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1. Introduction

The Robinson–Schensted correspondence is a well-known bijection

Sn ←→
∐

λ∈Pn

SYT(λ) × SYT(λ) (1.1)

where Sn denotes the symmetric group, Pn denotes the set of partitions of n, and SYT(λ) denotes
the set of standard Young tableaux of shape λ. The resulting subsets of Sn indexed by Pn are the
two-sided cells, as defined by Kazhdan and Lusztig [KL, Section 5]. These two-sided cells occur in
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many representation-theoretic contexts: one which is particularly relevant here is the classification of
unipotent character sheaves on GLn [L, Section 18].

Steinberg [St1,St2] gave a geometric interpretation of the Robinson–Schensted correspondence, by
showing that both sides naturally parametrize the irreducible components of a certain variety Z . This
variety can be defined for any connected reductive complex algebraic group G:

Z = {(
g B, g′B, x

) ∈ G/B × G/B ×N
∣∣ g B ∈ (G/B)x, g′B ∈ (G/B)x

}
,

where G/B is the flag variety, N is the nilpotent cone in Lie(G), and (G/B)x denotes the Springer
fibre {g B | x ∈ Lie(g Bg−1)}. By considering the irreducible components of Z , Steinberg obtained in
[St1] a bijection

W G ←→
∐

x∈G\N
Ax \ (

Irr
(
(G/B)x

) × Irr
(
(G/B)x

))
(1.2)

where W G is the Weyl group of G , G \N stands for a set of representatives of the orbits of G in N ,
Ax is the component group of the stabilizer of x in G , and Irr((G/B)x) is the set of irreducible com-
ponents of the Springer fibre. When G = GLn , the nilpotent orbits are parametrized by Pn , irreducible
components of (G/B)x are parametrized by standard Young tableaux, and Ax is trivial for all x; in this
case, Steinberg showed in [St2] that (1.2) becomes the Robinson–Schensted correspondence (1.1).

For general G , (1.2) lacks some of the crucial combinatorial features of (1.1). In particular, G \N is
not in bijection with the irreducible representations of W G , nor is it in bijection with the Kazhdan–
Lusztig two-sided cells of W G . The subsets of W G indexed by G \N are known as geometric two-sided
cells. They were determined by McGovern [McG] in the classical types.

Now let V be a 2n-dimensional complex vector space with a fixed nondegenerate skew-symmetric
form, and write G = GL(V ), K = Sp(V ), g = Lie(G), k = Lie(K ). In [K1,K2] Kato has shown that the
representation of K on V ⊕ g/k can be regarded as an ‘exotic’ version of the adjoint representation of
K on k, and has somewhat neater combinatorics than the adjoint representation. For example, if N

denotes the exotic nilpotent cone (the Hilbert nullcone of V ⊕ g/k), then K acts on N with connected
stabilizers and the orbits are in bijection with the irreducible representations of W K . As shown in
[K2, Section 7], there is a bijection

W K ←→
∐

x∈K\N
Irr

(
(K/B K )x

) × Irr
(
(K/B K )x

)
(1.3)

where (K/B K )x denotes the exotic Springer fibre. This bijection plays no role in the present paper.
Kato’s results suggest that there should be an interesting theory of exotic character sheaves, which

would be K -equivariant simple perverse sheaves on V × G/K . The definition is easy to obtain by
modifying Ginzburg’s definition of character sheaves on G/K [Gi], bearing in mind the parallel theory
of mirabolic character sheaves for GLn due to Finkelberg, Ginzburg, and Travkin [FG1,FG2,FGT]. Here we
will restrict attention to the unipotent exotic character sheaves. These (or rather their pull-backs to
V × G) are the simple perverse constituents of the complexes p∗q!(F � G), where the diagram

V × G/B × G/B V × G × G/B
q p

V × G

is defined by q(v, g, g′B) = (v, gg′B, g′B), p(v, g, g′B) = (v, g), and F and G are K -equivariant sim-
ple perverse sheaves on V × G/B and G/B respectively. Here q is smooth, p is proper, and both p
and q are (K × K )-equivariant, where

• K × K acts on V × G by (k1,k2)(v, g) = (k1 v,k1 gk−1
2 ),

• K × K acts on V × G × G/B by (k1,k2)(v, g, g′B) = (k1 v,k1 gk−1
2 ,k2 g′B),

• K × K acts on V × G/B × G/B by (k1,k2)(v, g B, g′B) = (k1 v,k1 g B,k2 g′B).
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In order to study or classify such unipotent exotic character sheaves along the lines of Grojnowski’s
study of unipotent character sheaves [Gr, Section 3], one would first need to find the cells for the
action of K × K on V × G/B × G/B . Note that this is the direct product of separate actions of K on
V × G/B and on G/B .

