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Introduction and notation

Let k be a field and A be a finite-dimensional (associative with 1) k-algebra. One of the main goals
of the representation theory of algebras is the description of the category of finite-dimensional left
modules g4mod. For that purpose it is important to determine the representation type of A. The finite
representation type (that is, when A accepts only finitely many indecomposable objects in 4mod,
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up to isomorphism) is well understood. In that context, an important tool is the construction of
Galois coverings F:A — A of A since A is a locally representation-finite category if and only if A is
representation-finite [6,10]. For a tame algebra A and a Galois covering F:A — A, the category A is
also tame, but the converse does not hold [7,12].

Coverings were introduced in [13] for the Auslander-Reiten quiver of a representation-finite alge-
bra. For algebras of the form A =kQ /I, where Q is a quiver and I an admissible ideal of the path
algebra kQ, the notion of covering was introduced in [2,6,9]. Following [2], a functor F:A — B, be-
tween two locally bounded k-categories A and B, is a covering functor if the following conditions are
satisfied:

(a) F is a k-linear functor which is onto on objects;
(b) the induced morphisms

P Aw@.b)— B(Fa.j) and P A(d.b)— B, Fb)
Fb'=j Fa'=i

are bijective for all i, j in B and a, b in A.

We denote by (pf;)y = f and (jfg)e — f the corresponding bijections. We shall consider
F; : amod — gmod the left adjoint to the pull-up functor F,:gmod — g4mod, M +— MF, where -mod
denotes the category of left modules over the k-category C, consisting of covariant k-linear functors.

The best understood examples of covering functors are the Galois covering functors A — B given by
the action of a group of automorphisms G of A acting freely on objects and where F:A — B=A/G
is the quotient defined by the action. See [2,4,6,9,10] for results on Galois coverings. Examples of
coverings which are not of Galois type will be exhibited in Section 1.

In this work we introduce balanced coverings as those coverings F:A — B where ,f; = fq for
every f € B(Fa, Fb). Among many other examples, Galois coverings are balanced, see Section 2. We
shall prove the following:

Theorem 0.1. Let F : A — B be a balanced covering. Then every finitely generated A-module X is a direct
summand of F,F, X.

In fact, according to the notation in [1], we show that a balanced covering functor is a cleaving
functor, see Section 3. This is essential for extending Galois covering-type results to more general
situations. For instance, we show the following result.

Theorem 0.2. Assume that k is an algebraically closed field and let F : A — B be a covering functor. Then the
following hold:

(a) If F is induced from a map f : (Q,I) — (Q’, I') of quivers with relations, where A =kQ /I and B =

kQ’/I', then B is locally representation-finite if and only if so is A;
(b) If F is balanced and B is tame, then A is tame.

More precise statements are shown in Section 4. For a discussion on the representation type of
algebras we refer to [1,5,7,11,12].

1. Coverings: examples and basic properties
1.1. The pull-up and push-down functors

Following [2,6], consider a locally bounded k-category A, that is, A has a (possibly infinite) set of
non-isomorphic objects Ag such that
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(a) A(a,b) is a k-vector space and the composition corresponds to linear maps A(a, b) ® A(b,c) —
A(a, c) for every a, b, c objects in Ag;

(b) A(a,a) is a local ring for every a in Ag;

(c) >, A(a,b) and ", A(b, a) are finite-dimensional for every a in Ao.

For a locally bounded k-category A, we denote by sMod (resp. Modya) the category of covariant
(resp. contravariant) functors A — Mody; by amod (resp. mod,) we denote the full subcategory of
locally finite-dimensional functors A — mod; of the category sMod (resp. Mod,). In case Ag is finite,
A can be identified with the finite-dimensional k-algebra @, pca, A(a,b); in this case the category
aMod (resp. 4mod) is equivalent to the category of left A-modules (resp. finitely generated left A-
modules).

