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Gendo-symmetric algebras were recently introduced by Fang 
and König in [7]. An algebra is called gendo-symmetric in 
case it is isomorphic to the endomorphism ring of a generator 
over a finite dimensional symmetric algebra. We show that a 
finite dimensional algebra A over a field K is gendo-symmetric 
if and only if there is a bocs-structure on (A, D(A)), where 
D = HomK(−, K) is the natural duality. Assuming that 
A is gendo-symmetric, we show that the module category 
of the bocs (A, D(A)) is equivalent to the module category 
of the algebra eAe, when e is an idempotent such that 
eA is the unique minimal faithful projective-injective right 
A-module. We also prove some new results about gendo-
symmetric algebras using the theory of bocses.
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Introduction

A bocs is a generalization of the notion of coalgebra over a field. Bocses are also 
known under the name coring (see the book [4]). A famous application of bocses has 
been the proof of the tame and wild dichtomy theorem by Drozd for finite dimensional 
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algebras over an algebraically closed field (see [5] and the book [3]). For any given bocs 
(A, W ) over a finite dimensional algebra, one can define a corresponding module cat-
egory and analyze it. Given a finite dimensional algebra A over a field K, it is an 
interesting question whether for a given A-bimodule W , there exists a bocs structure 
on (A, W ). The easiest example to consider is the case W = A and in this case the 
module category one gets is just the module category of the algebra A. Every finite 
dimensional algebra has a duality D = HomK(−, K) and so the next example of an 
A-bimodule to consider is perhaps W = D(A). We will characterize all finite dimen-
sional algebras A such that there is a bocs structure on (A, D(A)) and find a surprising 
connection to a recently introduced class of algebras generalizing symmetric algebras 
(see [8]). Those algebras are called gendo-symmetric and are defined as endomorphism 
rings of generators of symmetric algebras. Alternatively these are the algebras A, where 
there exists an idempotent e such that eA is a minimal faithful injective-projective mod-
ule and D(Ae) ∼= eA as (eAe, A)-bimodules. Then eAe is the symmetric algebra such 
that A ∼= EndeAe(M), for an eAe-module M that is a generator of mod-eAe. Famous 
examples of non-symmetric gendo-symmetric algebras are Schur algebras S(n, r) with 
n ≥ r and blocks of the Bernstein–Gelfand–Gelfand category O of a complex semisimple 
Lie algebra (for a proof of this, using methods close to ours, see [11] and for applica-
tions see [9]). The first section provides the necessary background on bocses and algebras 
with dominant dimension larger than or equal to 2. The second section proves our main 
theorem:

A. Theorem (Theorem 2.2). A finite dimensional algebra A is gendo-symmetric if and 
only if (A, D(A)) has a bocs-structure.

We also provide some new structural results about gendo-symmetric algebras in this 
section. For example we show, using bocs-theoretic methods, that the tensor product 
over the field K of two gendo-symmetric algebras is again gendo-symmetric and we 
proof that HomAe(D(A), A) is isomorphic to the center of A, where Ae denotes the 
enveloping algebra of A.

In the final section, we describe the module category B of the bocs (A, D(A)) in case 
A is gendo-symmetric. The following is our second main result:

B. Theorem (Theorem 3.3). Let A be a gendo-symmetric algebra with a minimal faith-
ful projective-injective module eA. Then the module category of the bocs (A, D(A)) is 
equivalent to eAe-mod as K-linear categories.

I thank Steffen König for useful comments and proofreading. I thank Julian Kül-
shammer for providing me with an early copy of his article [12]. I also thank the two 
anonymous reviewers for corrections and the final remark in section 2.
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1. Preliminaries

