
Journal of Algebra 397 (2014) 643–665
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Weighted commutators in semi-abelian categories ✩

Marino Gran a,∗,1, George Janelidze b,2, Aldo Ursini c,d

a Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Chemin du Cyclotron 2,
1348 Louvain-la-Neuve, Belgium
b Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
c Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Universitá di Siena, via Roma 56, 53100 Siena, Italy
d Mathematics Division, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 May 2012
Available online 11 October 2013
Communicated by Michel Van den Bergh

MSC:
18C05
18E10
08A30

Keywords:
Semi-abelian categories
Centrality
Commutator
Commutator terms

We introduce new notions of “weighted centrality” and “weighted
commutators” corresponding to each other in the same way as cen-
trality of congruences and commutators do in the Smith commuta-
tor theory. Both the Huq commutator of subobjects and Pedicchio’s
categorical generalization of Smith commutator are special cases
of our weighted commutators; in fact we obtain them by taking
the smallest and the largest weight respectively. At the end of the
paper we briefly consider the universal-algebraic context in con-
nection with an older work of the third author on the ideal theory
version of the commutator theory.
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Introduction

Classically, subgroups X and Y of a group A are said to centralize each other if xy = yx for every
x ∈ X and y ∈ Y . When X and Y are normal subgroups in A, so is their commutator [X, Y ], and,
moreover, it is the smallest normal subgroup C in A, for which
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(xC)(yC) = (yC)(xC)

in A/C for every x ∈ X and y ∈ Y . These concepts of centrality (or centralization) and commutator
have been generalized many times and in various ways from groups to various types of universal
algebras and even further to objects of abstract categories satisfying suitable exactness conditions. Let
us mention three of these generalizations relevant for our purposes:

Commuting arrows and Huq commutator

Let C be a pointed category with finite products. Two morphisms x : X → A and y : Y → A in C

with the same codomain are said to commute, if there exists a morphism m : X × Y → A making the
diagram

X
〈1,0〉

x

X × Y

m

Y
〈0,1〉

y

A

(1)

commute; here 1 and 0 denote suitable identity and zero morphisms respectively. It is easy to see
that in the case of groups and x : X → A and y : Y → A being the inclusion maps, x and y commute
in this sense if and only if every element of X commutes with every element of Y in the usual
sense. The notion of commuting morphisms was first introduced and studied by S.A. Huq [16] in
a context closely related to semi-abelian; moreover, the so-called old style axioms for semi-abelian
categories [17] are essentially Huq’s axioms. More recently, the notion of commuting morphisms has
been examined in different categorical contexts by D. Bourn and his collaborators (see [5,7,2] and
references therein). As suggested by the group case, what is meant by the Huq commutator of X → A
and Y → A is the smallest normal subobject C → A of A, for which the composites

X → A → Coker(C → A) and Y → A → Coker(C → A)

commute. In particular, the Huq commutator always exists in any semi-abelian category, since it is
the kernel of its cokernel that can be presented as the colimit of the diagram of solid arrows in (1),
as observed by D. Bourn [6].

Congruences centralizing each other, and Smith commutator

Let C be a Mal’tsev (= congruence permutable) variety of universal algebras, and R and S be
congruences on the same algebra A in C. Reformulating the original definition of J.D.H. Smith [26] in
a slightly different language, R and S are said to centralize each other by means of the centralizing
congruence E , if there is an internal double equivalence relation (= “double congruence”) in C of the
form

E S

R A,

where the bottom row and the right-hand column represent R and S respectively, and the whole dia-
gram forms two parallel discrete fibrations of equivalence relations. The Smith commutator [R, S]Smith
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can then be defined as the smallest congruence C on A, for which the congruences on A/C induced
by R and S centralize each other. This commutator was introduced and studied in [26], and then
generalized in various ways by other authors, who also proposed several equivalent definitions. Out
of those we will only consider:

Categorical version of Smith commutator due to Pedicchio

M.C. Pedicchio [24,25], not only extended Smith’s definitions to the context of abstract Mal’tsev
categories [9,10], but almost at the same time discovered that the existence of centralizing congruence
for R and S in the Smith definition above is equivalent to the existence of the Kock pregroupoid

structure on the span A/X A A/Y . Still equivalently, R and S centralize each other if

and only if there exists a morphism p : R ×A S → A making the diagram

R
〈r1,r2,r2〉

r1

R ×A S

p

S
〈s1,s1,s2〉

s2

A

(2)

in which R = (R, r1, r2), S = (S, s1, s2), and R ×A S = R ×(r2,s1) S , commute. That is, such a morphism
p exists if and only if [R, S]Smith is the equality relation �A on A.

In a finitely complete pointed Mal’tsev category both the notions of centrality of morphisms and
of equivalence relations can be defined. It was then a natural question to determine the precise re-
lationship between them: this question was first considered in [7], where it was proved that the
existence of a partial Mal’tsev operation p : R ×A S → A always makes the corresponding normal
monomorphisms nR : NR → A and nS : N S → A commute. The converse implication, saying that the
equivalence relations R and S centralize each other whenever the corresponding normal monomor-
phisms commute, turned out to be true both in strongly protomodular categories [7] and in action
accessible categories [8]. However, this latter implication fails for a general semi-abelian category [17],
as a counter-example found by the second author in the semi-abelian variety of digroups shows (see
[6]). Furthermore, Exercise 10 of Chapter 5 in [12], published much earlier, in fact also gives such a
counter-example, but in the variety of loops; surely it was not noticed before only because the Huq
commutator is not mentioned in [12].

In the present article both the Huq centrality of morphisms and the Smith centrality of equivalence
relations are shown to be special cases of a new notion, which we call weighted centrality. The internal
multiplication in the definition of weighted centrality of two morphisms x : X → A and y : Y → A
will be a morphism m : (W + X) ×W (W + Y ) → A which depends on a “weight”, which is in fact
another morphism w : W → A, as explained in Section 1. The Huq centrality is recovered in the
case of the zero morphism 0 : 0 → A, since (W + X) ×W (W + Y ) then reduces to X × Y and m
to the dotted arrow in diagram (1); the Smith centrality of equivalence relations is recovered in
the case where the “weight” is the identity morphism 1A : A → A. In the semi-abelian context, this
notion of “weighted centrality” determines a corresponding notion of weighted subobject commutator
(Section 2) and of weighted normal commutator (Section 3), whose study we begin in the present
article. We compare these notions with the Huq commutator of morphisms in Section 4, and with
the categorical notion of commutator of equivalence relations [24] in Sections 5 and 6. In the last
section we relate our constructions to certain universal-algebraic ones involving the commutator of
subalgebras.