According to [5], in case k is algebraically closed, there exist a quiver Q and an ideal I of the
path category kQ, such that A is equivalent to the quotient kQ /I. Then any module M € 4Mod can
be identified with a representation of the quiver with relations (Q,I). Usually our examples will be
presented by means of quivers with relations.

Let F: A — B be a k-linear functor between two locally bounded k-categories. The pull-up functor
F,:gMod — g4Mod, M +— MF admits a left adjoint F, : sMod — gMod, called the push-down functor,
which is uniquely defined (up to isomorphism) by the following requirements:

(i) FrA(a, —)=B(Fa,-);
(ii) F, commutes with direct limits.

In particular, F; preserves projective modules. Denote by F, : sMod — gMod the right adjoint to F,.
For covering functors F: A — B we get an explicit description of F; and F, as follows:

Lemma 1.1. (See [2].) Let F : A — B be a covering functor. Then:

(a) Forany X € gmod and f € B(i, j),

EX(H)=(X(f3): P X@— @ Xb), with Y F(pfz) =

Fa=i Fb=j Fb=j

In particular, F,(a, —) : F)A(a, —) — B(Fa, —) is the natural isomorphism given by (, f§)» — f.
(b) Forany X € gmod and f € B(i, j)

FoX(f) = ): [ Xx@— [] x®). with > F

Fa=i Fb=j Fa=i
In particular, F,D(—,b): FyDA(—, b) — DB(—, Fb) is the natural isomorphism induced by (; fa)a = f.
1.2. The order of a covering
The following lemma allows us to introduce the notion of order of a covering.

Lemma 1.2. Let F : A — B be a covering functor. Assume that B is connected and a fiber F~1(i) is finite, for
some i € Bg. Then the fibers have constant cardinality.

Proof. Let i € By and 0 # f € B(i, j). For a € F~(i), ZFb:I- dimgA(a,b) = dimyB(i, j). Hence
[F=1(@)IdimB(, j) = Y paei Yppej dimeA(@, b) = Y pp_; Y g dimpA(a, b) = [F~'(j)|dimyg B, j)
and |F~1(i)| = |[F~'(j)|. Since B is connected, the claim follows. O

In case F:A — B is a covering functor with B connected and Ay is finite, we define the order of F
as ord(F) = |F~1(i)| for any i € Bg. Thus ord(F)|Bo| = |Ao|.
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We recall from the Introduction that a covering functor F: A — B is balanced if , f; =} fq for every
couple of objects a,b in A.

Lemma 1.3. Let F : A — B be a balanced covering functor, then F; = F, as functors 4mod — gpmod.

1.3. Examples

(a) Let A be a locally bounded k-category and let G be a group of k-linear automorphisms acting
freely on A (that is, for a € Ap and g € G if ga =a, then g =1). The quotient category A/G has
as objects the G-orbits in the objects of A; a morphism f:i — j in A/G is a family f:(yfs) €
[Ta Ala, b), where a (resp. b) ranges in i (resp. j) and g - fq = gpfga for all g€ G. The canonical
projection F:A — A/G is called a Galois covering defined by the action of G.

A particular situation is illustrated by the following algebras (given as quivers with relations):

Po p1
L] L] L]
(e %)) a1
Yo " /\ /\
A B: o . °
Vo V1 \_/ U
Bo B
L] _— > L] —_— e e
e} o1
P100 = V1)0,
0100 = Y1V0, a109 = B1Bo,
pP1Vo = V100, Bi1oo = a1 Po.
01Y0 = Y1p0,

The algebra A is tame, but B is wild when char k =2 [7]. The cyclic group C; acts freely on A and
A/Cy is isomorphic to B.
(b) Consider the algebras given by quivers with relations and the functor F as follows:

o 1 [¢3] o
X\ V2N VSN F N
ap b, by aq — a b Q P
~_ 7 ~_ 7 ~— 4
B2 02 B B

both algebras with rad> =0 and Foy =a, Foo = + B, EBi=p8, Fpi=p, i=1,2. It is a simple
exercise to check that F is a balanced covering, but obviously it is not of Galois type.
(c) Consider the functor

b
2N
F
A: a2 a1 — B: a b
A
b,
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where Faj =«,i=1,2, F81 =8, FBy =a+ . Since F(B; —a) =B and F(B1) = B, then by Bg, = —002
and b, Ba, = 0. Hence F is a non-balanced covering functor.