We collect here all needed definitions and lemmas to prove the main theorems. Let 
an algebra always be a finite dimensional algebra over a field K and a module over 
such an algebra is always a finite dimensional right module, unless otherwise stated. 
D = HomK(−, K) denotes the duality for a given finite dimensional algebra A. mod −A

denotes the category of finite dimensional right A-modules and proj (inj) denotes the 
subcategory of finitely generated projective (injective) A-modules. We note that we often 
omit the index in a tensor product, when we calculate with elements. We often identify 
A ⊗AX ∼= X for an A-module X without explicitly mentioning the natural isomorphism. 
The Nakayama functor ν : mod − A → mod − A is defined as DHomA(−, A) and is 
isomorphic to the functor (−) ⊗AD(A). The inverse Nakayama functor ν−1 : mod −A →
mod −A is defined as HomAop(−, A)D and is isomorphic to the functor HomA(D(A), −)
(see [14] Chapter III section 5 for details). The Nakayama functors play a prominent role 
in the representation theory of finite dimensional algebras, since ν : proj → inj is an 
equivalence with quasi-inverse ν−1. For example they appear in the definition of the 
Auslander–Reiten translates τ and τ−1 (see [14] Chapter III. for the definitions):

1.1. Proposition. Let M be an A-module with a minimal injective presentation 0 → M →
I0 → I1. Then the following sequence is exact: 0 → ν−1(M) → ν−1(I0) → ν−1(I1) →
τ−1(M) → 0.

Proof. See [14], Chapter III. Proposition 5.3. (ii). �
The dominant dimension domdim(M) of a module M with a minimal injective reso-

lution (Ii) : 0 → M → I0 → I1 → . . . is defined as:

domdim(M) := sup{n|Ii is projective for i = 0, 1, ..., n} + 1, if I0 is projective, and
domdim(M) := 0, if I0 is not projective.

The dominant dimension of a finite dimensional algebra is defined as the dominant 
dimension of the regular module AA. It is well-known that an algebra A has dominant 
dimension larger than or equal to 1 iff there is an idempotent e such that eA is a minimal 
faithful projective-injective module. The Morita–Tachikawa correspondence (see [15] for 
details) says that the algebras, which are endomorphism rings of generator-cogenerators 
are exactly the algebras with dominant dimension at least 2. The full subcategory of 
modules of dominant dimension at least i ≥ 1 is denoted by Domi. A is called a Morita 
algebra iff it has dominant dimension larger than or equal to 2 and D(Ae) ∼= eA as 
A-right modules. This is equivalent to A being isomorphic to EndB(M), where B is a 
selfinjective algebra and M a generator of mod-B (see [10]). A is called a gendo-symmetric 
algebra iff it has dominant dimension larger than or equal to 2 and D(Ae) ∼= eA as 
(eAe, A)-bimodules iff it has dominant dimension larger than or equal to 2 and D(eA) ∼=



R. Marczinzik / Journal of Algebra 470 (2017) 160–171 163
Ae as (A, eAe)-bimodules. This is equivalent to A being isomorphic to EndB(M), where 
B is a symmetric algebra and M a generator of mod-B and in this case B = eAe (see [7]).

1.2. Proposition. Let A be a gendo-symmetric algebra and M an A-module. Then M has 
dominant dimension larger than or equal to two iff ν−1(M) ∼= M .

Proof. See [8], proposition 3.3. �
The following result gives a formula for the dominant dimension of Morita algebras:

1.3. Proposition. Let A be a Morita algebra with a minimal faithful projective-injective 
module eA and M an A-module. Then domdim(M) = inf{i ≥ 0|Exti(A/AeA,M) �= 0}. 
Especially, HomA(A/AeA, A) = 0 for every Morita algebra, since they always have dom-
inant dimension at least 2.

Proof. This is a special case of [1], Proposition 2.6. �
The following lemma gives another characterization of gendo-symmetric algebras, 

which is used in the proof of the main theorem.

1.4. Lemma. Let A be a finite dimensional algebra. Then A is a gendo-symmetric algebra 
iff D(A) ⊗AD(A) ∼= D(A) as A-bimodules. Assume eA is the minimal faithful projective-
injective module. In case A is gendo-symmetric, D(A) ∼= Ae ⊗eAe eA as A-bimodules.