A notion of commutator of subalgebras, due to the third author, appears in [29,14,30], and it
corresponds to the Smith commutator of congruences in any semi-abelian variety C (and, more gen-
erally, to the so-called modular commutator in ideal determined varieties). In the case of two normal
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subalgebras NR and N S of an algebra A, which are the 0-classes of two congruences R and S , respec-
tively, on A, this commutator [NR , N S ]C,A has the following remarkable property:

[NR , N S ]C,A = 0 ⇔ [R, S]Smith = �A .

In the last section we recall this definition of the commutator [· , ·]C,A , that is based on a suitable
notion of commutator term, and we prove that this is another instance of the normal weighted
commutator introduced in Section 3. Accordingly, the present approach provides, in particular, a cat-
egorical formulation of this universal-algebraic commutator. We conclude the article with simple
descriptions of the (normal) weighted commutators in the variety of commutative (associative, non-
unital) rings.

1. Commuting morphisms and pregroupoids

Throughout this and the next section we will use the following data: a pointed category C with
finite limits and colimits, objects A, W , X , Y in C, and morphisms w : W → A, x : X → A, and
y : Y → A. We will eventually assume that w is a monomorphism, and then think of W = (W , w) as
a subobject of A, and the same applies to x and y.

The weighted centrality of two morphisms x : X → A and y : Y → A over w : W → A is defined by
the existence of an internal multiplication X × Y → A over W = (W , w) in the following sense:

Definition 1.1. Given morphisms w : W → A, x : X → A, and y : Y → A, an internal multiplication
X × Y → A over W = (W , w) is a morphism

m : (W + X) ×W (W + Y ) = (W + X) ×([1,0],[1,0]) (W + Y ) → A,

making the diagram

W + X
〈1,ι1[1,0]〉

[w,x]

(W + X) ×W (W + Y )

m

W + Y
〈ι1[1,0],1〉

[w,y]

A

(3)

commute.

By analogy with the notion of centrality of morphisms [16] recalled in the Introduction, we will
also say that (X, x) and (Y , y) commute over (W , w) when there exists an internal multiplication
X × Y → A over W = (W , w). In this case we then write

[
(X, x), (Y , y)

]
(W ,w)

= 0.

Proposition 1.2. The composites

(W + X) ×W (W + Y )
π1

W + X
[w,x]

A,
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W + X

[1,0]
[w,0]

(W + X) ×W (W + Y )

π2

π1

W
w

A,

W + Y

[1,0]
[w,0]

(4)

and

(W + X) ×W (W + Y )
π2

W + Y
[w,y]

A

determine a morphism

γ = γw = 〈[w, x]π1, [w,0]π1, [w, y]π2
〉 = 〈[w, x]π1, [w,0]π2, [w, y]π2

〉

from (W + X) ×W (W + Y ) to A3 , where A3 is the pullback A ×A/X A ×A/Y A = A ×coker(x) A ×coker(y) A.

Proof. This follows from a straightforward calculation using the equalities coker(x)x = 0 and
coker(y)y = 0:

coker(x)[w, x]π1 = [
coker(x)w, coker(x)x

]
π1 = [

coker(x)w,0
]
π1 = coker(x)[w,0]π1,

and similarly coker(y)[w, y]π2 = coker(y)[w,0]π2. �
Recall that an internal pregroupoid structure [21] on the span

A/X A A/Y

in a Mal’tsev category is a partial Mal’tsev operation

p : A3 = A ×A/X A ×A/Y A → A

making the following diagram commute:

A ×A/X A
〈π1,π2,π2〉

π1

A3

p

A ×A/Y A
〈π1,π1,π2〉

π2

A.

This precisely means that the equivalence relations (A ×A/X A,π1,π2) and (A ×A/Y A,π1,π2) centralize
each other: we then write

[A ×A/X A, A ×A/X A] = �A .
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Theorem 1.3. If p : A3 → A is an internal pregroupoid structure on the span A/X A A/Y ,

then pγw : (W + X) ×W (W + Y ) → A is an internal multiplication X × Y → A over W = (W , w).

Proof. This is again a straightforward calculation:

pγw
〈
1, ι1[1,0]〉 = p

〈[w, x]π1, [w,0]π1, [w, y]π2
〉〈

1, ι1[1,0]〉

= p
〈[w, x]π1

〈
1, ι1[1,0]〉, [w,0]π1

〈
1, ι1[1,0]〉, [w, y]π2

〈
1, ι1[1,0]〉〉

= p
〈[w, x], [w,0], [w, y]ι1[1,0]〉

= p
〈[w, x], [w,0], w[1,0]〉

= p
〈[w, x], [w,0], [w,0]〉

= [w, x]
and similarly pγw〈ι1[1,0],1〉 = [w, y] in the notation of Definition 1.1. �

Recall that a regular category C is homological [2] when it is pointed and the Split Short Five
Lemma holds in C [3]. In a homological category an internal multiplication is necessarily unique,
when it exists, since the arrows 〈1, ι1[1,0]〉 and 〈ι1[1,0],1〉 in diagram (3) above are jointly strongly
epimorphic (see [4]).

Lemma 1.4. Let C be a homological category. If m : (W + X) ×W (W + Y ) → A is an internal multiplication
X × Y → A over W = (W , w) and w is a monomorphism, then m(ker(γw)) = 0.

Proof. Let us write ker(γw) as 〈u, v〉 : K → (W + X) ×W (W + Y ). The equality γw〈u, v〉 = 0 means

[w, x]π1〈u, v〉 = 0, [w,0]π1〈u, v〉 = 0 = [w,0]π2〈u, v〉, and [w, y]π2〈u, v〉 = 0

or, equivalently,

[w, x]u = 0, [w,0]u = 0 = [w,0]v, and [w, y]v = 0.

Moreover, since w is a monomorphism, [w,0]u = w[1,0]u and [w,0]v = w[1,0]v , we also obtain
[1,0]u = 0 = [1,0]v : K → W .

This equality implies [1,0]uπ1 = [1,0]vπ2 : K × K → W , and therefore it allows one to present
〈u, v〉 as the composite

K
〈1,1〉

K × K
u×v

(W + X) ×W (W + Y ).

After that, since the morphisms 〈1,0〉 : K → K × K and 〈0,1〉 : K → K × K are jointly epic (see
[2]), in order to prove the desired equality m〈u, v〉 = 0 it suffices to prove that m(u × v)〈1,0〉 = 0 =
m(u × v)〈0,1〉, or, equivalently, that

m〈u,0〉 = 0 = m〈0, v〉.
We have

m〈u,0〉 = m
〈
u, ι1[1,0]u〉 = m

〈
1, ι1[1,0]〉u = [w, x]u = 0
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and, similarly,

m〈0, v〉 = m
〈
ι1[1,0]v, v

〉 = m
〈
ι1[1,0],1

〉
v = [w, y]v = 0. �

The following well-known property will be useful:

Lemma 1.5. Consider a commutative diagram in a regular category C

C1
c1

f1

C

f

C2
c2

f2

D1
d1

D D2
d2

where f1 , f2 are regular epimorphisms, and f is a monomorphism. Then the induced morphism f1 × f2 :
C1 ×C C2 → D1 ×D D2 is a regular epimorphism.

