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Coverings in the representation theory of algebras were introduced
for the Auslander–Reiten quiver of a representation-finite algebra
in [Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen
und zurüch, Comment. Math. Helv. 55 (1980) 199–224] and later
for finite-dimensional algebras in [K. Bongartz, P. Gabriel, Covering
spaces in representation theory, Invent. Math. 65 (3) (1982) 331–
378; P. Gabriel, The universal cover of a representation-finite
algebra, in: Proc. Representation Theory I, Puebla, 1980, in: Lecture
Notes in Math., vol. 903, Springer, 1981, pp. 68–105; R. Martínez-
Villa, J.A. de la Peña, The universal cover of a quiver with relations,
J. Pure Appl. Algebra 30 (3) (1983) 277–292]. The best understood
class of covering functors is that of Galois covering functors F : A → B
determined by the action of a group of automorphisms of A. In this
work we introduce the balanced covering functors which include the
Galois class and for which classical Galois covering-type results
still hold. For instance, if F : A → B is a balanced covering functor,
where A and B are linear categories over an algebraically closed
field, and B is tame, then A is tame.

© 2009 Elsevier Inc. All rights reserved.

Introduction and notation

Let k be a field and A be a finite-dimensional (associative with 1) k-algebra. One of the main goals
of the representation theory of algebras is the description of the category of finite-dimensional left
modules Amod. For that purpose it is important to determine the representation type of A. The finite
representation type (that is, when A accepts only finitely many indecomposable objects in Amod,
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up to isomorphism) is well understood. In that context, an important tool is the construction of
Galois coverings F : Ã → A of A since Ã is a locally representation-finite category if and only if A is
representation-finite [6,10]. For a tame algebra A and a Galois covering F : Ã → A, the category Ã is
also tame, but the converse does not hold [7,12].

Coverings were introduced in [13] for the Auslander–Reiten quiver of a representation-finite alge-
bra. For algebras of the form A = kQ /I , where Q is a quiver and I an admissible ideal of the path
algebra kQ , the notion of covering was introduced in [2,6,9]. Following [2], a functor F : A → B , be-
tween two locally bounded k-categories A and B , is a covering functor if the following conditions are
satisfied:

(a) F is a k-linear functor which is onto on objects;
(b) the induced morphisms

⊕
F b′= j

A(a,b′) → B(Fa, j) and
⊕
Fa′=i

A(a′,b) → B(i, F b)

are bijective for all i, j in B and a,b in A.

We denote by (b′ f •
a )b′ �→ f and (•

b fa′ )a′ �→ f the corresponding bijections. We shall consider
Fλ : Amod → B mod the left adjoint to the pull-up functor F• : B mod → Amod, M �→ M F , where C mod
denotes the category of left modules over the k-category C , consisting of covariant k-linear functors.

The best understood examples of covering functors are the Galois covering functors A → B given by
the action of a group of automorphisms G of A acting freely on objects and where F : A → B = A/G
is the quotient defined by the action. See [2,4,6,9,10] for results on Galois coverings. Examples of
coverings which are not of Galois type will be exhibited in Section 1.

In this work we introduce balanced coverings as those coverings F : A → B where b f •
a = •

b fa for
every f ∈ B(Fa, F b). Among many other examples, Galois coverings are balanced, see Section 2. We
shall prove the following:

Theorem 0.1. Let F : A → B be a balanced covering. Then every finitely generated A-module X is a direct
summand of F• Fλ X.

In fact, according to the notation in [1], we show that a balanced covering functor is a cleaving
functor, see Section 3. This is essential for extending Galois covering-type results to more general
situations. For instance, we show the following result.

Theorem 0.2. Assume that k is an algebraically closed field and let F : A → B be a covering functor. Then the
following hold:

(a) If F is induced from a map f : (Q , I) → (Q ′, I ′) of quivers with relations, where A = kQ /I and B =
kQ ′/I ′ , then B is locally representation-finite if and only if so is A;

(b) If F is balanced and B is tame, then A is tame.

