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1. Introduction

Since its formulation in 1980, modular Lusztig’s conjecture was extensively attacked
by many mathematicians. One of the most important achievement is the joint work by
Andersen, Jantzen and Soergel [1], where they showed that Lusztig’s conjecture is true
for almost all primes.

In [7] and [6], Peter Fiebig developed a connection between Lusztig’s conjecture on
the characters of irreducible rational representations of reductive algebraic groups over
a field F of positive characteristic and the theory of F-sheaves on moment graphs.
He showed that Lusztig’s conjecture follows from the conjecture on the characters of
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the Braden—MacPherson sheaves (with coefficients in F) on an affine moment graph
(cf. [6, Conjecture 4.4]).

Fiebig showed in [8] that for every element w of the affine Weyl group, there exists
some explicitly defined number U(w) such that for all charF > U(w), the character of
the Braden—-MacPherson sheaf %(w) with coefficients in F is given by the correspond-
ing Kazhdan—Lusztig element of the Hecke algebra. This result is actually obtained by
considering decompositions of Bott—Samelson modules into direct sums of indecompos-
ables. The parameter that governs this decomposition in [8] is the Lefschetz datum. This
approach however works only if charF is bigger than some number depending on the
heights of roots and not only on the GKM-property.

In view of this, we introduce here a different parameter called defect (Definition 3.5.6).
Unlike Lefschetz datum, this parameter applies not to modules but to certain sheaves
on moment graphs that we call projective (Definition 3.5.2). This notion is motivated
by Jantzen’s lectures [9], where he defines F-projective sheaves' (see [9, Section 3.8]).
Whereas Jantzen considers only finite moment graphs in his lectures, all his definitions
and results apply to affine moment graphs as well if we additionally require the supports
of sheaves to be finite.

One thing that we are very interested in is the possibility to apply translation func-
tors directly to moment graphs. The corresponding construction is given by Fiebig [7,
Section 2.9]. As predicted by results from [5], translation functors should take projective
sheaves to projective sheaves. This turns out to be true (Theorem 3.9.1) if we slightly
modify the definition of ¥, (Section 3.7) and impose some GKM-restriction. Thus we can
apply repeatedly translation functors to the sheaf whose stalk at e is our basic symmetric
algebra and 0 elsewhere and get the sheaf #(s) (s is a sequence of simple reflections),
which we call the Bott-Samelson sheaf (Definition 4.2.1). This sheaf is well-defined and
projective under some GKM-restriction. By [9, Proposition 3.12], #(s) decomposes into
a direct sum of indecomposable projective sheaves (Braden—-MacPherson sheaves) and
the defect of Z(s) tells us how exactly. So we may consider the calculation of this defect
(or proving its independence of char F) our main problem.

To this end, we use the modules X(s) constructed by Fiebig in [8, Section 6], which
are isomorphic to Bott—Samelson modules (cf. [8, Proposition 6.14(2)]). We prove in this
paper a different version of this isomorphism: the isomorphism I'(%(s)) = X(s) that
induces the isomorphisms of stalks in a way compatible with restrictions (Theorem 4.5.1).
The advantage is two-fold: we get the isomorphisms of costalks (Corollary 4.5.2) and
the result saying how elements of X(s) behave with respect to edges of the underlying
moment graph (Corollary 4.5.3).

The last result is very important to construct a basis of the stalk of a Bott—Samelson
sheaf (module) at a fixed point « (cf. Corollary 4.8.2). This basis is constructed in terms
of the tree T'(s,z) that tells us how the element x is represented with respect to the
Bruhat order as products of entries of subsequences of s (Section 4.7). Hence, we can

1 F stands for Fiebig.



378 V. Shchigolev / Journal of Algebra 406 (2014) 376—418

get the matrix describing the inclusion of the costalk in the stalk %(s), C (s)” by the
same method as [8] and previously in [10].

Along with the costalk %(s).,;, which is the intersection of the kernels of the projections
pz,E for all edges E incident with x, one can consider the submodule %(s)(,), which is the
intersection of the same kernels but only for edges starting at . The defect at x is defined
by the zero degree part of the matrix @(s,z) describing the inclusion %(s)j,) C %(s)”
(Corollary 3.3.3), which is given by an exact combinatorial algorithm (Theorem 4.10.3).

Although the matrix (s, z) is quite complicated, we still can make use of it when the
ungraded rank of the stalk %(s)* does not exceed 3 (Section 5). Remarkably, we don’t use
any restrictions on the characteristic in our calculations other than the GKM-property.
In particular, we can write down the first terms of the decomposition of a Bott—Samelson
module (sheaf) into a direct sum of indecomposables as in Corollary 5.4.1 (here |I(s),| is
the number of subsequences of s giving x). This result and the known zero characteristic
case allow us to prove Fiebig’s conjecture [6, Conjecture 4.4] on the characters of the
Braden-MacPherson sheaves %(w) for 3-reachable elements w (Definition 5.4.2) of the
affine Weyl group. I believe that similar calculations are possible for other low ranks.
However, already the case where the ungraded rank %(s)” is 4 contains a large number
of subcases.

2. Notation and definitions
2.1. General

If we consider a field F of characteristic p > 0, then we identify the residue field Z/pZ
with the minimal subfield of F. When there is no confusion about which field we take,
we write n for the residue class n + pZ € Z/pZ C F.

We shall consider products [];., M; of sets, which consist of all functions f on Z such
that f; € M; for any i € 7. For any J C Z, we consider the restriction f|7 € [[;c 7 Mi.

We write A = BUC to say that set A is the disjoint (i.e. BN C = &) union of sets
B and C.

