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In this paper we study some cohomological properties of non-
standard multigraded modules and Veronese transforms of them.
Among others numerical characters, we study the generalized
depth of a module and we see that it is invariant by taking
a Veronese transform. We prove some vanishing theorems for the
local cohomology modules of a multigraded module, as a corollary
of these results we get that the depth of a Veronese module is
asymptotically constant.

© 2009 Published by Elsevier Inc.

Introduction

In commutative algebra, graded modules, as well as standard multigraded ones, have been object
of study by many authors. Although some results on non-standard graded modules are known this
is not the case of non-standard multigraded modules. By standard (resp. non-standard) multigraded
module we mean a multigraded module over a standard (resp. non-standard) multigraded ring. A gen-
eral reference on the subject could be [6].

Along this paper S is a non-standard N
r -graded S0-algebra finitely generated by elements of mul-

tidegrees γi = (γ i
1, . . . , γ i

i ,0, . . . ,0) ∈ N
r , with γ i

i �= 0, for i = 1, . . . , r. For some of the results in the
second part of the paper, we need to restrict our setting to the almost-standard case, that is with
positive multiples of the canonical basis of R

r as multidegrees of the generators.
The main purpose of this paper is to study some cohomological properties of multigraded

S-modules and, in particular, of the Veronese modules associated to a non-standard multigraded
S-module M . We mainly study the vanishing of the local cohomology modules of M and of Veronese
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modules of M , generalizing some results on the depth of Veronese modules associated to Rees alge-
bras proved in [4].

In Section 1 we extend several results on homogeneous ideals of Z-graded rings to homogeneous
ideals of non-standard Z

r -graded rings, Proposition 1.1. We consider the multigraded scheme Projr(S)

and we define the projective Cohen–Macaulay deviation of a multigraded modules and we link this
number with the generalized depth, studied by Brodmann and Faltings (see [1,5]), Theorem 1.3. As a
corollary we prove that the generalized depth remains invariant by taking Veronese modules, Propo-
sition 1.4.

In the first part of section two we prove, under the general hypothesis on the degrees of S , that
the depth of the Veronese modules M(b) is constant for special asymptotic values of b, Proposition 2.1.
In the second part of the section we extend to a non-standard framework the notion of finite grad-
uation [12]. Under some special degrees of S we prove that the generalized depth of a multigraded
module coincides with its finitely graduation order, Theorem 2.8. We use it to get that the depth of
the Veronese modules M(a,b) is constant for large a,b ∈ N

r , Theorem 2.12, and we apply this result to
the multigraded Rees algebras associated to a finite set of ideals, Proposition 2.15.

Notations. Along the paper we use the underline to denote a multi-index: a = (a1, . . . ,ar) ∈ Z
r . We

write |a| = ∑r
i=1 |ai|. Given a,b ∈ Z

r , a · b is the termwise product of a and b, and a � b if, and only
if, ai � bi for all i = 1, . . . , r. For all λ ∈ Z we put λ = (λ, . . . , λ) ∈ Z

r .
Given integral vectors γi = (γ i

1, . . . , γ i
i ,0, . . . ,0) ∈ N

r , i = 1, . . . , r, such that γ i
i �= 0, we denote by

φ the map

φ : Z
r → Z

r,

n �→
r∑

i=1

niγi .

Note that Im(φ) = Γ (γ1, . . . , γr) is the subgroup of Z
r generated by γi , i = 1, . . . , r.

We denote by G the r × r triangular matrix whose columns are the vectors γ1, . . . , γr . Note that G
is a non-singular matrix and that the multi-index t1γ1 + · · · + trγr is the column vector Gt .

Given a ∈ N
∗r we denote by φa the map

φa : Z
r → Z

r,

n �→ φa(n) = φ(n · a),

with φa(n) = φ(n · a) = ∑r
i=1(niai)γi for all n ∈ Z

r .
Let S = ⊕

n∈Nr Sn be a Noetherian N
r -graded ring generated as S0-algebra by homogeneous el-

ements g j
i , j = 1, . . . ,μi , of multidegree γi for i = 1, . . . , r; the number of generators of S is

μ = μ1 + · · · + μr . Notice that S = ⊕
n∈Γ Sn , with Γ = Γ (γ1, . . . , γr). We assume that S0 is a lo-

cal ring with maximal ideal m and infinite residue field.
For i = 1, . . . , r, let Ii be the ideal of S generated by the homogeneous components of S of mul-

tidegrees (d1, . . . ,di,0, . . . ,0) with di �= 0. We define the irrelevant ideal of S as S++ = I1 · · · Ir . As
usual we write S+ = ⊕

n �=0 Sn ⊃ S++ . Notice that in the graded case, i.e. r = 1, these two ideals are
the same S+ = S++ .

The Veronese transform of S with respect to a ∈ N
∗r , or (a)-Veronese, is the ring

S(a) =
⊕
n∈Nr

Sφa(n).