The cells for the action of K on G/B are a special case of those defined for any symmetric space
G/K by Lusztig and Vogan [LV], using the action of the Iwahori–Hecke algebra of W G on the graded
Grothendieck group of K -equivariant perverse sheaves on G/B . In our case, K acts on G/B with
connected stabilizers, the orbits are parametrized by the subset R2n ⊂ S2n consisting of those w such
that w w0 is a fixed-point-free involution (where w0 is the longest element of S2n), and the cells were
described combinatorially by Garfinkle [Ga]. In fact, she gave a Robinson–Schensted-style bijection

R2n ←→
∐

λ∈Pdup
2n

SYT(λ) (1.4)

where Pdup
2n consists of those partitions of 2n which are duplex, meaning that all parts have even

multiplicity. The resulting subsets of R2n indexed by Pdup
2n are exactly the cells, and the bijection (1.4)

has a geometric interpretation similar to Steinberg’s interpretation of (1.1): see [Trap, Theorem 5.6].
What remains is to analyse the situation when G/B is replaced by V × G/B . The corresponding

problem in the context of mirabolic character sheaves was addressed by Travkin [Trav], who studied
the action of GLn on C

n × GLn/Bn × GLn/Bn (where Bn denotes a Borel subgroup of GLn), and the
resulting mirabolic Robinson–Schensted correspondence. Our work was inspired by his.

In Section 2, we re-formulate the parametrization of K -orbits in V × G/B , due to Matsuki: they are
in bijection with a modification R ′

2n of the set R2n , defined in Proposition 2.2. In Section 3, we follow
Steinberg’s geometric approach to construct a bijection which we call the exotic Robinson–Schensted
correspondence:

R ′
2n ←→

∐
(μ;ν)∈Q′

2n

SYT(μ + ν), (1.5)

where Q′
2n is a set of bipartitions, defined in (3.7). The construction of this bijection involves both

Kato’s exotic nilpotent cone and the enhanced nilpotent cone of [AH]. In Section 4, we state some
conjectures relating this bijection to cells and exotic character sheaves.

2. K -orbits in V × G/B

Fix a positive integer n. Let V be a 2n-dimensional complex vector space with a fixed nondegen-
erate skew-symmetric form 〈·,·〉. Write G = GL(V ), K = Sp(V ) as in the introduction. Let B be a Borel
subgroup of G . We will identify G/B with the variety of complete flags V• = (V i)0�i�2n in V . Given
a flag V• , we obtain another flag V ⊥

2n−• = (V ⊥
2n−i) by taking perpendicular subspaces for the form

〈·,·〉.
It is well known that the G-orbits in G/B × G/B are in bijection with the symmetric group S2n .

For w ∈ S2n , the corresponding orbit OG
w consists of pairs of flags (U•, V•) such that

dim Ui ∩ V j = ∣∣{1, . . . , i} ∩ w{1, . . . , j}∣∣, for all i, j. (2.1)

It is also well known [RS, Proposition 10.4.1] that the K -orbits in G/B are in bijection with the
subset

R2n = {
w ∈ S2n

∣∣ w(2n + 1 − i) = 2n + 1 − w−1(i) 
= i, for all i
}
.
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For w ∈ R2n , the orbit Ow consists of flags V• such that (V•, V ⊥
2n−•) ∈OG

w , or in other words

dim V i ∩ V ⊥
2n− j = ∣∣{1, . . . , i} ∩ w{1, . . . , j}∣∣, for all i, j. (2.2)

Remark 2.1. If w0 denotes the longest element of S2n for the usual length function, defined by
w0(i) = 2n + 1 − i, then w �→ w w0 gives a bijection between R2n and the set of fixed-point-free
involutions in S2n . The latter set is also commonly used to parametrize the K -orbits in G/B , for
instance in [Trap, Proposition 6.1].

As was shown by Travkin [Trav, Lemma 2], the G-orbits in V × G/B × G/B are in bijection
with the set S ′

2n of pairs (w,α) where w ∈ S2n and α is a subset of {1,2, . . . ,2n} such that
i < j, w−1(i) < w−1( j) and j ∈ α together imply i ∈ α. (Here we have set α = w(β) where (w, β)

is Travkin’s parameter.) For (w,α) ∈ S ′
2n , the orbit OG

w,α consists of triples (v, U•, V•) such that
(U•, V•) ∈OG

w and

v ∈ Ui + V j ⇐⇒ α ⊆ {1, . . . , i} ∪ w{1, . . . , j}, for all i, j. (2.3)

The analogous statement in our context was proved by Matsuki:

Proposition 2.2. (See [Mat, Theorem 1.14(i)].) The K -orbits in V × G/B are in bijection with the subset R ′
2n

of S ′
2n consisting of (w,α) for which w ∈ R2n. For (w,α) ∈ R ′

2n, the orbit Ow,α consists of pairs (v, V•) such
that (v, V•, V ⊥

2n−•) ∈OG
w,α .

Note that {0} × G/B is a K -stable subvariety of V × G/B , and is precisely the union of the orbits
Ow,∅ for w ∈ R2n . So the K -orbits in G/B can be thought of as a special case of the K -orbits in
V × G/B .

Remark 2.3. Matsuki’s statement actually refers to the K -orbits in (V \ {0})× G/B , or equivalently the
K v -orbits in G/B where K v is the stabilizer in K of a nonzero v ∈ V . To translate from his parameter
(I(A), I(X), I(Y ), (ci, j)i, j∈I(A)

) to ours, one should first allow the extra possibility I(X) = I(Y ) = ∅ (corre-
sponding to the v = 0 case). Then define w ∈ R2n so that w w0 acts on I(X) and I(Y ) as the unique
order-preserving bijection between those sets and on I(A) as the involution whose permutation matrix
is (ci, j), and set α = {i | ∃i′ ∈ I(X), i′ � i, w−1(i′) � w−1(i)}.