Proof. See [8] Theorem 3.2. and [7] in the construction of the comultiplication following 
Definition 2.3. �
1.5. Lemma. An A-module P is projective iff there are elements p1, p2, ..., pn ∈ P and 
elements π1, π2, ..., πn ∈ HomA(P, A) such that the following condition holds:

x =
n∑

i=1
piπi(x) for every x ∈ P.

We then call the p1, ..., pn a projective basis and π1, ..., πn a dual projective basis of P .

Proof. See [13] Propostion 3.10. �
1.6. Example. Let P = eA, for an idempotent e. Then a projective basis is given by 
p1 = e and the dual projective basis is given by π1 = le ∈ HomA(eA, A), which is left 
multiplication by e. le can be identified with e under the (A, eAe)-bimodule isomorphism 
Ae ∼= HomA(eA, A).

1.7. Proposition. 1. HomA(D(A), A) is a faithful right A-module iff there is an idempo-
tent e, such that eA and Ae are faithful and injective.
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2. Let A be an algebra with HomA(D(A), A) ∼= A as right A-modules, then A is a 
Morita algebra.

Proof. 1. See [10], Theorem 1.
2. See [10], Theorem 3. �

1.8. Lemma. Let Y and Z be A-bimodules. Then the following is an isomorphism of 
A-bimodules:

HomA(Y,D(Z)) ∼= D(Y ⊗A Z).

Proof. See [2] Appendix 4, Proposition 4.11. �
1.9. Definition. Let A be a finite dimensional algebra and W an A-bimodule and let 
cr : W → A ⊗A W and cl : W → W ⊗A A be the canonical isomorphisms. Then the 
pair B := (A, W ) is called a bocs (see [12]) or the module W is called an A-coring 
(see [4]) if there are A-bimodule maps μ : W → W ⊗A W (the comultiplication) and 
ε : W → A (the counit) with the following properties: (1W ⊗A ε)μ = cl, (ε ⊗A 1W )μ = cr
and (μ ⊗A 1W )μ = (1W ⊗A μ)μ. We often say for short that W is a bocs, if A (and μ
and ε) are clear from the context. The category of the finite dimensional bocs modules 
is defined as follows:

Objects are the finite dimensional right A-modules.
Homomorphism spaces are HomB(M, N) := HomA(M, HomA(W, N)) with the fol-

lowing composition ∗ and units:
Let g : M → HomA(W, N) ∈ HomB(M, N) and f : L → HomA(W, M) ∈

HomB(L, M). Then g ∗ f := HomA(μ, N)ψHomA(W, g)f , where ψ is the adjunc-
tion isomorphism HomA(W, HomA(W, N)) → HomA(W ⊗A W, N). The units 1M ∈
HomB(M, M) are defined as follows: 1M := HomA(ε, M)ξ, where ξ : M → HomA(A, M)
is the canonical isomorphism. Note that the module category of a bocs is K-linear. We 
refer to [12] for other equivalent descriptions of the bocs module category and more 
information.

1.10. Examples. 1. (A, A) is always a bocs with the obvious multiplication and comulti-
plication. The next natural bimodule to look for a bocs-structure is D(A). We will see 
that (A, D(A)) is not a bocs for arbitrary finite dimensional algebras.

2. The next example can be found in 17.6. in [4], to which we refer for more de-
tails. Let P be a (B, A)-bimodule for two finite dimensional algebras B and A such 
that P is projective as a right A-module and let P ∗ := Hom(P, A), which is then a 
(A, B)-bimodule. Let p1, p2, ..., pn be a projective basis for P and π1, π2, ..., πn a dual 
projective basis of the projective A-module P . Denote the A-bimodule P ∗ ⊗B P by W
and define the comultiplication μ : W → W⊗AW as follows: Let f ∈ P ∗ and p ∈ P , then 

μ(f⊗p) =
n∑

(f ⊗ pi) ⊗ (πi ⊗ p). Define the counit ε : W → A as follows: ε(f⊗p) = f(p). 

i=1
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Now specialise to P = eA, for an idempotent e and identify HomA(eA, A) = Ae. Then 
μ(ae ⊗ eb) = (ae ⊗ e) ⊗ (e ⊗ eb) and ε(ae ⊗ eb) = aeb. We will use this special case in the 
next section to show that (A, D(A)) is always a bocs for a gendo-symmetric algebra.