More precise statements are shown in Section 4. For a discussion on the representation type of
algebras we refer to [1,5,7,11,12].

1. Coverings: examples and basic properties

1.1. The pull-up and push-down functors

Following [2,6], consider a locally bounded k-category A, that is, A has a (possibly infinite) set of
non-isomorphic objects A0 such that
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(a) A(a,b) is a k-vector space and the composition corresponds to linear maps A(a,b) ⊗k A(b, c) →
A(a, c) for every a,b, c objects in A0;

(b) A(a,a) is a local ring for every a in A0;
(c)

∑
b A(a,b) and

∑
b A(b,a) are finite-dimensional for every a in A0.

For a locally bounded k-category A, we denote by AMod (resp. ModA ) the category of covariant
(resp. contravariant) functors A → Modk; by Amod (resp. modA ) we denote the full subcategory of
locally finite-dimensional functors A → modk of the category AMod (resp. ModA ). In case A0 is finite,
A can be identified with the finite-dimensional k-algebra

⊕
a,b∈A0

A(a,b); in this case the category
AMod (resp. Amod) is equivalent to the category of left A-modules (resp. finitely generated left A-
modules).

According to [5], in case k is algebraically closed, there exist a quiver Q and an ideal I of the
path category kQ , such that A is equivalent to the quotient kQ /I . Then any module M ∈ AMod can
be identified with a representation of the quiver with relations (Q , I). Usually our examples will be
presented by means of quivers with relations.

Let F : A → B be a k-linear functor between two locally bounded k-categories. The pull-up functor
F• : B Mod → AMod, M �→ M F admits a left adjoint Fλ : AMod → B Mod, called the push-down functor,
which is uniquely defined (up to isomorphism) by the following requirements:

(i) Fλ A(a,−) = B(Fa,−);
(ii) Fλ commutes with direct limits.

In particular, Fλ preserves projective modules. Denote by Fρ : AMod → B Mod the right adjoint to F• .
For covering functors F : A → B we get an explicit description of Fλ and Fρ as follows:

Lemma 1.1. (See [2].) Let F : A → B be a covering functor. Then:

(a) For any X ∈ Amod and f ∈ B(i, j),

Fλ X( f ) = (
X
(

b f •
a

))
:
⊕
Fa=i

X(a) →
⊕
F b= j

X(b), with
∑
F b= j

F
(

b f •
a

) = f .

In particular, F•(a,−) : Fλ A(a,−) → B(Fa,−) is the natural isomorphism given by (b f •
a )b �→ f .

(b) For any X ∈ Amod and f ∈ B(i, j)

Fρ X( f ) = (
X
(•

b fa
))

:
∏
Fa=i

X(a) →
∏

F b= j

X(b), with
∑
Fa=i

F
(•

b fa
) = f .

In particular, F• D(−,b) : Fρ D A(−,b) → D B(−, F b) is the natural isomorphism induced by (•
b fa)a �→ f .

1.2. The order of a covering

The following lemma allows us to introduce the notion of order of a covering.

Lemma 1.2. Let F : A → B be a covering functor. Assume that B is connected and a fiber F −1(i) is finite, for
some i ∈ B0 . Then the fibers have constant cardinality.

Proof. Let i ∈ B0 and 0 �= f ∈ B(i, j). For a ∈ F −1(i),
∑

F b= j dimk A(a,b) = dimk B(i, j). Hence

|F −1(i)|dimk B(i, j) = ∑
Fa=i

∑
F b= j dimk A(a,b) = ∑

F b= j

∑
Fa=i dimk A(a,b) = |F −1( j)|dimk B(i, j)

and |F −1(i)| = |F −1( j)|. Since B is connected, the claim follows. �
In case F : A → B is a covering functor with B connected and A0 is finite, we define the order of F

as ord(F ) = |F −1(i)| for any i ∈ B0. Thus ord(F )|B0| = |A0|.
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We recall from the Introduction that a covering functor F : A → B is balanced if b f •
a = •

b fa for every
couple of objects a,b in A.

