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We classify plethories over fields of characteristic zero, thus 
answering a question of Borger–Wieland and Bergman. All 
plethories over characteristic zero fields are linear, in the sense 
that they are free plethories on a bialgebra. For the proof we 
need some facts from the theory of ring schemes where we ex-
tend previously known results. We also classify plethories with 
trivial Verschiebung over a perfect field of non-zero character-
istic and indicate future work.

© 2018 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2. Ring schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3. Plethories and k − k-birings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4. Classification of plethories over a field of characteristic zero . . . . . . . . . . . . . . . . . . . . . . . 87
5. Some classification results in characteristic p > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1. Introduction

Plethories, first introduced by Tall–Wraith [13], and then studied by Borger–Wieland 
[3], are precisely the objects which act on k-algebras, for k a commutative ring. There are 
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many fundamental questions regarding plethories which remain unanswered. One such 
question is, given a ring k, whether one can classify plethories over k, in this paper we 
will take a first step towards a classification.

For some motivation, let us start by looking at the category of modules Modk over a 
commutative ring k. If we consider the category of representable functors Modk → Modk, 
there is a monoidal structure given by composition of functors. Then one defines a 
k-algebra R as a k-module R together with a comonad structure on the representable 
endofunctor Modk(R, −) : Modk → Modk with respect to composition of functors. 
Heuristically, this says that a k-algebra is precisely the kind of object which knows 
how to act on k-modules. This can be extended to a non-linear setting, so that instead 
of looking at k-modules we look at k-algebras Algk and consider representable endofunc-
tors Algk → Algk. A comonoid with respect to composition of functors is then called 
a plethory and analogously, a plethory is what knows how to act on k-algebras. One 
particular important example of a plethory is the Z-algebra Λ which consists of the ring 
of symmetric functions in infinitely many variables with a certain biring structure. The 
functor Algk(Λ, −) : Algk → Algk represents the functor taking a ring R to its ring 
of Witt vectors. Using plethories one gets a very conceptual view of Witt vectors and 
in [2] James Borger develops the geometry of Witt vectors using the plethystic perspec-
tive.

Let now k be a field. If we let Pk denote the category of plethories over k, there is a 
functor

P : Pk → Bialgk,

into the category of cocommutative counital bialgebras over k, which takes a plethory 
Q to its primitive elements P (Q). This functor has a left adjoint S(−) : Bialgk → P
and we say that a plethory Q is linear if Q ∼= S(A) for some cocommutative, counital 
bialgebra A. Heuristically, a plethory Q is linear if every action of Q on an algebra B
comes from an action of a bialgebra on B. The main theorem of this paper is:

Theorem 1.1. Let k be a field of characteristic zero. Then any k-plethory is linear.

This answers a question of Bergman–Hausknecht [1, p. 336] and Borger–Wieland [3]
in the positive. The theorem is proved by studying the category of affine ring schemes. 
We have the following results, extending those of Greenberg [8] to arbitrary fields and 
not necessarily reduced schemes:

Theorem 1.2. Let k be a field. Then any connected ring scheme of finite type is unipo-
tent.

Theorem 1.3. Let P be a connected ring scheme of finite type over k. Then P is 
affine.
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For the case of characteristic p > 0 our classification results on plethories are not as 
complete and further work is needed to have a complete classification. To explain our clas-
sification results here we need some definitions. Define k〈F 〉 to be the non-commutative 
ring which as underlying set is k[F ] and has multiplication given by

F iF j = F i+j

and

Fa = apF.

We define Bialgp
k to be the category of cocommutative, counital bialgebras over k which 

also are modules over k〈F 〉. Once again, for a plethory over a perfect field k of charac-
teristic p > 0 the primitive elements gives a functor

P : Pk → Bialgp
k

which has a left adjoint S[p]. Call a plethory Q p-linear if Q ∼= S[p](A) for some A ∈ Bialgp
k . 

We have then the following classification result:

Theorem 1.4. Let k be a perfect field of characteristic p > 0. Assume that Q is a plethory 
over k such that the Verschiebung VQ = 0. Then Q is p-linear.

The structure of this paper is as follows. In section 2 we study ring schemes and prove 
some results which we will need for our classification theorem. The main theorems of 
this section that are needed for later purposes are Theorem 2.6 and Theorem 2.7. In 
section 3 we introduce plethories and k − k-birings and provide some examples. This 
section contains no new results and gives just a brief introduction to the relevant objects 
as defined in Borger–Wieland [3]. In section 4 we prove that all plethories over a field 
k of characteristic zero are linear using the results from section 2. We also show that 
any k − k-biring is connected. In section 5 we prove some initial classification results 
regarding plethories in characteristic p > 0.

Notation and conventions

Ring category of commutative and unital rings.
BRk,k category of k − k-birings.

Pk category of k-plethories.
Bialgk category of cocommutative k-bialgebras.
Bialgp

k category of cocommutative k-p-bialgebras.
� composition product of k − k-birings, Definition 3.2.

Algk category of commutative algebras over the ring k.
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Δ+
A,Δ

×
A coaddition resp. comultiplication map for a biring A.

