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Abstract

For a moduleMr we compute the set of associated primes/#jk; o] over the left Ore extension
R[x; o] for any surjective endomorphismof R. This result leads to necessary and sufficient con-
ditions under which the associated primes\ifffx; o] are precisely the extensions of the associated
primes of M. We relate these results to previous work regarding the propagation of prime ideals of
R[x; o] and include several illustrative examples.
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1. Introduction

Let R be a ring with identity and let be an endomorphism &. ConsiderS = R[x; o],
the left Ore extension. We use the convention that coefficients are written on the left and
the defining relation isr = o (r)x [1,3]. One question which arises in this construction
is how the prime ideals oR[x; o] are built from ideals ofR. Much of the initial work
regarding the propagation of primes wh&nis commutative was done by Irving in [4].
The technique pioneered by Irving and modeled by others was to first define the notion
of a ‘o-prime’ ideal. This lead to several different inequivalent definitions, all of which
are based on the usual noncommutative definitions for prime ideals. Conditions were then
given under which, given a-prime ideal,/ < R, one can concludés is prime. We have
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chosen a slightly different tack. This paper grew out of an attempt to place a more non-
commutative framework on previous work [1], which related the associated prime ideals
of a right R-module, M, to the associated primes &f[x; o]s. We quickly realized this
relationship was greatly simplified by assuming thas surjective. Indeed, with that hy-
pothesis, results relating the set of annihilator ideal® gfand the set of associated primes

of M[x; o]s can then be read off easily. Using these results, one is much better off simply
computing the associated primes Mfix; o] directly. As a corollary to our main result,

we show that an ideal for which I[x; o] is prime is precisely an ideal we define as the
o-associated ideal to soneeprime moduleNg.

In this section we provide the definitions and statements of the main result and its corol-
laries. In the second section, we discuss several examples outlining the use of these results.
The last section is devoted to the proofs of several preliminary results and then the proofs of
the principal results. Before continuing with the development of the main results, | would
like to thank the referee for suggestions which have substantially improved this paper.

With minimal notation we can state our main result. We recall, in general, that a nonzero
submoduleN < M is prime if anng (N’) is constant across all nonzero submodule#/of
and in such cases, afivi) is necessarily a prime ideal. Also a left, right or two-sided ideal
I is ac-ideal if o (I) C I [3], and is called a-invariant ideal if I = o ~1(I) [4].

Definition 1.1. For any subsef C R, let I, = ﬂjeNa*f(I). We say that a nonzero
submoduleN < M is ao-prime submodule iftann(N")),, is constant over nonzero sub-
modules ofV and additionallys ~1((ann(N)),) € (@ann(N))s,-.

We note that neither aiiiv) nor (ann(N)), need be prime for a-prime submoduley.
Nevertheless, whel is o-prime we refer tol = (ann(N)), as ac-associated ideal of
M and leto-AssS(M) denote the set of -associated ideals. If is a o-associated ideal,
by definitiono~1(1) € I. Moreover,I = (ann(N)), for someo-prime submoduleV,
s0l =(Njeno 7/ (@NMN)) S (.00 7 (@NN)) = o~ (@nn(N)),) = o ~1(1). Thus a
o-associated ideal is-invariant.

If I is a subset oR we write I[x; o] for the set of polynomials iR[x; o] whose (left)
coefficients are all if. Even ifI is an ideal ofR, I[x; o] need not be an ideal iR[x; o].

Theorem 1.2. Let R be a ring with identity and let o be a surjective endomorphism. For
any right R-module M, AsS(M|[x; o)) ={I[x;0]]| I € o-ASS(M)}.

It is apparent that[x; o] can be an associated primeMfx; o] when! is not a prime
of R. More remarkably/ need not be the annihilator of a submodul@bfas illustrated in
Example 2.1. However, the following corollary shows thaassociated ideals are precisely
those ideals which extend to prime ideals.

Corollary 1.3. Suppose o issurjective. Then the following are equivalent conditions on an
ideal I < R.

(1) I isthe o-associated ideal to some o -prime module N.
(2) I[x;o]isaprimeideal of S
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Recall that a module is-compatibleif all annihilators of elements a¥f ares -invariant
o-ideals. This was shown to be a sufficient condition to conclude that the associated primes
of M[x; o] are precisely the extensions the associated prime¥ ¢f]. However, we
observe that any -invariant associated prime is automatically @ssociated ideal. Con-
sequently, the associated primesWfx; o] coincide with the extensions of the associated
primes of M precisely when every associated primeMfis o-invariant and every other
annihilator ideall is either noto -invariant, or satisfies the condition that for every sub-
moduleN with ann(N) = I, there exists @ K < N such thatannK)), # I. In light of
this, the analogue of the main result of [1], is clear:

Corollary 1.4. Suppose o issurjectiveand M isaright R-module.