Lemma 1.3. Let F : A → B be a balanced covering functor, then Fλ = Fρ as functors Amod → B mod.

1.3. Examples

(a) Let A be a locally bounded k-category and let G be a group of k-linear automorphisms acting
freely on A (that is, for a ∈ A0 and g ∈ G if ga = a, then g = 1). The quotient category A/G has
as objects the G-orbits in the objects of A; a morphism f : i → j in A/G is a family f : (b fa) ∈∏

a,b A(a,b), where a (resp. b) ranges in i (resp. j) and g · b fa = gb f ga for all g ∈ G . The canonical
projection F : A → A/G is called a Galois covering defined by the action of G .

A particular situation is illustrated by the following algebras (given as quivers with relations):

A :

•
ρ0

γ0

•
ρ1

γ1

•

•
σ0

ν0

•
σ1

ν1

•

B : •

α0

β0

•

α1

β1

•

⎧⎪⎨
⎪⎩

ρ1ρ0 = ν1γ0,

σ1σ0 = γ1ν0,

ρ1ν0 = ν1σ0,

σ1γ0 = γ1ρ0,

{
α1α0 = β1β0,

β1α0 = α1β0.

The algebra A is tame, but B is wild when char k = 2 [7]. The cyclic group C2 acts freely on A and
A/C2 is isomorphic to B .

(b) Consider the algebras given by quivers with relations and the functor F as follows:

a2

α2

β2

b2

ρ2

b1

ρ1

a1

α1

β1

F−→ a

α

β

b ρ

both algebras with rad2 = 0 and Fα1 = α, Fα2 = α + β , Fβi = β , Fρi = ρ , i = 1,2. It is a simple
exercise to check that F is a balanced covering, but obviously it is not of Galois type.

(c) Consider the functor

A :

b1

a2

β2

α2

a1

α1

β1

b2

F−→ B : a

α

β

b
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where Fαi = α, i = 1,2, Fβ1 = β , Fβ2 = α+β . Since F (β2 −α2) = β and F (β1) = β , then b2β
•
a2

= −α2
and •

b2
βa2 = 0. Hence F is a non-balanced covering functor.

For the two-dimensional indecomposable A-module X given by X(a2) = k, X(b2) = k, X(α2) = id
and zero otherwise, it follows that F• Fλ X is indecomposable and hence X is not a direct summand
of F• Fλ X .

(d) As a further example, consider the infinite category A and the balanced covering functor de-
fined in the obvious way:

A : · · · •

β ′
2

•

β2

α′
1

•

α1

β ′
1

•

β1

α0
F−→ •β α

where both categories A and B have rad2 = 0.

1.4. Coverings of schurian categories

We say that a locally bounded k-category B is schurian if for every i, j ∈ B0, dimk B(i, j) � 1.

Lemma 1.4. Let F : A → B be a covering functor and assume that B is schurian, then F is balanced.

Proof. Let 0 �= f ∈ B(i, j) and Fa = i, F b = j. Since B is schurian, there is a unique 0 �= b′ f •
a ∈ A(a,b′)

with F b′ = j and a unique 0 �= •
b fa′ ∈ A(a′,b) with Fa′ = i satisfying F b′ f •

a = f = F •
b fa′ . In case b = b′ ,

then a = a′ and b f •
a = •

b fa . Else b �= b′ and b f •
a = 0. In this situation a �= a′ and •

b fa = 0. �
Proposition 1.5. Let F : A → B be a covering functor with finite order and B schurian. Then for every M ∈
B mod, Fλ F•M ∼= Mord(F ) .

Proof. For any 0 �= f ∈ B(i, j) we get

Fλ F•M(i) = ⊕
Fa=i M(i)

∼

(M(F b f •
a ))

Mord(F )(i)

diag(M( f ),...,M( f ))

Fλ F•M( j) = ⊕
F b= j M( j)

∼
Mord(F )( j)

Since for each a there is a unique b with b f •
a �= 0 such that F b f •

a = f , then the square commutes. �
Remark 1.6. If B is not schurian the result may not hold as shown in [7, (3.1)] for a Galois covering
F : B → C with B as in example 1.3(a).