Generalizing a well-known result for the K -action on G/B , we have:

Proposition 2.4. The stabilizer in K of any point of V × G/B is connected.

Proof. Matsuki gives a formula [Mat, Proposition 1.13(ii)] for the number of Fq-points of such a sta-
bilizer defined over a finite field Fq . His proof of this formula also shows the connectedness of such
a stabilizer over C. �

Matsuki also gives a formula for the number of orbits:

Proposition 2.5. (See [Mat, Theorem 1.14(ii)].) With notation as above,

∣∣R ′
2n

∣∣ =
n∑

j=0

(2n)!
2n− j(n − j)!( j!)2

.
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A further problem is to describe the closure order on the K -orbits in V × G/B . In [Mag], Magyar
gave a combinatorial definition of a partial order � on S ′

2n such that for any (w,α), (y, β) ∈ S ′
2n ,

OG
y,β ⊆ OG

w,α ⇐⇒ (y, β) � (w,α). (2.4)

(In fact, Magyar used a slightly different parameter set, and effectively excluded the pairs (w,∅)

since he considered G-orbits in P(V ) × G/B × G/B .) It is natural to conjecture that for any
(w,α), (y, β) ∈ R ′

2n ,

Oy,β ⊆ Ow,α ⇐⇒ (y, β) � (w,α). (2.5)

The �⇒ direction follows immediately from (2.4). We will not need (2.5) here.

Example 2.6. Let n = 2. The three elements of R4, written in one-line notation, are 1234, 2143,
and 3412. We will denote an element (w,α) ∈ R ′

4 by putting bars over the one-line notation for
w to indicate which elements belong to α. For example, 2143 denotes (2143, {1,2,3}), and the cor-
responding orbit is

O2143 = {
(v, V•) ∈ V × G/B

∣∣ V ⊥
2 = V 2, V ⊥

1 
= V 3, v ∈ V 3 \ V 2
}
,

with closure

O2143 = {
(v, V•) ∈ V × G/B

∣∣ V ⊥
2 = V 2, v ∈ V 3

}
.

The Hasse diagram for the partial order � on R ′
4 is shown in Table 1. It is easy to verify (2.5) in this

case. All the orbit closures here are smooth except for

O3412 = {
(v, V•) ∈ V × G/B

∣∣ v ∈ V ⊥
1 ∩ V 3

}
,

whose singular locus is

O1234 = {
(v, V•) ∈ V × G/B

∣∣ V ⊥
1 = V 3, v ∈ V 1

}
.

3. The conormal variety

Continue the notation of the previous section. Let g = Lie(G) = End(V ), and let N be the nilpotent
cone in g. Let k = Lie(K ) = {y ∈ g | y = −y⊥}, where y⊥ denotes the adjoint of y for the symplectic
form, i.e. the endomorphism such that

〈yv1, v2〉 = 〈
v1, y⊥v2

〉
, for all v1, v2 ∈ V . (3.1)

Let S = {y ∈ g | y = y⊥} be the K -stable complementary subspace to k in g.
It is well known that the cotangent bundle T ∗(G/B) may be identified with the variety

{
(V•, x) ∈ G/B ×N

∣∣ x(V i) ⊆ V i−1, 1 � i � 2n
}
.

The projection onto the first factor is the cotangent bundle projection, and the projection onto the
second factor is the moment map for the action of G on G/B , after we identify g∗ with g using the
trace form. Recall that the condition x(V i) ⊆ V i−1, for 1 � i � 2n, is equivalent to V• ∈ (G/B)x .
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Table 1
Hasse diagram of R ′

4.

3412

2143 3412 3412

1234 2143 2143 3412 3412 3412

1234 2143 3412 3412

1234 2143 2143 3412

1234 2143

1234

We can identify V with V ∗ via the map which sends u ∈ V to the linear function 〈u, ·〉 :
V → C. Hence the cotangent bundle T ∗(V × G/B) may be identified with the variety of quadru-
ples (v, u, V•, x) where v, u ∈ V and V• ∈ (G/B)x as above. For v, u ∈ V , we define τv,u ∈ g by
τv,u(v ′) = 〈u, v ′〉v . This has rank 1 (unless v = 0 or u = 0, in which case τv,u = 0), and every en-
domorphism of V of rank 1 is of this form. Note that τ⊥

v,u = −τu,v .
For (w,α) ∈ R ′

2n , let Y w,α ⊂ T ∗(V × G/B) be the conormal bundle over the orbit Ow,α , and let
Y = ⋃

(w,α)∈R ′
2n

Y w,α be the conormal variety. Since each Y w,α is irreducible of dimension equal to

dim(V × G/B) = 2n2 + n, the irreducible components of Y are the closures Y w,α . Our aim in this sec-
tion, following [St1] and [Trav], is to find a different parametrization of these irreducible components,
and thus construct a bijection between R ′

2n and the other parameter set.

Proposition 3.1. With the above description of T ∗(V × G/B), we have

Y = {
(v, u, V•, x) ∈ T ∗(V × G/B)

∣∣ x⊥ − x = τv,u + τu,v
}
.