ε+A, ε
×
A counit for coaddition resp. comultiplication for a biring A.

βA co-k-algebra structure on a k − k-biring A.
Δ+

2 ,Δ
×
2 abbreviation for the composite (1 ⊗ Δ+) ◦ Δ+ resp. (1 ⊗ Δ×) ◦ Δ×.
P primitive elements functor.

OX structure sheaf of a scheme X.
Schk category of k-schemes for k a commutative ring.
Ga the affine line viewed as a group scheme, see Example 3.1.
Gm the multiplicative group scheme, after Definition 2.5.
μp the p-th root of unity group scheme, Example 5.2.
αp see Example 3.3.

π0(G) the group scheme of connected components of a group scheme G over the 
field k, Definition 4.2.

S free plethory functor on a cocommutative bialgebra. Definition 4.1.
S[p] free plethory functor on a cocommutative p-bialgebra, after Definition 5.1.
G◦ the identity component of a group scheme G.

FG, VG the Frobenius resp. Verschiebung morphism of a group scheme G over a perfect 
field of characteristic p > 0.

k〈F 〉 the twisted polynomial algebra.

For us, all rings are commutative and unital. We will use Sweedler notation for coaddition 
Δ+ and Δ×, so that Δ+(x) =

∑
i x

(1)
i ⊗ x

(2)
i and Δ×(x) =

∑
i x

[1]
i ⊗ x

[2]
i if x ∈ A where 

A is a biring. For concepts from the theory of group schemes not introduced properly 
here, we refer to [11] or [6].
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2. Ring schemes

Let k be a commutative ring. Recall that R is a ring scheme over k if R is a scheme 
together with a lift of the functor
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Schk(−,R) : Schk → Set

to Ring. We say that a ring scheme is a k-algebra scheme if the lift factors through 
the category of k-algebras. We will mostly be concerned with affine ring schemes. Ring 
schemes were studied by Greenberg in [8] and he showed that for connected, reduced 
ring schemes of finite type over an algebraically closed field k, the underlying scheme is 
always affine. Further, he shows that the underlying group scheme is always unipotent. 
We improve on these results by showing that any connected ring scheme of finite type 
over an arbitrary field is affine, and that the underlying group scheme is always unipotent. 
From now on, in this section, k is always a field.

Definition 2.1. A k-scheme X is anti-affine if OX(X) = k. We say that a group scheme 
is anti-affine if its underlying scheme is anti-affine

For example, abelian varieties are all anti-affine group schemes. An anti-affine group 
scheme has the property that any morphism from it into an affine group scheme is trivial. 
Anti-affine groups are very important for the structure of group schemes as the following 
theorem shows:

Theorem 2.2 ([4, Theorem 1]). If G is a group scheme of finite type over a field k, then 
there is an exact sequence of group schemes

0 → Gant → G → G/Gant → 0

such that Gant is anti-affine and G/Gant is affine.

We will now want to show that all connected finite type ring schemes are affine, i.e.
that in the above exact sequence Gant = Spec k. For this, we will need the following 
lemma.

Lemma 2.1. Let X, Y, Z be k-schemes with X quasi-compact and anti-affine and Y locally 
noetherian and irreducible. Suppose that f : X × Y → Z is a morphism such that there 
exist k-rational points x0 ∈ X, y0 ∈ Y such that f(x, y0) = f(x0, y0) for all x. Then 
f(x, y) = f(x0, y) for all x, y.

Proof. See [4, Lemma 3.3.3]. �
Theorem 2.3. Let R be a connected ring scheme of finite type over k. Then R is affine.

Proof. We know by Theorem 2.2 that R sits in the middle of an extension of an affine 
group scheme by an anti-affine group. Let

0 → Rant → R → Raff → 0
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be the corresponding extension where Rant is anti-affine and Raff the affine quotient. 
Since R is of finite type, Raff is a ring scheme. This follows from the fact that if X, Y are 
quasi-compact k-schemes, then the obvious map OX(X) ⊗k OY (Y ) → OX×kY (X ×k Y )
is an isomorphism (see [4, Lemma 2.3.3]). This implies that Rant defines an ideal scheme 
in R, i.e. for all rings S over k, Rant(S) is an ideal of R(S). Now, we will apply the above 
lemma with Y = R (note that R is irreducible) and X = Z = Rant. Taking x0 = eRant

and y0 = eR to be the rational points corresponding to the additive identity of Rant(k)
and R(k) respectively, we have that m(x, y0) = m(x0, y0) is identically equal to zero. 
Thus, we have that m(x, y) = m(x0, y) is identically zero. But, letting 1R be the rational 
point corresponding to the multiplicative identity of R(k) we have that m(x, 1R) is zero. 
But multiplication by 1 is always injective, and thus, Rant is trivial and R is affine. �

We do not know if the condition for R to be of finite type is necessary in Theorem 2.3.
Let us recall the following definition from the theory of algebraic groups.

Definition 2.4. Let G be a commutative group scheme over k. We say that G is unipotent 
if it is affine and if every non-zero closed subgroup H of G admits a non-zero homomor-
phism H → Ga.

