetric, i.e. graded symmetric in the terminology 
of [6], for example by using the results of [7], where the question whether any graded 
division algebra is graded symmetric is addressed.

On the other hand, A is not (H, u)-symmetric. Indeed, let λ : A → k be a linear 
map such that λ(ab) = λ(b(u · a)) for any a, b ∈ A. We have u · a = a for any a ∈
Ae (the homogeneous component of degree e of A), and u · a = −a for any a ∈ Ag. 
Then for b = 1 and a ∈ Ag we get λ(a) = 0, thus λ(Ag) = 0. Also, for a, b ∈ Ag we 
obtain λ(ab) = 0, and since AgAg = Ae, this shows that λ(Ae) = 0. Thus λ must be 
zero.

Remark 2.5. It is obvious that a graded symmetric algebra is symmetric as a k-algebra. 
More general, if H is involutory, then a (H, ε)-symmetric algebra is symmetric as a 
k-algebra. However, for an arbitrary cosovereign Hopf algebra H with sovereign charac-
ter u, if A is (H, u)-symmetric, then A is not necessarily symmetric as a k-algebra, as 
we show in the following example.

Let H = H4, the 4-dimensional Sweedler’s Hopf algebra. It is presented by algebra 
generators c and x, subject to relations

c2 = 1, x2 = 0, xc = −cx

The coalgebra structure is defined by

Δ(c) = c⊗ c,Δ(x) = c⊗ x + x⊗ 1, ε(c) = 1, ε(x) = 0.
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The antipode S satisfies S(c) = c, S(x) = −cx, thus S2(x) = −x. Apart from ε, H has 
just one more character α, given by α(c) = −1, α(x) = 0; it acts on the basis elements 
of H by

α · 1 = 1, α · c = −c, α · x = x, α · (cx) = −cx (5)

H is cosovereign, and the only sovereign character is α. We show that the linear 
map λ : H → k, λ(1) = λ(c) = λ(cx) = 0, λ(x) = 1 makes H an (H, α)-symmetric 
algebra. Indeed, we first see by a straightforward checking that λ is right H-colinear 
(or equivalently, left H∗-linear). Next, an easy computation using (5) shows that any 
element of the form ba − a(α · b) lies in the span of 1, c and cx, thus λ(ba) = λ(a(α · b))
for any a, b ∈ H.

Finally, let I be a left ideal of H contained in Kerλ. Let z = δ1 +βc + γcx ∈ I, where 
δ, β, γ ∈ k. Then cz = δc + β1 + γx ∈ I ⊆< 1, c, cx >, so γ = 0. Then xz = δx − βcx ∈
I ⊆< 1, c, cx >, so δ = 0. Now cxz = −βx ∈ I ⊆< 1, c, cx >, so β must be zero, too. 
Thus z = 0, and H is (H, α)-symmetric. This will also follow from Proposition 4.4.

On the other hand, H is not symmetric as a k-algebra. Indeed, if λ : H → k is a 
linear map such that λ(ab) = λ(ba) for any a, b ∈ H, then λ(cx) = λ(xc) = −λ(cx), 
so λ(cx) = 0, and λ(x) = λ(ccx) = λ(cxc) = −λ(x), so λ(x) = 0. Thus the two-sided 
ideal < x, cx > of H is contained in Kerλ, showing that H is not symmetric. This can 
also be seen from a general result saying that a Hopf algebra is symmetric as an algebra 
if and only if it is unimodular (i.e. the spaces of left integrals and right integrals in H
coincide) and S2 is inner, see [17]; for H4 the square of the antipode is inner, but the 
unimodularity condition fails.

Now we explain how examples of (H, u)-symmetric algebras in the category MH can 
be constructed, where H is a cosovereign Hopf algebra with sovereign character u. We 
recall that for any algebra A (in the category of vector spaces), and any left A, right 
A-bimodule M , one can construct an algebra structure on the space A ⊕M with the 
multiplication defined by (a, m)(a′, m′) = (aa′, am′ + ma′); this is called the trivial 
extension of A and M . The unit of this algebra is (1, 0). If M = A∗ with the usual 
A, A-bimodule structure, the trivial extension of A and A∗ is simply called the trivial 
extension of A, and it is a symmetric algebra, see [14, Example 16.60].