Proof. If we identify k∗ with k using the trace form, then the natural linear map g∗ → k∗ becomes
the projection g → k : y �→ 1

2 (y − y⊥). So the moment map for the action of K on V × G/B is the
map μ : T ∗(V × G/B) → k defined by

μ(v, u, V•, x) = 1

2

(
(τv,u + x) − (τv,u + x)⊥

) = 1

2

(
τv,u + τu,v + x − x⊥)

. (3.2)

Since Y = μ−1(0), the result follows. �
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We let π : Y → Z denote the obvious projection where

Z = {
(v, u, x) ∈ V × V ×N

∣∣ x⊥ − x = τv,u + τu,v
}
. (3.3)

Note that each fibre π−1(v, u, x) can be identified with the Springer fibre (G/B)x .

Remark 3.2. If Y0 denotes the conormal variety for the action of K on G/B , then the statement
analogous to Proposition 3.1 is that Y0 = {(V•, x) ∈ T ∗(G/B) | x ∈ S}, and the analogue of π is the
projection π0 : Y0 → N ∩ S , which is the restriction to Y0 of the moment map for the action of G
on G/B . We have no such moment-map interpretation of π or Z . Note that (v, u, x) ∈ Z does not
imply x ∈ S .

Here is a vital fact about the variety Z .

Proposition 3.3. If (v, u, x) ∈ Z , then

〈
xi v, x j v

〉 = 〈
xiu, x ju

〉 = 〈
xi v, x ju

〉 = 0, for all i, j � 0.

Proof. The assumption x⊥ − x = τv,u + τu,v means that for all v1, v2 ∈ V ,

〈v1, xv2〉 − 〈xv1, v2〉 = 〈u, v1〉〈v, v2〉 + 〈v, v1〉〈u, v2〉. (3.4)

Setting v1 = xi v , v2 = x j v in (3.4) gives

〈
xi v, x j+1 v

〉 − 〈
xi+1 v, x j v

〉 = 〈
u, xi v

〉〈
v, x j v

〉 + 〈
v, xi v

〉〈
u, x j v

〉
. (3.5)

From this we can deduce by induction on max{i, j} that 〈xi v, x j v〉 = 0 for all i, j � 0 (noting that the
i = j case is trivially true). The proof that 〈xiu, x ju〉 = 0 is identical. Setting v1 = xi v , v2 = x ju in (3.4)
then gives

〈
xi v, x j+1u

〉 − 〈
xi+1 v, x ju

〉 = −〈
xi v, u

〉〈
v, x ju

〉
. (3.6)

If we assume that 〈xi v, u〉 = 0 for all i � 0, (3.6) allows us to deduce by induction on j that
〈xi v, x ju〉 = 0 as required; similarly if we assume that 〈v, x ju〉 = 0 for all j � 0. So it suffices to
find a contradiction to the assumption that there is some i0 such that 〈xi0 v, u〉 
= 0, and some j0
such that 〈v, x j0 u〉 
= 0. Since x is nilpotent, we can assume that i0 and j0 are maximal with these
properties. Then by downward induction on i, we can prove using (3.6) that 〈xi v, x ju〉 = 0 whenever
i > i0; similarly, we can prove this whenever j > j0. But then when we set i = i0 and j = j0 in (3.6),
the left-hand side is zero and the right-hand side is nonzero, giving the desired contradiction. �
Corollary 3.4. Suppose (v, u, x) ∈ Z , and let C[x]v be the subspace of V spanned by {xi v | i � 0}. Then:

(1) x + τv,u stabilizes C[x]v, and acts on C[x]v and on V /C[x]v in the same way as x;
(2) x + τv,u ∈N ∩ S.

Proof. Proposition 3.3 shows that u ∈ (C[x]v)⊥ , so im(τv,u) ⊆ C[x]v ⊆ ker(τv,u), from which (1) fol-
lows. Therefore x + τv,u acts nilpotently on C[x]v and on V /C[x]v , implying that x + τv,u ∈ N . Since
x + τv,u ∈ S by definition of Z , (2) holds. �

Recall from [AH, Section 2] and [Trav, Section 2] that the G-orbits in the enhanced nilpotent cone
V ×N are in bijection with the set Q2n of bipartitions (μ;ν) of 2n. To say that (μ;ν) is a bipartition
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of 2n is to say that μ = (μ1,μ2,μ3, . . .) and ν = (ν1, ν2, ν3, . . .) are partitions (weakly decreasing
sequences of nonnegative integers, eventually zero) such that |μ| + |ν| = 2n, where |μ| = μ1 + μ2 +
μ3 + · · · . For (μ;ν) ∈ Q2n , the corresponding orbit Oμ;ν ⊂ V ×N consists of those pairs (v, x) such
that x has Jordan type μ + ν = (μ1 + ν1,μ2 + ν2, . . .) ∈ P2n and the endomorphism of V /C[x]v
induced by x has Jordan type (μ2 + ν1,μ3 + ν2, . . .) ∈P2n−μ1 (which forces dimC[x]v = μ1).