Theorem 1.6. If C is homological and the morphisms x : X → A and y : Y → A have normal images, then the
morphism

γ1 = γ1A : (A + X) ×A (A + Y ) → A3

is a normal epimorphism.

Proof. The morphism γ1 can be presented as the composite of the morphism

〈[1, x], [1,0]〉 × 〈[1,0], [1, y]〉 = [〈1,1〉, 〈x,0〉] × [〈1,1〉, 〈0, y〉]

from (A + X) ×A (A + Y ) to (A ×A/X A) ×A (A ×A/Y A) with the canonical isomorphism (A ×A/X

A) ×A (A ×A/Y A) ∼= A3. Therefore, by Lemma 1.5 and the fact that any regular epimorphism in C is
a normal epimorphism, it suffices to prove that the morphisms [〈1,1〉, 〈x,0〉] and [〈1,1〉, 〈0, y〉] are
normal epimorphisms. This follows, however, from the fact that the diagrams

X ′
〈x′,0〉

A ×A/X A
π2

A
〈1,1〉

and

Y ′
〈0,y′〉

A ×A/Y A
π1

A,

〈1,1〉

where x′ : X ′ → A and y′ : Y ′ → A are the images of x : X → A and y : Y → A respectively, are split
extensions in C. �
Lemma 1.7. Under the assumptions of Theorem 1.6, if m is an internal multiplication X × Y → A
over A = (A,1A), and p : A3 → A with pγ1 = m, then p is an internal pregroupoid structure on the

span A/X A A/Y .
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Proof. To prove that p is an internal pregroupoid structure on the span A/X A A/Y

is to prove that p〈π1,π2,π2〉 = π1 and p〈π1,π1,π2〉 = π2, where π1 and π2 are the two projections
A ×A/X A → A in the first equality, and are the two projections A ×A/Y A → A in the second equality.
Since the arrow

〈[1, x], [1,0]〉 = [〈1,1〉, 〈x,0〉] : A + X → A ×A/X A

is a normal epimorphism (as explained in the proof of Theorem 1.6), to prove p〈π1,π2,π2〉 = π1 is
to prove p〈π1,π2,π2〉〈[1, x], [1,0]〉 = π1〈[1, x], [1,0]〉, and we have

p〈π1,π2,π2〉
〈[1, x], [1,0]〉 = p

〈[1, x], [1,0], [1,0]〉

= pγ1
〈
1, ι1[1,0]〉 (see proof of Theorem 1.3)

= m
〈
1, ι1[1,0]〉

= [1, x] (
take w = 1 in diagram (3)

)

= π1
〈[1, x], [1,0]〉.

This proves p〈π1,π2,π2〉 = π1, and p〈π1,π1,π2〉 = π2 can be proved similarly. �
Theorem 1.8. Under the assumptions of Theorem 1.6, if m is an internal multiplication X × Y → A over

A = (A,1A), then the span A/X A A/Y admits a (unique) internal pregroupoid structure

p : A3 → A determined by pγ1 = m.

Proof. The fact that m determines a morphism p : A3 → A with pγ1 = m follows from Lemma 1.4
and Theorem 1.6. The fact that the so determined morphism p : A3 → A is an internal pregroupoid
structure on the span

A/X A A/Y

follows from Lemma 1.7. �
Putting together Theorems 1.3 and 1.8, we obtain:

Corollary 1.9. Under the assumptions of Theorem 1.6, the existence of an internal multiplication X × Y → A
over A = (A,1A) is equivalent to the existence of an internal pregroupoid structure on the span

A/X A A/Y .

Moreover, when such a multiplication m and a pregroupoid structure p exist, they (uniquely) determine each
other by pγ1 = m.

Remark 1.10. This latter result asserts in particular that the weighted centrality of two normal
monomorphisms x : X → A and y : Y → A over 1A : A → A is equivalent to the centrality of the
corresponding equivalence relations A ×A/X A and A ×A/Y A:

[
(X, x), (Y , y)

]
(A,1A)

= 0 ⇔ [A ×A/X A, A ×A/X A] = �A .
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2. Weighted subobject commutator

In the assumptions and notation of the previous section, consider the diagram

W
ι1

ι1

W + Y

[ι1,ι3]

W + X
[ι1,ι2]

W + X + Y

[w,x,y]

〈[ι1,ι2,0],[ι1,0,ι2]〉
W

ι1

ι1

W + Y

〈ι1[1,0],1〉

W + X
〈1,ι1[1,0]〉

(W + X) ×W (W + Y )

mW
ι1

ι1

W + Y

[w,y]

W + X [w,x] A

(5)

in which all coproduct injections are denoted by ι’s with appropriate indices, and the dotted arrow,
denoted by m, is an arbitrary morphism with the domain and codomain as shown.

Remark 2.1.

(a) The diagram obtained from (5) by removing the dotted arrow always commutes.
(b) The bottom cube in (5) commutes if and only if m is an internal multiplication X × Y → A over

W = (W , w).
(c) The top parallelogram in (5) is obviously a pushout.
(d) As follows from (a)–(c), the diagram (5) commutes if and only if m is an internal multiplication

X × Y → A over W = (W , w).
(e) The diagram commutes whenever m〈[ι1, ι2,0], [ι1,0, ι2]〉 = [w, x, y].
(f) As follows from (d) and (e), m is an internal multiplication X × Y → A over W = (W , w) if and

only if m〈[ι1, ι2,0], [ι1,0, ι2]〉 = [w, x, y].

Lemma 2.2. If C is a regular Mal’tsev category, then the morphism

〈[ι1, ι2,0], [ι1,0, ι2]
〉 : W + X + Y → (W + X) ×W (W + Y ) (6)

is a regular epimorphism. In particular if C is a normal Mal’tsev category, then the morphism (6) is a normal
epimorphism.

Proof. Consider the category Pt(W ) = ((W ,1W ) ↓ (C ↓ W )). As follows from the results of [4],
this category is unital. Since it is also regular, for each two objects U and V in it, the canoni-
cal morphism U + V → U × V is a regular epimorphism. Now we take U = (W + X, [1,0], ι1) and
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V = (W + Y , [1,0], ι1), and the canonical morphism above becomes nothing but the morphism (6).
Since a morphism in Pt(W ) is a regular epimorphism if and only if it is a regular epimorphism in C,
this gives the desired conclusion. �
Definition 2.3. Suppose C admits the (extremal epi, mono) factorization system. The (W , w)-weighted
subobject commutator κ : [(X, x), (Y , y)](W ,w) → A is the image under [w, x, y] : W + X + Y → A of
the kernel of the morphism (6).