For the two-dimensional indecomposable A-module X given by X(az) =k, X(by) =k, X(az) =id
and zero otherwise, it follows that F,F, X is indecomposable and hence X is not a direct summand
of F.F, X.

(d) As a further example, consider the infinite category A and the balanced covering functor de-
fined in the obvious way:

B2 o1 B
S et
B o] B

where both categories A and B have rad? = 0.
1.4. Coverings of schurian categories

We say that a locally bounded k-category B is schurian if for every i, j € Bg, dimyB(i, j) < 1.
Lemma 14. Let F : A — B be a covering functor and assume that B is schurian, then F is balanced.

Proof. Let 0+ f € B(i, j) and Fa=1i, Fb = j. Since B is schurian, there is a unique 0 # j f; € A(a, b’)
with Fb' = j and a unique 0 #; fy € A(d’, b) with Fa' =i satisfying Fyy f3 = f = F; fo. In case b=/,
then a=a’ and , f; =} fo. Else b #b" and p, f; =0. In this situation a#a’ and ; fo=0. O

Proposition 1.5. Let F : A — B be a covering functor with finite order and B schurian. Then for every M €
pmod, F; F,M = pMord(F),

Proof. For any 0 # f € B(i, j) we get

FyF.M(i) = @pomi M(E) —— MOF) (i)
(M(Fp fg)) l J/diag(M(f) ----- M(f))

FiF.M(j) = @pp—j M(J) —— MOHF)(j)

Since for each a there is a unique b with p f; # 0 such that Fj, f; = f, then the square commutes. O

Remark 1.6. If B is not schurian the result may not hold as shown in [7, (3.1)] for a Galois covering
F:B — C with B as in example 1.3(a).

1.5. Coverings induced from a map of quivers

Let q: Q" — Q be a covering map of quivers, that is, q is an onto morphism of oriented graphs
inducing bijections iT — q(i)* and i~ — q(i)~ for every vertex i in Q’, where xT (resp. x~) denotes
those arrows x — y (resp. y — x). For the concept of covering and equitable partitions in graphs,
see [8].

Assume that Q is a finite quiver. Let I be an admissible ideal of the path algebra kQ, that is, J" C
I c J2 for J the ideal of kQ generated by the arrows of Q. We say that I is admissible with respect to
q if there is an ideal I’ of the path category kQ’ such that the induced map kq:kQ — kQ’ restricts to
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isomorphisms @q(a):i I'(a, b) — I(i, j) for g(b) = j and @q(b):j I'(a, b) — I(i, j) for q(a) =i. Observe
that most examples in Section 1.3 (not example (c)) are built according to the following proposition:

Proposition 1.7. Let g: Q" — Q be a covering map of quivers, I an admissible ideal of kQ and I’ an admis-
sible ideal of kQ’ making I admissible with respect to q as in the above definition. Then the induced functor
F:kQ’/I' — kQ /I is a balanced covering functor.

Proof. Since q is a covering of quivers, it has the unique lifting property of paths. Hence for any pair
of vertices i in Q and a in Q' with g(a) =i, we have that

k(q)
Dyp)=jkQ'(a,b) ——— kQ i, j)

|

Drpy_ikQ'/I'@.b) — = kQ/Id. j)

is a commutative diagram with F an isomorphism. This shows that F is a covering functor.