Similarly, by [K1] and [AH, Section 6], the K -orbits in the exotic nilpotent cone N = V × (N ∩ S)

are in bijection with the set Qn of bipartitions of n. The orbit Oμ;ν ⊂ N is the intersection of N with
Oμ∪μ;ν∪ν , where μ ∪ μ denotes the duplex partition (μ1,μ1,μ2,μ2, . . .).

We define

Q′
2n = {

(μ;ν) ∈ Q2n
∣∣ μ1 − μ2 + μ3 − μ4 + · · · = ν1 − ν2 + ν3 − ν4 + · · ·}. (3.7)

In terms of the diagrammatic representation of bipartitions used in [AH], this condition says that
the number of odd-length columns to the left of the wall is the same as the number of odd-length
columns to the right of the wall.

Proposition 3.5. If (v, u, x) ∈ Z , then (v, x) ∈ Oμ;ν for some (μ;ν) ∈ Q′
2n. We then have (v, x + τv,u) ∈

Oμ̃;̃ν where

μ̃1 = μ1,

ν̃1 = ν1 − (μ1 − μ2),

μ̃2 = (μ1 − μ2 + μ3) − (ν1 − ν2),

ν̃2 = (ν1 − ν2 + ν3) − (μ1 − μ2 + μ3 − μ4),

μ̃3 = (μ1 − μ2 + μ3 − μ4 + μ5) − (ν1 − ν2 + ν3 − ν4),

ν̃3 = (ν1 − ν2 + ν3 − ν4 + ν5) − (μ1 − μ2 + μ3 − μ4 + μ5 − μ6),

...

Proof. Certainly we have (v, x) ∈ Oμ;ν for some (μ;ν) ∈ Q2n . By Corollary 3.4(2), we know that
(v, x + τv,u) ∈ Oμ̃;̃ν for some (μ̃; ν̃) ∈ Qn . This implies that as an element of V × N , (v, x + τv,u)

belongs to the orbit Oμ̃∪μ̃;̃ν∪ν̃ . By Corollary 3.4(1), we must have

μ̃1 = μ1,

μ̃1 + ν̃1 = μ2 + ν1,

μ̃2 + ν̃1 = μ3 + ν2,

μ̃2 + ν̃2 = μ4 + ν3,

μ̃3 + ν̃2 = μ5 + ν4,

μ̃3 + ν̃3 = μ6 + ν5,

... (3.8)

This obviously implies the formulas for μ̃i , ν̃i given in the statement. Then from the fact that μ̃i =
ν̃i = 0 for sufficiently large i we deduce that (μ;ν) ∈Q′

2n . �
Note that if v = 0, then μ = μ̃ = ∅ and ν is the duplex partition ν̃ ∪ ν̃ .
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Let Ψ : Q′
2n → Qn : (μ;ν) �→ (μ̃; ν̃) be the map defined in Proposition 3.5. For fixed (μ̃; ν̃) ∈ Qn ,

Ψ −1(μ̃; ν̃) is the subset of Q2n consisting of all (μ;ν) satisfying (3.8). In the notation of [AHJ, Sec-
tion 7], this set is Qμ̃1,(μ̃1+ν̃1,μ̃2+ν̃1,μ̃2+ν̃2,μ̃3+ν̃2,...) .

Recall from [AH, Definition 3.6] the partial order � on Q2n which corresponds to the closure
order on orbits in the enhanced nilpotent cone. Namely, (ρ;σ) � (μ;ν) if and only if the following
inequalities hold for all k � 0:

ρ1 + σ1 + ρ2 + σ2 + · · · + ρk + σk � μ1 + ν1 + μ2 + ν2 + · · · + μk + νk, and

ρ1 + σ1 + · · · + ρk + σk + ρk+1 � μ1 + ν1 + · · · + μk + νk + μk+1. (3.9)

As observed in [AHJ, Proposition 7.2(2)], the restriction of this partial order to Ψ −1(μ̃; ν̃) is given by

(ρ;σ) � (μ;ν) ⇐⇒ σi � νi for all i � 1. (3.10)

Note that (μ̃ ∪ μ̃; ν̃ ∪ ν̃) belongs to Ψ −1(μ̃; ν̃), and is in general neither a minimal nor a maximal
element for this partial order.

Example 3.6. If n = 2 and μ̃ = ν̃ = (1), then Ψ −1(μ̃; ν̃) consists of the three bipartitions (13;1),
(12;12), (1;21), on which the partial order is a total order.

For any (μ;ν) ∈Q′
2n , we define

Zμ;ν = {
(v, u, x) ∈ Z

∣∣ (v, x) ∈ Oμ;ν
}
. (3.11)

Thus Z is the disjoint union of the locally closed subvarieties Zμ;ν . It is not immediately clear that
every Zμ;ν is nonempty; this will be shown in Corollary 3.11.

For any (μ̃; ν̃) ∈Qn , define

Z μ̃;̃ν = {
(v, u, x) ∈ Z

∣∣ (v, x + τv,u) ∈Oμ̃;̃ν
}
. (3.12)

Then by Proposition 3.5 we have

Z μ̃;̃ν =
⋃

(μ;ν)∈Ψ −1(μ̃;̃ν)

Zμ;ν . (3.13)

For any (μ;ν) ∈ Ψ −1(μ̃; ν̃), we define

Z μ̃;̃ν
�(μ;ν)

=
⋃

(ρ;σ )∈Ψ −1(μ̃;̃ν)
(ρ;σ )�(μ;ν)

Zρ;σ , (3.14)

which is clearly a closed subvariety of Z μ̃;̃ν .