The data of a homomorphism G → Ga is the same as specifying an element x ∈ AG

in the underlying Hopf algebra of G that satisfies ΔG(x) = x ⊗1 +1 ⊗x, i.e. specifying a 
primitive element. We now briefly explain what the concept of a unipotent group scheme 
is in the language of Hopf algebras. We follow [11, Definition 14.4], and define a Hopf 
algebra AG to be coconnected if there exists an increasing filtration Hi, i ≥ 0 of AG by 
subspaces such that H0 = k, 

⋃
i Hi = AG, and

Δ+
AG

(Hi) ⊂
∑

r+s=i

Hr ⊗k Hs.

To see that the Hopf algebra of a unipotent group scheme is coconnected and conversely, 
one uses [11, Theorem 14.5], together with the fact that any unipotent group scheme 
(coconnected Hopf algebra) is the cofiltered limit (filtered colimit) of unipotent group 
schemes of finite type (finitely generated coconnected Hopf algebras). The following 
definition will be useful for the proof of Theorem 2.6.

Definition 2.5. Let G be a commutative affine group scheme over a field. We say that 
G is multiplicative if every homomorphism G → Ga is zero.

An example of a multiplicative group is Gm = Spec k[x, x−1]. There can in general be 
no homomorphism from a multiplicative group into a unipotent group and no morphisms 
from a unipotent group to a multiplicative group (for a proof, see [11, Corollary 14.18]).

The following theorem was shown for reduced ring varieties over an algebraically closed 
fields by Greenberg, but the results carry over for perfect fields without any modification. 
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We improve on this by carrying through the proof when R is not necessarily reduced and 
over any field k. Further, the theorem can be extended to ring schemes not necessarily
of finite type if the ring scheme is already known to be affine.

Theorem 2.6. Over a field k, all connected ring schemes R of finite type are unipotent.

Proof. By Theorem 2.3, a connected ring scheme is affine. We know that R contains a 
greatest multiplicative subgroup Rm that has the property that for all endomorphisms 
α of RS (where RS is the base change of R to S), for S a k-algebra, that α((Rm)S) ⊂
(Rm)S ([11, Theorem 16.13]). Thus, since any x ∈ R(k) defines an endomorphism of R
(as a group scheme) through multiplication by x, we have that Rm is an ideal of R. It 
is known that any action of a connected algebraic group on a multiplicative group must 
be trivial, i.e. for G connected and H multiplicative, a map G → Aut(H) must have the 
identity as its image. We will need the following, which says that any map G → End(H)
where G is any connected algebraic group scheme and H is multiplicative is trivial. This 
is basically just deduced, mutatis mutandis, from the proof of [11, Theorem 12.36]. So, 
we see that 0 and 1 define the same endomorphism on the ideal scheme Rm. But this is 
only the case if Rm = 0. �

To extend this to all connected ring schemes, we need the following:

Theorem 2.7. Let k be a field and R be an affine ring scheme over k. Then R is a filtered 
limit of ring schemes of finite type.

Proof. The following proof is inspired by the analogous theorem for Hopf algebras over 
a field, as occurs in for example Milne [11, Prop. 8.34]. Write R = SpecAR. We know 
that AR is a bialgebra and we see that we can reduce to proving that any a ∈ AR is 
contained in a sub-bialgebra of finite type. Let Δ+ : AR → AR ⊗AR be the coaddition 
giving the additive group structure on R and Δ× : AR → AR⊗AR the comultiplication 
defining the multiplication on R. Consider

Δ+
2 (a) =

∑

i,j

ci ⊗ xij ⊗ dj

with ci and dj linearly independent. Now, by the fundamental theorem of coalgebras, 
we know that if we take X to be the subspace of AR generated by {xij}, then this is a 
subcoalgebra, i.e. that Δ+(xij) ⊂ X ⊗X. Now, for each xij in this system, consider

Δ×
2 (xij) =

∑

k,l

ei ⊗ ykl ⊗ fl

with ei and fl linearly independent. With the same arguments, one sees that for the 
subspace Y generated by {ykl} we have Δ×(ykl) ⊂ Y ⊗ Y . Let now Z be subalgebra 
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generated by the finite-dimensional subspace spanned by {xij, ykl}. We claim that Z
actually is closed under both the operation Δ+ and Δ×. It is clear that

Δ×(xij) ⊂ Z ⊗ Z

and the same holds for coaddition. It is also easy to verify that Δ×(ykl) ⊂ Z ⊗ Z. We 
will now prove that Δ+(ykl) ⊂ Z ⊗Z and for this, consider the following diagram which 
is easily verified if we reverse all arrows and think of it in terms of rings.