When W = 0, or w is the identity morphism of A, we shall say “0-weighted” and write
[(X, x), (Y , y)]0, or say “1-weighted” and write [(X, x), (Y , y)]1, respectively, instead of saying
“(W , w)-weighted” and writing [(X, x), (Y , y)](W ,w) .

Remark 2.4. In the case where W = 0 the subobject commutator as defined above agrees with the
categorical version of Higgins’ commutator as defined by Mantovani and Metere in any ideal deter-
mined category C (see [23, Definition 5.1]). In particular, this shows that Higgins’ commutator for
varieties of Ω-groups [15] is an example of 0-weighted subobject commutator.

From Remark 2.1(f) and Lemma 2.2 we obtain:

Theorem 2.5. If C is a normal Mal’tsev category, then the following conditions are equivalent:

(a) [(X, x), (Y , y)](W ,w) = 0;
(b) there exists a unique internal multiplication X × Y → A over W = (W , w).

Corollary 2.6. Under the assumptions of Theorem 1.6, the following conditions are equivalent:

(a) the span A/X A A/Y admits an internal pregroupoid structure;

(b) the span A/X A A/Y admits a unique internal pregroupoid structure;

(c) [(X, x), (Y , y)]1 = 0.

3. Weighted normal commutator

Let C be again a pointed category with finite limits and finite colimits. We are still considering
(X, x), (Y , y), and (W , w) as above, but now we are not fixing them, but considering the category of
all such triples. More precisely, by a weighted cospan in C we shall mean a diagram in C of the form

W

w

X
x

A Y
y

that we shall denote by (A, X, x, Y , y, W , w). We define morphisms of weighted cospans as the usual
diagram morphisms, and we therefore form the category CSW (C) of weighted cospans. According
to Definition 1.1, by a multiplicative weighted cospan in C we shall mean a pair (C,m), in which
C = (A, X, x, Y , y, W , w) is a weighted cospan and m is an internal multiplication X × Y → A over
W = (W , w). Using the obvious morphisms for multiplicative weighted cospans in C, we define their
category MCSW (C), and the forgetful functor

MCSW (C) → CSW (C). (7)
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Given C = (A, X, x, Y , y, W , w) in CSW (C), consider the diagram

W + X + Y
[w,x,y]

〈[ι1,ι2,0],[ι1,0,ι2]〉

A

νC

(W + X) ×W (W + Y )
μC

C̃

(8)

constructed as the pushout of 〈[ι1, ι2,0], [ι1,0, ι2]〉 and [w, x, y]. Straightforward comparison of dia-
grams (5) and (8) gives

Theorem 3.1. The functor (7) has a left adjoint CSW (C) → MCSW (C) sending (A, X, x, Y , y, W , w) from
CSW (C) to

(
(C̃, X, νC x, Y , νC y, W , νC w),μC

) ∈ MCSW (C),

in the notation of (8), with the C-component of the unit of the adjunction given by the identity morphisms of
X, Y and W , and the morphism νC : A → C̃ .

Definition 3.2. The (W , w)-weighted normal commutator

κN : N
[
(X, x), (Y , y)

]
(W ,w)

→ A

is the kernel of the morphism νC : A → C̃ defined via the pushout (8).

Remark 3.3.

(a) Looking at an object C = (A, X, x, Y , y, W , w) in CSW (C) as the corresponding object A in C

equipped with a structure, and looking at the objects of MCSW (C) similarly, we can identify
νC : A → C̃ with the unit of the adjunction above. We can say that the (W , w)-weighted normal
commutator κN : N[(X, x), (Y , y)](W ,w) → A is simply the kernel of that C-component. This shows
similarity between Definition 3.2 and the definition of commutator introduced in [20]. On the
other hand, as follows from the results of M.C. Pedicchio [25], her definition given in [24] could
be formulated in the same way as in [20], but with pregroupoids instead of pseudogroupoids
(used in [20]).

(b) Defining C̃ , νC and μC via the pushout (8) is actually the same as defining them via the commu-
tative diagram

(W + X) ×W (W + Y )

μC

W + X

[w,x]

〈1,ι1[1,0]〉

C̃ W + Y

[w,y]

〈ι1[1,0],1〉

A

νC

(9)

in which the dotted arrows are required to form the colimiting cocone over the diagram formed
by the solid arrows. This shows similarity between Definition 3.2 and the definition of commuta-
tor used in [6].
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Similarly to the notations introduced for the weighted subobject commutator in the previous
section, when W = 0, or w is the identity morphism of A, we shall say “0-weighted” and write
N[(X, x), (Y , y)]0, or say “1-weighted” and write N[(X, x), (Y , y)]1, respectively, instead of saying
“(W , w)-weighted” and writing N[(X, x), (Y , y)](W ,w) .

Comparing Definitions 2.3 and 3.2 we obtain:

Theorem 3.4. If C admits the (extremal epi, mono) factorization system, then, for any C = (A, X, x, Y ,

y, W , w) in CSW (C), the (W , w)-weighted normal commutator κN : N[(X, x), (Y , y)](W ,w) → A is the
normal closure of the (W , w)-weighted subobject commutator κ : [(X, x), (Y , y)](W ,w) → A.

Corollary 3.5. If C is ideal determined and, in the notations above, the arrow [w, x, y] : W + X + Y → A
is a normal epimorphism, then the (W , w)-weighted normal commutator κN : N[(X, x), (Y , y)](W ,w) → A
agrees with the (W , w)-weighted subobject commutator κ : [(X, x), (Y , y)](W ,w) → A. In particular

N
[
(X, x), (Y , y)

]
1 = [

(X, x), (Y , y)
]

1

whenever C is ideal determined.

Remark 3.6. The 1-weighted (normal) commutator has been also studied by S. Mantovani in [22], by
adopting a different approach. In that article the term Ursini commutator is used to denote what we
call here the 1-weighted normal commutator.

4. The Huq commutator

When W = 0, the diagram (3) becomes

X
〈1,0〉

x

X × Y

m

Y
〈0,1〉

y

A

and so in this case (X, x) commutes with (Y , y) over (W , w) in the sense of Definition 1.1 if and
only if (X, x) commutes with (Y , y) in the sense of [16]. Moreover, the commutator N[(X, x), (Y , y)]0
defined in the previous section becomes nothing but the commutator of (X, x) and (Y , y) in the sense
of [16], except that the conditions required on the ground category C in [16] are much stronger of
course. On the other hand, say, in the case of groups the commutator [(X, x), (Y , y)]0, defined in
Section 2, becomes nothing but the classical commutator [x(X), y(Y )] of the images of X and Y in A.
It agrees with N[(X, x), (Y , y)]0 if and only if it is a normal subgroup in A, which, in particular, is
the case when either x(X) and y(Y ) are normal subgroups in A, or their union generates A. We shall
come back to the case of groups in Section 7.