This is a subring of S . The degrees of the generators of S(a) have the same triangular configuration as
the degrees of S .



G. Colomé-Nin, J. Elias / Journal of Algebra 322 (2009) 1415–1429 1417
Given an S-graded module M we denote by M(a,b) the Veronese transform of M with respect to
a ∈ N

∗r , b ∈ N
r , or (a,b)-Veronese,

M(a,b) =
⊕
n∈Zr

Mφa(n)+b.

This is an S(a)-module. Observe that in the case of b = (0, . . . ,0) we get the classical definition of
Veronese of a module.

Let M be a finitely generated S-module. By using a similar argument as in [7, Lemmas 1.13
and 1.14], see also [6], we can prove that the local cohomology functor and the Veronese functor
commute, i.e.

H∗
M(a)

(
M(a,b)

) ∼= (
H∗

M(M)
)(a,b)

,

where M is the maximal homogeneous ideal of S , i.e. M = m⊕ S+ , and a ∈ N
∗r , b ∈ N

r . For the basic
properties of local cohomology we use [2] as general reference.

1. Generalized depth and Veronese modules

In this section, we study, in our multigraded setting, some properties of a multigraded module and
the Veronese transform of a module. These properties allow us to study the generalized depth of a
multigraded module and its Veronese.

Let Projr(S) be the set of all relevant homogeneous prime ideals on S , which is the set of all
homogeneous prime ideals p of S such that p �⊃ S++ . Note that p �⊃ S++ if and only if for each
1 � i � r there exists 1 � j(i) � μi such that g j(i)

i /∈ p. See [11,14] for a similar definition. Given a
homogeneous ideal p ⊂ S we denote by U the multiplicative closed subset of S of homogeneous
elements of S \ p; we denote by S(p) the set of fractions m/s ∈ U−1 S such that deg(m) = deg(s) ∈ N

r ;
S(p) is a local ring with maximal ideal pU−1 S ∩ S(p) .

In the next proposition we claim several results relating properties of non-standard Z
r -graded

rings and modules with their Veronese transforms. The proof is similar to the standard graded one.
See Propositions 4.2.1–4.2.3 in [3] for a detailed proof.

Proposition 1.1.

(i) For all p ∈ Projr(S) the ring extension

S(p) → S p

is faithfully flat with closed fiber k(p).
(ii) For all a ∈ N

∗r , the extension S(a) ↪→ S is integral, dim(S(a)) = dim(S) and there is a homeomorphism of
topological spaces

Projr(S(a)
) ∼= Projr(S).

For all p ∈ Projr(S) it holds ht(p(a)) = ht(p).
(iii) Let M be a finitely generated Z

r -graded S-module. For all p ∈ Projr(S) and a ∈ N
∗r , b ∈ N

r , it holds

M
(a,b)

(p(a))
= M(b)(p).

Given an ideal p ∈ Spec(S) we denote by p∗ the prime ideal generated by the homogeneous ele-
ments belonging to p, see [6, Section 2]. We can relate the depths of the localization on a prime p
with the localization on p∗ .
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Proposition 1.2. Assume that S is a catenary ring. Let M be a finitely generated Z
r -graded S-module. Given

an ideal p ∈ Spec(S) such that p �⊃ S++ and M p �= 0, then it holds

depth(Mp) + dim(S/p) = depth(M(p∗)) + dim(S/p∗).

Proof. We put d = dim(S p/p∗ S p). From [6, Proposition 1.2.2 and Corollary 1.2.4], we have that
depth(M p) = depth(M p∗ ) + d and dim(M p) = dim(M p∗ ) + d. On the other hand, since S is catenary
we have dim(S p) = dim(S)−dim(S/p) and dim(S p∗ ) = dim(S)−dim(S/p∗). From these identities we
get

depth(Mp) + dim(S/p) = depth(Mp∗) + d + dim(S) − dim(S p)

= depth(Mp∗) + d + dim(S) − dim(S p∗) − d

= depth(Mp∗) + dim(S/p∗).

Since the morphism S(p) → S p is faithfully flat with closed fiber k(p) we get, by [13, Theo-
rem 23.3], that depth(M p∗ ) = depth(M(p∗)). Hence the claim is proved. �

Let M be a Z
r -graded S-module. We denote by pcmd(M) the projective Cohen–Macaulay deviation

of M , i.e. the maximum of

dim(S(p)) − depth(M(p)),

where p ∈ Projr(S), see [4].
We denote by gdepth(M) the so-called generalized depth of M with respect to the homogeneous

maximal ideal M of S , gdepth(M) is the greatest integer k � 0 such that

S++ ⊂ rad
(
AnnS

(
Hi

M(M)
))

for all i < k, see [8]. Note that gdepth(M) � depth(M).
In the case when S0 is a quotient of a regular ring, we can relate these last two integers. This

relation is crucial in order to prove that the generalized depth of a module coincides with the one of
its Veronese transform. Next theorem generalizes Proposition 2.2 in [9].