3. Let (A1, W1) and (A2, W2) be bocses, then (A1 ⊗K A2, W1 ⊗K W2) is again a bocs. 
See [4] 24.1. for a proof.

2. Characterization of gendo-symmetric algebras

The following lemma, will be important for proving the main theorem.

2.1. Lemma. Assume that HomA(D(A), A) ∼= A ⊕X as right A-modules for some right 
A-module X, then domdim(A) ≥ 2 and X = 0.

Proof. By assumption HomA(D(A), A) is faithful and so there is an idempotent e with 
eA and Ae faithful and injective by 1.7 1., which implies that A has dominant dimension 
at least 1. Choose e minimal such that those properties hold. Now look at the minimal 
injective presentation 0 → A → I0 → I1 of A and note that I0 ∈ add(eA). Using 1.1, 
there is the following exact sequence: 0 → ν−1(A) → ν−1(I0) → ν−1(I1) → τ−1(A) → 0. 
But ν−1(A) ∼= HomA(D(A), A) ∼= A ⊕ X and so there is the embedding: 0 → A ⊕
X → ν−1(I0). Note that ν−1(I0) ∈ add(eA) is the injective hull of A ⊕X, since ν−1 :
inj → proj is an equivalence and eA is the minimal faithful projective injective module. 
Thus ν−1(I0) has the same number of indecomposable direct summands as I0. Therefore 
soc(X) = 0 and so X = 0, since every indecomposable summand of the socle of the 
module provides an indecomposable direct summand of the injective hull of that module. 
Thus HomA(D(A), A) ∼= A and A is a Morita algebra by 1.7 2. and so A has dominant 
dimension at least 2. �

We now give a bocs-theoretic characterization of gendo-symmetric algebras.

2.2. Theorem. Let A be a finite dimensional algebra. Then the following are equivalent:
1. A is gendo-symmetric.
2. There is a comultiplication and counit such that B = (A, D(A)) is a bocs.

Proof. We first show that 1. implies 2.:
Assume that A is gendo-symmetric with a minimal faithful projective-injective module 

eA. Set P := eA and apply the second example in 1.10, with B := eAe, to see that 
B := (A, Ae ⊗eAeeA) has the structure of a bocs. Now note that by 1.4 D(A) ∼= Ae ⊗eAeeA

as A-bimodules and one can use this to get a bocs structure for (A, D(A)).
Now we show that 2. implies 1.:
Assume that (A, D(A)) is a bocs with comultiplication μ and counit ε. Note first that 

the comultiplication μ always has to be injective because in the identity (ε ⊗A 1W )μ = cr
appearing the definition of a bocs, cr is an isomorphism. So there is an injection μ :
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D(A) → D(A) ⊗A D(A) which gives a surjection D(μ) : D(D(A) ⊗A D(A)) → A. Now 
using 1.8 we see that D(D(A) ⊗A D(A)) ∼= HomA(D(A), A) as A-bimodules.

Since A is projective, D(μ) is split and HomA(D(A), A) ∼= A ⊕ X for some A-right 
module X. By 2.1, this implies HomA(D(A), A) ∼= A and comparing dimensions, D(μ)
and thus also μ have to be isomorphisms. By 1.4, A is gendo-symmetric. �

We give an interesting consequence of the previous theorem, where we need the defi-
nition of comonads from [4], 38.26.

2.3. Definition. Let C be a category and IC : C → C the identity functor. Then a comonad
is a functor F : C → C such that there exist natural transformations δ : F → F ◦F and 
ψ : F → IC with δF (N) ◦ δN = F (δN ) ◦ δN and ψF (N) ◦ δN = F (ψN ) ◦ δN = idF (N).