Remark 4.1. From Theorem 3.4 and Remark 2.4 one can deduce Proposition 5.7 in [23], asserting that
the Huq commutator is the normalization of the Higgins commutator: indeed, this latter result is
obtained as the special case where w : W → A is the morphism 0 : 0 → A.
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5. Preservation of commutators by normal-epimorphic images

In this section, for simplicity, the ground category C is supposed to be semi-abelian [17].
For X , Y , and W in C, we shall write

X ⊗W Y = Ker
(〈[ι1, ι2,0], [ι1,0, ι2]

〉 : W + X + Y → (W + X) ×W (W + Y )
)
,

which gives us, by Lemma 2.2, a short exact sequence

0 X ⊗W Y W + X + Y (W + X) ×W (W + Y ) 0 (10)

functorial in X , Y , and W .

Lemma 5.1. If f : X ′ → X, g : Y ′ → Y , and h : W ′ → W are normal epimorphisms, then so is the induced
morphism f ⊗h g : X ′ ⊗W ′

Y ′ → X ⊗W Y .

Proof. Consider the commutative diagram

0 0

Ker(h + f + g)

ker(h+ f +g)

Ker(h + f ) ×Ker(h) Ker(h + g)

Ker(h+ f )×Ker(h)Ker(h+g)

0 X ′ ⊗W ′
Y ′

f ⊗h g

W ′ + X ′ + Y ′

h+ f +g

(W ′ + X ′) ×W ′ (W ′ + Y ′)

(h+ f )×h(h+g)

0

0 X ⊗W Y W + X + Y (W + X) ×W (W + Y ) 0

0 0

whose rows and columns are short exact sequences. It shows that

f ⊗h g : X ′ ⊗W ′
Y ′ → X ⊗W Y

is a normal epimorphism if and only if so is the (dotted) morphism

Ker(h + f + g) Ker(h + f ) ×Ker(h) Ker(h + g).

Next, consider the diagram
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Ker(h + f ) ×Ker(h) Ker(h + g)
π2

π1

Ker(h + g)
〈sv,1〉

v

ker(h+g)
W ′ + Y ′ h+g

[1,0]

W + Y

[1,0]

Ker(h + f )

ker(h+ f )

u

〈1,tu〉

Ker(h)

t

ker(h)

ker(h)

s
W ′

ι1

h
W

ι1

W ′ + X ′ [1,0]

h+ f

W ′
ι1

h

W + X
[1,0]

W
ι1

in which u and s are induced by the suitable [1,0] and ι1 respectively, and v and t are defined
similarly. Just as in Lemma 2.2, as follows from the results of [4], the morphisms 〈1, tu〉 and 〈sv,1〉
are jointly normal epic. Let then k : Ker(h + f ) → Ker(h + f + g) and l : Ker(h + g) → Ker(h + f + g)

be the arrows induced by [ι1, ι2] : W ′ + X ′ → W ′ + X ′ + Y ′ and by [ι1, ι3] : W ′ + Y ′ → W ′ + X ′ + Y ′ ,
respectively. The result then follows from the commutativity of the diagram

Ker(h + f + g)

Ker(h + f ) 〈1,tu〉

k

Ker(h + f ) ×Ker(h) Ker(h + g) Ker(h + g),〈sv,1〉

l

which shows that the vertical dotted arrow is a normal epi. �
Theorem 5.2. In the notation of Definitions 2.3 and 3.2, for any normal epimorphisms f : X ′ → X,
g : Y ′ → Y , h : W ′ → W , α : A′ → A and morphisms x′ : X ′ → A′ , y′ : Y ′ → A′ and w ′ : W ′ → A′ in a
semi-abelian category C, with xf = αx′ , yg = αy′ , wh = αw ′ , the induced morphisms

[(
X ′, x′),

(
Y ′, y′)]

(W ′,w ′) → [
(X, x), (Y , y)

]
(W ,w)

,

N
[(

X ′, x′),
(
Y ′, y′)]

(W ′,w ′) → N
[
(X, x), (Y , y)

]
(W ,w)

also are normal epimorphisms. In particular, so are the induced morphisms

[(
X ′, x′),

(
Y ′, y′)]

0 → [
(X, x), (Y , y)

]
0,

N
[(

X ′, x′),
(
Y ′, y′)]

0 → N
[
(X, x), (Y , y)

]
0,

[(
X ′, x′),

(
Y ′, y′)]

1 → [
(X, x), (Y , y)

]
1,

N
[(

X ′, x′),
(
Y ′, y′)]

1 → N
[
(X, x), (Y , y)

]
1.

Proof. For the morphism [(X ′, x′), (Y ′, y′)](W ′,w ′) → [(X, x), (Y , y)](W ,w) this follows from Lemma 5.1.
Consequently, since normal monomorphisms have normal images under normal epimorphisms,
Theorem 3.4 insures that the same is true for the morphism N[(X ′, x′), (Y ′, y′)](W ′,w ′) → N[(X, x),
(Y , y)](W ,w) . �
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Corollary 5.3. If, in addition to the assumptions of Theorem 5.2, α : A′ → A is an isomorphism, then all the
induced morphisms considered in Theorem 5.2 are isomorphisms.

6. The Pedicchio commutator

Suppose again that the ground category C is semi-abelian, and we shall have in mind the commu-
tative diagram

Pgrd(C) S(C)

MCS1(C) CS1(C)

MCSW (C) CSW (C)

(11)

of fully faithful functors, in which:

• Pgrd(C) and S(C) denote the categories of internal pregroupoids in C and spans in C, respec-
tively;

• MCS1(C) and CS1(C) are the full subcategories in MCSW (C) and in CSW (C) which are
1-weighted, that is, which are of the form ((A, X, x, Y , y, A,1A),m) and (A, X, x, Y , y, A,1A), re-
spectively;

• the functor S(C) → CS1(C) sends any span S

S0 S1
d c

S ′
0

(12)

to the weighted cospan

S1

Ker(d)
ker(d)

S1 Ker(c);ker(c)

(13)

• the functor Pgrd(C) → MCS1(C) is induced by the functor S(C) → CS1(C) having in mind that:
(a) to give a pregroupoid structure on the span (12) is the same as to give a pregroupoid structure

on the span

S1/Ker(d) S1 S1/Ker(c);

(b) the pregroupoid structure on S1/Ker(d) S1 S1/Ker(c) makes the weighted

cospan (13) multiplicative by Theorem 1.3;
• the horizontal arrows in (11) are the forgetful functors, while the bottom vertical arrows are the

(full) inclusion functors.

We can say that the weighted normal commutator theory studies the left adjoint of the functor
MCSW → CSW (C), while the Pedicchio commutator theory studies the left adjoint of the functor
Pgrd(C) → S(C). And our aim in this section is to explain the following:
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In the semi-abelian context, the 1-weighted normal commutator theory restricted to cospans of morphisms
with normal images is equivalent to the Pedicchio commutator theory.