For any arrow i j in Q and q(a) =i, there is a unique b in Q" and an arrow a =5 b with
q(a’) = a. Hence the class , f; of o’ in kQ'/I'(a, b) satisfies that F(, f}) is the class f =& of o in
kQ /I, j). By symmetry, p f; =} fa. For arbitrary f € kQ/I(i, j), f is the linear combination ) A; f;,

where f; is the product of classes of arrows in Q. Observe that for arrows i LN j LN m we have
c(Ba)y = (cB;) G aa) = (cB;) (paxg). It follows that F is balanced. O

In the above situation we shall say that the functor F is induced from a map q:(Q’,I") — (Q, 1)
of quivers with relations.

2. On Galois coverings
2.1. Galois coverings are balanced

Proposition 2.1. Let F : A — B be a Galois covering, then F is balanced.

Proof. Assume F is determined by the action of a group G of automorphisms of A, acting freely on
the objects Ag. Let i, j be objects of B and f € B(i, j). Consider a,b in A with Fa=1i, Fb=j and
b fy € @Fb/:j A(a, b)) with ZFb/:j Fof)=Ff.

For each object b’ with Fb' = j, there is a unique gy € G with gy (b') =b. Then (gy (y f))y €
Dy Algr (@), b) = Dry—; A@, b) with 3y F(gy (v f§)) = > Fly f3) = f. Hence gy (v f3) =} fe, @
for every Fb’ = j. In particular, for g, =1 we get » f; =} fo. O

2.2. The smash-product

We say that a k-category B is G-graded with respect to the group G if for each pair of objects
i, j there is a vector space decomposition B(i, j) = @gec B&(i, j) such that the composition induces
linear maps

BE(i, j) ® B"(j,m) — B&"(i,m).

Then the smash product B # G is the k-category with objects Bg x G, and for pairs (i, g), (j, h) € Bo x G,
the set of morphisms is

(B #G)((i, g), (j, h)) = BE (i, j)

with compositions induced in natural way.
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In [3] it was shown that B # G accepts a free action of G such that
(B#G)/G —> B.
Moreover, if B=A/G is a quotient, then B is a G-graded k-category and
(A/G) # G —> A.
Proposition 2.2. Let F : A — B be a covering functor and assume that B is a G-graded k-category. Then
(i) Assume A accepts a G-grading compatible with F, that is, F(A%(a, b)) € B8(Fa, Fb), for every pair

a,b € Ag and g € G. Then there is a covering functor F # G: A # G — B # G completing a commuta-
tive square

F#G
A#G — B#G

|,

A——8B

where the vertical functors are the natural quotients. Moreover F is balanced if and only if F # G is bal-
anced.
(ii) In case B is a schurian algebra, then A accepts a G-grading compatible with F.

Proof. (i) For each a,b € Ao, consider the decomposition A(a,b) = @gec A&(a,b) and B(Fa, Fb) =
EBgec B&(Fa, Fb). Since these decompositions are compatible with F, then A&(a,b) =
F~1(B&(Fa, Fb)), for every g € G.

For a € (A#G)((a, g), (b, h)) = A% 'h(a,b) = F~1(B& 'h(Fa, Fb)), we have

(F#G)(«) = Fa € BS '"(Fa, Fb) = (B# G)((Fa, ), (Fb, ).

(ii) Assume B is schurian and take a,b € Ag and g € G. Either BS(Fa, Fb) = B(Fa, Fb) # 0, if
A(a,b) #0 or B8(Fa, Fb) =0, correspondingly we set A8(a, b) = A(a, b) or A8(a, b) = 0. Observe that
the composition induces linear maps A%(a, b) ® A"(b,c) — A%"(a, c), hence A accepts a G-grading
compatible with F. O

Remark. In the situation above, the fact that A and B # G are connected categories does not guaranty
that A # G is connected. For instance, if B=A/G, then A#G=A x G.

The following result is a generalization of Proposition 2.2(ii).