Proposition 2.6. Let A be a right H-comodule algebra, where H is cosovereign with 
sovereign character u. Then E(A) = A ⊕ F (A∗), with the direct sum structure of a 
right H-comodule, and the algebra structure obtained by the trivial extension of A and 
the A, A-bimodule F (A∗), is a right H-comodule algebra which is (H, u)-symmetric.

Proof. The multiplication of E(A) is given by

(a, a∗)(b, b∗) = (ab, a ∗ b∗ + a∗b) = (ab, (u−1 · a)b∗ + a∗b)

for any a, b ∈ A and any a∗, b∗ ∈ A∗.
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We first see that E(A) is a right H-comodule algebra. Indeed, the H-coaction on E(A)
is ρ : E(A) → E(A) ⊗H, given by

ρ(a, a∗) =
∑

(a0, 0) ⊗ a1 +
∑

(0, a∗0) ⊗ a∗1

Then

ρ((a, a∗)(b, b∗)) = ρ(ab, a ∗ b∗ + a∗b)

=
∑

((ab)0, 0) ⊗ (ab)1 +
∑

(0, (a ∗ b∗)0) ⊗ (a ∗ b∗)1

+
∑

(0, (a∗b)0) ⊗ (a∗b)1

=
∑

(a0b0, 0) ⊗ a1b1 +
∑

(0, a0 ∗ b∗0) ⊗ a1b
∗
1 +

∑
(0, a∗0b0) ⊗ a∗1b1

= (
∑

(a0, 0) ⊗ a1 +
∑

(0, a∗0) ⊗ a∗1)(
∑

(b0, 0) ⊗ b1 +
∑

(0, b∗0) ⊗ b∗1)

= ρ(a, a∗)ρ(b, b∗)

Let λ : E(A) → k be the linear map defined by λ(a, a∗) = a∗(1) for any a ∈ A, 
a∗ ∈ A∗. Then

λ(h∗ · (a, a∗)) = (h∗ · a∗)(1)

= a∗((h∗S) · 1) (by (1))

= a∗((h∗S)(1)1)

= h∗(1)a∗(1)

= h∗(1)λ(a, a∗)

Now

λ((a, a∗)(u−1 · (b, b∗))) = λ((a, a∗)(u−1 · b, u−1 · b∗))
= λ(a(u−1 · b), (u−1 · a)(u−1 · b∗) + a∗(u−1 · b))
= (u−1 · b∗)(u−1 · a) + a∗(u−1 · b)
= b∗((u−1S) · (u−1 · a)) + a∗(u−1 · b) (by (1))

= b∗(u · (u−1 · a)) + a∗(u−1 · b)
= b∗(a) + a∗(u−1 · b)
= λ(ba, (u−1 · b)a∗ + b∗a)

= λ((b, b∗)(a, a∗))

Finally, we see that Kerλ does not contain non-zero right ideals. Indeed, if 
λ((a, a∗)E(A)) = 0, then b∗(u−1 · a) + a∗(b) = 0 for any b ∈ A, b∗ ∈ A∗. If we take 
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b∗ = 0, we get that a∗(b) = 0 for any b, so a∗ = 0. Then b∗(u−1 · a) = 0 for any b∗, so 
u−1 · a = 0, showing that a = 0.

We conclude that λ makes E(A) an (H, u)-symmetric algebra. �
We note that the previous result shows that any finite dimensional algebra in the 

category MH , where H is cosovereign via u, is a subalgebra of an (H, u)-symmetric 
algebra, and also a quotient of an (H, u)-symmetric algebra. The construction in Propo-
sition 2.6 helps us to provide more examples of algebras that are symmetric in categories 
of corepresentations with respect to certain characters, but which are not symmetric as 
k-algebras.