Theorem 1.3. Let M be a finitely generated Z
r -graded S-module. If S0 is the quotient of a regular ring then

gdepth(M) = dim(S) − pcmd(M).

Proof. From [5, Satz 1] (see also [12]) we get

gdepth(M) = min
p∈Σ

{
depth(Mp) + dim(S/p)

}

with Σ = {a | a ∈ Spec(S),a �⊃ S++}. From Proposition 1.2, we get that

depth(Mp) + dim(S/p) = depth(M(p∗)) + dim(S/p∗),

so we can assume that p ∈ Projr(S). Therefore we get

gdepth(M) = min
p∈Projr(S)

{
depth(M(p)) + dim(S/p)

}
.



G. Colomé-Nin, J. Elias / Journal of Algebra 322 (2009) 1415–1429 1419
Since S is catenary dim(S/p) = dim(S) − dim(S(p)), and hence

gdepth(M) = dim(S) − max
p∈Projr(S)

{
dim(S(p)) − depth(M(p))

}

= dim(S) − pcmd(M). �
From Theorem 1.3 and Proposition 1.1 we get the invariance of gdepth under Veronese transforms:

Corollary 1.4. Let M be a finitely generated Z
r -graded S-module. If S0 is the quotient of a regular ring, then it

holds

gdepth
(
M(a,b)

) = gdepth(M)

for all a ∈ N
∗r , b ∈ N

r .

2. Vanishing theorems and asymptotic depth of Veronese modules

In [12], for a graded module M , the author defines an integer to control the finite graduation
of the local cohomology modules of M with respect to the maximal homogeneous ideal M of the
ring S . He considers the greatest integer k � 0 such that Hi

M(M) is finitely graded for all i < k (i.e.
Hi

M(M)n = 0 except for a finitely many n ∈ Z). We denote this integer fg(M).
In this section we introduce the generalization, in the multigraded case, of the concept of fg(M).

We prove some results on the vanishing of a module and its local cohomology modules and we relate
this with the generalized depth. To reach our goal, we need to fit the generalization of fg(M), that
we call Γ -fg(M), to the multigraduation. We also study the asymptotic depth of Veronese modules.
We can prove that, by restricting the graduation, this depth is constant for (a,b)-Veronese modules
for a, b in suitable asymptotic regions of N

r by using the previous work done in the paper.
We want to study the depth of the Veronese modules M(a,b) for large values a,b ∈ N

r . Under the
hypothesis on the multidegrees of this paper we can prove the following results by considering some
Veronese modules.

We denote by vad(M(∗)) (resp. vad(M(∗,∗))) the Veronese asymptotic depth of M , that means the
maximum of depth(M(a)) (resp. depth(M(a,b))) for all a ∈ N

∗r (resp. for all a,b ∈ N
∗r ).

Proposition 2.1. Let M be a finitely generated Z
r -graded S-module and let s = vad(M(∗)). There exists a =

(a1, . . . ,ar) ∈ N
∗r such that for all b ∈ {(λ1a1, . . . , λrar) | λi ∈ N

∗},

depth
(
M(b)

) = s,

i.e. is constant.

Proof. Let s = vad(M(∗)). This means that there exists an a ∈ N
∗r such that

Hi
M(a)

(
M(a)

) = 0

for i = 0, . . . , s − 1.
Let us consider b ∈ {(λ1a1, . . . , λrar) | λi ∈ N

∗} = {λ · a | λ ∈ N
∗r}. Then for all n ∈ Z

r , since φb(n) =
φ(b · n) = φ(a · λ · n) = φa(λ · n), we have that

Hi
M(b)

(
M(b)

)
n = Hi

M(M)φb(n) = Hi
M(M)φa(λ·n) = Hi

M(a)

(
M(a)

)
λ·n = 0

for i = 0, . . . , s − 1. From this, we deduce that depth(M(b)) � s, but s was the maximum. Therefore,
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depth
(
M(b)

) = s

for all b ∈ {(λ1a1, . . . , λrar) | λi ∈ N
∗}. �

Let us consider the multigraded Rees algebra associated to ideals I1, . . . , Ir in a Noetherian local
ring (R,m),

R(I1, . . . , Ir) =
⊕
n∈Nr

In1
1 tn1

1 · · · Inr
r tnr

r ⊂ R[t1, . . . , tr].

Proposition 2.2. Let s = vad(R(I1, . . . , Ir)
(∗)). There exists a = (a1, . . . ,ar) ∈ N

∗r such that for all b ∈
{(λ1a1, . . . , λrar) | λi ∈ N

∗}

depth
(

R
(

Ib1
1 , . . . , Ibr

r

)) = s.

Moreover, if depth(R(I1, . . . , Ir)) = s, then

depth
(

R
(

Ib1
1 , . . . , Ibr

r

)) = s,

i.e. is constant for all b ∈ N
∗r .