This is not as simple as just to say that the top and the middle row in (11) are equivalent in any sense
though. The explanation will consist of several observations below based on the previous results.
A different proof from the one below has been independently found by S. Mantovani [22].

Here again, we assume for simplicity that the ground category C is semi-abelian.

Observation 6.1. In Definition 2.3, by Corollary 5.3, replacing (X, x), (Y , y), and (W , w) with (X ′, xx′),
(Y ′, yy′), and (W ′, w w ′), where x′ : X ′ → X , y′ : Y ′ → Y , and w ′ : W ′ → W are regular (= normal)
epimorphisms, will not change neither the commutator κ : [(X, x), (Y , y)](W ,w) → A nor the com-
mutator κN : N[(X, x), (Y , y)](W ,w) → A. This means that all properties of both commutators can be
reduced to the case where x, y, and w are monomorphisms. In particular the properties where x and
y are required to have normal images reduce to their special cases where x and y are required to be
normal monomorphisms.

Observation 6.2. According to Observation 6.1, one might wish to replace the categories MCSW (C)

and CSW (C) with their full subcategories MonoMCSW (C) and MonoCSW (C) with objects having x, y
and w (in the notation above) monomorphisms — or even with NMonoMCSW (C) and NMonoCSW (C),
where x, y and w are required to be normal monomorphisms. Note that:

(a) In the notation of Theorem 3.1, the left adjoint of the forgetful functor MonoMCSW (C) →
MonoCSW (C) will send C = (A, X, x, Y , y, W , w) not to ((C̃, X, νC x, Y , νC y, W , νC w),μC ) but
to ((C̃, X ′, x′, Y ′, y′, W ′, w ′),μ′

C ) with: the same C̃ ; x′ : X ′ → C̃ , y′ : Y ′ → C̃ , w ′ : W ′ → C̃ being
the images of νC x, νC y, νC w , respectively; μ′

C being induced by μC . This can be deduced from
Corollary 5.3 and the fact that νC is a normal epimorphism (by Lemma 2.2).

(b) An advantage of using MonoMCSW (C) and MonoCSW (C) instead of MCSW (C) and CSW (C) is
that the left adjoint of the forgetful functor MonoMCSW (C) → MonoCSW (C) restricts to the
left adjoint of the forgetful functor MonoMCS1(C) → MonoCS1(C) (using obvious notation). It
therefore presents the “1-weighted” case as a special case of the “general-weighted” case more
naturally.

(c) Using the fact that normal monomorphisms have normal images under normal epimorphisms,
we easily conclude that the left adjoint of the forgetful functor MonoMCSW (C) → MonoCSW (C)

also restricts to the left adjoint of the forgetful functor NMonoMCSW (C) → NMonoCSW (C), and
then to the left adjoint of the forgetful functor NMonoMCS1(C) → NMonoCS1(C). Therefore the
“NMono approach” has the same advantage as the “Mono approach”.

Observation 6.3. Let us make what we already said about the Pedicchio commutator (in Remark 3.3(a)
and in this section) more precise. Let F be the left adjoint of the forgetful functor Pgrd(C) → S(C).
As follows from the results of [25] and partly of [20] we have:

(a) Since the forgetful functor Pgrd(C) → S(C) is fully faithful, we can identify Pgrd(C) with the full
subcategory in S(C) with objects all spans that admit a pregroupoid structure. After that we can
say that F is defined on objects by

F
(

S0 S1
d c

S ′
0

) = (
S0 S1/

[
Eq(d),Eq(c)

] c∗d∗
S ′

0

)
(14)

where [Eq(d),Eq(c)] is the Pedicchio commutator of the equivalence relations on S1 which are
the kernel pairs of d and c, respectively. Conversely, it can be used to define the Pedicchio com-
mutator via F . It follows from [24] that this commutator [Eq(d),Eq(c)] agrees with the Smith
commutator [Eq(d),Eq(c)]Smith of congruences (mentioned in the Introduction) whenever C is a
Mal’tsev variety.
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(b) Let us use only those spans in which d and c above are normal epimorphisms, and define the full
subcategories NEpiPgrd(C) of Pgrd(C) and NEpiS(C) of S(C) accordingly. Since the forgetful func-
tor Pgrd(C) → S(C) and its left adjoint restrict to functors between NEpiPgrd(C) and NEpiS(C),
we conclude — from the above, or directly from the results of [25] — that the left adjoint of the
forgetful functor NEpiPgrd(C) → NEpiS(C) can also be defined by (14).

Observation 6.4. The functor S(C) → CS1(C) used in (11) induces a category equivalence NEpiS(C) ∼=
NMonoCS1(C), which is nothing but the obvious equivalence between spans of normal epimorphisms
and cospans of normal monomorphisms. As follows from Corollary 1.9, the equivalence above induces
an equivalence NEpiPgrd(C) ∼= NMonoMCS1(C). By taking Remark 3.3(a) and Observations 6.2 and 6.3
into account we conclude:

(a) For every two equivalence relations E and E ′ on any object A in C, the Pedicchio commuta-
tor [E, E ′] is the equivalence relation [E, E ′] on A corresponding to the normal monomorphism
κN : N[(X, x), (Y , y)]1 → A, where x : X → A and y : Y → A are the normal monomorphisms
corresponding to E and E ′ , respectively.

(b) For every two normal monomorphisms x : X → A and y : Y → A (with the same A) in C,
the commutator κN : N[(X, x), (Y , y)]1 → A is the normal monomorphism corresponding to the
Pedicchio commutator [E, E ′], where E and E ′ are the equivalence relations on A corresponding
to the normal monomorphisms x : X → A and y : Y → A, respectively.

(c) By Corollary 3.5, κN : N[(X, x), (Y , y)]1 → A in (a) and (b) is the same as κ : [(X, x), (Y , y)]1 → A.
That is (a) and (b) equally apply to the (normal and) subobject commutator.

7. The universal-algebraic context

In this section:

• C denotes a pointed variety of universal algebras;
• A denotes an algebra in C, and W , X, Y subalgebras in A;
• w : W → A, x : X → A, and y : Y → A are the inclusion maps;
• instead of N[(X, x), (Y , y)](W ,w) , [(X, x), (Y , y)](W ,w) , N[(X, x), (Y , y)]0, [(X, x), (Y , y)]0, N[(X, x),

(Y , y)]1, and [(X, x), (Y , y)]1 we shall write N[X, Y ]A|W , [X, Y ]A|W , N[X, Y ]A|0, [X, Y ]A|0,
N[X, Y ]A|1 and [X, Y ]A|1;

• if E is a congruence (= equivalence relation in the sense used in the previous sections) on A, the
corresponding normal subalgebra (= the class of 0 under E) of A will be denoted by E(0);

• if M is a normal subalgebra of A, the corresponding congruence on A, which is the smallest
congruence E on A with E(0) = M , is A ×A/M A;

• N[X, Y ]A|W and [X, Y ]A|W (and their special cases above) will always be supposed to be subal-
gebras of A, and κN : N[X, Y ]A|W → A and κ : [X, Y ]A|W → A will be supposed to be inclusions
maps.