2.4. Corollary. Let A be a finite dimensional algebra. Then the following two conditions 
are equivalent:

1. A is gendo-symmetric.
2. ν is a comonad.

Proof. In [4] 18.28. it is proven that an A-bimodule W is a bocs iff the functor (−) ⊗AW is 
a comonad. Applying this with W = D(A) and using the previous theorem, the corollary 
follows. �
2.5. Remark. Theorem 2.2 also shows that the comultiplication of the bocs (A, D(A)) is 
always an A-bimodule isomorphism for a gendo-symmetric algebra A. In [7], section 2.2., 
it is noted that such an isomorphism is unique up to multiples of invertible central 
elements in A. Thus the comultiplication of the bocs is also unique in that sense.

The following proposition gives an application:

2.6. Proposition. Let A and B be gendo-symmetric K-algebras. Then A ⊗K B is again 
a gendo-symmetric K-algebra. In particular, let F be a field extension of K and A a 
gendo-symmetric K-algebra. Then A ⊗K F is again gendo-symmetric.

Proof. Let A and B two gendo-symmetric algebras. Then B1 = (A, D(A)) and B2 =
(B, D(A)) are bocses. By example 3 of 1.10 also the tensor product of B1 and B2 are 
bocses, it is the bocs C = (A ⊗K B, D(A) ⊗K D(B)). Recall the well known formula 
(D(A) ⊗K D(B)) ∼= D(A ⊗K B), which can be found as exercise 12. of chapter II. in [14]. 
Using this isomorphism one can find a bocs structure on (A ⊗K B, D(A ⊗K B)) using 
the bocs structure on C. Thus by our bocs-theoretic characterization of gendo-symmetric 
algebras, also A ⊗K B is gendo-symmetric. The second part follows since every field is a 
symmetric and thus gendo-symmetric algebra. �
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Let Ae := Aop⊗KA denote the enveloping algebra of a given algebra A. The following 
proposition can be found in [4], 17.8.

2.7. Proposition. Let (A, W ) be a bocs and c ∈ W with μ(c) =
n∑

i=1
c1,i ⊗ c2,i.

1. HomA(W, A) has a ring structure with unit ε and product ∗r, given as follows for 
f, g ∈ HomA(W, A):

f ∗r g = g(f ⊗A idW )μ.

There is a ring anti-morphism ζ : A → HomA(W, A), given by ζ(a) = ε(a(−)).
2. HomAe(W, A) has a ring structure with unit ε and multiplication ∗ given as follows 

for f, g ∈ HomAe(W, A):

f ∗ g(c) =
n∑

i=1
f(c1,i)g(c2,i).

We now describe the ring structures on HomAe(D(A), A) and HomA(D(A), A).

2.8. Proposition. Let A be gendo-symmetric.
1. ζ, as defined in the previous proposition, is a ring anti-isomorphism ζ : A →

HomA(D(A), A).
2. With the ring structure on HomAe(D(A), A) as defined in the previous proposition, 

HomAe(D(A), A) is isomorphic to the center Z(A) of A.

Proof. We use the isomorphism of A-bimodule D(A) ∼= Ae ⊗eAe eA.
1. Since A and HomA(D(A), A) have the same K-dimension, the only thing left to 

show is that ζ is injective. So assume that ζ(a) = ε(a(−)) = 0, for some a ∈ A. This 
is equivalent to ε(ax) = 0 for every x = ce ⊗ ed ∈ Ae ⊗ eA. Now ε(a(ce ⊗ ed)) =
ε(ace ⊗ ed) = aced. Thus, since c, d were arbitrary, aAeA = 0. This means that a
is in the left annihilator L(AeA) of the two-sided ideal AeA. But L(AeA) = 0, since 
HomA(A/AeA, A) = 0, by 1.3 and thus a = 0. Therefore ζ is injective.

2. Define ψ : HomAe(D(A), A) → Z(eAe) by ψ(f) = f(e ⊗ e), for f ∈
HomAe(D(A), A). First, we show that this is well-defined, that is f(e ⊗ e) is really in 
the center of Z(eAe). Let x ∈ eAe. Then xf(e ⊗ e) = f(xe ⊗ e) = f(e ⊗ ex) = f(e ⊗ e)x
and therefore f(e ⊗ e) ∈ Z(eAe). Clearly, ψ is K-linear. Now we show that the map 
is injective: Assume ψ(f) = 0, which is equivalent to f(e ⊗ e) = 0. Then for any 
a, b ∈ A : f(ae ⊗ eb) = 0, and thus f = 0.