Proof. Observe that the multigraded Rees algebra has a standard graduation and hence, for a =
(a1, . . . ,ar),

R
(

Ia1
1 , . . . , Iar

r

) = R(I1, . . . , Ir)
(a)

and then the claim is a consequence of the previous proposition. The second statement follows from
the first one by considering a = (1, . . . ,1). �

We would like to extend the previous results on the asymptotic depth of the Veronese modules to
regions of N

r instead of some nets there. First we have to study the vanishing of the local cohomology
modules of a multigraded module M .

A cone Cβ ⊂ N
r with vertex at β ∈ N

r with respect to γ1, . . . , γr is a region of N
r whose points are

of the form β + ∑r
i=1 λiγi ∈ N

r with λi ∈ R�0 for i = 1, . . . , r. Given n = (n1, . . . ,nr) ∈ Z
r we denote

n∗ = (|n1|, . . . , |nr |) ∈ N
r .

If M is a finitely generated Z
r -graded S-module with generators h1, . . . ,hs of multidegrees d1 =

(d1
1, . . . ,d1

r ), . . . ,ds = (ds
1, . . . ,ds

r) ∈ Z
r respectively, we denote by ΓM the Γ -invariant subset of Z

r

ΓM =
s⋃

i=1

(
di + Γ

)
,

i.e. Z
r \ ΓM is the set of multi-index for which there is no non-zero elements of M .

Lemma 2.3. For all β ∈ Z
r and c ∈ N there exists α ∈ ΓM such that α � c = (c, . . . , c) and α ∈ β + Γ.

Proof. The condition α ∈ (β + Γ ) ∩ (d1 + Γ ) is equivalent to the equation

α = d1 + Gt = β + Gn,
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so

n = t + G−1(d1 − β
)
.

Hence for a t � 0 we get that n � 0, so α ∈ ΓM ∩ (β + Γ ) and α � c. �
Proposition 2.4. Let M be a finitely generated Z

r -graded S-module such that S++ ⊂ rad(AnnS (M)). Then
there exists β = (β1, . . . , βr) ∈ ΓM such that Mn = 0, for all n ∈ Z

r such that n∗ ∈ Cβ .

Proof. We prove the result first assuming that M is N
r generated, i.e. we assume that h1, . . . ,hs

are the generators of the S-module M with multidegrees (d1
1, . . . ,d1

r ), . . . , (ds
1, . . . ,ds

r) ∈ N
r respec-

tively. Let α = (α1, . . . ,αr) ∈ Z
r be the maximum componentwise of these multidegrees, i.e. αi =

max{d1
i , . . . ,ds

i }, i = 1, . . . , r.
The elements of Mn , n ∈ N

r , are linear combinations with coefficients on S0 of elements of the
type

g1
m1 . . . gr

mr h j,

where, using multiindex notation, gt
mt = (g1

t )m1
t · · · (gμt

t )m
μt
t with mt = (m1

t , . . . ,mμt
t ) ∈ N

μt . This ele-
ment has multidegree

n = deg
(

g1
m1 . . . gr

mr h j
) = G

⎛
⎜⎝

|m1|
...

|mr |

⎞
⎟⎠ +

⎛
⎜⎝

d j
1
...

d j
r

⎞
⎟⎠ .

Let u be a non-negative integer such that (S++)u M = 0. We define β recursively:

βi = uγ i
i + βi+1γ

i+1
i + · · · + βrγ

r
i + αi

for i = r, . . . ,1.
Given a multi-index n = β + ∑r

i=1 λiγi ∈ Cβ ∩ ΓM , λi � 0, we have to prove that Mn = 0. We have

n = G

⎛
⎝

λ1
...

λr

⎞
⎠ +

⎛
⎝

β1
...

βr

⎞
⎠ = G

⎛
⎜⎝

|m1|
...

|mr |

⎞
⎟⎠ +

⎛
⎜⎝

d j
1
...

d j
r

⎞
⎟⎠ .

If we prove that |m1| � u + λ1, . . . , |mr | � u + λr , then g1
m1 . . . gr

mr h j ∈ (S++)u M = 0 and hence
Mn = 0 for all n ∈ Cβ ∩ ΓM .

We will prove by recurrence a stronger result:

βi + λi � |mi| � u + λi

for i = 1, . . . , r. From the definition of βr = uγ r
r + αr and

βr + λrγ
r

r = |mr |γ r
r + d j

r

we deduce
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γ r
r

(|mr | − (u + λr)
) = αr − d j

r � 0.

Since γ r
r � 1 we get

|mr | � u + λr .

On the other hand

βr + λr − |mr | = d j
r + (

γ r
r − 1

)(|mr | − λr
)
� 0.