2.2. Poset topology

Let V be a poset (partially ordered set). A subset U C V is called open if x € U and
y = « imply y € U. Obviously, the subsets

Vori={yeVl]y=un} Vori={yeVl]y>u}

are open and U = |J . V>, for any open U C V. Unions and intersections of open
subsets are also open, so we get a topology on V. We write [X] for the closure of X C V.
Obviously, the subsets

Vo ={y €V ]y <z}, Voo :i={yeV|y<uz}
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are closed and [X] = |J, .y V<z- Note that any unions including infinite ones of closed
subsets are closed in our topology!

In the sequel, we always suppose that V¢, is finite for any € V. Then the closure of
any finite subset is also finite.

2.8. Moment graphs

Throughout this paper F denotes a field of characteristic distinct from 2. Let V be a
finite dimensional vector space over F. Consider the symmetric algebra S := S(V) with
Z-grading such that elements of V have degree 2. For brevity, we shall always say in this
paper “graded” meaning “Z-graded”.

Definition 2.3.1. A moment graph G is given by the following data:

(1) An oriented graph (V, £) with set of vertices V and set of edges £.

(2) Amapl:& — V\{0} called the labelling.

(3) A partial order < on V such that the following holds: if there is an edge from = to
y then z < y.

We write x

y if we want to say that x and y are connected by an edge (in any
direction) and x — y if we want to say that there is an edge from x to y. If we want

[0

to specify the label of this edge we write x y and 2 —— y and if we want to call
this edge we add its name followed by : on the left, e.g. E: 2 —~ y.
We say that G satisfies the GKM-property if the labels « and 8 of any two edges

having a common vertex are not proportional, that is, 8 ¢ Fa.

For any subset Z C V, we define the full moment subgraph Gz of G by taking Z for
the set of vertices and considering only those edges of G that connect elements of Z. We
often abbreviate G¢, = gv@.

We keep this notation throughout the paper — V usually denotes the set of vertices,
& the set of edges and [ the labelling.

2.4. Finite root system

Let V be a finite dimensional Q-vector space and let R C V be an irreducible, reduced,
finite root system. We denote by V* the Q-space of all Q-linear functions f : V — Q and
write (-,-) : V x V* — Q for the natural pairing: (v, f) := f(v). For @ € R, we denote
by a¥ € V* the corresponding coroot. Let RY := {a" | a € R} be the dual root system
and

X::{)\EV’<)\,av>€Zf0ralla€R}

be the weight lattice. We fix a decomposition into positive and negative roots R =
Rt U R~ and the corresponding set II of simple roots.
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2.5. Affine Weyl group

For o € R and n € Z, we define the affine reflection sy ,, : V* = V* by

San(v) =v— ((a,v) —n)a”.

Note that so := 54,0 is the usual reflection and s, , = sg,n, if and only if either o = 3
and n=mor a=—0 and n = —m.

The affine Weyl group W is the subgroup of transformations of V* that is generated
by all s4,,. We can linearize the above affine action by adding an additional dimension.
Set V := VaQ and V* := V*@Q. This pair of spaces have the pairing () : VxV* = Q
given by ((A,m), (v,n)) = (A, v) + mn. We let s, act linearly on V* by

San(v,m) = (v— ((a,v) —mn)a",m).

This action extends to the linear action of the whole W. The first level space ‘71* =
{(v,1) | v € V*} is stabilized by this action of W and we have

w(v,1) = (wv, 1)

for any w € W and v € V*.
We also have the dual action of W on V that is characterized by the duality rule

for any « € Vand v e V*. Explicitly it is given by
w(0,v) = (0,v), Sam(X,0) = (sa(A),n(A,a)).
In the next section, we shall give a friendlier interpretation of this action.
2.6. Affine root system
The hyperplane of fixed points of s, ,, in V*is
ﬁa’n = {(v,m) | (a,v) = mn}.
We can rewrite the defining equation of this hyperplane as ((«, —n), ) = 0. We define
5(a,—n) ‘= Sa,n and call the pair (o, —n) an affine root. The set of all affine roots is

denoted R. Clearly, s, = s, for two affine roots v and 7 if and only if v = £7 (cf.
Section 2.5).
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Now let us choose the system Rt CRof positive roots as follows
Rt = {(vn) |@€ R, n>0} U {(,0) | @€ RT}.
We set R~ := —R* and call it the set of negative roots. Clearly R =R~ UR*. We write

v > 0 (resp. v < 0) to say that v € Rt or v € R (resp. v € R~ or v € R™). The set of
simple affine roots is

T = {(a,O) ’ = H} U {(—&,1)}7

where & is the highest root of R. Then any root of Rt isasum (possibly with repetitions)
of roots of II. The corresponding set of simple reflections is

S:={so|a eI}l {ss.}.

Then S is a set of generators of W and ()7\/\, 3‘) is a Coxeter system. Therefore we have
the length function ¢ and the Bruhat order < on W (cf. 2, Chapter 2]) .

Proposition 2.6.1. (See [11, Proposition 4.4(c)].) For any w € W and v € II, we have
lwsy) = l(w) + 1 if and only if w(vy) > 0.

Along with the affine roots ]%, we can consider the affine weights X =XaZ
Finally, note that the above action of W on V satisfies

wsoéw_1 = Sw(a) (1)
for any « € Rand w e W and is given by
sa(B) =B — ({8} {a}")a
for any a € R and RS \7, where {-} : V — V is the map (A, n) — . An easy observation
is that {s4(8)} = s{a){B} for any o, 8 € R. Hence ({w(a)}, {w(8)}") = ({a},{B}Y) for

any a,ﬁeRandwEW.
Using the abbreviation (a, 8)" := ({a}, {8}"), we shall rewrite the above formulas as

sa(B) =B —(B,0) (2)

and

{(w(a),w(B)) = (a,B)". (3)
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2.7. Properties of the Bruhat order

We outline the main properties of this order (valid for any Coxeter group) that we
shall use in the sequel. Concise and self-contained proofs can be found in [2]. Consider
the set of reflections 7 := {wsw™! | s € S, w € W}.