AR AR ⊗AR

AR ⊗AR AR ⊗AR

AR ⊗AR ⊗AR ⊗AR AR ⊗AR

AR ⊗AR ⊗AR ⊗AR AR ⊗AR

AR ⊗ (AR ⊗AR) ⊗ (AR ⊗AR) ⊗AR AR ⊗AR

(AR ⊗AR) ⊗AR ⊗AR ⊗ (AR ⊗AR) (AR ⊗AR) ⊗AR

AR ⊗AR ⊗AR ⊗AR AR ⊗AR ⊗AR ⊗A

Δ×

Δ+

Δ×⊗Δ×

1⊗T⊗1

Δ×⊗1⊗1⊗Δ×

1⊗T⊗T⊗1 Δ×⊗1

M⊗1⊗1⊗M 1⊗Δ+⊗1

Here M is the multiplication map and T switches the factors. Translated into the lan-
guage of rings, this diagram relates different ways of forming

abd + acd

for a, b, c, d in a ring. So the above diagram shows that

(1 ⊗ Δ+ ⊗ 1)(Δ×
2 (xij) =

∑

k,l

ek ⊗ Δ+(ykl) ⊗ fl ∈ Z ⊗ Z ⊗ Z ⊗ Z.

Now, since the ek are independent, this means that
∑

l

Δ+(ykl) ⊗ fl ∈ Z ⊗ Z ⊗ Z

and by linear independence of each fl this gives that

Δ+(ykl) ∈ Z ⊗ Z.
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Now, let W be the sub-algebra generated by Z ∪ S(Z) where S : AR → AR is the 
antipode. It is easily verified that

Δ+ ◦ S = (S ⊗ S) ◦ Δ+

and that

Δ×(S(Z)) ⊂ W

follows from the identity

Δ× ◦ S = (1 ⊗ S) ◦ Δ×.

We thus see that W is a bialgebra and we are done. �
Corollary 2.2. Any affine connected ring scheme over a field is unipotent.

Proof. Indeed, we know that we can write P = lim←−−Pi where Pi ranges over ring schemes 
of finite type. Now, unipotence is stable under inverse limits and this immediately gives 
that P is unipotent. �
3. Plethories and k − k-birings

Let k be an arbitrary commutative ring. In this section we will recall the definition of 
a plethory as defined in [3].

Definition 3.1. A k-biring A is a coring object in the category of k-algebras. Explicitly, 
A is a k-algebra together with maps

Δ+ : A → A⊗k A,

Δ× : A → A⊗k A,

S : A → A,

ε+ : A → k

and ε× : A → k such that:

• The triple (Δ+, ε+, S) defines a cocommutative Hopf algebra structure on A with S
the antipode and ε+ the counit.

• Δ× is cocommutative coassociative and codistributes over Δ+ and ε× : A → k is a 
counit for Δ×.
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We say that A is a k − k-biring if, in addition to the above data, it has a map

β : k → Ringk(A, k)

of rings, where we endow Ringk(A, k) with the ring structure induced from the coring 
structure on A.

Equivalently, a k−k-biring A is just an affine scheme together with a lift of the functor 
Ringk(A, −) to the category of k-algebras, i.e. it is an affine k-algebra scheme.

Example 3.1. Let us define the k-algebra scheme which we will call Ga. Ga will represent 
the identity functor Ringk → Ringk. The underlying scheme of Ga is Spec k[e]. The 
coaddition and comultiplication is given by Δ+(e) = e ⊗ 1 + e ⊗ 1, Δ×(e) = e ⊗ e, the 
additive resp. multiplicative counit by ε+(e) = 0, ε×(e) = 1, the antipode by S(e) = −e

and the co-k-linear structure by β(c)(e) = c for all c ∈ k.

Example 3.2. Consider Z[e, x]. On e, we define all the structure maps as in the previous 
example. We then define

Δ+(x) = x⊗ 1 + 1 ⊗ x,

Δ×(x) = x⊗ e + e⊗ x

and ε×(x) = ε+(x) = 0, S(x) = −x. This Z-ring scheme represents the functor taking a 
ring R to R[ε]/(ε2), the ring of dual numbers over that ring.

Example 3.3. Let k = Fq be a finite field of characteristic p and consider

αp = Spec k[e]/(ep)

as a group scheme where the group structure is induced from Spec k[e]. Define a multi-
plication

αp × αp → αp

by saying that xy = 0 for any x, y ∈ αp(R) for R a k-algebra. Consider now the constant 
group scheme

Fq =
∐

x∈k

k.

Then we can define a structure of a ring scheme on Fq×αp by defining the multiplication 
to be

(x, y)(z, w) = (xz, xw + yz)

for (x, y), (z, w) ∈ (Fq × αp)(R). This is a non-reduced ring scheme.
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A famous example is also that the functor taking a ring R to W (R), its ring of big 
Witt vectors, is also representable by a ring scheme.

Let us note that we can form the category of k − k-birings, with morphisms between 
objects those morphisms of k-algebras respecting the biring structure. We let BRk,k be 
the category of k − k-birings. Let us recall the following definition from [3].

Definition 3.2. Let A be a k − k-biring. Then the functor

Ringk(A,−) : Algk → Algk

has a left adjoint,

A�k − : Algk → Algk .