Now we show that ψ is surjective. Let z ∈ Z(eAe) be given. Then define a map 
fz ∈ HomAe(D(A), A) by fz(ae ⊗ eb) = zaeb. Then, since z is in the center of eAe, 
f is A-bilinear and obviously ψ(fz) = fz(e ⊗ e) = ze = z. ψ also preserves the unit 
and multiplication: ψ(ε) = ε(e ⊗ e) = e2 = e and for two given f, g ∈ HomAe(D(A), A): 
φ(f ∗g) = (f ∗g)(e ⊗e) = (f ∗g)(e ⊗e) = f(e ⊗e)g(e ⊗e), by the definition of ∗. To finish 
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the proof, we use the result from [7], Lemma 2.2., that the map φ : Z(A) → Z(eAe), 
φ(z) = eze is a ring isomorphism in case A is gendo-symmetric. �
2.9. Remark. Let B = (A, W ) be a bocs and take the natural isomorphism ξ :
EndB(A) = HomA(A, HomA(W, A)) → HomA(W, A). For f, g ∈ HomA(W, A) one can 

define another multiplication × in HomA(W, A) as follows: g × f(c) =
n∑

i=1
g(f(c1,i)c2,i), 

when μ(c) =
n∑

i=1
c1,i ⊗ c2,i. Note that this is the opposite multiplication as in 2.7 1. 

Then HomAe(W, A) is a K-subalgebra of HomA(W, A) with respect to × and be-
cause of ξ(uv) = ξ(u) × ξ(v) for u, v ∈ EndB(A) and the fact that ξ preserves units, 
ξ−1(HomAe(W, A)) is a K-subalgebra of EndB(A).

3. Description of the module category of the bocs (A, D(A)) for a gendo-symmetric 
algebra

Let A be a gendo-symmetric algebra. In this section we describe the module category of 
the bocs B = (A, D(A)) as a K-linear category. We will use the A-bimodule isomorphism 
Ae ⊗eAe eA ∼= D(A) often without mentioning. Let M be an arbitrary A-module. Define 
for a given M the map IM : M → HomA(D(A), M) by IM (m) = um for any m ∈ M , 
where um : D(A) → M is the map um(ae ⊗ eb) = maeb for any a, b ∈ A. Before 
we get into explicit calculation, let us recall how ∗ is defined in this special case. Let 
f ∈ HomB(L, M) and g ∈ HomB(M, N), then for l ∈ L and a, b ∈ A: (g∗f)(l)(ae ⊗eb) =
g(f(l)(ae ⊗ e))(e ⊗ eb).

3.1. Proposition. 1. IM is well defined.
2. IM is injective, iff M has dominant dimension larger than or equal to 1.
3. IM is bijective, iff M has dominant dimension larger than or equal to 2.

Proof. 1. We have to show two things: First, um is A-linear for any m ∈ M : 
um((ae ⊗ eb)c) = um(ae ⊗ ebc) = maebc = (maeb)c = um(ae ⊗ eb)c. Second, IM is also 
A-linear: IM (mc)(ae ⊗ eb) = umc(ae ⊗ eb) = mcaeb = um(cae ⊗ eb) = (umc)(ae ⊗ eb) =
(IM (m)c)(ae ⊗ eb).

2. IM is injective iff (m = 0 ⇔ um = 0). Now um = 0 is equivalent to maeb = 0 for any 
a, b ∈ A. This is equivalent to the condition that the two-sided ideal AeA annihilates m. 
Thus there is a nonzero m with um = 0 iff HomA(A/AeA, M) �= 0 iff M has dominant 
dimension zero by 1.3.