Proposition 2.7.1 (Subword property). Let w = s1 --- s4 be a reduced expression. We have
u < w in the Bruhat order if and only if there exists a reduced expression u = s;, -+ 8;,

for some 1 <i1 < - - < i <q.

Proposition 2.7.2 (Exzchange property). Suppose w = $1 -+ Sy, where s; € SandteT.
If b(wt) < l(w), then wt = s1---§;---si for somei=1,...,k.

Proposition 2.7.3 (Lifting property). Suppose u,v € W and s € S are such that u < w
and ws < w and us > u. Then us < w and u < ws.

Corollary 2.7.4. Suppose u,v € W and s € S are such that u < w.

(1) If ws < w then us < w.
(2) If us > u then u < ws.

Proposition 2.7.5 (Deletion property). If w = s1 - - - si, where s; € S and Uw) < k, then
W=81--8--5;---8 for somel <i<j<k.

2.8. Associated moment graph

We define the moment graph 5 with set of vertices )7\/\ and the Bruhat order on it.
There is an edge from z to y if and only if x < y and y = s,x for some « € R*. We
endow this edge with the (nonzero) label @ := a®1 € X ®z F =: V. We define the
graded symmetric algebra S := S(V) as in Section 2.3.

«

yand s € V/\}, then there
ys. Note that this operation does not preserve the direction

We can shift edges as follows. If we have an edge F : z

is also an edge Es : xs
of edges.

For I C §, we can consider the parabolic subgroup WI, which is the subgroup of
W generated by I. It is known that (W[,] ) is a Coxeter system with the same length
function (cf. [2, Proposition 2.4.1]). We introduce the quotient moment graph G! as
follows. We take W/ := 17\/\/17\/\1 (left cosets) for the set of vertices with the induced
order. This means the following: x < y, where z,y € Wi , if and only if z # y and there
are some coset representatives u € x and v € y such that u < v. By [2, Proposition 2.5.1]
this order is well defined and we can take elements of minimal length in z and y for u
and v respectively.

To get the edges of Gl , we virtually repeat the definition of the order on W!: there
is an edge x —— y, where x,y € 17\/\1, if and only if x # y and there are some coset
representatives u € x and v € y such that w —— v. This edge receives the same labelling
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as u — v. In other words, there is an edge x LN y if and only if z <y, o € R* and
Y = SaZ.

We are especially interested in the case I = {s} for some s € S. We abbreviate
W = Wiest and Qs = QA{E’S}. We usually write Z = {z, xs} for the image of z € w
in W*, when it is clear which s we mean. We also set 12 1= {Z | © € 2} for any subset
2 C W. We denote by , the natural projection W — W* (i.e. ms(x) = {z,z8} = ).

We also denote by E : £ — 7 the edge of G corresponding to an edge F : t —— y.

3. Projective sheaves
3.1. Sheaves

A homomorphism f : M — N of graded spaces, is a homogeneous linear map of
degree zero, that is a linear map satisfying f(M;) C N; for any ¢ € Z. Similarly, a homo-
morphism of graded S-modules is a usual (ungraded) homomorphism of S-modules that
is a homomorphism of graded spaces. We define now the main object of our study.

Definition 3.1.1. A sheaf .#Z on the moment graph G is given by the following data:

(1) a graded S-module .Z7 for each vertex x;

(2) a graded S-module .#ZF for each vertex E such that [(E).#* = 0;

(3) a homomorphism p, g : A% — #F (restriction) of graded S-modules for each
edge E and vertex z lying on FE.

We sometimes write pr to underline that this restriction map is for .Z.

The support of A is supp M = {x € V | A" # 0}. We call .#* the stalk of A at .
Let us define £2 C & to be the set of edges that contain the vertex x and £°% C &£ to
be the set of edges that start at 2. We denote by V% the set of ends of all edges of £°%.
We define the following graded submodules of .Z*:

My = {m € M" | py,p(m) =0 for all E € E7},
Mgy = {m € M" | pyp(m) =0 forall E € 5695}.

Clearly, A, C My C M*.

If M is a graded module and n € Z, then we denote by M (n) the graded module with
shifted grading M(n);, = M;,. The similar notation applies to maps: if 7 : M — N
is a map from one graded module to another, then m(n) denotes the map from M (n)
to N(n) acting as 7 elementwise. Shifts are applied to sheaves .# as well by applying
-(n) to all modules .Z% and .#* and restriction maps p, . We denote this new sheaf
by A (n).

We can also form the direct sum .#Z @& A4 of two sheaves .# and .4 on G by

(M SN =M DN, (M S MNE = N,

MDN . M N
PrE = Prr D PLE-
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This definition obviously implies (# © AN "), = Mo © Ny and (M DN ) (3] = Mz) D Ny
The zero element with respect to this summation is the zero sheaf — the sheaf .# such
that .#* = .#* = 0 for all vertices z and edges F.

The sheaves on G form a category. A morphism f : .# — .4 between two sheaves is
a pair of families ({f,}zev, {fr}ree), where f, : M* — N and fg: MF — NVE are
homomorphisms of graded S-modules such that p;t/ pofs=fro p‘Z{E whenever x lies
on F. If all homomorphisms f, and fg are isomorphisms, then we call f: . # — A4 an

isomorphism of sheaves. If T C V and .# is a sheaf on G, then .#7 denotes the restriction
of A to Gr.

3.2. Category C

We outline here the main points of [9, Section 2.21]. The objects of category C are
finitely generated graded S-modules and the morphisms are homomorphism of graded
S-modules. We denote m := @, , S; (the maximal graded ideal of S). Note that S/mS =
So = F and so any module M/mM is an F-vector space. For any M in C, we denote by
rade M the intersection of all maximal graded submodules of M.

A free object in C is a finite sum S{ry) @ -+ @ S(ry,). A projective cover of an object
M in C is a pair (P,7), where P is a free object in C and 7 : P — M a surjective
homomorphism in C such that 7(N) # M for any graded submodule N of P with
N # P.