Example 2.7. Assume that k has characteristic 	= 2, and let H = H4 be Sweedler’s 
Hopf algebra. Let A = k[X]/(X2), a 2-dimensional algebra, with basis {1, X}, and 
relation X2 = 0. Let c and x be the endomorphisms of the space A such that c(1) = 1, 
c(X) = −X, x(1) = 0, x(X) = 1. Then c2 = Id, x2 = 0 and xc = −cx. Moreover, c is 
an algebra automorphism of A, and it is easy to check that x(ab) = c(a)x(b) + x(a)b for 
any a, b ∈ A, thus A is a left H-module algebra with the actions of c and x given by the 
endomorphisms above, i.e.

c · 1 = 1, c ·X = −X, x · 1 = 0, x ·X = 1.

The dual space A∗ has a left H-action given by (h · a∗)(a) = a∗(S(h) · a) for any h ∈ H, 
a∗ ∈ A∗ and a ∈ A. If we consider the basis {p1, pX} of A∗ dual to the basis {1, X}, this 
action explicitly writes

c · p1 = p1, c · pX = −pX , x · p1 = −pX , x · pX = 0.

On the other hand, A∗ has usual left A-module structure given by

1p1 = p1, 1pX = pX , Xp1 = 0, XpX = p1,

and usual right A-module structure given by

p11 = p1, pX1 = pX , p1X = 0, pXX = p1.

A is also a right comodule algebra over the dual Hopf algebra H∗. Since H∗ is cosovereign 
with sovereign character c (via the isomorphism H � H∗∗), the associated left A-module 
structure on F (A∗) is given by a ∗ a∗ = (c · a)a∗ for any a ∈ A, a∗ ∈ A∗. Thus

1 ∗ p1 = p1, 1 ∗ pX = pX , X ∗ p1 = 0, X ∗ pX = −p1

Then we can consider the algebra E(A) = A ⊕ F (A∗), whose basis is {1, X, p1, pX}, and 
multiplication induced by
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X2 = p2
1 = p2

X = p1pX = pXp1 = 0

X ∗ p1 = 0, X ∗ pX = −p1, p1X = 0, pXX = p1

If we denote u = X and v = pX , we can present E(A) by generators u, v, subject to 
relations u2 = v2 = 0, vu = −uv. The left H-module structure of E(A) is given by 
c · u = −u, c · v = −v, x · u = 1, x · v = 0. If we denote by {P1, Pc, Px, Pcx} the basis 
of H∗ dual to the standard basis {1, c, x, cx} of H, the right H∗-comodule structure of 
E(A) is given by

u �→ u⊗ P1 + c · u⊗ Pc + x · u⊗ Px + (cx) · u⊗ Pcx

= u⊗ (P1 − Pc) + 1 ⊗ (Px + Pcx)

v �→ v ⊗ (P1 − Pc)

Since the Hopf algebra H is selfdual, a Hopf algebra isomorphism being given by 1 �→
P1 + Pc, c �→ P1 − Pc, x �→ Px − Pcx, cx �→ −Px − Pcx, we can regard A as a right 
H-comodule algebra. Summarizing, E(A) is the algebra with generators u, v, relations

u2 = v2 = 0, vu = −uv

and H-comodule structure given by

u �→ u⊗ c− 1 ⊗ cx, v �→ v ⊗ c

By Proposition 2.6, E(A) is (H, α)-symmetric, where α = P1 − Pc is the distinguished 
grouplike element of H∗.

On the other hand, E(A) is not symmetric as a k-algebra. Indeed, if λ : E(A) → k is a 
linear map such that λ(zz′) = λ(z′z) for any z, z′ ∈ E(A), then λ(uv) = λ(vu) = −λ(uv), 
thus λ(uv) = 0. But the 1-dimensional space spanned by uv is a two-sided ideal of E(A), 
so Kerλ contains a non-zero ideal.

3. Frobenius smash products

Let A be an algebra in MH , where H is a finite dimensional Hopf algebra. Then A
is a left H∗-module algebra and we can consider the smash product A#H∗, which is an 
algebra with multiplication given by

(a#h∗)(b#g∗) =
∑

a(h∗
1 · b)#h∗

2g
∗

It is known that A is a Frobenius algebra if and only if so is A#H∗, see [4].
On the other hand, A#H∗ is an algebra in the category MH∗ , with the H∗-coaction 

induced by the comultiplication of H∗, i.e. a#h∗ �→
∑

a#h∗
1⊗h∗

2. The aim of this section 
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is to discuss the connection between A being a Frobenius algebra in MH , and A#H∗

being a Frobenius algebra in MH∗ .
We consider the usual left and right actions of H∗ on H, h∗ ⇀ h =

∑
h∗(h2)h1

and h ↼ h∗ =
∑

h∗(h1)h2, and the usual left and right actions of H on H∗, denoted 
by h ⇀ h∗ and h∗ ↼ h, where h ∈ H and h∗ ∈ H∗. H also acts on A#H∗ by h ⇀
(a#h∗) = a#(h ⇀ h∗).