Observation 7.1.

(a) Being a variety, C automatically has all small limits and colimits, and in particular the finite ones.
Furthermore, C is Barr exact [1], and in particular regular.

(b) As explained in [18], C is ideal determined if and only if it is (pointed) BIT (“buona teoria degli
ideali”) in the sense of [27], or, equivalently, it is a (pointed) ideal determined variety in the sense
of [14].

(c) As explained in [19], C is semi-abelian if and only if it is (pointed) BIT speciale in the sense of
[28], or, equivalently, it is a (pointed) classically ideal determined variety in the sense of [14].

From this observation we obtain:
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Corollary 7.2.

(a) By Theorem 3.4, N[X, Y ]A|W is the normal closure of [X, Y ]A|W , and in particular N[X, Y ]A|0 is the
normal closure of [X, Y ]A|0 , and N[X, Y ]A|1 is the normal closure of [X, Y ]A|1 .

(b) By Corollary 3.5, if C is ideal determined and the union W ∪ X ∪ Y generates A, we have N[X, Y ]A|W =
[X, Y ]A|W . In particular, if C is ideal determined, then we always have N[X, Y ]A|1 = [X, Y ]A|1 and, if the
union X ∪ Y generates A, then N[X, Y ]A|0 = [X, Y ]A|0 .

(c) By Theorem 5.2, if C is semi-abelian (= classically ideal determined) and α : A → A′ is a surjective
homomorphism, then

α
([X, Y ]A|W

) = [
α(X),α(Y )

]
A′|α(W )

,

α
(
N[X, Y ]A|W

) = N
[
α(X),α(Y )

]
A′|α(W )

,

α
([X, Y ]A|0

) = [
α(X),α(Y )

]
A′|0,

α
(
N[X, Y ]A|0

) = N
[
α(X),α(Y )

]
A′|0,

α
([X, Y ]A|1

) = [
α(X),α(Y )

]
A′|1,

α
(
N[X, Y ]A|1

) = N
[
α(X),α(Y )

]
A′|1.

(d) By Observation 6.4, and since the Pedicchio commutator is a categorical generalization of the Smith com-
mutator [26], if C is semi-abelian the commutator [X, Y ]1 generalizes the Smith commutator in the sense
that

[
E, E ′]

Smith = A ×A/[E(0),E ′(0)]A|1 A

or, equivalently,

[
E, E ′]

Smith(0) = [
E(0), E ′(0)

]
A|1,

for every two congruences E and E ′ on A, where [E, E ′]Smith denotes the Smith commutator of E and E ′ .
Still equivalently, if (C is semi-abelian and) X and Y are normal subalgebras in A, then

[X, Y ]A|1 = [A ×A/X A, A ×A/Y A]Smith(0),

or, equivalently,

A ×A/[X,Y ]A|1 A = [A ×A/X A, A ×A/Y A]Smith.

Another notion of commutator was introduced in [30]. It can be defined as follows:

Definition 7.3.

(a) A term t(w1, . . . ,wk,x1, . . . ,xm,y1, . . . ,yn) in C, in which {x1, . . . ,xm} and {y1, . . . ,yn} are dis-
joint sets, is said to be a commutator term in (x1, . . . ,xm) and (y1, . . . ,yn), if it is an ideal term
in (x1, . . . ,xm) and in (y1, . . . ,yn) at the same time, that is, if

t(w1, . . . ,wk,0, . . . ,0,y1, . . . ,yn) = 0 = t(w1, . . . ,wk,x1, . . . ,xm,0, . . . ,0).
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The collection of all such commutator terms will be denoted by

CTC

(
(x1, . . . ,xm), (y1, . . . ,yn)

)
.

(b) The commutator [X, Y ]C,A is defined as

[X, Y ]C,A = {
t A(w1, . . . , wk, x1, . . . , xm, y1, . . . , yn) ∈ A such that:

w1, . . . , wk ∈ A; x1, . . . , xm ∈ X; y1, . . . , yn ∈ Y ;
t(w1, . . . ,wk,x1, . . . ,xm,y1, . . . ,yn) ∈ CTC

(
(x1, . . . ,xm), (y1, . . . ,yn)

)}
,

where t A(w1, . . . , wk, x1, . . . , xm, y1, . . . , yn) denotes

t(w1, . . . ,wk,x1, . . . ,xm,y1, . . . ,yn)

calculated in A when w1, . . . ,wk,x1, . . . ,xm,y1, . . . ,yn are substituted by w1, . . . , wk , x1, . . . , xm ,
y1, . . . , yn .

Remark 7.4. In fact [X, Y ]C,A is defined in [30] more generally, when X and Y are arbitrary subsets
in A, not necessarily subalgebras. But it is shown there that [X, Y ]C,A is always an ideal in A, and
that it will not be changed if X and Y are replaced by the ideals they generate.

The (b) part of the following proposition is similar to Proposition 3.3 in [19]:

Proposition 7.5.

(a) [X, Y ]C,A ⊆ [X, Y ]A|1 .
(b) If A is the free algebra in C on a set S, and X and Y are freely generated by P and Q respectively, which

are disjoint subsets of S, then

[X, Y ]C,A = [X, Y ]A|1.

Proof. (a) We have to show that, in the notation of Definition 7.3(b), we have

t A(w1, . . . , wk, x1, . . . , xm, y1, . . . , yn) ∈ [X, Y ]A|1

whenever: w1, . . . , wk are in A; x1, . . . , xm are in X ; y1, . . . , yn are in Y ; and t = t(w1, . . . ,wk,x1, . . . ,

xm,y1, . . . ,yn) is in CTC((x1, . . . ,xm), (y1, . . . ,yn)).
Without loss of generality we can assume that not only the sets {x1, . . . ,xm} and {y1, . . . ,yn} are

disjoint, but also each of them is disjoint with {w1, . . . ,wk}. After that we consider the coproduct
diagram

A

ι1

X
ι2

A + X + Y Y ,
ι3

and the element
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c = t A+X+Y
(
ι1(w1), . . . , ι1(wk), ι2(x1), . . . , ι2(xm), ι3(y1), . . . , ι3(yn)

)

in it. Since t is in CTC((x1, . . . ,xm), (y1, . . . ,yn)), c belongs to the kernel X ⊗A Y of the map (6) with
W = A and, on the other hand, it is sent to t A(w1, . . . , wk, x1, . . . , xm, y1, . . . , yn) by the canonical
map A + X + Y → A. Therefore t A(w1, . . . , wk, x1, . . . , xm, y1, . . . , yn) is in [X, Y ]A|1.