Proposition 3.7. For any (μ̃; ν̃) ∈Qn and (μ;ν) ∈ Ψ −1(μ̃; ν̃), the map

ψ : Z μ̃;̃ν
�(μ;ν)

→Oμ̃;̃ν : (v, u, x) �→ (v, x + τv,u)

is a fibre bundle whose fibres are isomorphic to affine space of some dimension dμ;ν (or else, for the moment,

there is the possibility that Z μ̃;̃ν
�(μ;ν)

is empty).
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Proof. Fix (v, y) ∈ Oμ̃;̃ν , and let W = C[y]v (whose dimension is μ̃1 = μ1). If u ∈ V is such that
(v, u, y − τv,u) ∈ Z , then u ∈ W ⊥ by Proposition 3.3. Conversely, if u ∈ W ⊥ , then im(τv,u) ⊆ W ⊆
ker(τv,u), so y − τv,u is nilpotent, implying that (v, u, y − τv,u) ∈ Z . Moreover, if this condition holds,
then

(y − τv,u)k = yk −
k∑

j=1

yk− jτv,u y j−1, for all k � 0. (3.15)

Now the fibre ψ−1(v, y) can be identified with {u ∈ W ⊥ | (v, y −τv,u) ∈Oμ;ν}. It follows immediately
from [AHJ, Proposition 7.2(3)] that for u ∈ W ⊥ , the condition (v, y − τv,u) ∈Oμ;ν is equivalent to

(y − τv,u)μ1+νi
((

yμi+1+νi
)−1

(W )
) = 0, for all i � 1. (3.16)

Since the matrix coefficients of (y − τv,u)k are affine-linear functions of the coefficients of u, these
equations define an affine-linear subspace of W ⊥ (conceivably empty). As (v, y) ranges over the
K -orbit Oμ̃;̃ν , the fibres ψ−1(v, y) clearly fit together into a bundle as required. �
Corollary 3.8. Zμ;ν is an irreducible variety of dimension

2n2 + dμ;ν − 2ν2 − 2μ3 − 2ν3 − 2μ4 − 4ν4 − 4μ5 − 4ν5 − 4μ6 − 6ν6 − · · ·
(or else, for the moment, there is the possibility that Zμ;ν is empty).

Proof. Certainly the orbit Oμ̃;̃ν is irreducible. By [AHS, Theorem 2.20] and (3.8),

dimOμ̃;̃ν = 2n2 − 2̃ν1 − 4μ̃2 − 6̃ν2 − 8μ̃3 − 10̃ν3 − · · ·
= 2n2 − 2(μ̃2 + ν̃1) − 2(μ̃2 + ν̃2) − 4(μ̃3 + ν̃2) − 4(μ̃3 + ν̃3) − · · ·
= 2n2 − 2(μ3 + ν2) − 2(μ4 + ν3) − 4(μ5 + ν4) − 4(μ6 + ν5) − · · ·
= 2n2 − 2ν2 − 2μ3 − 2ν3 − 2μ4 − 4ν4 − 4μ5 − 4ν5 − 4μ6 − · · · . (3.17)

By Proposition 3.7, Z μ̃;̃ν
�(μ;ν)

is an irreducible variety of dimension equal to this plus dμ;ν (or is empty).

Since Zμ;ν is an open subvariety of Z μ̃;̃ν
�(μ;ν)

, the result follows. �
Now we return to the variety Y . Recall that for any x ∈N , the Springer fibre (G/B)x is the variety

of flags V• ∈ G/B such that x(V i) ⊆ V i−1 for all i. To any such flag we can associate the sequence
of partitions which give the Jordan types of x|V 1 , x|V 2 , . . . . These can be regarded as a standard
tableau of shape λ, where λ ∈ P2n is the Jordan type of x. In this way, (G/B)x is the disjoint union
of locally closed subvarieties (G/B)T

x where T runs over SYT(λ). As shown by Spaltenstein [Sp] and
Steinberg [St1], each one of these subvarieties is irreducible of dimension

λ2 + 2λ3 + 3λ4 + 4λ5 + · · · , (3.18)

and their closures are exactly the irreducible components of (G/B)x .
Let T ′

2n be the set of pairs ((μ;ν), T ) where (μ;ν) ∈ Q′
2n and T ∈ SYT(μ + ν). For any

((μ;ν), T ) ∈ T ′
2n , we define

Y T
μ;ν = {

(v, u, V•, x) ∈ Y
∣∣ (v, x) ∈ Oμ;ν, V• ∈ (G/B)T

x

}
. (3.19)
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Thus Y is the disjoint union of the locally closed subvarieties Y T
μ;ν (some of which, for the moment,

are conceivably empty).
The main result of this section is:

Theorem 3.9. Each Y T
μ;ν is nonempty and irreducible of dimension 2n2 +n. Hence the irreducible components

of Y are the closures Y T
μ;ν as ((μ;ν), T ) runs over T ′

2n.