Proposition 2.3. Let F : A — B be a (balanced) covering functor induced from a map of quivers with relations.
Let F' : B — B be a Galois covering functor induced from a map of quivers with relations defined by the action
of a group G. Assume moreover that B’ is schurian. Then A accepts a G-grading compatible with F making the
following diagram commutative.

F#G
A#G —— B’

b

A—B
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Proof. Let A=kA /], B=kQ/I and B'=kQ’/I’ be the corresponding presentations as quivers with
relations, F induced from the map §: A — Q, while F’ induced from the map q: Q' — Q. For each
vertex a in A fix a vertex a’ in Q' such that F'a’ = Fa.

Consider an arrow a —> b in A and @ the corresponding element of A. We claim that there

exists an element g, € G such that F(&) € B% (Fa, Fb). Indeed, we get F(&) = B = F/'(B') for ar-

rows Fa i> Fb and d’ L gob’ for a unique g, € G. Therefore F(@) € B8« (Fa, Fb). We shall define
A8 (a, b) as containing the space k&. For this purpose, consider g € G and any vertices a, b in A, then
A8(a,b) is the space generated by the classes i of the paths u:a — b such that F(i1) € B8(Fa, Fb).
Since the classes of the arrows in A generate A, then A(a,b) = @gec Aé&(a, b). We shall prove that
there are linear maps

A8(a,b) ® A"(b, c) —> A% (a, ¢).
Indeed, if i € A8(a,b) and v € A"(b, c) for paths u:a— b and v:b — c in A, let F(il) = F/(/) and

F(v) = F'(v) for paths u’:a’ — gb’ and v/ : b’ — hc’ in Q’. Since B’ is schurian then the class of the
lifting of F(vu) to B’ is (gv’)u’. Therefore

F(V)F(u) = F'((gv)u’) € B8"(Fa, Fb).

By definition, the G-grading of A is compatible with F. We get the commutativity of the diagram
from Proposition 2.2. 0O

2.3. Universal Galois covering

Let B=kQ /I be a finite-dimensional k-algebra. According to [9] there is a k-category B =kQ /I
and a Galois covering functor F:B — B defined by the action of the fundamental group m1(Q,I)
which is universal among all the Galois coverings of B, that is, for any Galois covering F:A — B
there is a covering functor F': B — A such that F = FF’. In fact, the following more general result is
implicitly shown in [9]:

Proposition 2.4. (See [9].) The universal Galois covering F : B — B is universal among all (balanced) covering
functors F: A — B induced fromamap q:(Q’, ') — (Q, I) of quivers with relations, where A=kQ'/I'.

3. Cleaving functors
3.1. Balanced coverings are cleaving functors

Consider the k-linear functor F:A — B and the natural transformation F(a,b):A(a,b) —
B(Fa, Fb) in two variables. The following is the main observation of this work.

Theorem 3.1. Assume F : A — B is a balanced covering, then the natural transformation F(a, b) : A(a, b) —
B(Fa, Fb) admits a retraction E(a,b):B(Fa, Fb) — A(a, b) of functors in two variables a,b such that
E(a,b)F(a,b) =14(qp) foralla,b € Ao.

Proof. Set E(a,b):B(Fa, Fb) — A(a,b), f + } fo which is a well-defined map. For any « € A(a,d),
B € A(b,b’), we shall prove the commutativity of the diagrams:

E(a,b) E(d.b)
B(Fa, Fb) —— A(a, b) B(Fd', Fb) —— A(d’, b)
B(Fa,Fp) l i Aa,p) B(Fa,Fb) l i A(a,b)

B(Fa, Fb') —— A(a,b’) B(Fa, Fb) —— A(a, b)
E(a,b’) E(a,b)
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For the sake of clarity, let us denote by o the composition of maps. Indeed, let f € B(Fa, Fb) and
calculate ) py_p, F(B o} fo) = FBo f, hence