() If p e Ass(M), then p[x; o] € AsS(M[x; o]s) if and only if p iso-invariant.
(2) If M iso-compatible, or more generally, if every annihilator of a submodule of M is
o-invariant, then AsS(M|[x; ols) = {p[x; o] | p € AsSM)}.

WhenR is Noetheriang is an automorphism, and we get a much stronger result:
Corollary 1.5. If R isa Noetherian ring, then AsS(M[x; o]s) = {ps[x; o] | p € ASI(M)}.

Remark 1.6. Results parallel to Theorem 1.2 and its corollaries for the skew-Laurent poly-
nomial extensions are made by altering Definition 1.1. In order to definex—1; o],

o must be an automorphism. When is an automorphism and € R define I+ =

mjeZ o/ (I). We call a nonzero submodule < M Laurent o-primeif (ann(N’)),+ is con-

stant over all nonzero submodules@fand call an ideal a Laurent o -associated ideal

of M if I = (ann(N)),+ for some Laurent -prime submoduleV. Although this altered
definition only applies for the skew-Laurent extensions, the Laurent-polynomial version of
Theorem 1.2 is now easily deduced: A8 x, x Y o]z, 1.5 = (I[x,x L o] [T isa
Laurento -associated ideal a¥f}. The corollaries of this are also straightforward. Observe
that for any left, right, or two-sided ided| I+ is o -invariant. Thus for every € Ass(M),

pe+ is automatically a Laurent-associated ideal aff. Therefore{p,«[x,x L 0] |p €
AsS(M)} C AsS(M[x, x~L; 0] Rx.x-1:01)- Moreover, the notion of a-prime ideal in the
Laurent extension case is well established:-firime ideal is a -invariant ideal P, which
satisfies the condition that if, J arec-invariant ideals with/ J C P, then eitherl C P

or J C P. Such ideals always extend to prime idealsRik, x~%; ] [5]. In particular,

the analogue of Corollary 1.3 is that an ideabigprime if and only if it is the Laurent
o-associated ideal of some Laurertprime module. The proofs for the results for the
Laurent extensions are similar to the proofs of the main result that appear in Section 3 and
are therefore omitted.

2. Examples

A module can easily fail to be-compatible, as defined in [1], but still have each
associated prime oM|[x; o] be extended from one a#f. For example, ifR is any
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simple ring with automorphisna-, then 1.2 shows that for any nontrivial modulé,
{(0)} = Ass(M[x;0]s) = {ps[x; 0] | p € AsS(M)}. However, if R has a proper nonzero
right idealJ which is noto -invariant, thenM = R/J is noto-compatible.

It is more interesting, in light of Theorem 1.2, to investigate modulésfor which
the associated primes @f fail to extend. The first of these investigations involves an
associated prime which is netinvariant. Throughout the next examples wedatenote
a field.

Example 2.1. Let R = k[s,t] and Mg = R/(¢). Let o be thek-algebra automorphism
of R transposings and ¢. Clearly AssMg) = {(z)}. But (¢) is not o-invariant since
o~ 1((1)) = (s). Now (1)y = (1) N (s) = (st). We observe thats) € o-Ass(M) and so
by 1.2, AssM|[x; o]) = {(st)[x; o]}. Note that(sz) is not prime, and more, is not the an-
nihilator of any submodule o#7.

Forplx; o] € AsSM|[x; o]s), p need not be a prime ideal &. However, in the above
example,(t), = (st), SO one question that arises is whether or mpis a o-associated
ideal whenp is prime. The following example shows that it need not be, even whéen
commutative. Note that by 1.5 we must begin with a non-Noetherian base ring.

Example 2.2. Let R = k[...,t_1,1t0,11,...], and Mg = R/(...,t_1,1t9). Consider the
k-algebra automorphism ok given byo(1;) = t,_1 for all i. Clearly M is prime with
annihilator(...,t_1,19). Thus AssM) = {(...,1_1, fo)}. Observe that

("'5t*l7t0)(7=("'71‘71’1‘0)m("'7t715t0’tl)m("‘5t717t07t17t2)m”'

=(...,1-1,10),

but (..., 7_1, r0) is noto-invariant, hence not &-associated ideal. Therefore by Theo-
rem 1.2, AssM|[x; ols) = ¥. Thus an associated prime #fz need not extend in any
meaningful way to an associated primeMfx; o]s.