Let us assume that βr + λr � |mr | � u + λr, . . . , βi+1 + λi+1 � |mi+1| � u + λi+1. We will prove that
βi + λi � |mi | � u + λi , i � 1. We have

βi + λiγ
i

i + λi+1γ
i+1

i + · · · + λrγ
r
i = |mi|γ i

i + |mi+1|γ i+1
i + · · · + |mr |γ r

i + d j
i

so

γ i
i

(
u + λi − |mi|

) +
r∑

l=i+1

γ l
i

(
βl + λl − |ml|

) + αi − d j
i = 0.

By induction we deduce that

|mi | � u + λi .

A simple computation shows that

βi + λi − |mi| =
(
γ i

i − 1
)(|mi| − λi

) +
r∑

l=i+1

γ l
i

(|ml| − λl
) + d j

i � 0.

Hence we have proved that Mn = 0 for all n ∈ Cβ .

Let us assume now that M is generated by h1, . . . ,hs with multidegrees (d1
1, . . . ,d1

r ), . . . ,

(ds
1, . . . ,ds

r) ∈ Z
r respectively. Let c = |min{0,d j

i , j = 1, . . . , s, i = 1, . . . , r}|. Let N be the following
submodule of M:

N =
⊕
n�0

Mn.

From Lemma 2.3 there is α ∈ ΓM such that α � c and α ∈ ΓM ∩ (β(N) + Γ ). Since Cα ⊂ Cβ and α � c
we get that Mn = 0 for all n ∈ Z

r and n∗ ∈ Cβ . �
Corollary 2.5. Let M be a finitely generated Z

r -graded S-module and N ⊂ M a submodule. We assume that
(S++)u(M/N) = 0 for u ∈ Z. Then there exists β ∈ ΓM/N such that Mn ⊂ Nn, for all n ∈ Z

r such that n∗ ∈ Cβ .

Proof. It is only necessary to use Proposition 2.4 with the finitely generated module M/N . There will
exists a cone Cβ where (M/N)n = 0 for n∗ ∈ Cβ , and hence Mn ⊂ Nn . �

We say that a Z
r -graded S-module M is Γ -finitely graded if there exists a cone Cβ ⊂ N

r where
Mn = 0 for all n ∈ Z

r such that n∗ ∈ Cβ . We denote by Γ -fg(M) the greatest integer k � 0 such that

Hi
M(M) if Γ -finitely graded for all i < k, see [12].
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Remark 2.6. Notice that in the standard graded case, i.e. r = 1, the definition of Γ -fg(M) coincides
with the classical

fg(M) = max
{
k � 0

∣∣ Hi
M(M) is finitely graded for all i < k

}
.

In this case a module is finitely graded if the pieces of degree n are 0 for |n| � n0, for some n0 ∈ N,
which is, in fact, a cone with vertex in n0, so

fg(M) = Γ -fg(M).

From now on we assume that the graduation is almost-standard. By almost-standard multigraded
(or Z

r -graded) ring S we mean the multigraded ring with generators of multidegrees

γ1 = (
γ 1

1 ,0, . . . ,0
) = γ 1

1 e1,

. . .

γi = (
0, . . . ,0, γ i

i ,0, . . . ,0
) = γ i

i ei,

. . .

γr = (
0, . . . ,0, γ r

r

) = γ r
r er

with γ 1
1 , . . . , γ r

r > 0 and e1, . . . , er the canonical basis of R
r . Note that in this case we have

Cβ = (
β + (R�0)

r) ∩ N
r

for all β ∈ Z
r . Note that the intersection of two cones is a cone:

Cα ∩ Cβ = Cδ

with δ = (max{αi, βi}; i = 1, . . . , r).
An important point in the proof of the main theorem, is to assure that Hk

M(M) is Γ -finitely
graded for all k � 0 in case that the module M is Γ -finitely graded as well. For that reason we have
to restrict the graduation to the almost-standard case. We prove that in the next proposition.

Proposition 2.7. Let S be an almost-standard multigraded ring. Let M be a finitely generated Z
r -graded S-

module. If M is Γ -finitely graded then Hk
M(M) is also Γ -finitely graded for all k � 0.

Proof. Since M is Γ -finitely graded, there exists an element β ∈ N
r such that Mn = 0 for all n ∈ Z

r

with n∗ ∈ Cβ . We want to prove that Hk
M(M)n = 0 for n ∈ Z

r with n∗ ∈ Cβ as well.

Since H0
M(M) = ΓM(M) ⊆ M , then the claim is obviously true for k = 0. Let us assume that k > 0.

The ideal M is generated by a system of generators of m, say h1, . . . ,hv , and by g j
i , j = 1, . . . ,μi ,

i = 1, . . . , r. If we denote by f1, . . . , fσ the above system of generators of M then the local cohomol-
ogy modules H∗

M(M) are the cohomology modules of the complex

0 → M →
σ⊕

i=1

M fi →
⊕

1�i< j�σ

M fi f j → ·· · → M f1··· fσ → 0.
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The module Hk
M(M) is S-graded: the graduation is induced by the graduation defined on the local-

izations Mg , where g is an arbitrary product of k different generators of M. Given z = x/gt ∈ Mg we
have

deg(z) = deg

(
x

gt

)
= deg(x) − t deg(g).