We recall that a right (respectively left) integral in H is an element t ∈ H such that 
th = ε(h)t (respectively ht = ε(h)t) for any h ∈ H, and a left integral on H is an element 
T ∈ H∗ such that h∗T = h∗(1)T for any h∗ ∈ H∗.

Theorem 3.1. Let H be a finite dimensional Hopf algebra, and let A be a finite dimen-
sional right H-comodule algebra which is a Frobenius algebra in the category MH . Then 
the smash product A#H∗ is a Frobenius algebra in the category MH∗.

Proof. Let λ : A → k be a linear map whose kernel does not contain non-zero right 
ideals of A, and such that λ(h∗ · a) = h∗(1)λ(a) for any h∗ ∈ H∗ and a ∈ A. Let t be a 
non-zero right integral in H. Define a linear map λ : A#H∗ → k such that

λ(a#h∗) = λ(a)h∗(t) for any a ∈ A, h∗ ∈ H∗

We have that λ(h · z) = ε(h)λ(z) for any h ∈ H and z ∈ A#H∗. Indeed

λ(h · (a#h∗)) =
∑

λ(a#h∗
2(h)h∗

1)

=
∑

h∗
2(h)λ(a)h∗

1(t)

= λ(a)h∗(th)

= λ(a)ε(h)h∗(t)

= ε(h)λ(a#h∗)

We show that Ker(λ) does not contain non-zero subobjects of A#H∗ in the category 
MH∗

A#H∗ . Let I be a right ideal of A#H∗ which is also a right H∗-subcomodule (or 
equivalently, invariant with respect to the induced left H-action on A#H∗) such that 
I ⊂ Ker(λ). We know that (A#H∗)co H∗ = A#1 � A and A#H∗/A is a right H∗-Galois 
extension, see [8, Example 6.4.8]. Then J = Ico H∗ is a right ideal of A and the Weak 
Structure Theorem for Hopf–Galois extensions shows that the map

J ⊗A (A#H∗) → I, m⊗ z �→ mz

is an isomorphism in the category MH∗

A#H∗ , see [8, Theorem 6.4.4]. In particular I =
(J#1)(A#H∗) = J#H∗. Since λ(I) = 0, we see that λ(J) = 0, so J = 0. We conclude 
that I must be zero. �
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Corollary 3.2. A finite dimensional Hopf algebra H is Frobenius in the category MH .

Proof. k is a right H∗-comodule algebra in a trivial way, and it is clear that k is Frobenius 
in MH∗ . By Theorem 3.1 we get that k#H∗∗ is Frobenius in MH∗∗ . Since H∗∗ � H as 
Hopf algebras, we see that H is Frobenius in MH . �

The following example shows that the converse of Theorem 3.1 is not true.

Example 3.3. Let A = A0 ⊕ A1 be a superalgebra, i.e. a C2-graded algebra, which is 
Frobenius as an algebra, but not graded Frobenius (i.e. it is not a Frobenius algebra in 
the category MkC2 of supervector spaces). In this example we use the additive notation 
for the operation of C2. Examples of such A are given in [6, Section 6]; the trivial 
extension associated to a finite dimensional algebra is one such example. Let μ : A → k

be a linear map whose kernel does not contain non-zero left ideals of A. We define

λ : A#(kC2)∗ → k, λ(a#px) = μ(a) for any a ∈ A, x ∈ C2

Then λ(y ⇀ (a#px)) = λ(a#px−y) = μ(a) = ε(y)λ(a#px).
On the other hand, Kerλ does not contain non-zero left ideals of A#(kC2)∗. Indeed, 

assume that λ((A#(kC2)∗)z) = 0, where z = a#p0 + b#p1. Since (c#p0)z = ca0#p0 +
cb1#p1, we have 0 = μ(ca0) +μ(cb1) = μ(c(a0+b1)) for any c ∈ A. Thus μ(A(a0+b1)) = 0, 
showing that a0 + b1 = 0, and then a0 = b1 = 0. Similarly, since (c#p1)z = ca1#p0 +
cb0#p1, we obtain a1 = b0 = 0. Thus z = 0. We conclude that λ makes A#(kC2)∗ a 
Frobenius algebra in the category M(kC2)∗ .