Proof. It is clear that π : Y T
μ;ν → Zμ;ν is a fibre bundle whose fibres are isomorphic to (G/B)T

x where

x ∈N has Jordan type μ + ν . By Corollary 3.8 and (3.18), Y T
μ;ν is an irreducible variety of dimension

2n2 + dμ;ν + μ2 − ν2 + μ4 − ν4 + μ6 − ν6 + · · · (3.20)

(or else, for the moment, there is the possibility that Y T
μ;ν is empty). Hence we can define a map

f : T ′
2n → R ′

2n such that Y T
μ;ν ⊆ Y f ((μ;ν),T ) . Since Y = ⋃

Y T
μ;ν , f must be surjective. If we can show

that |T ′
2n| = |R ′

2n|, then it will follow that f is bijective, implying that Y T
μ;ν is dense in Y f ((μ;ν),T ) for

all ((μ;ν), T ) ∈ T ′
2n , which gives the result. By Proposition 2.5, we are reduced to showing that

∣∣T ′
2n

∣∣ =
n∑

j=0

(2n)!
2n− j(n − j)!( j!)2

. (3.21)

This follows by taking dimensions of both sides in Proposition 3.10 below, and using the well-known
fact that dim Vλ = |SYT(λ)|. �

For λ ∈ P2n , let Vλ denote the irreducible complex representation of S2n labelled by λ (with the
usual convention that V (2n) is the trivial representation and V (12n) the sign representation).

Proposition 3.10. We have an isomorphism of representations of S2n,

⊕
(μ;ν)∈Q′

2n

Vμ+ν
∼=

n⊕
j=0

IndS2n
W (Cn− j)×S j×S j

(Cδ),

where W (Cn− j) is the subgroup of S2n−2 j centralizing some fixed-point-free involution, δ is the linear char-
acter of W (Cn− j) obtained by restricting the sign character of S2n−2 j , and Cδ is a 1-dimensional vector space
on which W (Cn− j) acts via δ and S j × S j acts trivially.

Proof. It is well known that

Ind
S2n−2 j

W (Cn− j)
(Cδ) ∼=

⊕
σ∈Pdup

2n−2 j

Vσ , (3.22)

where Pdup
2n−2 j denotes the set of duplex partitions of 2n − 2 j, i.e. those in which every part has even

multiplicity. Using the Pieri rule, it follows that the multiplicity of Vλ in IndS2n
W (Cn− j)×S j×S j

(Cδ) is the

number of ways to successively remove two horizontal strips of size j from the diagram of λ so that
what remains has only even-length columns.

Any bipartition (μ;ν) ∈ Q′
2n such that μ + ν = λ determines such a pair of horizontal strips,

as follows. The columns of the diagram of λ are the union of the columns of μ and the columns
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of ν – for definiteness, say that among columns of the same length, those belonging to μ come
after those belonging to ν . The first horizontal strip consists of one box from each column of μ. The
second horizontal strip consists of one box from each odd-length column of ν and one box from
each (originally) even-length column of μ. By the assumptions on (μ;ν), both strips have size μ1. It
is easy to check that every choice of two horizontal strips as above arises in this way for a unique
(μ;ν), and the result follows. �

As a consequence of Theorem 3.9, we have:

Corollary 3.11. For every (μ;ν) ∈ Q′
2n, Zμ;ν is indeed nonempty, and the quantity dμ;ν in Proposition 3.7

and Corollary 3.8 equals |ν|.

Proof. Since each Y T
μ;ν is nonempty, Zμ;ν = π(Y T

μ;ν) is nonempty. Comparing Theorem 3.9 with
(3.20), we find that

dμ;ν = n − μ2 + ν2 − μ4 + ν4 − μ6 + ν6 − · · · . (3.23)

Now since (μ;ν) ∈Q′
2n , we have

μ1 + ν2 + μ3 + ν4 + μ5 + ν6 + · · · = ν1 + μ2 + ν3 + μ4 + ν5 + μ6 + · · · = n, (3.24)

and it follows that dμ;ν = ν1 + ν2 + ν3 + · · · = |ν|. �
More importantly, we now have our exotic Robinson–Schensted correspondence:

Corollary 3.12. There is a bijection

R ′
2n ←→ T ′

2n

such that (w,α) ∈ R ′
2n corresponds to ((μ;ν), T ) ∈ T ′

2n if and only if Y w,α = Y T
μ;ν .

Proof. This is the bijection f mentioned in the proof of Theorem 3.9. �
An equivalent way to characterize this correspondence is: (w,α) ∈ R ′

2n corresponds to ((μ;ν), T ) ∈
T ′

2n if and only if, for generic (v, u, V•, x) ∈ Y w,α , we have (v, x) ∈Oμ;ν and V• ∈ (G/B)T
x .

We do not know a combinatorial description of this correspondence. The method used by Travkin
[Trav, Section 3.4] to relate his mirabolic Robinson–Schensted correspondence to the ordinary one
does not appear to work in our setting.

Example 3.13. Let n = 2 as in Example 2.6. We have

Q′
4 = {

(2;2), (21;1), (1;21),
(
22; ∅)

,
(
12;12), (∅;22), (13;1

)
,
(
1;13), (14; ∅)

,
(∅,14)}.