1.5. Coverings induced from a map of quivers

Let q : Q ′ → Q be a covering map of quivers, that is, q is an onto morphism of oriented graphs
inducing bijections i+ → q(i)+ and i− → q(i)− for every vertex i in Q ′ , where x+ (resp. x−) denotes
those arrows x → y (resp. y → x). For the concept of covering and equitable partitions in graphs,
see [8].

Assume that Q is a finite quiver. Let I be an admissible ideal of the path algebra kQ , that is, Jn ⊂
I ⊂ J 2 for J the ideal of kQ generated by the arrows of Q . We say that I is admissible with respect to
q if there is an ideal I ′ of the path category kQ ′ such that the induced map kq : kQ → kQ ′ restricts to
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isomorphisms
⊕

q(a)=i I ′(a,b) → I(i, j) for q(b) = j and
⊕

q(b)= j I ′(a,b) → I(i, j) for q(a) = i. Observe
that most examples in Section 1.3 (not example (c)) are built according to the following proposition:

Proposition 1.7. Let q : Q ′ → Q be a covering map of quivers, I an admissible ideal of kQ and I ′ an admis-
sible ideal of kQ ′ making I admissible with respect to q as in the above definition. Then the induced functor
F : kQ ′/I ′ → kQ /I is a balanced covering functor.

Proof. Since q is a covering of quivers, it has the unique lifting property of paths. Hence for any pair
of vertices i in Q and a in Q ′ with q(a) = i, we have that

⊕
q(b)= j kQ ′(a,b)

k(q)∼
kQ (i, j)

⊕
F (b)= j kQ ′/I ′(a,b)

F
kQ /I(i, j)

is a commutative diagram with F an isomorphism. This shows that F is a covering functor.

For any arrow i
α−→ j in Q and q(a) = i, there is a unique b in Q ′ and an arrow a

α′−→ b with
q(α′) = α. Hence the class b f •

a of α′ in kQ ′/I ′(a,b) satisfies that F (b f •
a ) is the class f = ᾱ of α in

kQ /I(i, j). By symmetry, b f •
a = •

b fa . For arbitrary f ∈ kQ /I(i, j), f is the linear combination
∑

λi f i ,

where f i is the product of classes of arrows in Q . Observe that for arrows i
α−→ j

β−→ m we have
c(β̄ᾱ)•

a = (c β̄
•
b)(

•
bᾱa) = (c β̄

•
b)(bᾱ

•
a). It follows that F is balanced. �

In the above situation we shall say that the functor F is induced from a map q : (Q ′, I ′) → (Q , I)
of quivers with relations.

2. On Galois coverings

2.1. Galois coverings are balanced

Proposition 2.1. Let F : A → B be a Galois covering, then F is balanced.

Proof. Assume F is determined by the action of a group G of automorphisms of A, acting freely on
the objects A0. Let i, j be objects of B and f ∈ B(i, j). Consider a,b in A with Fa = i, F b = j and
(b′ f •

a )b′ ∈ ⊕
F b′= j A(a,b′) with

∑
F b′= j F (b′ f •

a ) = f .
For each object b′ with F b′ = j, there is a unique gb′ ∈ G with gb′(b′) = b. Then (gb′(b′ f •

a ))b′ ∈⊕
b′ A(gb′(a),b) = ⊕

Fa′=i A(a′,b) with
∑

b′ F (gb′(b′ f •
a )) = ∑

b′ F (b′ f •
a ) = f . Hence gb′(b′ f •

a ) = •
b f gb′ (a)

for every F b′ = j. In particular, for gb = 1 we get b f •
a = •

b fa . �
2.2. The smash-product

We say that a k-category B is G-graded with respect to the group G if for each pair of objects
i, j there is a vector space decomposition B(i, j) = ⊕

g∈G B g(i, j) such that the composition induces
linear maps

B g(i, j) ⊗ Bh( j,m) → B gh(i,m).