4. Symmetric smash products

The following example shows that the good connection between a finite dimensional 
right H-comodule algebra A and the smash product A#H∗ being Frobenius does not 
work anymore for the symmetric property.

Example 4.1. Let C2 =< c >= {e, g} be the cyclic group of order 2, and let A be 
a C2-graded algebra which is symmetric and such that the homogeneous component 
Ae is not symmetric. For example one can take the trivial extension A = R ⊕ R∗ of 
a non-symmetric algebra R, with the grading Ae = R, Ag = R∗. Then A is a right 
kC2-comodule algebra, so we can consider the smash product A#(kC2)∗. Denote by 
{pe, pg} the basis of (kC2)∗ dual to the basis {e, g} of kC2. Then 1#pe is an idempotent 
in A#(kC2)∗ and it is easy to check that

(1#pe)(A#(kC2)∗)(1#pe) = Ae#pe � Ae = R

Then (1#pe)(A#(kC2)∗)(1#pe) is not a symmetric algebra, so neither is A#(kC2)∗ by 
[14, Exercise 16.25].



74 S. Dăscălescu et al. / Journal of Algebra 465 (2016) 62–80
In this section we discuss the connection between A being a symmetric algebra in MH

with respect to some character of H, and A#H∗ being a symmetric algebra in MH∗

with respect to some character of H∗ (i.e. a grouplike element of H).
Let H be a finite dimensional Hopf algebra. Then there exists a character α ∈ H∗ such 

that th = α(h)t for any left integral t in H and any h ∈ H; α is called the distinguished 
grouplike element of H∗, and it also satisfies ht′ = α−1(h)t′ for any right integral t′ in 
H and any h ∈ H, see [18, Section 10.5] or [8, Section 5.5].

Similarly, there exists a distinguished grouplike element g of H, such that Th∗ =
h∗(g)T for any left integral T on H and any h∗ ∈ H∗. We note that in [18], g−1 is called 
the distinguished grouplike element of H; we prefer the way we defined because g will 
play the same role for H as α does for H∗. It is showed in [18, Theorem 10.5.4] that for 
any left integral t in H

Δ(t) =
∑

S2(t2)g−1 ⊗ t1 (6)

Applying this for H∗ we see that for any left integral T on H one has

Δ(T ) =
∑

(T2S
2)α−1 ⊗ T1 (7)

and then for any h ∈ H

T ↼ h =
∑

T1(h)T2

= ((T2S
2)α−1)(h)T1

=
∑

T2(S2(h1))α−1(h2)T1

=
∑

α−1(h2)(S2(h1) ⇀ T )

Thus for any left integral T on H and any h ∈ H

T ↼ h =
∑

α−1(h2)(S2(h1) ⇀ T ) (8)

Now if t is a left integral in H, then S(t) is a right integral in H and

Δ(S(t)) =
∑

S(t2) ⊗ S(t1)

=
∑

S(t1) ⊗ S(S2(t2)g−1) ( by (6))

=
∑

S(t1) ⊗ gS2(S(t2))

= S(t)2 ⊗ gS2(S(t)1)

We conclude that for any right integral t in H

Δ(t) =
∑

t2 ⊗ gS2(t1) (9)
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We also see that for a right integral t in H and h ∈ H

∑
t1 ⊗ ht2 =

∑
ε(h1)t1 ⊗ h2t2

=
∑

S(h1)h2t1 ⊗ h3t2

=
∑

S(h1)(h2t)1 ⊗ (h2t)2

=
∑

α−1(h2)S(h1)t1 ⊗ t2

Thus we showed that

∑
t1 ⊗ ht2 =

∑
α−1(h2)S(h1)t1 ⊗ t2 (10)

Theorem 4.2. Let H be a finite dimensional Hopf algebra, and let g and α be the 
distinguished grouplike elements of H and H∗. We assume that S2(h) = g−1hg =∑

α−1(h1)α(h3)h2 for any h ∈ H. Then a right H-comodule algebra A is (H, α)-sym-
metric if and only if A#H∗ is (H∗, g)-symmetric.