3. By 1.2 M has dominant dimension larger than or equal to two iff M ∼= ν−1(M).
Thus 3. follows by 2. since an injective map between modules of the same dimension 

is a bijective map. �



R. Marczinzik / Journal of Algebra 470 (2017) 160–171 169
3.2. Lemma. For any module M , there is an isomorphism HomA(μ, M)ψ : HomA(D(A),
HomA(D(A), M)) → Hom(D(A), M) and thus ν−1(M) ∼= ν−2(M). It follows that every 
module of the form ν−1(M) has dominant dimension at least two.

Proof. The result follows, since ψ is the canonical isomorphism ψ : HomA(D(A),
HomA(D(A), M)) → HomA(D(A) ⊗A D(A), M) and since μ is an isomorphism also 
HomA(μ, M) is an isomorphism. That ν−1(M) has dominant dimension at least two, 
follows now from 1.2. �

We define a functor φ : mod − A → mod − B by φ(M) = M and φ(f) = INf for an 
A-homomorphism f : M → N . φ is obviously K-linear. The next result shows that it 
really is a functor and calculates its kernel on objects.

3.3. Theorem. 1. φ is a K-linear functor.
2. φ(M) = 0 iff the two-sided ideal AeA annihilates M , that is M is an A/AeA-module. 

All modules M that are annihilated by AeA have dominant dimension zero.
3. By restricting φ to Dom2, one gets an equivalence of K-linear categories Dom2 →

DomB
2 , where DomB

2 denotes the full subcategory of mod −B having objects all modules 
of dominant dimension at least 2.

4. Any module A-module M is isomorphic to ν−1(M) in B-mod and thus B-mod is 
equivalent to Dom2 as K-linear categories, which is equivalent to the module category 
mod-eAe.

Proof. 1. It was noted above that φ is K-linear. We have to show φ(idM ) = Hom(ε, M)ζ, 
where ζ : M → HomA(A, M) is the canonical isomorphism, and φ(g◦f) = IN (g) ∗IM (f), 
where f : L → M and g : M → N are A-module homomorphisms. To show the first 
equality φ(idM ) = Hom(ε, M)ζ, just note that Hom(ε, M)ζ(m)(ae ⊗ eb) = lm(ε(ae ⊗
eb)) = maeb = IM (m)(ae ⊗ eb), where lm : A → M is left multiplication by m.

Next we show the above equality φ(g ◦ f) = IN (g) ∗ IM (f):
Let l ∈ L and a, b ∈ A. First, we calculate φ(g ◦ f)(l)(ae ⊗ eb) = g(f(l))aeb.
Second, IN (g) ∗IM (f)(l)(ae ⊗eb) = IN (g)(IM (f)(l)(ae ⊗e))(e ⊗eb) = IN (g)(uf(l)(ae ⊗

e))(e ⊗ eb) = IN (g)(f(l)(ae))(e ⊗ eb) = g(f(l))aeb.
Thus φ(g ◦ f) = IN (g) ∗ IM (f) is shown.
2. A module M is zero in the K-category mod-B iff its endomorphism ring EndB(M)

is zero iff the identity of EndB(M) is zero. Thus M is zero in mod-B iff IM (m) = 0
for every m ∈ M . But IM (m) = 0 iff mAeA = 0 and so φ(M) = 0 iff MAeA = 0. To 
see that such an M must have dominant dimension zero, note that AeA annihilates no 
element of M iff M has dominant dimension larger than or equal to 1 by 1.3.

3. Restricting φ to Dom2, φ is obviously still dense by the definition of DomB
2 . Now 

recall that by the previous proposition a module M has dominant dimension at least 
two iff IM is an isomorphism. Let now h ∈ HomB(M, N) be given with M, N ∈ DomB

2 . 
Then φ(I−1

N h) = IN (I−1
N h)) = h and φ is full. Assume φ(h) = INh = 0, then h = 0, 

since IN is an isomorphism, and so φ is faithful.
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4. Define f ∈ HomB(M, ν−1(M)) as f = (HomA(μ, M)ψ)−1IM and
g ∈ HomB(ν−1(M), M) as g = idν−1(M). We show that f ∗g = Iν−1(M) and g ∗f = IM , 
which by 1. are the identities of HomB(ν−1(M), ν−1(M)) and HomB(M, M). This shows 
that any module M is isomorphic to ν−1(M) in B-mod.