If we assume that deg(z) = n with n∗ ∈ Cβ then there exists a vector ε = (ε1, . . . , εr) ∈ {−1,+1}r

such that ε · n = β + Gλ with λi ∈ R�0. We denote here ε · n for the termwise product of ε and n. So,

n = ε · (β + Gλ).

On the other hand we may assume, without loss of generality, that deg(g) = Gk with k =
(k1, . . . ,kw ,0, . . . ,0) with ki �= 0, i = 1, . . . , w . Hence we have

deg
(
xgs) = deg(z) + (t + s)deg(g) = ε · (β + Gλ) + (t + s)Gk

for all s � 0.
We want to prove that deg(xgs)∗ ∈ Cβ , for some s � 0, so we have to assure that there exists

μ ∈ (R�0)
r and η ∈ {−1,+1}r such that

η · [ε · (β + Gλ) + (t + s)Gk
] = β + Gμ.

For i = w + 1, . . . , r we have the equation

ηiεi
(
βi + λiγ

i
i

) = βi + μiγ
i

i ,

we set ηi = εi and μi = λi � 0.
For i = 1, . . . , w we set ηi = 1, and then we have to consider the equation

εi
(
βi + λiγ

i
i

) + (t + s)kiγ
i

i = βi + μiγ
i

i .

If εi = 1 then μi = λi + (t + s)ki � 0. If εi = −1 then μi = −2 βi

γ i
i

− λi + (t + s)ki � 0 for an integer

s � 0.
We have proved that Hk

M(M)n = 0 for n ∈ Z
r with n∗ ∈ Cβ , so Hk

M(M) is Γ -finitely graded. �
In the next result we relate the two integers attached to M studied in the paper, gdepth(M) and

Γ -fg(M). The first part of the next result follows [12, Proposition 2.3], or [15, Lemma 2.2]. Since
these papers use extensively results on Z-graded modules we will adapt them in the almost-standard
multigraded case that we consider here.

Theorem 2.8. Let S be an almost-standard multigraded ring. Let M be a finitely generated Z
r -graded S-

module, then it holds

Γ -fg(M) = gdepth(M).
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Proof. First we prove the inequality Γ -fg(M) � gdepth(M). If Hi
M(M) is Γ -finitely graded then there

exists a cone Cβ with vertex in some β ∈ N
r , such that Hi

M(M)n = 0 for all n ∈ Z
r with n∗ ∈ Cβ .

We have to prove that S++ ⊂ rad(AnnS (Hi
M(M))), i.e. for all generators x = gm1

1 · · · gmr
r of S++ ,

mi ∈ {1, . . . ,μi}, i = 1, . . . , r, we have to find a suitable a > 0 such that for all n ∈ Z
r , xa Hi

M(M)n = 0.
If n∗ ∈ Cβ then Hi

M(M)n = 0, so for all a � 0 it holds xa Hi
M(M)n = 0.

We put a = 2 max{β1, . . . , βr}. Let us assume that n∗ /∈ Cβ . That means that, without loss of gener-
ality, that −βi < ni < βi , i = 1, . . . , u, and |ni | � βi for i = u + 1, . . . , r. If we decompose x = z1z2 with
z1 = gm1

1 · · · gmu
u and z2 = g

mu+1
u+1 · · · gmr

r , then

(
n + deg

(
za

1

))∗ ∈ Cβ,

so za
1 Hi

M(M)n = 0. Furthermore

xa Hi
M(M)n = 0.

Notice that a does not depend on n, so we have proved that S++ ⊂ rad(AnnS(Hi
M(M))), and hence

Γ -fg(M) � gdepth(M).

Now, we prove the other inequality, i.e. Γ -fg(M) � gdepth(M). If S++ ⊂ rad(AnnS (M)) then there
exists a ∈ N such that for all x ∈ S++ , xa M = 0. Since M is finitely generated, by Lemma 2.4 there
exists a cone Cβ ⊂ N

r with vertex in some β ∈ N
r , such that Mn = 0 for all n∗ ∈ Cβ . Then by Proposi-

tion 2.7, for all i Hi
M(M) is Γ -finitely graded, so Γ -fg(M) = +∞ � gdepth(M).

We can assume that S++ �⊂ rad(AnnS (M)). Let Ass(M) = {p1, . . . , pt} be the set of the associated
prime ideals of M . Let us consider a minimal primary decomposition of 0 ∈ M

0 = N1 ∩ · · · ∩ Ns ∩ Ns+1 ∩ · · · ∩ Nt,

where Ass(M/Ni) = {pi}. We can assume that p1, . . . , ps do not contain S++ , and ps+1, . . . , pt contain
S++ .