Aa,p)oE@,b)(f)=Bojfa=}(FBo fla=E(a,b") o B(Fa, FB)(f),

and the first square commutes. Moreover, let h € B(Fa', Fb) and calculate )y _py F(yh}, o) =hoFa
and therefore ph?, o @ = p(ho Far);. Using that F is balanced we get that E(a, b) o B(Fa, Fb)(h) =
i(hoFa)g=jhy o =A(a,b) o E@,b)(h). O

Given a k-linear functor F:A — B the composition F,F;:sMod — sMod is connected to the
identity 1 of g4Mod by a canonical transformation ¢:F,F, — 1 determined by F,F,A(a,—)(b) =
Drp_pp Ala, b)) — Aa,b), (fy) — fb, see [1, p. 234]. Following [1], F is a cleaving functor if the
canonical transformation ¢ admits a natural section €:1 — F,F, such that ¢(X)e(X) =1x for each
X € gsMod. The following statement, essentially from [1], yields Theorem 0.1 in the introduction.

Corollary 3.2. Let F : A — B be a balanced covering, then F is a cleaving functor.

Proof. Observe that F,F, is exact, preserves direct sums and projectives (the last property holds since
F.B(i, =) = @p,—; Aa, —)). Hence to define £ : 1 — F,F, it is enough to define £(A(a, —)): A(a, —) —
F.F,A(a,—) with the desired properties. For b € Ag, consider &,:A(a,b) - @py_pp Ala,b) =
F.F;A(a, —)(b) the canonical inclusion. For h € A(b, c) we shall prove the commutativity of the fol-
lowing diagram:

Ep
A(a,b) — @Fb/zl:b A(a,b/)
A(a,h) l i (A(a,? Fhy)

Ec
A@,¢) — Dre—pc A, C)

Let f € A(a, b), since F is balanced A(a,?, Fhy) o ep(f) =7 Fhpo f = Fhj o f =¢&c o A(a, h)(f), since
¢ Fh; =h if ¢ =c and it is 0 otherwise. This is what we wanted to show. O

4. On the representation type of categories
4.1. Representation-finite case

Recall that a k-category A is said to be locally representation-finite if for each object a of A there
are only finitely many indecomposable A-modules X, up to isomorphism, such that X(a) # 0. For a
cleaving functor F: A — B is was observed in [1] that in case B is of locally representation-finite then
so is A. In particular this holds when F is a Galois covering by [6]. We shall generalize this result for
covering functors.

Part (a) of Theorem 0.2 in the introduction is the following:

Theorem 4.1. Assume that k is algebraically closed and let F : A — B be a covering induced from a map of
quivers with relations. Then B is locally representation-finite if and only if so is A. Moreover in this case the
functor F; : pamod — gmod preserves indecomposable modules and Auslander-Reiten sequences.

Proof. Let F:A — B be induced from q:(Q',I') — (Q,I) where A=kQ'/I' and B=kQ/I. Let B=
kQ /1 be the universal cover of B and F:B — B the universal covering functor. By Proposition 2.4
there is a covering functor F’: B — A such that F = FF’.

(1) Assume that B is a connected locally representation-finite category. Since F is induced by a
map of quivers with relations, then Proposition 1.7 implies that F is balanced. Hence Corollary 3.2
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implies that F is a cleaving functor. By [1, (3.1)], A is locally representation-finite; for the sake of
completness, recall the simple argument: each indecomposable A-module X € 4mod is a direct sum-
mand of F.F; X = EB?:l F,Nf" for a finite family Ny, ..., N, of representatives of the isoclasses N of
the indecomposable B-modules with N(i) # 0 for some i = F(a) with X(a) # 0.

(2) Assume that A is a locally representation-finite category. First we show that B is representation-
finite. Indeed, by case (1), since F’: B — A is a covering induced by a map of a quiver with relations,
then B is locally representation-finite. By [10], B is representation-finite. In particular, [6] implies that
F, preserves indecomposable modules, hence F, and F} also preserve indecomposable modules.