Note that a projective cover exists for any module M in C and is defined uniquely up
to an isomorphism. In this way, one proves that any projective object in C is free.

Proposition 3.2.1. (See [9, Lemma 2.21].) (a) We have rade = mM for any M in C.

(b) Let m : P — M be a homomorphism in C such that P is free. Then (P,x) is a
projective cover of M in C if and only if the induced map @ : P/mP — M/mM is an
isomorphism.

3.8. Defect

We consider here the situation when we have a surjective homomorphism 7 : P — M
in C that is not necessarily a projective cover. Obviously, the induced homomorphism
7: P/mP — M/mM is also surjective but not an isomorphism in general. Therefore it
is worth considering its kernel ker 7. If it is zero and P is free, then (P, ) is a projective
cover by Proposition 3.2.1(b).

Lemma 3.3.1. Let 7 : P — M be a surjective homomorphism in C. Consider the induced
map 7 : P/mP — M/mM. Then (ker7); = (kerm); + mP for all i € Z.

Proof. Any element of (ker 7); can be written as x+mP, where x € P;. Then w(z) € mM.
Let us write m(x) = my1 + - - - + Yy, for some homogeneous r; € m and y; € M. Since
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m is surjective, there is for each y; an element z; € P of the same degree such that
m(z;) = y;. Hence x — r1zy — -+ —rpz, € (kerm); and « + mP € (kerm); + mP. The
inverse inclusion is obvious. O

We fix a variable v and consider the ring Z[v, v™1].

Definition 3.3.2. Let 7 : P — M be a surjective homomorphism in C. The defect of 7 is
the following element of Z[v,v~!]:

d(n) == Z dimp (ker 7);0°.
i€z

We have d(n(n)) = v"d(7). Lemma 3.3.1 prompts the following way to calculate
defects.

Corollary 3.3.3. Let m : P — M be a surjective homomorphism in C such that P and

ker m are free. Suppose that {vﬁ»n)}nez,lgjgkn and {ugn)}nezggigzn are bases of P and

(m)
J

W= T

meZALj<km

ker 7 respectively labelled in such a way that v:’ and ul(-") have degree n. Let

for corresponding homogeneous ay?’n) € S. For each n € Z, we denote by A™ the

kn X ly-matriz whose jith entry is ag;’") €F. Then d(m) =), s 1kr Amy=n,

3.4. Sections of sheaves

For a subspace Z C V we define the space of sections over T by

'z, #):= {m € H M* ’ Pa,5(Ma) = py,E(my)

zET

for all edges F : x y with z,y € I}.

If 7/ C Z, the we have the natural restriction map I'(Z, . #) — I'(Z', #) The space of
global sections is defined by I'(.#) := I'(V, #). We have the following sheaf property of
sections.

Lemma 3.4.1. Let Z C V be an open subset and I = J,¢,;
m € [[,cz A" is a section of A if and only if m|z; is a section of A for every j € J.

Z; be an open covering. Then

Proof. Let F : x+ —— y be an edge such that x,y € Z. Then there is an index j € J
such that z € Z;. As Z; is open, we get y € Z;, whence p, g(my) = py.p(my). O
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We often consider the case where T = {z,y} is a two-element set. Then we write
(a, b) for the element of .#Z% @ .#Y whose value at x is a and at y is b. To stipulate that
the first position corresponds to x and the second to y, we write the set of sections as
I'({x,y}, #).

We consider also the following important special case. The structure sheaf Z is the
sheaf defined by

o % .= § for any vertex x;
o ZE .= S/I(E)S for any edge E;
o every p, g is the natural projection S — S/I(E).

We set Z := I'(%). One checks elementarily that Z is a commutative, associative,
unital S-algebra with respect to coordinatewise addition and multiplication. We call Z
the structure algebra of G. Clearly, I'(A) is a Z-module under componentwise action.

For moment graphs on W described in Section 2.8, we consider the following elements
c* € Z, where \ € X , defined by c;‘ = m for any = € W. These elements were defined
by P. Fiebig [7]. We shall also often use the following elements of Z:

C)\,m’ — C)\ 7:17( )

2

Their characteristic property following directly from the definitions is as follows.

Lemma 3.4.2. ¢} = 0. For any o € }A%, we have ¢} = —x(a).
3.5. Conditions on sheaves

We consider here sheaves satisfying various properties.

Definition 3.5.1.

(1) A sheaf # is called generated by global sections if for any € V and a € .#*, there
exists a section m € I'(#) with m, = a.

(2) A sheaf .# is called flabby if the natural restriction I'(Z,.#) — I'(Z', #) is surjec-
tive for any open subsets Z' C Z C V.

Suppose that supp .# is finite. Then .# is flabby if and only if the natural restriction
I'(Vsy, M) — I'(Vsy, A) is surjective for any x € V. Indeed, suppose the last statement
is true and Z' C 7 are open subsets of V. Take a section m € I'(Z', #). By Lemma 3.4.1,
we can extend it to Z" := 7' U (T \ [supp .#]) by setting u, := 0 for all y € Z\ [supp .Z].

Note that Z/ € Z” € Z and Z \ Z” C [supp .#]. Since supp.# is finite, its closure
[supp .#] is finite as we stipulated in Section 2.2. So Z \ Z" is also finite. Choose a
maximal (with respect to inclusion) open subset & C V such that 7”7 C U C T and
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m is extendable to U. If U # Z, then we take for x a maximal element of Z \ U. We
have Vs, C U and we can extend m|y., to Vs,. Using Lemma 3.4.1, we can extend m
from U to U U {z}, which contradicts the maximality of ¢/. This argument is given in |9,
Lemma 3.2], where the set V is however supposed to be finite.

Now we define the class of sheaves most important to us. This definition is taken
from [9, Section 3.8] to which we added a finiteness condition.