(b) We have to show that [X, Y ]A|1 ⊆ [X, Y ]C,A . Any element a of [X, Y ]A|1 can be presented in
the form

a = t A(w1, . . . wk, x1, . . . , xm, y1, . . . , yn),

with t A+X+Y (ι1(w1), . . . , ι1(wk), ι2(x1), . . . , ι2(xm), ι3(y1), . . . , ι3(yn)) in X ⊗A Y . Since A is free on S
and X and Y are free on disjoint subsets of S , using S as our alphabet, we can assume that:

• the elements w1, . . . , wk, x1, . . . , xm, y1, . . . yn are themselves terms, and moreover:
• w1, . . . , wk are, say, terms of variables w1, . . . ,wk′ ∈ S; x1, . . . , xm are terms of variables

x1, . . . ,xm′ ∈ S; and y1, . . . , yn are terms of variables y1, . . . ,yn′ ∈ S — with the sets {x1, . . . ,xm′ }
and {y1, . . . ,yn′ } being disjoint.

Now let u = u(w1, . . . ,wk′ ,x1, . . . ,xm′ ,y1, . . . ,yn′) be the term t considered as a term of variables
w1, . . . ,wk′ ,x1, . . . ,xm′ ,y1, . . . ,yn′ . Then u belongs to CTC((x1, . . . ,xm′ ), (y1, . . . ,yn′)) and at the same
time u = a as elements of A. Therefore a belongs to [X, Y ]C,A , as desired. �
Theorem 7.6. If C is semi-abelian (= classically ideal determined), then the equality

[X, Y ]C,A = [X, Y ]A|1

always holds.

Proof 1. Using Corollary 7.2(c) and a similar result for the commutator [−,−]C , which is obvious, as
mentioned in [30], it suffices to show that there exists

• a set S with disjoint subsets P and Q , such that
• there is a surjective homomorphism α from the free algebra on S to A, under which the images

of P and Q generate X and Y respectively

— which is a triviality. �
Proof 2. [X, Y ]C,A = [A ×A/X A, A ×A/Y A](0) by [14, Theorem 2.6], and

[A ×A/X A, A ×A/Y A](0) = [X, Y ]A|1

by Corollary 7.2(d). �
Remark 7.7.

(a) Just as [X, Y ]X |W generalizes [X, Y ]X |1, we could introduce [X, Y ]C,A|W by requiring w1, . . . , wk
in Definition 7.3(b) to belong to W . This generalization of the commutator introduced in [30] will
obviously allow extending Proposition 7.5 and Theorem 7.6 to the case of arbitrary W , except that
our second proof of Theorem 7.6 would also require introducing a suitable notion of weighted span
commutator.
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(b) When C is “nice”, and X and Y are normal subalgebras in A, one expects that the Pedicchio
commutator [A ×A/X A, A ×A/Y A] agrees with the Huq commutator [X, Y ], that is

[X, Y ] = [A ×A/X A, A ×A/Y A](0), (15)

or, equivalently,

A ×A/[X,Y ] A = [A ×A/X A, A ×A/Y A].
The first such result, where “nice” was interpreted as “strongly protomodular” was proved in [6],
although its main ingredient is in fact Theorem 6.1 in [7]. In particular this applies to all varieties
of groups, of (associative, non-unital) rings, of Lie algebras over commutative rings, of (pre)crossed
modules over those, and to some other classical algebraic structures. For some special types of
pairs of normal subalgebras X and Y it was later shown that the Pedicchio and the Huq commu-
tators do agree even in general semi-abelian categories (see, for instance, Proposition 2.2 in [13]
and Proposition 4.6 in [11]), although in general this is not the case (see the counter-example
due to the second author explained in Section 6 of [6], although in fact [12] provides an earlier
counter-example, as follows from what we say at the end of (c) below).
The equality (15) implies

[X, Y ] = [X, Y ]A|0 = [X, Y ]A|W = [X, Y ]A|1

= N[X, Y ]A|0 = N[X, Y ]A|W = N[X, Y ]A|1,

for every W .
However, although we always trivially have

[X, Y ] = [X, Y ]A|0 � [X, Y ]A|W � [X, Y ]A|1

and

N[X, Y ]A|0 � N[X, Y ]A|W � N[X, Y ]A|1,

when X and Y are not normal, we might have

[X, Y ]A|0 �= [X, Y ]A|W �= [X, Y ]A|1,

even in the varieties of groups. The same is true for commutative (associative, non-unital) rings,
where all commutators can be calculated very easily, as our following Example 7.8 will show.

(c) The indices C and A in the symbol [X, Y ]C,A indicate of course that the commutator [X, Y ]C,A
depends, in general, not only on X and Y , but also on C and A. However, it might be indepen-
dent of C and A in some sense. The concept of independence of C is especially strange from
the categorical viewpoint, but from the universal algebra viewpoint it has a standard meaning,
namely: if A is a subvariety in C containing A, then [X, Y ]A,A = [X, Y ]C,A . Such independence is
actually expected under some additional conditions on C, and, for instance, subtractivity (which
is much weaker than semi-abelian-ness) of A suffices, as shown in [30]. The independence of A is
defined by saying that if B is a subalgebra of A, containing X and Y , then [X, Y ]C,B = [X, Y ]C,A .
It fails even in a general semi-abelian variety, as the Exercise 10 of Chapter 5 in [12] shows, but
it is essentially equivalent to (15), and so it holds in “nice” cases (see (b) above).

Example 7.8. Let C be the variety of commutative (associative, non-unital) rings. Let us recall and use
the following conventions:
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• For arbitrary R and S in C, their classical tensor product R ⊗ S (over the ring Z of integers)
is a commutative ring, whose multiplication is compatible with the (non-unital) R-module and
S-module structure. Using this structure, and not making distinction between the left and right
module structures we can present the coproduct R + S as follows: as an abelian group it is the
product R × S × (R ⊗ S), and its multiplication is defined by

(r, s, t)
(
r′, s′, t′) = (

rr′, ss′, r ⊗ s′ + s ⊗ r′ + rt′ + tr′ + st′ + ts′ + tt′).

• When R and S are subrings of A, we shall write RS for the subring in A generated by the ele-
ments in A of the form rs with r in R and s in S , which is nothing but the set of (finite) sums of
elements in A of that form. We shall also write

R +A S = {r + s + t ∈ A | r ∈ R, s ∈ S and t ∈ RS},

having in mind that this is the subring in A generated by the union R ∪ S , and therefore a
quotient ring of the coproduct R + S .

Then, using the description of the coproducts in C, an easy calculation gives

[X, Y ]A|W = XY +A W XY ,

from which we obtain

[X, Y ] = [X, Y ]A|0 = XY ,

[X, Y ]A|1 = N[X, Y ]A|0 = N[X, Y ]A|W = N[X, Y ]A|1 = XY +A A XY .

In particular, if X and Y are ideals in A, then all these commutators coincide with XY .
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