Proof. We note that

S−2(h) =
∑

α(h1)α−1(h3)h2 (11)

for any h ∈ H.
Assume that A is (H, α)-symmetric, and let λ : A → k such that λ(ba) =

λ(a(α−1 · b)) = λ(aα−1(b1)b0), λ(h∗ · a) = h∗(1)λ(a) for any a, b ∈ A, h∗ ∈ H∗, and 
also Kerλ does not contain a non-zero right ideal of A. Let t be a non-zero right integral 
in H and define

λ : A#H∗ → k, λ(a#h∗) = λ(a)h∗(t)

as in the proof of Theorem 3.1. This makes A#H∗ a Frobenius algebra in the category 
MH∗ . In order to see that A#H∗ is symmetric in MH∗ , it remains to show that λ(zz′) =
λ(z′(g−1 ⇀ z)) for any z, z′ ∈ A#H∗, where g−1 ⇀ (a#h∗) = a#(g−1 ⇀ h∗). Indeed, 
we see that

λ((b#g∗)(g−1 ⇀ (a#h∗)) = λ((b#g∗)(a#(g−1 ⇀ h∗)))

=
∑

λ(b(g∗1 · a)#g∗2(g−1 ⇀ h∗))

=
∑

λ(bg∗1(a1)a0)g∗2(t1)h∗(t2g−1)

=
∑

λ(ba0)g∗(a1t1)h∗(t2g−1)

=
∑

λ(a0α
−1(b1)b0)g∗(a1t1)h∗(t2g−1)
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=
∑

λ(a0b0)g∗(a1b1S(b2)t1)α−1(b3)h∗(t2g−1)

=
∑

λ(((S(b1)t1) ⇀ g∗) · (ab0))α−1(b2)h∗(t2g−1)

=
∑

((S(b1)t1) ⇀ g∗)(1)λ(ab0)α−1(b2)h∗(t2g−1)

=
∑

g∗(S(b1)t1)λ(ab0)α−1(b2)h∗(t2g−1)

=
∑

λ(ab0)g∗(S(b1)t2)α−1(b2)h∗(gS2(t1)g−1) by (9)

=
∑

λ(ab0)g∗(S(b1)t2)α−1(b2)h∗(t1)

=
∑

λ(ab0)g∗(t2)α−1(b3)h∗(α−1(S(b1))S(S(b2))t1) by (10)

=
∑

λ(ab0)g∗(t2)α−1(b3)h∗(α(b1)S2(b2)t1)

=
∑

λ(ab0)g∗(t2)h∗(S2(α(b1)α−1(b3)b2)t1)

=
∑

λ(ab0)g∗(t2)h∗(S2(S−2(b1))t1) by (11)

=
∑

λ(ab0)g∗(t2)h∗(b1t1)

=
∑

λ(ab0)g∗(t2)h∗
1(b1)h∗

2(t1)

=
∑

λ(a(h∗
1 · b))(h∗

2g
∗)(t)

=
∑

λ(a(h∗
1 · b)#h∗

2g
∗)

= λ((a#h∗)(b#g∗))

Conversely, assume that A#H∗ is (H∗, g)-symmetric, and let μ : A#H∗ → k be a 
linear map whose kernel does not contain non-zero right ideals of A#H∗, and such that 
μ(h ⇀ z) = ε(h)μ(z) and μ(zz′) = μ(z′(g−1 ⇀ z)) for any h ∈ H and any z, z′ ∈ A#H∗. 
Let T be a left integral on H and define

μ̃ : A → k, μ̃(a) = μ(a#T ).