Definition 3.5.2. A sheaf &2 is called projective if the following conditions are satisfied:

(P1)
(P2)
(P3) for any edge E : x —2 y, the restriction py.E is surjective with kernel a 2?Y;
(P4)

supp & is finite;
each &% is a free module in C;

P is generated by global sections and flabby.

Lemma 3.5.3. Any restriction p,. g : 2% — P for a projective sheaf P is surjective.

Proof. Let & be a projective sheaf. By (P3), it suffices to consider the case of an edge
E :x % y. Take an arbitrary b € 2. By (P3), there is some a € ZY such that
py,e(a) =b. Since & is generated by global section, there is some m € I'(Z?) with m, =
a. By definition of a global section, we have p, g(ma) = py,p(my) = py,p(a) =>. O

Proposition 3.5.4. (See [8, Lemma 2.7].) Let & be a projective sheaf on G and x € W.
Suppose that Gsupp 2 satisfies the GKM-property. Denote by a1, ...,y the labels of all
edges that end at x. Then P, = ay -+ Py

Proof. The inclusion ay-- oy, C &, is obvious and holds without any GKM-
restriction. To prove the inverse inclusion, it suffices to consider the case £2% #£ 0. Take
any m € ;. By Lemma 3.5.3, all edges ending at x are edges of Ggypp 2. Therefore
their labels «1,...,q; are pairwise not proportional and by property (P3) of projec-
tive sheaves, there exists some m’ € 2% such that m = a1 ---aym’. Now take an edge
Bzt y. If 2Y = 0 then again by (P3), we get 2F = 0 and p, p(m/) = 0.If 2Y £0
then F is an edge of Gsupp # and aq,...,aq, B are all pairwise not proportional. Thus
0 = ppp(m) =y aips,e(m') and we can cancel out aj -+ in PF = PY/3PY.
Hence p, g(m') =0. O

Consider the module .#°% C []pcgs: 47 consisting of all r € []zces. #F having
the form rg = p, g(m,) for all edges E : + —— y, where m € I'(Vs,, .#). Moreover,
consider the projection pg s, @ A" = [[pcgss AMF | taking an element a € .4 to r €
[pegse #F, where rg = py i(a) for all edges E : & — y. Obviously, ker py 50 = Ay

Directly from our definitions and the remark above we get the following simple fact.
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Lemma 3.5.5. (See [9, Lemma 3.3].) Let A be a sheaf on G with finite support. The
sheaf M is flabby and generated by global sections if and only if M°% = py s.(M*) for
any x € V.

Definition 3.5.6. Let & be a projective sheaf. Consider the Z[v, v~1]-module Z[v,v=1]V
of all formal linear combinations fixq +- - -+ fn2n, where f; € Z[v,v™1] and x; € V. The
defect of &2 is the following element of Z[v, v=1]V:

d(gz) = Z d(pw76w)x'

zeV

Here p, s, is considered as surjective homomorphism #* — 29 and d in the right-
hand side denotes the defect of this map (cf. Definition 3.3.2).
We obviously have d(Z(r)) = v"d(£) and d(¥ @& &¥') = d(L) + d(F).

3.6. Braden—MacPherson sheaves

The following proposition is actually a definition (cf. [3] and also [6, Theorem 4.2]
and [9, Section 3.5]).

Proposition 3.6.1. For each w € V, there is a unique up to isomorphism sheaf B(w)
on G, called the Braden—MacPherson sheaf, with the following properties:

(1) supp B(w) C Vg and B(w)* = 8S.

(2) For any edge E : x — v, the restriction py.E 18 surjective with kernel a%(w)Y.

(3) Foranyx €V, the image of py.s. is B(w)°®. For any x € V\{w}, the homomorphism
pzsz 2 Bw)® — B(w)° is a projective cover in C.

By Lemma 3.5.5, Braden—MacPherson sheaves are projective and by [9, Proposi-
tion 3.5(c)] indecomposable. We clearly have d(#(w)) = w (the last statement of part (3)
in the above proposition is wrong for = w).

Proposition 3.6.2. (See [9, Proposition 3.12].) For any projective sheaf &, there is an
isomorphism of sheaves

P = B(21)(r1) © B(z)(r2) © -~ B(25)(rs)

with suitable z1,29,...,2s € V and r1,79,...,rs € Z. The pairs (z;,r;) are determined
uniquely up to order by L.

Proof. As [supp ] is finite, the existence of such a decomposition for P[gp;, o) follows
from [9, Proposition 3.12]. We extend it to all of V, using the fact that [supp Z] is closed
and applying property (P3) of projective sheaves.
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To prove uniqueness, we can apply d to both sides of our decomposition. We get

d(£) = d(%’(zﬁ(rﬁ) + d(%(22)<7‘2>) + -+ d(%(zs)(rs»

=0z v+ F 0 2. O (4)
We shall use Corollary 3.3.3 for calculating the required defects.

Example 3.6.3. Let us explain why we consider only sheaves with finite support. Consider
the moment graph G with set of vertices Z with the usual order and edges of the form
i — i + 1 labelled in an arbitrary way. Take a sheaf .# on G such that .#* = S for
any i € Z, #F = S/I(E)S for any edge F : i — i+ 1 and p; g is the natural projec-
tion. This sheaf obviously satisfies properties (P2)—(P4) of Definition 3.5.2. However, the
projection p; 5 : ' — M is a projective cover for any i € Z. So the defect (should
we define it for sheaves with infinite support) of .# is zero, whereas .# # 0.

3.7. Functor 93,

Let us focus on sheaves on the moment graph G defined by an irreducible root system R
and a field F (cf. Section 2.8). In this section, we define the functor ¥3,, from the category
of projective sheaves on G to the category of projective sheaves on G*. This definition is
borrowed from [7, Section 2.9] with one small change that we need to ensure that this
functor takes projective sheaves to projective sheaves.