Then the smash product B # G is the k-category with objects B0 ×G , and for pairs (i, g), ( j,h) ∈ B0 ×G ,
the set of morphisms is

(B # G)
(
(i, g), ( j,h)

) = B g−1h(i, j)

with compositions induced in natural way.
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In [3] it was shown that B # G accepts a free action of G such that

(B # G)/G
∼−→ B.

Moreover, if B = A/G is a quotient, then B is a G-graded k-category and

(A/G) # G
∼−→ A.

Proposition 2.2. Let F : A → B be a covering functor and assume that B is a G-graded k-category. Then

(i) Assume A accepts a G-grading compatible with F , that is, F (A g(a,b)) ⊆ B g(Fa, F b), for every pair
a,b ∈ A0 and g ∈ G. Then there is a covering functor F # G : A # G → B # G completing a commuta-
tive square

A # G
F #G

B # G

A
F

B

where the vertical functors are the natural quotients. Moreover F is balanced if and only if F # G is bal-
anced.

(ii) In case B is a schurian algebra, then A accepts a G-grading compatible with F .

Proof. (i) For each a,b ∈ A0, consider the decomposition A(a,b) = ⊕
g∈G Ag(a,b) and B(Fa, F b) =⊕

g∈G B g(Fa, F b). Since these decompositions are compatible with F , then A g(a,b) =
F −1(B g(Fa, F b)), for every g ∈ G .

For α ∈ (A # G)((a, g), (b,h)) = Ag−1h(a,b) = F −1(B g−1h(Fa, F b)), we have

(F # G)(α) = Fα ∈ B g−1h(Fa, F b) = (B # G)
(
(Fa, g), (F b,h)

)
.

(ii) Assume B is schurian and take a,b ∈ A0 and g ∈ G . Either B g(Fa, F b) = B(Fa, F b) �= 0, if
A(a,b) �= 0 or B g(Fa, F b) = 0, correspondingly we set Ag(a,b) = A(a,b) or Ag(a,b) = 0. Observe that
the composition induces linear maps Ag(a,b) ⊗ Ah(b, c) → Agh(a, c), hence A accepts a G-grading
compatible with F . �
Remark. In the situation above, the fact that A and B # G are connected categories does not guaranty
that A # G is connected. For instance, if B = A/G , then A # G = A × G .

The following result is a generalization of Proposition 2.2(ii).

Proposition 2.3. Let F : A → B be a (balanced) covering functor induced from a map of quivers with relations.
Let F ′ : B ′ → B be a Galois covering functor induced from a map of quivers with relations defined by the action
of a group G. Assume moreover that B ′ is schurian. Then A accepts a G-grading compatible with F making the
following diagram commutative.

A # G
F #G

B ′

F ′

A
F

B
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Proof. Let A = k	/ J , B = kQ /I and B ′ = kQ ′/I ′ be the corresponding presentations as quivers with
relations, F induced from the map δ :	 → Q , while F ′ induced from the map q : Q ′ → Q . For each
vertex a in 	 fix a vertex a′ in Q ′ such that F ′a′ = Fa.

Consider an arrow a
α−→ b in 	 and α the corresponding element of A. We claim that there

exists an element gα ∈ G such that F (α) ∈ B gα (Fa, F b). Indeed, we get F (α) = β = F ′(β ′) for ar-

rows Fa
β−→ F b and a′ β ′

−→ gαb′ for a unique gα ∈ G . Therefore F (α) ∈ B gα (Fa, F b). We shall define
Agα (a,b) as containing the space kα. For this purpose, consider g ∈ G and any vertices a,b in 	, then
Ag(a,b) is the space generated by the classes u of the paths u : a → b such that F (u) ∈ B g(Fa, F b).
Since the classes of the arrows in 	 generate A, then A(a,b) = ⊕

g∈G Ag(a,b). We shall prove that
there are linear maps

Ag(a,b) ⊗ Ah(b, c) → Agh(a, c).