Let a ∈ A and h∗ ∈ H∗. We note that g ⇀ T is a right integral on H, see 
[8, Proposition 5.5.4]. Let z = a#(g ⇀ T ) and z′ = 1#h∗. Then

zz′ − z′(g−1 ⇀ z) = (a#(g ⇀ T ))(1#h∗) − (1#h∗)(a#T )

= a#(g ⇀ T )h∗ −
∑

(h∗
1 · a)#h∗

2T

= a#h∗(1)(g ⇀ T ) −
∑

(h∗
1 · a)#h∗

2(1)T

= h∗(1)a#(g ⇀ T ) − (h∗ · a)#T

Since μ(zz′) = μ(z′(g−1 ⇀ z)), we get
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μ̃(h∗ · a) = μ((h∗ · a)#T )

= h∗(1)μ(a#(g ⇀ T ))

= h∗(1)ε(g)μ(a#T )

= h∗(1)μ̃(a)

If I is a subobject of A in AMH contained in Kerμ̃, then μ(I#T ) = 0. But I#T is a 
left ideal of A#H∗, so it must be zero. Then I must be zero, too.

To show that A is symmetric in MH it only remains to check that μ̃(ba) = μ̃(a(α−1 ·b))
for any a, b ∈ A. This holds true since

μ̃(ba) = μ(ba#T )

= μ((b#ε)(a#T ))

= μ((a#T )(g−1 ⇀ (b#ε)))

= μ((a#T )(b#(g−1 ⇀ ε)))

= μ((a#T )(b#ε))

=
∑

μ(a(T1 · b)#T2)

=
∑

μ(aT1(b1)b0#T2)

=
∑

μ(ab0#(T ↼ b1))

=
∑

μ(ab0#α−1(b2)(S2(b1) ⇀ T )) by (8)

=
∑

ε(S2(b1))α−1(b2)μ(ab0#T )

=
∑

ε(b1)α−1(b2)μ(ab0#T )

=
∑

α−1(b1)μ(ab0#T )

= μ(a(α−1 · b)#T )

= μ̃(a(α−1 · b)) �
Remark 4.3. (1) The conditions on H in Theorem 4.2 are satisfied if H is involutory 
and unimodular, and H∗ is unimodular. Indeed, in this case the distinguished grouplike 
elements are trivial, i.e. α = ε and g = 1.

For example, this happens if H = kG, where G is a finite group. Thus a finite dimen-
sional G-graded algebra is graded symmetric if and only if the smash product A#(kG)∗
is symmetric in M(kG)∗ with respect to 1.

(2) In the case where the characteristic of k is 0, it is known that H is involutory if 
and only if H is semisimple, if and only if H is cosemisimple, see [18, Theorem 16.1.2], 
and in this situation H and H∗ are always unimodular. Thus Theorem 4.2 applies to 
any semisimple Hopf algebra in characteristic 0.
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(3) If k has positive characteristic, Theorem 4.2 applies to any semisimple cosemisim-
ple Hopf algebra H. Indeed, it is known that any such H is involutory, see [9, Theo-
rem 3.1].

(4) A Hopf algebra satisfying the conditions of Theorem 4.2 is not necessarily invo-
lutory, and it may be not unimodular; take for example Sweedler’s 4-dimensional Hopf 
algebra.

As a consequence of Theorem 4.2 we obtain that if a Hopf algebra H is cosovereign 
by α and H∗ is cosovereign by g, then H is (H, α)-symmetric. In fact, we can prove that 
H is (H, α)-symmetric with less assumptions.

Proposition 4.4. Let H be a finite dimensional Hopf algebra which is cosovereign 
with sovereign element α, the distinguished grouplike element of H∗. Then H is 
(H, α)-symmetric.