Explicitly, for a k-algebra R, A �R is the k-algebra generated by all symbols a �r subject 
to the relations (∀a, a′ ∈ A, ∀r, r′ ∈ R, ∀c ∈ k):

aa′ � r = (a� r)(a′ � r), (a + a′) � r = (a� r) + (a′ � r), c� r = c,

a� (r + r′) =
∑

i

(a(1)
i � r)(a(2)

i � r′), a� rr′ =
∑

i

(a[1]
i � r)(a[2]

i � r′),

and a � c = βA(c)(a).

It is easy to see that (⊗iAi) � R ∼= ⊗i(Ai � R) and that A � (⊗iRi) ∼= ⊗i(A � Ri). 
If further, R is a k − k-bialgebra, we note that A � R is a k − k-bialgebra. Indeed, we 
have that Ringk(A � R, S) ∼= Ringk(R, Ringk(A, S)) and since the latter set has a ring 
structure, so does the former. One then verifies that �k gives a monoidal structure to 
BRk,k. The unit of this monoidal structure is k[e]. BRk,k is a monoidal category, but 
it is not symmetric. Now, the Yoneda embedding sets up an equivalence of categories 
between the category of representable endofunctors Algk → Algk and BRk,k and under 
this equivalence, � corresponds to ◦, composition of representable endofunctors as given 
in the introduction. Denote the category of representable endofunctors Algk → Algk by 
Algend

k .

Definition 3.3. A k-plethory is a comonoid in Algend
k where the monoidal structure is 

composition of endofunctors. Explicitly, on the level of representing objects, a k-plethory 
P is a monoid in BRk,k. This means that P is a biring together with an associative map 
of birings P � P → P and a unit k[e] → P .

Remark 3.4. For a plethory P one can define an action of P on a k-ring R to be a map 
◦ : P �R → R such that (p1 � p2) ◦ r = p1 � (p2 ◦ r) and e ◦ r = r, ∀p1, p2 ∈ P , r ∈ R. 
A ring R together with an action of P on R is called a P -ring.
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Example 3.5. If k is a finite ring, then kk, the set of functions k → k is a plethory where 
◦ is given by composition of functions.

Example 3.6 ([3, 2.10]). The graded ring Z[x1, . . . , xn], with grading given by deg xi = 1, 
has an obvious action of Sn, the n-th symmetric group, given by simply permuting 
variables. We let Λn ⊂ Z[x1, . . . , xn] be the graded subring consisting of elements that 
are invariant under this action. We then define Λ to be the inverse limit (in the category 
of graded rings) of the inverse system

· · · → Λn → Λn−1 → · · ·

where Λn → Λn−1 takes xn → 0 and xi → xi for i < n. We now claim that Λ can be 
given the structure of a plethory over Z. Indeed, the coaddition

Δ+
Λ : Λ → Λ ⊗Z Λ

is defined by

Δ+
Λ (f) = f(x1 ⊗ 1, 1 ⊗ x1, x2 ⊗ 1, 1 ⊗ x2, . . .),

while the additive counit ε+Λ is defined by ε+Λ(f) = f(0, 0, . . .). The comultiplication Δ×
Λ

takes f ∈ Λ to

f(· · · , xi ⊗ xj , · · · ),

i.e., it is f evaluated on all xi ⊗ xj , i, j ≥ 1. The multiplicative counit takes f to 
f(1, 0, 0, . . .). One verifies that this makes Λ into a ring scheme over Z, so to give Λ
the structure of a plethory, we now define the plethysm ◦ : Λ ◦ Λ → Λ. Given two 
elements f, g ∈ Λ, write g as a sum of monomials

g =
∑

α

cαx
α

with cα ∈ Z. Let further yi be defined by the equality

Πi(1 + yit) = Πα(1 + xαt)cα .

We then let f ◦ g = f(y1, y2, . . .), and this defines our plethysm. It is clear that the 
element x1 + x2 · · · ∈ Λ is the identity for this operation. The data we now have defined 
gives Λ the structure of a Z-plethory. Given a ring R, one can then show that the ring 
Ring(Λ, R) is isomorphic to W (R), the ring of big Witt vectors of R. The plethysm gives 
a map

Ring(Λ, R) → Ring(Λ ◦ Λ, R) ∼= Ring(Λ,Ring(Λ, R)),



M. Carlson / Journal of Algebra 516 (2018) 75–94 87
and under the identification Ring(Λ, R) ∼= W (R), this gives us a map W (R) →
W (W (R)), which is isomorphic to the classical Artin–Hasse map.

Example 3.7 ([13, 6]). Let

D = Z[δ◦0, δ◦1, δ◦2, δ◦3, . . .]

be the biring with coaddition and comultiplication given by

δ+
D(δ◦i) = δ◦i ⊗ 1 + 1 ⊗ δ◦i

and

δ×D(δ◦i) =
∑

r+s=i

i!
r!s!δ

◦r ⊗ δ◦s

respectively. The additive counit takes δ◦i to 0 for all i, for the multiplicative counit we 
have ε×D(δ◦i) = 0 for i ≥ 1 and ε×D(δ◦0) = δ◦0. Lastly, the antipode takes δ◦i to −δ◦i. 
This gives D the structure of a biring over Z and we define the plethysm

◦ : D ◦D → D

by

δ◦i ◦ δ◦j → δ◦i+j .