Let X be an indecomposable A-module. We shall prove that X is isomorphic to F;N for some
indecomposable B-module N. Since indecomposable projective A-modules are of the form A(a, —) =
F;B(x, —) for some x in B, using the connectedness of I'4, we may assume that there is an irreducible

morphism Y —f> X such that Y = F; N for some indecomposable B-module N. If N is injective, say

N = DB(—, j), there is a surjective irreducible map (h;) : N — @; Ni such that all N; are indecompos-
able modules and

(hi)
0 S; N @DiNi ——o0

is an exact sequence. Then Y = DA(—, F’j) and the exact sequence

(F; (hi)) )
0 SErj Y @;F,(N)) ——=0

yields the irreducible maps starting at Y (ending at the indecomposable modules F} (N;)). Therefore
X = F{(Ny) for some r, as desired. Next, assume that N is not injective and consider the Auslander-
Reiten sequence £ :0 — N N 2N > 0in smod. We shall prove that the push-down F{£:0 —

Fig F.g . . . .. . .
F;N 23 F{N' =5 F;N” — 0 is an Auslander-Reiten sequence in smod. This implies that there exists

a direct summand N of N’ such that X —» F;N which completes the proof of the claim.

To verify that F;& is an Auslander-Reiten sequence, let h: F; N — Z be non-split mono in s4mod.
Consider Homy(FiN, Z) = Homjy(N, F,Z), h+ h’ which is not a split mono (otherwise, then
Homgy(F,Z, N) 5 Homu(Z, F;)N), v > v with vh' = 1f;z. By Lemma 1.3, F; = F;) and V'h = 1;).
Then there is a lifting h: N’ — F/Z with hg = h’. Hence Homy(N', F.Z) = Homy (FiN', Z), hih
with h'Fj g = h.

We show that F; preserves Auslander-Reiten sequences. Let X be an indecomposable A-module
of the form X = F;‘N for an indecomposable B-module N. Then F; X = F;LFAN = F,N. Since by [10],

F,. preserves indecomposable modules, then F, X is indecomposable. Finally, as above, we conclude
that F, preserves Auslander-Reiten sequences. O

4.2. Tame representation case

Let k be an algebraically closed field. We recall that A is said to be of tame representation type if for
each dimension d € N and each object a € Ag, there are finitely many A — k[t]-bimodules My, ..., M;
which satisfy:

(a) M; is finitely generated free as right k[t]-module i =1,...,s;
(b) each indecomposable X € smod with X(a) # 0 and dim;X =d is isomorphic to some module of

the form M; Q¢ (k[t]/(t —A)) for some i € {1,...,s} and A €k.

In fact, it is shown in [11] that A is tame if (a) and (b) are substituted by the weaker conditions:
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(a’) M; is finitely generated as right k[t]-module i=1,...,s;
(b’) each indecomposable X € smod with X(a) # 0 and dimiX =d is a direct summand of a module
of the form M; ®ye) (k[t]/(t — 1)) for some i e {1,...,s} and A k.

The following statement covers claim (b) of Theorem 0.2 in the introduction.
Theorem 4.2. Let F : A — B be a balanced covering functor. If B is tame, then A is tame.

Proof. Let a € Ap and d € N. Let M1, ..., M be the B —k[t]-bimodules satisfying (a) and (b): each in-
decomposable M € gmod with M(Fa) # 0 and dimyM < d is isomorphic to some M; ®ks (k[t]/(t — 1))
for some i € {1,...,s} and A €k.

By Corollary 3.2 each indecomposable X € smod with X(a) # 0 and dimiX =d is a direct sum-
mand of some F,(M; ®r) (k[t]/(t — A))), which is isomorphic to F.M; Qs (k[t]1/(t — 1)), for some
ie{l,...,s} and A € k. Hence A satisfies conditions (a’) and (b’). O
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