Proof. In order to use the notation we have already developed, it is more convenient to 
show that if H∗ is cosovereign by g, then H∗ is (H∗, g)-symmetric. If t is a right integral 
in H, by the proof of Theorem 3.1 (when we take A = k and identify A#H∗ with H∗) 
we have that the linear map λ : H∗ → k, λ(h∗) = h∗(t) is H-linear, and its kernel does 
not contain nonzero subobjects of H∗ in MH∗

H∗ . On the other hand, for any h∗, g∗ ∈ H∗

λ(g∗(g−1 ⇀ h∗)) =
∑

g∗(t1)h∗(t2g−1)

= g∗(t2)h∗(gS2(t1)g−1) by (9)

=
∑

h∗(t1)g∗(t2)

= (h∗g∗)(t)

= λ(h∗g∗)

so λ makes H∗ an (H∗, g)-symmetric algebra. �
5. Passing to coinvariants

If A is a right H-comodule algebra which is Frobenius (respectively symmetric) as an 
algebra, it is a natural question to ask whether this property transfers to the subalgebra 
of coinvariants AcoH . It is easy to see that such a transfer does not hold. Indeed, let 
A be the algebra from Example 4.1, which is symmetric. A is a kC2-comodule algebra, 
and its subalgebra of coinvariants is just Ae, which is not even Frobenius. If the field 
k has characteristic 	= 2, the C2-grading on A is equivalent to an action of C2 on the 
algebra A, and we have that A is a symmetric algebra, while the subalgebra AC2 of 
invariants (which is just Ae) is not even Frobenius; this is [14, Exercise 32, page 457].

A positive result in this direction is [14, Exercise 33, page 457], which says that if A
is a Frobenius algebra with a nondegenerate associative bilinear form B : A × A → k, 
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and G is a finite group of automorphisms of A, whose order is not divisible by the 
characteristic of k, and such that B(g(a), g(b)) = B(a, b) for any g ∈ G, a, b ∈ A, then 
the subalgebra AG of invariants is Frobenius. Moreover, if A is symmetric (and B is also 
symmetric), then AG is symmetric. These results can be reformulated as follows: if the 
order of G is not divisible by the characteristic of k, and A is Frobenius (ε-symmetric) 
in the category M(kG)∗ , then the subalgebra Aco (kG)∗ is Frobenius (symmetric). The 
following proposition generalizes this result, by showing that a good transfer occurs if A
is Frobenius in the category MH , provided H is cosemisimple.

Proposition 5.1. Let H be a cosemisimple Hopf algebra. If A is a right H-comodule 
algebra which is Frobenius in the category MH , then AcoH is a Frobenius algebra. If 
moreover, H is involutory and A is (H, ε)-symmetric, then AcoH is symmetric.

Proof. Let i : AcoH → A be the inclusion map, and let i∗ : A∗ → (AcoH)∗ be its dual. 
Since i is a morphism of AcoH , AcoH -bimodules, then so is i∗. If A is Frobenius in MH , let 
θ : A → A∗ be an isomorphism in the category MH

A . We show that i∗θi : AcoH → (AcoH)∗

is an isomorphism of right AcoH-modules, i.e. AcoH is Frobenius. In fact it is enough to 
show that i∗θi is injective; since Im θi = (A∗)coH , this is the same with showing that 
i∗|(A∗)coH is injective.

The left H∗-action on A∗ induced by the right H-coaction is (h∗ · a∗)(a) =∑
h∗S(a1)a∗(a0), for any A ∈ A. Then a∗ ∈ (A∗)coH if and only if h∗ · a∗ = h∗(1)a∗ for 

any h∗ ∈ H∗, and this means that a∗(
∑

h∗S(a1)a0 −h∗(1)a) = 0 for any a ∈ A and any 
h∗ ∈ H∗. Since S is bijective (H is cosemisimple), we get that a∗ ∈ (A∗)coH if and only 
if a∗ vanishes on the subspace

V =< h∗(a1)a0 − h∗(1)a | h∗ ∈ H∗, a ∈ A >

Since

Ker i∗|(A∗)coH = {a∗ ∈ (A∗)coH | a∗(AcoH) = 0 }

we see that i∗|(A∗)coH is injective if and only if V + AcoH = A. But this is indeed true, 
since for a left integral T on H such that T (1) = 1, one has a = T · a − (T · a − T (1)a). 
Moreover, T · a ∈ AcoH , since h∗ · (T · a) = (h∗T ) · a = h∗(1)Ta for any h∗ ∈ H∗, and 
obviously T · a − T (1)a ∈ V .

For the second part we just have to note that i∗θi is a morphism of AcoH , AcoH -bi-
modules since θ is an isomorphism of A, A-bimodules; now the proof of the first part 
works also in this case. �
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