This plethory is known as the differential plethory, in the sense that a D-ring R is the 
same as a ring R equipped with a derivation d : R → R. As observed in [3, Example 2.7], 
the plethory D can also be described as the free plethory (see Definition 4.1) on the 
universal enveloping algebra of a one-dimensional Lie algebra spanned by an element δ.

4. Classification of plethories over a field of characteristic zero

In this section we will prove that all plethories over a field of characteristic zero are 
linear. This question was asked by Bergman–Hausknecht [1] and Borger–Wieland [3]. To 
understand what it means for a plethory to be linear, we will introduce some terminology.

Definition 4.1. Let A be a cocommutative bialgebra (not necessarily commutative) over 
k with comultiplication Δ. Then there is a free k-plethory on A over k. The underlying 
algebra structure is S(A), the symmetric algebra on A, and the coaddition

Δ+ : S(A) → S(A) ⊗ S(A)

is induced from the map
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A → S(A) ⊗ S(A)

sending a to a ⊗ 1 + 1 ⊗ a. The comultiplication Δ× is similarly induced from Δ. The 
plethysm

◦ : S(A) � S(A) → S(A)

is given by

S(A) � S(A) ∼= S(A⊗A) S(m)−−−→ S(A)

where m is the multiplication on A. Among the pairs consisting of a plethory P and a 
morphism of bialgebras f : A → P the pair S(A) and j : A → S(A) is initial with this 
property.

Call a plethory P linear if P ∼= S(A) for some bialgebra A. The reason for calling it 
linear is that if P ∼= S(A) for some bialgebra A then

Ringk(S(A),−) = Modk(A,−).

Let us note now that by Theorem 2.6 any connected ring scheme of finite type is unipo-
tent. Over Q (or more generally any field of characteristic zero) all group schemes are 
reduced by a theorem of Cartier. We say that a group scheme G is étale if G is a finite 
scheme and geometrically reduced. This is equivalent to asking for the underlying Hopf 
algebra AG to be an étale algebra. Let us recall the following definition from the theory 
of group schemes (see for example [6, II, §5, Proposition 1.8] or [11, Definition 5.49])

Definition 4.2. Let G be a group scheme of finite type over k. Let AG be the under-
lying Hopf algebra of G and consider the largest étale k-subalgebra π0(AG) of AG. 
π0(AG) then has a Hopf algebra structure induced from the one on AG and we let 
π0(G) = Specπ0(AG) be the group scheme associated to this Hopf algebra.

Note that there is a canonical map G → π0(G). It is easy to see that if π0(G) = Spec k, 
then G is geometrically connected since in that case AG has no non-trivial idempotents.

Lemma 4.1. Any k-algebra scheme R of finite type over any infinite field k is geometri-
cally connected.

Proof. Consider the connected-étale exact sequence

0 → R◦ → R → π0(R) → 0

of group schemes where R◦ is the identity component of R. We will first show that π0(R)
has a natural k-algebra scheme structure. Indeed, for this it is enough to show that R◦ is 
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a k-ideal scheme in R. Let us start by proving that m(R◦ × R) ⊂ R◦. We know that 
the multiplication

m : R◦ ×R → R

takes the additive identity e ∈ R(k) to itself, i.e. m(e, x) = e for any x ∈ R(k). Fur-
ther, the k-algebra structure on R◦ is induced from the k-algebra structure on R. 
This clearly implies that R◦ is a k-ideal scheme. Thus, the quotient R/R◦ ∼= π0(R)
is a k-algebra scheme. Let us see that π0(R) is isomorphic to Spec k. One knows that 
the underlying algebra of π0(R) is a product of finite separable k-extensions. We con-
sider Schk(π0(R), π0(R)), this is a k-algebra (since π0(R) is a ring scheme). Because 
the underlying algebra of π0(R) is a finite product of finite separable field extensions, 
Schk(π0(R), π0(R)) is a finite set. However, for a finite set to have a k-algebra struc-
ture it must just contain one element, i.e. it has to be the zero ring. This implies that 
π0(R) = Spec k so R is geometrically connected. �

Now, let us consider a Hopf algebra H and denote the primitive elements of H by 
P(H). We say that a Hopf algebra is primitively generated if P(H) generates H as 
an algebra. Over characteristic zero all unipotent affine group schemes are primitively 
generated. We then have the classical Milnor–Moore theorem [12].

Theorem 4.3. For any commutative connected affine unipotent group scheme H over a 
field of characteristic zero, the canonical map

SpecH → Spec S(P(H))

is an isomorphism of group schemes. In particular, the underlying scheme is affine space.

Remark 4.2. Let us note that we can view P(H) as a Lie algebra with trivial commutator. 
Then the construction S(P(H)) is the same as the universal enveloping Lie algebra of 
P(H).