Let & be a projective sheaf on Q\ and s € S. We define the sheaf .4 = 93, P on é\
as follows. For a vertex & = {z,zs} € We, we set N = I'({z,zs}, 2).

Now consider an edge E : £ — 7 of és corresponding to an edge F/ : x —— y in é
Denote by A4 E the image of AV = I'({y,ys}, &) under the projection py g ® pys,Es
DY@ PV — P @ PFs. The restriction of this projection on .A4¥ is denoted by Py.E-
Note that #¥ is not in general 2 @& 2F% as in Fiebig’s definition. We redefine 93,
here only to make it preserve projective sheaves.

The definition of py, i 1s natural in view of property (P3) of projective sheaves. How-
ever, we still need to define p; .

Lemma 3.7.1. Let &2 be a projective sheaf on G.

(1) The restriction I'() — I'({z,xs}, &) is surjective.
(2) In the above notation, py g @ pus.ps(NT) = N E.

Proof. (1) Let s = s, for the corresponding o € II. Without loss of generality we can as-

z(a)

sume that < xs. Then x(a)) > 0 by Proposition 2.6.1. Consider the edge F' : £ — xs.
Let (u,v) € I'({z,zs}, &). Let us extend u to a global section ¢ € I'(Z?) (that is ¢, = u).
Then (46— @y, v —qys) = (0,v—qus) € I'({z, x5}, ). Hence pys 7 (v —qus) = pz,r(0) = 0.

Therefore by property (P3) of the projective sheaves, we get v — 5 € () 2. So we
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can write v — ¢,s = z(a)v’ for a suitable v' € £**. Continue v’ to a global section
r e '(P) (e rys =v') and set ¢ := g — ¢®%r This is a global section of & satisfying
¢, = u and ¢}, = v, as one can easily see from Lemma 3.4.2.

(2) Follows from (1). O

Now we can take the restriction p, g @ pys,ps to A for Pz B

Lemma 3.7.2. Let & be a projective sheaf on G. Suppose that ésupp o satisfies the GKM-
property. Then 93, is projective.

Proof. Let us take o € II such that s = so. Set A := 92, . We are going to check for
A properties (P1)—(P4) from the definition of a projective sheaf.

(P1) It follows from supp 9,2 C supp & = 7, (supp 2).

(P2) Take any x € W such that < zs. The natural short exact sequence

0 —— z(a)P* — s ¥* = p= 0

splits as P7 is free (here ¢ adds 0 to the 27* component and 7 takes the 2% component).
Hence A% 2 2% @ x(a) P78 = PT @ PT5(-2).

(P3) Consider an edge E:z y of §S corresponding to an edge F : x SN Y
in G. The restriction py. i 1s surjective by construction. We need to prove that its kernel
is yAY.

We denote by F the edge y ys. Let (u,v) € #Y = I'{y,ys}, P) be a
section such that p; g(u,v) = 0. This means that p, p(u) = 0 and pys gs(v) = 0. By

+y(a)

property (P3) of projective sheaves, we get u = yu’ and v = v’ for some v’ € Y and
v € PYs,

Since (u,v) = v(v',v’), it suffices to prove (uv',v') € I'({y,ys}, ). It is enough to
consider the case y, ys € supp &, since otherwise we would get #F = 0 by Lemma 3.5.3.
Hence 2F = PV 4PV # 0. Since p, g is surjective by Lemma 3.5.3, we get 2% # 0
and = € supp &. Therefore E and F are edges of ésupp 2 and their labels v and ifa)
are not proportional by hypothesis. Therefore we can cancel out v in 2. We have

VPy,F (ul) = py,F(u) = pys,F('U) = ’Ypys,F(U/)-

Cancelling out vy, we get p, p(u') = pys,p(v"), whence (v',v") € I'({y,ys}, P) = AV,

(P4) The sheaf .4 is generated by global sections by Lemma 3.7.1 and is flabby, since
& is flabby and the full preimage of an open subset of W under the natural projection
W — W is open. 0O
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3.8. Functor V%,

Let us recall the definition of this functor given in [7, Section 2.9]. Let s = s, € S,
where a € II. Recall that 7 = {z,zs} and 2 denotes the image of 2 C W under the
natural projection 7y : W — We.

Let 2 be a projective sheaf on G*. We define the sheaf .4 := 92+ as follows. For
a vertex x € 17\/\, we set A% := P%. Let E be an edge of G. If E connects vertices x and
s for some @ € W, then we set .#F := 2% /I(E) 2% and take for po,p and pgs g the
natural projections. Suppose now that F connects vertices  and y such that z # ys. In
this case Z and 7 are connected by the edge E. We set .#F := @E, pa,E = Pz g and
Py,E = Py E-

From this definition, we get the following obvious formula

supp 95,2 = 7, " (supp ). (5)

In this section, we shall use the following notation. Let 2 C W be such that 2 = Qs

and & be a sheaf on Q\s. For any section a € F(I_Z, ), we denote by a,y: the section of
I2,93,,2) defined by (aout)s = az for any x € (2.
Proposition 3.8.1. (See [7, Lemma 2.6].) Let & be a projective sheaf on Gsand QCW
be such that 2 = 2s. Suppose that é}mﬂs_l(supp ») satisfies the GKM-property. Then
any section w € I'(£2,9%,,,27) has a unique representation u = aout + c*bout, where
a,be I'(2,2).

Proof. As noted in the proof of Lemma 2.6 from [7], some GKM-restriction is needed
in the case our ground field has positive characteristic. We only need to write this
GKM-restriction exactly (assuming that & is projective). In order to make our notation
compatible with Fiebig’s notation, we assume ¢ = & and F = 93, Z.