Since the residue field of S0 is infinite there is an element z ∈ S++ such that z /∈ p1 ∪ · · · ∪ ps . We
will prove that (0 :M z) is a Γ -finitely graded S-module.

Since z /∈ p1 ∪ · · · ∪ ps , then (0 :M z) ⊂ N1 ∩ · · · ∩ Ns . In fact, since Ni is a pi -primary submodule of
M and z /∈ pi , then (Ni :M z) = Ni . On the other hand, for i = s + 1, . . . , t there is an a ∈ N such that
Sa++M ⊂ Ni . Being M finitely generated, by Corollary 2.5, there exists a cone Cβ ⊂ N

r with vertex in
some β ∈ N

r such that Mn ⊂ (Ni)n for all n∗ ∈ Cβ .
By combining these two facts we get

(0 :M z)n ⊂ (N1 ∩ · · · ∩ Ns ∩ Ns+1 ∩ · · · ∩ Nt)n = 0

for n∗ ∈ Cβ , so (0 :M z) is Γ -finitely graded. Therefore, Hi
M((0 :M z)) is also Γ -finitely graded for all

i � 0 by Proposition 2.7.
Since Γ -fg((0 :M z)) = +∞, from the first part of the proof we get gdepth((0 :M z)) = +∞. Let us

consider the exact sequence

0 → (0 :M z) → M → M

(0 :M z)
→ 0.

Since Γ -fg((0 :M z)) = gdepth((0 :M z)) = +∞ from the long exact sequence of local cohomology we
deduce Γ -fg(M) = Γ -fg(M/(0 :M z)) and gdepth(M) = gdepth(M/(0 :M z)). On the other hand there
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exists b ∈ N such that zb Hi
M(M) = 0 for all i < gdepth(M). Hence we may assume that M is an

S-module for which z ∈ S++ is a non-zero divisor and zHi
M(M) = 0 for all i < gdepth(M).

We will show by induction on c that if 0 � c � gdepth(M) then c � Γ -fg(M). The case c = 0 is
trivial. Let us assume that c > 0, and let us consider the degree zero exact sequence, r = deg(z),

0 → M(−r) ·z−→ M → M

zM
→ 0.

From the long exact sequence of local cohomology we deduce that gdepth(M) − 1 � gdepth(M/zM),
so

0 � c − 1 � gdepth(M) − 1 � gdepth(M/zM).

By induction on c we get c − 1 � Γ -fg(M/zM). In particular Hc−2
M (M/zM) is Γ -finitely graded. Let us

consider the exact sequence on n, for n∗ ∈ Cβ ,

0 = Hc−2
M (M/zM)n → Hc−1

M (M)n−r
·z−→ Hc−1

M (M)n.

Since zHc−1
M (M) = 0 we deduce that Hc−1

M (M) is Γ -finitely graded. Hence c � Γ -fg(M). �
The invariance of Γ -fg under Veronese transforms is now an easy consequence of Theorem 2.8

and Corollary 1.4.

Corollary 2.9. Let S be an almost-standard multigraded ring such that S0 is the quotient of a regular ring. If
M is a finitely generated Z

r -graded S-module then for all a ∈ N
∗r , b ∈ N

r it holds

Γ -fg
(
M(a,b)

) = Γ -fg(M).

Definition 2.10. Let M be a finitely generated Z
r -graded S-module. We denote by

δM : N
∗r × N

r → N

the numerical function defined by δM(a,b) = depth(M(a,b)), a ∈ N
∗r , b ∈ N

r . We write δM(a) =
δM(a,0).

Before studying the asymptotic depth of the Veronese of a module, we need a technical proposi-
tion. The following result does not work on the more general multigraded case, so the restriction to
the almost-standard case is necessary.

Proposition 2.11. Let Cβ ⊂ N
r be a cone of vertex at β ∈ N

r . For all n ∈ N
r , b ∈ Z

r such that bi � βi if ni = 0,

and a ∈ N
r such that ai � (βi + bi)/γ

i
i , i = 1, . . . , r, we have that

(
φa(n) + b

)∗ ∈ Cβ .

In particular, for all b � β and a ∈ N
r such that ai � (βi + bi)/γ

i
i , i = 1, . . . , r, we have that for all n ∈ Z

r

(
φa(n) + b

)∗ ∈ Cβ .
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Proof. For n ∈ Z
r we have that φa(n) + b = (a1n1γ

1
1 + b1, . . . ,arnrγ

r
r + br) and hence, (φa(n) + b)∗ =

(|a1n1γ
1

1 + b1|, . . . , |arnrγ
r

r + br |).
We have to find conditions on a ∈ N

∗r and b ∈ N
r in order to assure that (φa(n) + b)∗ ∈ Cβ for

all n ∈ Z
r . So, we have to impose that for all i = 1, . . . , r, there exist some λi ∈ R�0 such that

|ainiγ
i

i + bi | = βi + λiγ
i

i . Since γ i
i ∈ N

∗ , then it is only necessary to assure that |ainiγ
i

i + bi | � βi
for all i = 1, . . . , r.