Easy calculations show that the exotic Robinson–Schensted correspondence in this case is as shown in
Table 2. For any λ ∈P4, it happens that a standard tableau T ∈ SYT(λ) is determined by its descent set
Des(T ), consisting of those i ∈ {1,2,3} such that i + 1 is in a lower row than i; for ease of reference
in connection with Conjecture 4.1, we have listed Des(T ) rather than T itself.
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Table 2
Exotic Robinson–Schensted correspondence for n = 2.

(w,α) (μ;ν) Des(T )

1234 (∅;22) {2}
1234 (1;21) {2}
1234 (2;2) ∅
1234 (21;1) {2}
1234 (22; ∅) {2}
2143 (∅;22) {1,3}
2143 (1;21) {3}
2143 (1;21) {1}
2143 (12;12) {1,3}
2143 (21;1) {1}
2143 (21;1) {3}
2143 (22; ∅) {1,3}

(w,α) (μ;ν) Des(T )

3412 (∅;14) {1,2,3}
3412 (1;13) {2,3}
3412 (13;1) {1,2}
3412 (12;12) {2}
3412 (1;13) {1,3}
3412 (13;1) {1,3}
3412 (1;13) {1,2}
3412 (13;1) {2,3}
3412 (14; ∅) {1,2,3}

4. Conjectures

Continue the notation of the previous sections. Let PK (V × G/B) be the category of K -equivariant
perverse sheaves on V × G/B , and define

MK (V × G/B) = K0
(
PK (V × G/B)

) ⊗Z Z
[
v, v−1].

By Proposition 2.4, this is a free Z[v, v−1]-module with basis {C w,α | (w,α) ∈ R ′
2n} where C w,α is

the image in K0(PK (V × G/B)) of the intersection cohomology complex of Ow,α (shifted so as to be
perverse). Define MG(G/B × G/B) similarly.

There is a well-known convolution product on MG(G/B × G/B) which makes it isomorphic to
the Iwahori–Hecke algebra H2n of S2n . A similar convolution construction makes MK (V × G/B) into
an H2n-module. This is a direct generalization of the H2n-module MK (G/B) defined by Lusztig and
Vogan [LV] (indeed, MK (G/B) occurs in MK (V × G/B) as the Z[v, v−1]-submodule spanned by C w,∅
for w ∈ R2n). By analogy with [LV] and [Trav], we are led to the following conjecture. A reference for
the W -graph terminology used here is [GPf, Chapter 11].

Conjecture 4.1.

(1) The basis {C w,α} of the H2n-module MK (V × G/B) is a W -graph basis.
(2) If (w,α) corresponds to ((μ;ν), T ) under the exotic Robinson–Schensted correspondence, the label of

C w,α in the W -graph is the descent set Des(T ).
(3) If (w,α) corresponds to ((μ;ν), T ) and (y, β) corresponds to ((ρ;σ), U ), then (w,α) � (y, β) in the

W -graph preorder if and only if (μ;ν) � (ρ;σ) and (ν;μ) � (σ ;ρ). In particular, (w,α) and (y, β) lie
in the same cell if and only if (μ;ν) = (ρ;σ). Hence the cells are indexed by Q′

2n.
(4) For (μ;ν) ∈ Q′

2n, the corresponding cell module is the irreducible H2n-module labelled by the partition
μ+ν . Hence the representation of S2n on MK (V × G/B)|v=1 is isomorphic to those mentioned in Propo-
sition 3.10.

It is straightforward to verify Conjecture 4.1 in the cases n = 1 and n = 2.

Remark 4.2. It is known [Trap] that the cells for the (GLn × GLn)-action on G/B are indexed by the
sign tableaux of signature (n,n). There is a simple bijection between these sign tableaux and Q′

2n:
transpose rows to columns, and assign columns beginning with + to the μ side of the bipartition,
and those beginning with − to the ν side. We do not know any deeper connection between the two
types of cells.
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We return now to the setting of the introduction, and the proposed classification of unipotent
exotic character sheaves. Imitating the arguments of [Gr, Theorem 3.4], one can assign to each unipo-
tent exotic character sheaf a pair (c1, c2) where c1 is a cell for the action of K on V × G/B and
c2 is a cell for the action of K on G/B , with the property that the two-sided cell in S2n asso-
ciated to c1 is the same as that for c2. If Conjecture 4.1 holds, then such pairs (c1, c2) are in
bijection with pairs ((μ;ν),λ) ∈ Q′

2n × Pdup
2n with the property that μ + ν = λ, or in other words

with (μ;ν) ∈ Q2n such that μ + ν is duplex. These in turn are in bijection with Qn via the map
Qn → Q2n : (μ;ν) �→ (μ ∪ μ;ν ∪ ν), and of course Qn parametrizes the irreducible representations
of W K = W (Cn) as in [GPf, Section 5.5]. Hence we would have a map from the set of isomorphism
classes of unipotent exotic character sheaves to the set of isomorphism classes of irreducible repre-
sentations of W K . It seems plausible that this map is a bijection, as with ordinary character sheaves
for GLn (but in contrast to the situation of ordinary character sheaves for K ). If true, this would be
another respect in which the exotic picture has neater combinatorics than the usual picture for the
symplectic group.
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