In [3] it is shown that if Q is a plethory over a field k, then P(Q), the primitives 
with respect to δ+

Q, is a cocommutative k-bialgebra. Briefly, the multiplication in P(Q)
is given by the plethysm ◦ and the maps

Δ× : Q → Q⊗Q,

ε× : Q → k induces a comultiplication respectively a counit on P(Q) making it a cocom-
mutative counital bialgebra.

Theorem 4.4. Let Q be a plethory over a field of characteristic zero k. Then Q is linear, 
i.e.
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Q ∼= S(P(Q))

where S(P(Q)) has the plethory structure as given in Definition 3.1.

Proof. Suppose that Q is a plethory over k. P(Q) naturally has a bialgebra structure as 
explained above. Given this, we can form the free plethory on P(Q), S(P(Q)). We always 
have a natural map

v : S(P(Q)) → Q

of Hopf algebras, and this is bijective by Milnor–Moore. Thus to show that any plethory 
is linear, it suffices to show that this is actually a morphism of plethories. But this is 
clear: the pair S(P(Q)) and

j : P(Q) → S(P(Q))

is initial in the category of pairs consisting of a plethory P and a morphism f : P(Q) → P

of bialgebras. It is immediate that the canonical map v is induced by this universal 
property, when we note that there clearly is a map P(Q) → Q of bialgebras. We will of 
course need to show that v is an isomorphism in the category of plethories. This follows 
easily from the fact that v is an isomorphism of affine schemes and thus has an inverse 
in the category of affine schemes. What remains to be checked is that this inverse is a 
morphism of plethories, but this is immediate since v is. �
Corollary 4.3. Let k be a field of characteristic zero. Then the category of plethories 
over k is equivalent to the category of cocommutative k-bialgebras.

Proof. By the above theorem, the counit map is an isomorphism and it is immediate to 
see that the unit map is an isomorphism as well. �
Remark 4.4. If k is a field of characteristic zero and Q a plethory over k, this shows 
that the category of Q-rings is equivalent to the category of rings with an action of the 
bialgebra P (Q).

5. Some classification results in characteristic p > 0

In this section we will start a classification for plethories over a perfect field k of 
characteristic p. Our classification results here only apply to a certain class of plethories. 
We state future research directions, as well as give some “pathological” examples which 
a complete classification must take into account. For any scheme X over k with structure 
map f : X → Spec k we let Gp be the pullback of f along F : Spec k → Spec k, the 
Frobenius.
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Let us briefly recall that for perfect fields k, group schemes over k have two especially 
important maps, the (relative) Frobenius

FG : G → Gp ∼= G

and the Verschiebung

VG : G ∼= Gp → G.

These satisfy the property that FGVG = VGFG = p. A ring scheme R is called elementary 
unipotent if VR = 0, i.e. the Verschiebung is zero. Call a plethory Q weakly linear if 
there is a map of plethories f : P → Q where P is a linear plethory (as defined in the 
previous section) such that f when viewed as a map of algebras is surjective. This will, in 
particular, imply that Q is primitively generated and is a quotient of P by a P −P -ideal 
as defined in [3]. Not all plethories over a perfect field k are primitively generated, as 
the following example shows (built on an example from [10], Remark 1.6.2).

Example 5.1. Let G be the group scheme

Ga ×f αp

which as a scheme, is just Ga × αp. We let the group structure be given by

(g1, h1)(g2, h2) = (g1g2, h1 + h2 + f(g1, g2))

for

g1, g2, h1, h2 ∈ Ga(R) × αp(R)

where f(x, y) = ((x + y)p − xp − yp)/p. This is a p-torsion group scheme but is not 
elementary unipotent. One can define a non-unital ring scheme structure on G be defining
the multiplication to be trivial and then, when k is finite, i.e. k ∼= Fq “unitalize” this by 
taking the direct product with

Fq =
∐

a∈Fq

Fq

to get a ring scheme, as we did in Example 3.3. The underlying group scheme of this ring 
scheme is clearly not elementary unipotent, since the Verschiebung acts on each factor 
separately. Taking the free plethory on a biring (see [3] 2.1) will then give us a plethory 
with its underlying group scheme not elementary unipotent.

Another feature which differs from the case over a field of characteristic zero is that 
there are plethories which have a non-trivial multiplicative subgroups. This stems from 
the fact that there are ring schemes with non-trivial multiplicative subgroups.
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Example 5.2. Consider μp = Spec k[x, x−1]/(x −1)p with comultiplication Δ : x → x ⊗x

and counit ε(x) = 1. This is an example of a multiplicative group scheme which is 
p-torsion and we can as before define a trivial multiplication on μp, making it a non-unital 
ring scheme. We can then as previously stated, for finite fields, unitalize it to get a ring 
scheme by taking the direct product with

Fq

and after that we can form the free plethory to get a plethory Q with a non-trivial 
multiplicative subgroup. The fact that it has a non-trivial multiplicative subgroup comes 
from, for example, the fact that there is a non-zero homomorphism of group schemes 
μp → Q.