The only place where the GKM-restriction emerges is the proof of the equality
pz,2(my) = py,p(m,) for any two vertices z,y € {2 connected by an edge E. Here m €
I'(£2,.F) is a section such that m, = —m., for any z € 2 and m’ := (c®)~tm. We may
obviously assume that y # xs and .# ¥ # 0. Then by definition, @E # 0. Since ¥ is pro-
jective, we have by Lemma 3.5.3 that 9% # 0 and 9¥ # 0. Hence Z, i € supp¥. Therefore

all elements x, zs,y,ys belong to 7 (supp¥) and of course to 2. Applying the GKM-

property of the hypothesis of the current lemma to the edges x yand x s, we
get that I(E) and () are not proportional. Now .ZZ = @F is a free S/I(E)S-module.
From py,5(ms) = py.p(my), we get (a(a) + 1(E)S)pe. () = (y(a) + 1(E)S)py.(m).
So cancelling out the nonzero element z(a) +1(E)S = y(a) +1(E)S, we get the required
equality pg,p(mg) = py,p(m;). O

Lemma 3.8.2. Let &2 be a projective sheaf on Ge. Suppose that QAﬂ ) satisfies the

GKM-property. Then ¥, is a projective sheaf on G. If & is indecomposable, then so
is 95, 2.

out

= (supp 2
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Proof. Let us take a € I such that s = so. Set ./ := 92
M properties (P1)-(P4) from the definition of a projective sheaf.
(P1) It follows from (5).
(P2) Since .#* = P%, then any .4 is a free module.
(

P3) It is satisfied by construction.

Z. We are going to check for

(P4) First, we prove that .# is generated by global sections. Take any m € .#%. Then
m € P%. Since & is generated by global sections (as a projective sheaf) there is some
global section u € I'(4?) such that uz = m. Consider the global section w,,: € I'(A).
We have (Uoyt)r = uz = m.

It remains to prove that .# is flabby. As we noted after Definition 3.5.1, it is enough
to prove that any section u € F(WM;, M) can be extended to a section of F(W>m, M).

Case 1: x < zs. Consider the set {2 := W>x \ {xs}. We claim £2s = 2. Indeed, take
any y € {2. Then by Corollary 2.7.4(2), we get © < ys. Moreover, we have ys # = and
ys # xs. Thus we have proved {2 C {2s. The inverse inclusion is obtained from this one
by multiplying it by s on the right.

By Proposition 3.8.1, we get ulp = aout + *boys for some a,b € I'(£2, #). Note
that 2 = 17\/\;50 Indeed, take any y € 2. Then y > x and y # xs. The first inequality
implies ¥ > x. The equality is impossible, as otherwise we would get y = x or y = xs.
Thus y € Wif Let on the contrary § > Z. Then y # xs and min{y,ys} > z. In any
case y > z. Therefore y € £2 and ¢ € 1.

Since & is flabby, we can extend b from 2 = Wim to V/\7> We define the function

u € HyEW A by letting u take the old values on Ws, and setting wy := tys+2x()bz.
We claim u € F(W;m,,///). Since the edge F' : & — x5 has label £xz(a), we have

por (1) = pus,r(tizs). Now take an edge E : 2 — y distinct from F. We have then
y,ys € 2. Note that z(a) = y(a) (mod I(E).#F) by (2). We get
P8 (Us) = pa, i (s + 22()bz) = pas,bs(Uas) + 22(a) g 5(bz)
= pys,s(tys) +29(@)py 5(bg) = pys, ms ((@out)ys + y5(a) (bour)ys)
+2y(a)py, 5(by)
= pys,5s ((@out)ys) — Y(@)pys,Bs ((bout)ys) + 2y()py 5 (by)
— y(@)py,i(by) + 2y(@)py, 5 (by) = Py, i(ag) + y(a)py, 5 (by)
= py, ( aout)y) + y(@)py. e ((bout)y) = py.2((@out)y + y(@) (bour)y)

For the remaining case, we have to prove that (2 is open. Indeed, suppose that y € {2
and z > y. Then z > y > x. We cannot have z = xs, since otherwise we would get
xs >y > x, which is impossible in view of ¢(xs) = ¢(z) + 1.

Case 2: x > xs. Set 2 := V/\7>xs \ {z}. Note that 17\/\%c C 2 and 2 = s as is
shown in case 1. First, we extend u to a section of I'({2,.#'). Consider the open subset
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Q' =W, U (2\ [supp .#]). By Lemma 3.4.1, we can extend u to {2’ by setting u, := 0
for all y € 2\ [supp.#]. Obviously WM; C 2 C 2 and 2\ 2 C [supp.#]. Since
supp . is finite, 2\ 2’ is also finite. Choose a maximal (with respect to inclusion) open
subset 2 C W such that £2' C U C 2 and m is extendable to U. It is enough to consider
the case U # (2.

Choose a maximal element y € 2\ . Then W>y C U. We claim that y < ys. Indeed,
suppose on the contrary that y > ys. Then by the lifting property, we derive from zs < y
that x < y. By the definition of 2, we get x < y and y € 2 C U, which is a contradiction.

Now that we know y < ys, we can extend u|W - to W>y by case 1. Hence we have
extended u to the open subset U LI {y}, which contradicts the choice of . Therefore, we
have proved U = {2.

We have obtained an extension of w to {2, which we denote also by u. By Proposi-
tion 3.8.1, we have the representation u|p = @ous + *boys for some a,b € I'(2, P).
By case 1, we have 2 = W\; As & is flabby, we can extend a and b to ng and set
Uy == agz + z(a)bz. We claim that u so defined is a section of F(W>m, ). Indeed, take
an edge E : 2 —— y. We have

Now suppose that & is indecomposable. By Plopomtlon 3.6.2, we get & = B°(w)(r)
for some w € W?. For definiteness, we assume that w € W is chosen so that ws < w.
We claim that 4 = 93,2 = B(w)(r).

Suppose that .#% # 0. Then 2% # 0 and T < w. If Z = w, then either x = w or
x=ws < w. If £ <w, then min{z, rs} < ws. Thus either z < ws < w or s < ws < w
and xs < z. Applying the lifting property in the second case to the inequality zs < w,
we get x < w. Thus we have proved supp.# C gA@,. Moreover, we have AV = P? =
B(w){r)® = S(r).