The next example illustrates that a nonprime annihildtoan be ar-associated ideal
which is notp,, for any associated prime

Example 2.3. Let R = k[...,t_p,t_1, 10, 11, t2, ...]/(t?), and defines; = #; + (¢?). Set
Mpg = Rg and leto be thek-algebra automorphism at given byo (z;) =1;_1 for all i.
We claim thatM is o-prime, but note that it is not prime. Observe that @n= 0 is
o-invariant. Thugann(M)), = 0. In order to showM is o -prime it will be enough to show,
for any g € (1;)icz, that(g)e = 0. If g € (#);ez, then there exisj1, jo, ..., ju € Z such
thatg € (7j,,1,,...,1;,). NOW ()5 C (fj;,1),....,1j,)s = 0. ThereforeM is o-prime.
Thus 0 is the only -prime ideal ofM. Therefore by Theorem 1.2, AGd[x; o]) = {0}.
In contrast, we observe that every nonzero cyclic submogl®lel M contains a nonzero
cyclic submodule whose annihilator strictly contains @fiR). That is,M has no cyclic
prime submodules, hence no prime submodules. Therefor@Ass .
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3. Proofs of the main results

The proof of Theorem 1.2 relies on some elementary initial results. The first result is
well known in commutative algebra. We generalize the result found in [2]; the proof here
is quite different.

Proposition 3.1. If A= D,.; A is Z-graded ring with identity, M4 = P, ., M, isa
graded module, N < M isa prime submodule and q = ann(V), then q is a homogeneous
ideal.

Proof. Leta =ag+ --- + ax € ann(\V), where eachy; is a nonzero element od,,, for
some integersig < --- < my. It will be enough to show thatg € ann ). It will then
follow by induction onk that N'a; = O for eachi, and so the homogeneous termsaof
belong to anaV).

Letm € N be an element of least possible length. That is, every element is the unique
sum of nonzero homogeneous elements, andifait involves the least number of terms
possible among elements &f. Write m = mqg + --- + m;, where eachn; is a nonzero
element ofM,,, for some integersg < - - - < n;. Clearly, for any homogeneous component,
A, every nonzero element of A, has length. However,ag annihilates the first term of
every nonzero element a@f.A,, hence every nonzero elementmfd,ag has length less
than/. By the minimality off, it must be thain A, ag = 0. Thusm.Aag = 0. AsN is prime,
ap € annmA) =annN). O

Corollary 3.2. If g € AsS(M[x; o]s), then g = I[x; o] for some o-invariant ideal I < R.

Proof. We gradeS = R[x; o] and M[x; o]s by degree inx. The preceding proposition
showsq is homogeneous with respect to this grading. Simfle; o] is x-torsionfree, it
follows thatq = I[x; o] for some ideall. To show! is o-invariant, letN' < M[x; o] be
prime with annihilator/[x; o]. On one hand, & Nx < N, so 0= NxI = No(I)x.
Thus o (I) € I, which saysI € o~1(I). On the other, 6= N'Ix 2 No (o (I))x =
Nx(o~1(I)). SinceN is prime, ani\'x) = I[x; o]. Consequentlyy ~1(I) C I. There-
forea X()=1. O

Corollary 3.3. If o is surjective and N < M[x; o]g is prime, then anng(N) = I[x; o]
where I isthe o -associated ideal of a o -prime submodule of M.

Proof. By the previous corollary, agiiN) = I[x; o] wherel < R is o-invariant. Let
0+# f € N be of minimal length, and write f = mox® + - - - + m;x%, where eaclhw; is
a nonzero element d¥ andag < --- < ¢;. We showmgR is o-prime with o-associated
ideal .

Seta = ag and letm € mgR. Sinceo is onto, we may seleete R so thatmoo?(r) = m.
Let J =anmg(mR). SincefS C N andl CannN), fSI =0, and sonRo?(I) = 0. As
I is o-invariant ands is onto,mRI =0. Thus/ C J.

Observe that, for all > 0, every nonzero element ¢fr Rx’ has length. Every ele-
ment of frRx'(J,) has length less thanso frRx' J, =0, by the minimality of.. Since
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N is prime J, S C anrg(frS) = I[x; o]. ThereforeJ, = I and we conclud@gR is o-
prime. O

Lemma 3.4. For an R-module N, anng(N[x; o]) = (@nmg (N))s[x; o].

Proof. Since N[x; o] is'homogeneous, aRtWV[x; o)) is homogeneous. Letx’ e
anng(N[x;o]). Then Nx/r =0 for all j > 0, or, equivalentlyy € o~/ (anmg(N)) for
all j > 0. Thatisyx' e anng(N[x; o]) ifand only ifr € (ang (N)),. O

Lemma 3.5. Let o be surjective. Then Ny iso-primewith o -associated ideal I if and only
if N[x; o] isprimewith associated prime I[x; o].

Proof. SupposeN|[x; o] is prime with associated primg[x; o]. By Lemma 3.4,] =
(@annN)),. Let m € N and setJ = anrg(mR). Since N[x; o] is prime, I[x;o] =
anrng((mR)[x; 0]) = Jy[x;0]. Thus J, =1 and soN is o-prime with o-associated
ideal .