These two examples are rather artificial, but they show that plethories behave wildly 
different in characteristic p > 0 than in characteristic 0. We know that for any group 
scheme G over a perfect field k of characteristic p > 0, the group P(G) of primitive 
elements has a natural action of the Frobenius, taking x ∈ P(G) to xp. In fact, P(G)
becomes a module over a certain ring. As we previously stated, P(G) = Hom(G, Ga). 
We thus have that P(G) is naturally a module over the endomorphism ring End(Ga).

Definition 5.1. Let k〈F 〉 be the non-commutative polynomial ring over k in one variable 
F with multiplication given by, for a ∈ k Fa = apF .

It is a quick calculation to show that End(Ga) ∼= k〈F 〉. We now see that P(G) is a 
module over k〈F 〉. Let us denote the category of modules over k〈F 〉 by Modk〈F 〉. Given 
a k〈F 〉-module M one can construct an elementary unipotent group scheme S[p](M) as 
follows (for details we refer the reader to [11]). Form S(M), the symmetric algebra on M , 
with its obvious Hopf algebra structure and consider the map j : M → S(M). We then 
quotient out by the ideal generated by the elements

j(Fx) − j(x)p

to get S[p](M). One notes that for any commutative algebraic group G one always has 
a map G → S[p](P(G)). We have the following classical theorem (see [6, IV, §3, Propo-
sition 6.6])

Theorem 5.2. Let G be an affine group scheme. The following are equivalent:
(i) The Verschiebung VG is zero.
(ii) G is a closed subgroup of Gr

a for some r.
(iii) The canonical homomorphism G → S[p](P(G)) is an isomorphism.

Remark 5.3. What we call S[p](P(Q)) is the same as the enveloping p-algebra (also called 
the restricted universal enveloping algebra) on the p-Lie algebra P(Q) where P(Q) has 
trivial commutator.
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Lemma 5.4. When Q is a plethory, then S[p](P(Q)) has the structure of a plethory.

Proof. We know that P(Q) has a k〈F 〉 module structure where the action of F is just 
taking the pth power. Further, S[p](P(Q)) is the quotient of S(P(Q)), which we know is 
a plethory, by the ideal J generated by j(x)p − j(xp), where j : P(Q) → S(P(Q)) is the 
inclusion in degree 1. It now suffices to show that this is a Q −Q-ideal (see [3] 6.1) for 
U [p](P(Q)) to be a plethory. This is equivalent to showing that for a generating set S

of J that

Δ+
Q(S) ⊂ Q⊗ J + J ⊗Q,

Δ×
Q(X) ⊂ Q⊗ J + J ⊗Q,

and

βQ(c)(S) = 0

∀c ∈ k and that

P(Q) � S �Q ⊂ J.

The first is immediate, since taking S to be the set of all j(x)p − j(xp), we have

Δ+(j(x)p) − Δ+(j(xp)) = Δ+(j(x))p − (j(xp) ⊗ 1 + 1 ⊗ j(xp))

which is equal to

j(x)p ⊗ 1 + 1 ⊗ j(x)p − j(xp) ⊗ 1 − 1 ⊗ j(xp) ⊂ J ⊗Q + Q⊗ J.

Further,

Δ×(j(x)p) − Δ×(j(xp)) =
∑

i

j(x[1]
i )p ⊗ j(x[2]

i )p −
∑

i

j((x[1]
i )p) ⊗ j((x[2]

i )p)

and this is equal to

∑

i

j(x[1]
i )p ⊗ (j(x[2]

i )p − j((x[2]
i )p)) +

∑
((j((x[1]

i )p) − j(x[1]
i )p) ⊗ j((x[2]

i )p))

but this is in J ⊗ P + P ⊗ J . We also need to show that βQ(c)(S) = 0, but this is clear. 
The last containment is similarly easy to verify. �
Theorem 5.3. When Q is a plethory over a perfect field such that VQ = 0, then 
S[p](P(Q)) ∼= Q. We then say that Q is a p-linear plethory.
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Proof. All one has to verify is that the canonical map f : Q → S[p](P(Q)) is a map of 
plethories. But this is obvious since this map is just the composition of the two plethory 
maps Q → S(P(Q)) and S(P(Q)) → S[p](P(Q)). �
Remark 5.5. We have seen that plethories need not be elementary unipotent and not 
purely unipotent either (i.e. it can have a non-trivial multiplicative subgroup). Let us 
note that there can be no non-trivial finite plethories over an infinite perfect field k. 
Indeed, from what we have seen all plethories Q are connected over an infinite field. By 
classical Dieudonné theory we can then decompose Q as Q = Qloc,red × Qloc,loc. This 
would imply that the Frobenius is nilpotent, but this can never happen: the Frobenius 
is always a map of ring schemes.

It seems to us that to classify plethories over a perfect field one should establish an 
extension of ordinary Dieudonné theory to account for ring schemes, which has been done 
to some extent by Hedayatzadeh in [9] and for Hopf rings by Goerss [7] and Buchstaber–
Lazarev [5]. Note that Hedayatzadeh work with finite/profinite group schemes and with 
local group schemes, which limits their applications to ring schemes since we have seen 
that there are no non-trivial finite connected ring schemes over a perfect field.
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