Let m ∈ M and a, b ∈ A.
Then (g∗f)(m)(ae ⊗eb) = g(f(m)(ae ⊗e))(e ⊗eb) = ((HomA(μ, M)ψ)−1IM (m))((ae ⊗

e))(e ⊗ eb)) = maeb = IM (m)(ae ⊗ eb), where we used that g is the identity on ν−1(M). 
Next we show that f ∗ g = Iν−1(M): Let l ∈ ν−1(M) = HomA(D(A), M).

First, note that by definition Iν−1(M)(l)(ae ⊗ eb)(a′e ⊗ eb′) = (laeb)(a′e ⊗ eb′) =
l(aeba′e ⊗ eb′). Next (f ∗ g)(l)(ae ⊗ eb)(a′e ⊗ eb′) = f(g(l)(ae ⊗ eb)(a′e ⊗ eb′) = f(l(ae ⊗
eb))(a′e ⊗eb′) = (HomA(μ, M)ψ)−1IM (l(ae ⊗eb)(a′e ⊗eb′) = l(ae ⊗eba′eb′) = l(aeba′e ⊗
eb′), where we used in the last step that we tensor over eAe.

Now we use 3.2, to show that every module of the form ν−1(M) has dominant dimen-
sion at least two. Since every module M is isomorphic to ν−1(M), B−mod is isomorphic 
to DomB

2 , which is isomorphic to Dom2 by 3. Now recall that there is an equivalence 
of categories mod-eAe → Dom2 (this is a special case of [1] Lemma 3.1.). Combin-
ing all those equivalences, we get that B − mod is equivalent to the module category 
mod-eAe. �
3.4. Corollary. In case an A-module M has dominant dimension larger than or equal 
to 2, the map HomA(M, IM ) : EndA(M) → EndB(M) is a K-algebra isomorphism. In 
particular A ∼= EndA(A) ∼= EndB(A), since A has dominant dimension at least 2.

Proof. This follows since IM is an isomorphism, in case M has dominant dimension at 
least two by 3.1 3. �
3.5. Example. Let n ≥ 2 and A := K[x]/(xn) and J the Jacobson radical of A. Let 
M := A ⊕

⊕n−1
k=1 J

k and B := EndA(M). Then B is the Auslander algebra of A and 
B has n simple modules. The idempotent e is in this case primitive and corresponds to 
the unique indecomposable projective-injective module HomA(M, A). By the previous 
theorem, the kernel of φ is isomorphic to the module category mod − (A/AeA). Here 
A/AeA is isomorphic to the preprojective algebra of type An−1 by [6] chapter 7.

We describe the bocs module category B-mod of (B, D(B)) for n = 2 explicitly. In 
this case B is isomorphic to the Nakayama algebra with Kupisch series [2, 3]. Then B
has five indecomposable modules. Let e0 be the primitive idempotent corresponding to 
the indecomposable projective module with dimension two and e1 the primitive idem-
potent corresponding to the indecomposable projective module with dimension three. 
Then e1A is the unique minimal faithful indecomposable projective-injective module. 
Let Si denote the simple B-modules. The only indecomposable module annihilated by 
Be1B is S0, which is therefore isomorphic to zero in the bocs module category. The two 
indecomposable projective modules P0 = e0B and P1 = e1B have dominant dimension 
at least two and thus are not isomorphic. The only indecomposable module of dominant 
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dimension 1 is S1 and the only indecomposable module of dominant dimension zero, 
which is not isomorphic to zero in B-mod, is D(Be0). Now let X = S1 or X = D(Be0), 
then ν−1(X) = HomB(D(B), X) ∼= e0B. Thus in B-mod S1 ∼= e0B ∼= D(Be0) and e1B

are up to isomorphism the unique indecomposable objects.
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