Conversely, if N is o-prime with o-associated ideal, then 3.4 showd[x; 0] =
anrg(N[x; o). If N[x; o] is not prime, then there exists a nonzero elemgrtN|[x; o]
such thatJ = anng(fS) strictly contains/[x; o]. Write f = mox® + --- + myx%,
wherem; # 0 andag < --- < a; and letJy be the set of constant coefficients from el-
ements of/. Select a nonzero element J \ I[x; o] of minimal length. Observe that
if s = roxh0 + rlxb1 + -4 rmxb'" e J, thenrg + rlxhl_ho + -+ rmth_ho e J,asx
acts without torsion. Thug € Jg. Sinces is of minimal lengthyo ¢ I and soJp strictly
containsl .

However, every element afy annihilates the term of lowest degree of every element
of £S. In particularmox®Rx/ Jo =0 for all j > 0. ThusJy € ﬂj%o—f(anr(moR)) =
o~ ((annmoR)),) = o ~%(I). Sincel is o-invariant, this implies/o C I, a contradic-
tion. Therefore no suclf exists, andV[x; o] is prime with associated priméx; o]. O

We now have all of the preliminary results needed for the proof of the main result. The
proof hinges on the fact that we already know what form the associated primes must take.

Proof of Theorem 1.2. If p € AsSM[x;c]), thenp = annN) for some prime submod-
ule N < M[x; o). By Corollary 3.3,p = I[x; o], wherel is theos-associated ideal of a
o -prime submodule oM.

Conversely, ifl is ac-associated ideal af7, then! = (annL)), for someo -prime
submodulel < M. By Lemma 3.5,/[x; 0] € AsSM[x; o)) as it is the annihilator of the
prime submoduld.[x; 0] < M[x;0]. O

Proof of Corollary 1.3. If I is the o-associated ideal to a-prime module,Ng, then
3.5 showsl[x; o] is prime. Conversely, suppodéx; o] < S is prime. Theno(I) C I
sincexI[x;o] C I[x;0]. SOl Co~1(I). As o is surjective,(xS)(c~1(1)S) = SIxS C
I[x;0]. Sincel[x;o] is prime, o ~1(I)S C I[x;0]. Thuso (1) C I. Thereforel is
o-invariant. According to 3.5, it will be enough, to shaw= (R/I)[x; o] is prime with
associated primd[x; o]. Note that sincel is o-invariant, N = S/(I[x; o]). Clearly,
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I[x;o]=anrg(N). Let f € R[x;0]\ I[x; 0] and set/ = anng((f + I[x;c])S). Then
(f+1[x;0)SJ C fST+1[x;0]J CI[x;0].S0fSJ C I[x;0]. Sincel[x; o] is prime,
J CI[x;0]. ThusJ = I[x; o] as required. O

Proof of Corollary 1.4. To verify (1), suppose € AsS(M) and letN < M be a prime
submodule with anflV) = p. N is automaticallyc-prime with p, as itso-associated
ideal, whenevep,, is o-invariant. Consequently, if is o-invariant, Lemma 3.5 shows
plx; o] € AsS(M[x; o]). Conversely, ib[x; 0] € AsSM|[x; o]), then 3.2 shows thatis a
o-associated ideal and is thereferanvariant.

For (2), we observe that the hypotheses along with (1) infyally; o] | p € AsSS(M)} C
AsS(M[x; o). Supposel is an ideal,l ¢ AsS(M), but is the annihilator of a nonzero
submoduleN < M. Sincel ¢ Asg(M), we may assume no such submodule is prime, and
S0 contains a nonzero submodudlevhose annihilator strictly contains/. Sincel, = I
and J, = J by hypothesis/ cannot be ar-associated ideal. This provégs[x; o] |p €
AsS M)} =Ass(M[x;o]). O

Proof of Corollary 1.5. SupposeR is Noetherian and letj € Ass(M[x;o]s). Then

q = I[x; o] for someo-prime ideal ofM. In particular, there exists@-prime submodule
N < M with I = (ann(N)),. SinceR is Noetherian, there exists an idgalvhich is max-
imal among annihilators of nonzero submodulesvofWe knowp is an associated prime
of N, and hence oM. Moreover, sinceV is o-prime,p, = 1.

Conversely, supposee Ass(M) and letL < M be a prime submodule with annihila-
torp. Setl = p,,, and note thad (1) C I. Sinceo is an automorphism ankl is Noetherian,
this implies thatl is o -invariant. Thereford. is o -prime witho -associated idedl. By 3.4,
L[x; o] is a prime submodule a¥/[x; o] with associated prime ideal[x; o]. O
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