Indeed, if u ∈ Ag(a,b) and v ∈ Ah(b, c) for paths u : a → b and v : b → c in 	, let F (u) = F ′(u′) and
F (v) = F ′(v ′) for paths u′ : a′ → gb′ and v ′ : b′ → hc′ in Q ′ . Since B ′ is schurian then the class of the
lifting of F (vu) to B ′ is (gv ′)u′ . Therefore

F (v)F (u) = F ′((gv ′)u′ ) ∈ B gh(Fa, F b).

By definition, the G-grading of A is compatible with F . We get the commutativity of the diagram
from Proposition 2.2. �
2.3. Universal Galois covering

Let B = kQ /I be a finite-dimensional k-algebra. According to [9] there is a k-category B̃ = kQ̃ / Ĩ
and a Galois covering functor F̃ : B̃ → B defined by the action of the fundamental group π1(Q , I)
which is universal among all the Galois coverings of B , that is, for any Galois covering F : A → B
there is a covering functor F ′ : B̃ → A such that F̃ = F F ′ . In fact, the following more general result is
implicitly shown in [9]:

Proposition 2.4. (See [9].) The universal Galois covering F̃ : B̃ → B is universal among all (balanced) covering
functors F : A → B induced from a map q : (Q ′, I ′) → (Q , I) of quivers with relations, where A = kQ ′/I ′ .

3. Cleaving functors

3.1. Balanced coverings are cleaving functors

Consider the k-linear functor F : A → B and the natural transformation F (a,b) : A(a,b) →
B(Fa, F b) in two variables. The following is the main observation of this work.

Theorem 3.1. Assume F : A → B is a balanced covering, then the natural transformation F (a,b) : A(a,b) →
B(Fa, F b) admits a retraction E(a,b) : B(Fa, F b) → A(a,b) of functors in two variables a,b such that
E(a,b)F (a,b) = 1A(a,b) for all a,b ∈ A0 .

Proof. Set E(a,b) : B(Fa, F b) → A(a,b), f �→ •
b fa which is a well-defined map. For any α ∈ A(a,a′),

β ∈ A(b,b′), we shall prove the commutativity of the diagrams:

B(Fa, F b)
E(a,b)

B(Fa,Fβ)

A(a,b)

A(a,β)

B(Fa, F b′)
E(a,b′)

A(a,b′)

B(Fa′, F b)
E(a′,b)

B(Fα,F b)

A(a′,b)

A(α,b)

B(Fa, F b)
E(a,b)

A(a,b)
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For the sake of clarity, let us denote by ◦ the composition of maps. Indeed, let f ∈ B(Fa, F b) and
calculate

∑
Fa′=Fa F (β ◦ •

b fa′ ) = Fβ ◦ f , hence

A(a, β) ◦ E(a,b)( f ) = β ◦ •
b fa = •

b′(Fβ ◦ f )a = E(a,b′) ◦ B(Fa, Fβ)( f ),

and the first square commutes. Moreover, let h ∈ B(Fa′, F b) and calculate
∑

F b′=F b F (b′h•
a′ ◦α) = h◦ Fα

and therefore bh•
a′ ◦ α = b(h ◦ Fα)•

a . Using that F is balanced we get that E(a,b) ◦ B(Fa, F b)(h) =
•
b(h ◦ Fα)a = •

bha′ ◦ α = A(α,b) ◦ E(a′,b)(h). �
Given a k-linear functor F : A → B the composition F• Fλ : AMod → AMod is connected to the

identity 1 of AMod by a canonical transformation ϕ : F• Fλ → 1 determined by F• Fλ A(a,−)(b) =⊕
F b′=F b A(a,b′) → A(a,b), ( fb′) �→ fb , see [1, p. 234]. Following [1], F is a cleaving functor if the

canonical transformation ϕ admits a natural section ε : 1 → F• Fλ such that ϕ(X)ε(X) = 1X for each
X ∈ AMod. The following statement, essentially from [1], yields Theorem 0.1 in the introduction.