If ni �= 0, since |ainiγ
i

i + bi | � |ainiγ
i

i | − |bi | = |ni |aiγ
i

i − bi , then we have to impose that

|ni |aiγ
i

i − bi � βi

which is equivalent to

|ni | � βi + bi

aiγ
i

i

.

Hence we must impose that

ai � βi + bi

γ i
i

i = 1, . . . , r. If ni = 0 then we have to impose bi = |bi | � βi , i = 1, . . . , r.
The second part of the result follows from the first one. �
Now, we are ready to prove the theorem that assures constant depth for the (a,b)-Veronese in a

region of N
r × N

r .

Theorem 2.12. Let S be an almost-standard multigraded ring such that S0 is the quotient of a regular ring. Let
M be a finitely generated Z

r -graded S-module and let s = vad(M(∗,∗)). The numerical function δM is asymp-
totically constant: there exists β ∈ N

r such that for all b � β and for all a ∈ N
r such that ai � (βi + bi)/γ

i
i it

holds

δM(a,b) = s.

Proof. We put s = vad(M(∗,∗)), thus

Γ -fg(M) = gdepth(M) = gdepth
(
M(a,b)

)
� s

by Theorem 2.8 and Corollary 1.4. Since Γ -fg(M) � s there exists a cone Cβ ⊂ N
r , β ∈ N

r , such that

Hi
M(M)n = 0 for all n ∈ Z

r with n∗ ∈ Cβ and i = 0, . . . , s − 1.

By Lemma 2.11, for b � β and a ∈ N
r such that ai � (βi + bi)/γ

i
i for all i = 1, . . . , r, we have that

(φa(n) + b)∗ ∈ Cβ for all n ∈ Z
r . Hence, we get that for all n ∈ Z

r ,

Hi
M(a)

(
M(a,b)

)
n = (

Hi
M(M)(a,b)

)
n = (

Hi
M(M)

)
φa(n)+b = 0

because (φa(n) + b)∗ ∈ Cβ . So, we have proved that

Hi
M(a)

(
M(a,b)

) = 0

for i = 0, . . . , s − 1. Therefore,
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depthM(a)

(
M(a,b)

)
� s,

and by the definition of s we get the claim. �
In the next result we generalize [4, Proposition 2.1], to general Z-graded modules.

Proposition 2.13. Let S be a Z-graded ring such that S0 is the quotient of a regular ring. Let M be a finitely
generated graded S-module. The numerical function δM is asymptotically constant: there exist s(M) ∈ N and
α ∈ N such that for all a � α it holds

δM(a) = s(M).

Proof. If s = s(M) = vad(M(∗)) then

Γ -fg(M) = gdepth(M) = gdepth
(
M(a)

)
� s

by Theorem 2.8 and Corollary 1.4. Since Γ -fg(M) � s there exists an integer β ∈ N, such that
Hi

M(M)n = 0 for all n ∈ N with |n| � β and i = 0, . . . , s − 1. From the first part of Proposition 2.11 for
all a � αi = β/γ 1

1 we have that

Hi
Ma

(
M(a)

)
n = (

Hi
M(M)(a)

)
n = Hi

M(M)an = 0

for all n �= 0. On the other hand we have

Hi
Ma

(
M(a)

)
0 = (

Hi
M(M)(a)

)
0 = Hi

M(M)0 = 0

for i = 0, . . . , s − 1. So, we have proved that

Hi
M(a)

(
M(a)

) = 0

for i = 0, . . . , s − 1. Therefore,

depthM(a)

(
M(a)

)
� s,

and by the definition of s we get the claim. �
Corollary 2.14. (See [4, Proposition 2.1].) Let R be a Noetherian local ring quotient of a regular ring. Let I ⊂ R
be an ideal. Then the depth of R(I)(a) is constant for a � 0.

For the multigraded Rees algebra, the best approach to the solution of the problem is the following
proposition.

Proposition 2.15. If R is the quotient of a regular ring, there exist an integer s and β ∈ N
r such that for all

b � β and a � β + b it holds

depthM(a)

((
Ib1
1 · · · Ibr

r

)
R

(
Ia1
1 , . . . , Iar

r

)) = s.



G. Colomé-Nin, J. Elias / Journal of Algebra 322 (2009) 1415–1429 1429
Proof. Note that, since the Rees algebra R(I1, . . . , Ir) is standard multigraded,

R(I1, . . . , Ir)
(a,b) = (

Ib1
1 · · · Ibr

r

)
R

(
Ia1
1 , . . . , Iar

r

)
,

with a = (a1, . . . ,ar) and b = (b1, . . . ,br). Now, from Theorem 2.12 we get the claim. �
See [10] and its reference list for more results on the Cohen–Macaulay and Gorenstein property of

the multigraded Rees algebras.
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