Corollary 3.2. Let F : A → B be a balanced covering, then F is a cleaving functor.

Proof. Observe that F• Fλ is exact, preserves direct sums and projectives (the last property holds since
F• B(i,−) = ⊕

Fa=i A(a,−)). Hence to define ε : 1 → F• Fλ it is enough to define ε(A(a,−)) : A(a,−) →
F• Fλ A(a,−) with the desired properties. For b ∈ A0, consider εb : A(a,b) → ⊕

F b′=F b A(a,b′) =
F• Fλ A(a,−)(b) the canonical inclusion. For h ∈ A(b, c) we shall prove the commutativity of the fol-
lowing diagram:

A(a,b)
εb

A(a,h)

⊕
F b′=F b A(a,b′)

(A(a,•
c′ F hb′ )

A(a, c)
εc ⊕

F c′=F c A(a, c′)

Let f ∈ A(a,b), since F is balanced A(a, •
c′ F hb′) ◦ εb( f ) = •

c′ F hb ◦ f = c′ F h•
b ◦ f = εc ◦ A(a,h)( f ), since

c′ F h•
b = h if c′ = c and it is 0 otherwise. This is what we wanted to show. �

4. On the representation type of categories

4.1. Representation-finite case

Recall that a k-category A is said to be locally representation-finite if for each object a of A there
are only finitely many indecomposable A-modules X , up to isomorphism, such that X(a) �= 0. For a
cleaving functor F : A → B is was observed in [1] that in case B is of locally representation-finite then
so is A. In particular this holds when F is a Galois covering by [6]. We shall generalize this result for
covering functors.

Part (a) of Theorem 0.2 in the introduction is the following:

Theorem 4.1. Assume that k is algebraically closed and let F : A → B be a covering induced from a map of
quivers with relations. Then B is locally representation-finite if and only if so is A. Moreover in this case the
functor Fλ : Amod → B mod preserves indecomposable modules and Auslander–Reiten sequences.

Proof. Let F : A → B be induced from q : (Q ′, I ′) → (Q , I) where A = kQ ′/I ′ and B = kQ /I . Let B̃ =
kQ̃ / Ĩ be the universal cover of B and F̃ : B̃ → B the universal covering functor. By Proposition 2.4
there is a covering functor F ′ : B̃ → A such that F̃ = F F ′ .

(1) Assume that B is a connected locally representation-finite category. Since F is induced by a
map of quivers with relations, then Proposition 1.7 implies that F is balanced. Hence Corollary 3.2
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implies that F is a cleaving functor. By [1, (3.1)], A is locally representation-finite; for the sake of
completness, recall the simple argument: each indecomposable A-module X ∈ Amod is a direct sum-
mand of F• Fλ X = ⊕n

i=1 F•Nni
i for a finite family N1, . . . , Nn of representatives of the isoclasses N of

the indecomposable B-modules with N(i) �= 0 for some i = F (a) with X(a) �= 0.
(2) Assume that A is a locally representation-finite category. First we show that B is representation-

finite. Indeed, by case (1), since F ′ : B̃ → A is a covering induced by a map of a quiver with relations,
then B̃ is locally representation-finite. By [10], B is representation-finite. In particular, [6] implies that
F̃λ preserves indecomposable modules, hence Fλ and F ′

λ also preserve indecomposable modules.
Let X be an indecomposable A-module. We shall prove that X is isomorphic to F ′

λN for some
indecomposable B̃-module N . Since indecomposable projective A-modules are of the form A(a,−) =
F ′

λ B̃(x,−) for some x in B̃ , using the connectedness of ΓA , we may assume that there is an irreducible

morphism Y
f−→ X such that Y = F ′

λN for some indecomposable B̃-module N . If N is injective, say
N = D B̃(−, j), there is a surjective irreducible map (hi) : N → ⊕

i Ni such that all Ni are indecompos-
able modules and

0 S j N
(hi) ⊕

i Ni 0

is an exact sequence. Then Y = D A(−, F ′ j) and the exact sequence

0 S F ′ j Y
(F ′

λ(hi)) ⊕
i F ′

λ(Ni) 0

yields the irreducible maps starting at Y (ending at the indecomposable modules F ′
λ(Ni)). Therefore

X = F ′
λ(Nr) for some r, as desired. Next, assume that N is not injective and consider the Auslander–

Reiten sequence ξ : 0 → N
g−→ N ′ g′

−→ N ′′ → 0 in B̃ mod. We shall prove that the push-down F ′
λξ : 0 →

F ′
λN

F ′
λ g−→ F ′

λN ′ F ′
λ g′

−→ F ′
λN ′′ → 0 is an Auslander–Reiten sequence in Amod. This implies that there exists

a direct summand N̄ of N ′ such that X
∼−→ F ′

λ N̄ which completes the proof of the claim.
To verify that F ′

λξ is an Auslander–Reiten sequence, let h : F ′
λN → Z be non-split mono in Amod.

Consider HomA(F ′
λN, Z)

∼−→ HomB̃(N, F ′
• Z), h �→ h′ which is not a split mono (otherwise, then

HomB̃(F ′
• Z , N)

∼−→ HomA(Z , F ′
ρ N), ν �→ ν ′ with νh′ = 1F ′• Z . By Lemma 1.3, F ′

λ = F ′
ρ and ν ′h = 1Z ).

Then there is a lifting h̄ : N ′ → F ′
• Z with h̄g = h′ . Hence HomB̃(N ′, F ′

• Z)
∼−→ HomA(F ′

λN ′, Z), h̄ �→ h̄′
with h̄′ F ′

λ g = h.
We show that Fλ preserves Auslander–Reiten sequences. Let X be an indecomposable A-module

of the form X = F ′
λN for an indecomposable B̃-module N . Then Fλ X = Fλ F ′

λN = F̃λN . Since by [10],
F̃λ preserves indecomposable modules, then Fλ X is indecomposable. Finally, as above, we conclude
that Fλ preserves Auslander–Reiten sequences. �
4.2. Tame representation case

Let k be an algebraically closed field. We recall that A is said to be of tame representation type if for
each dimension d ∈ N and each object a ∈ A0, there are finitely many A − k[t]-bimodules M1, . . . , Ms

which satisfy:

(a) Mi is finitely generated free as right k[t]-module i = 1, . . . , s;
(b) each indecomposable X ∈ Amod with X(a) �= 0 and dimk X = d is isomorphic to some module of

the form Mi ⊗k[t] (k[t]/(t − λ)) for some i ∈ {1, . . . , s} and λ ∈ k.

In fact, it is shown in [11] that A is tame if (a) and (b) are substituted by the weaker conditions:
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(a′) Mi is finitely generated as right k[t]-module i = 1, . . . , s;
(b′) each indecomposable X ∈ Amod with X(a) �= 0 and dimk X = d is a direct summand of a module

of the form Mi ⊗k[t] (k[t]/(t − λ)) for some i ∈ {1, . . . , s} and λ ∈ k.

The following statement covers claim (b) of Theorem 0.2 in the introduction.

Theorem 4.2. Let F : A → B be a balanced covering functor. If B is tame, then A is tame.

Proof. Let a ∈ A0 and d ∈ N. Let M1, . . . , Ms be the B − k[t]-bimodules satisfying (a) and (b): each in-
decomposable M ∈ B mod with M(Fa) �= 0 and dimk M � d is isomorphic to some Mi ⊗k[t] (k[t]/(t −λ))

for some i ∈ {1, . . . , s} and λ ∈ k.
By Corollary 3.2 each indecomposable X ∈ Amod with X(a) �= 0 and dimk X = d is a direct sum-

mand of some F•(Mi ⊗k[t] (k[t]/(t − λ))), which is isomorphic to F•Mi ⊗k[t] (k[t]/(t − λ)), for some
i ∈ {1, . . . , s} and λ ∈ k. Hence A satisfies conditions (a’) and (b’). �
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