It remains to prove that p, s, : 4% — .#°® is a projective cover for any = # w. By
our construction, we get

ker pz 5z if vs < x;
ker Px,dx = —_— .
ker pz sz Nx(a) 2% if x < xs.

In the second case, we get ker p; s, C a:( )P* C mA*, whence py s, is a projective
cover. In the first case, we have Z # w. Hence ker p, 5, = ker pz sz C mP* = m.#* and
Pz.6x 1S again a projective cover. 0O
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3.9. Functor 9°

We define 9° := 9%, o 95, . This functor is applicable to projective sheaves & such
that 95,2 is also projective. The combination of Lemmas 3.7.2 and 3.8.2 yields the
following result.

Theorem 3.9.1. Let & be a projective sheaf such that ésupp PU(supp 2)s Satisfies the
GKM-property. Then the sheaf 9° P is well defined and projective with support contained
in supp & U (supp &)s.

Proof. By Lemma 3.7.2, the sheaf 95, & is projective. As is noted in part (P1) of the
proof of this lemma, supp¥$,, & C supp Z. Since 7, ! (supp &) = supp £ U (supp &)s,
Lemma 3.8.2 implies that ¥* % = ¥

out

(95,2) is also projective. O
3.10. Characters of sheaves

We consider the ring Z[v, v!] of Laurent polynomials and define the graded character
of free modules in C by

k' S @ - @ S) =o't 4 - 4 ol

Obviously, 1k’ 0 = 0 and rk’ M (r) = v" 1k’ M for any free M in C.

Let H = 7—[(17\)\, S) be the Hecke algebra with basis {H, | z € 17\/\} as in [12, Section 2].
We shall also use the Kazhdan—Lusztig basis {H, | € 17\/\} introduced in the same
paper.

For any sheaf .#Z on G with finite support whose all stalks .#Z* are free modules in C
and w € )7\/\, we define

W)=Y vk a" - H,
IEW

P. Fiebig formulated the following conjecture on the characters of Braden—MacPherson
sheaves, which as he showed in [7] and [6] implies Lusztig’s conjecture.

Conjecture 3.10.1. (See [8, Conjecture 2.10].) If w € W is such that gAgw satisfies the
GKM-property, then v*") h(B(w)) = H,,.

Theorem 4.7 from [8] shows that this conjecture is true if the base field F has charac-
teristic 0. On the other hand, there is recent computational evidence that this conjecture
is false for positive characteristic.

From the proof of Lemma 3.7.2, we easily derive the following fact (cf. [7, Lemma 4.5])

Lemma 3.10.2. For any projective sheaf &2 on G and s € g, we have h(¥*P) =
v P)H .
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Proof. Recall the following formula from [12]: for any x € WandseS , we have

(6)

H.s +vH, if xs > x;
Hxﬂs =
H,,+v'H, ifzs<uz.

We set W := {z € w | x < xs}. Clearly, W =W UW's. By part (P2) of the proof of
Lemma 3.7.2, we get

h(0*2) = 3 o @ (03, 2) Hy = Y v~k I ({w, x5}, 2)H,

zeW zeW

= Z o) ! F({x,l‘s}, ,@)HI + Z o t@s) 1)/ F({x&x}, '@)Hms
zeW’ zeW’

= Z v @) (rk' P 42k QZ’”S) (Hw + v_le).
zeEW’

On the other hand, by (6), we get

WP)H, = v Ok P"H H,

chVAV
_ Z @) K (Hys + vH,) + Z o t@s) ! gpms (Ha + 'Ulea:s)
zEW' zEW’
=0 Z v~ @) (H,; + v_lH,;S) (rk' DPT 42K @“).
zEW’

The comparison of the above formulas gives the required result. 0O
4. Bases for Bott—Samelson sheaves

In this section, we are going to look closer at Fiebig’s realization (see [8, Section 6])
of Bott—Samelson modules.

4.1. Sequences

We reserve the symbol x to denote the blank space in sequences. Let s = (s1,..., )
be a sequence in S. Any sequence obtained from s by replacing some of its entries with
 is called a subsequence of s. The set of all subsequences o of s is denoted by I(s). If we
multiply the entries of ¢ respecting their order and ignore %, then we get the element
of W denoted by ev(o). For any Z C W, we set I(s)z := {0 € I(s) | ev(o) € T}.
Of particular interest is the set I(s), := I(s){;) = {0 € I(s) | ev(0) = x}.

We multiply sequences by concatenation and truncate by ’: if o = (01,...,07) and
T = (T1,...,Tm), then o7 = (01,...,0,,71,...,7Tm) and ¢’ = (01,...,0,—1). In the
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notation of this multiplication, we prefer to write * instead of (x) and s instead of (s).
We also apply these operations to subsets elementwise. For example, (x, $1)s2(s2,*, 1) =
(%, 81, 82, 82, %, s1) and {(s1,*, s1), (81, S2, %) }* = {(s1, *, 51, %), (81, S2, %, %) }.

Note that s € I(s) and |I(s)| = 2/sI. We denote the empty sequence by @ (just like
the empty set). For example, I(@) = {@} and I(@), = {@} if t = e and I(@), = @
otherwise. Another useful formulas, which we shall often use, are

I(s) =1(s")x L I(s)s, I(s). =1I(s") xUI(s") s, (7)

zSs

where s # @ and s is the last (rightmost) element of s.
4.2. Bott-Samelson sheaves

Let s = (s1,...,5) be a sequence in S. We denote J(s) = {ev(o) | 0 € I(s)}.
In particular, J(&) = {e}. The deletion and subword properties (Propositions 2.7.5
and 2.7.1) imply the following property of J(s): if x € J(s) and y < z, then y € J(s).

Definition 4.2.1. Let s = (s1,...,5;) be a sequence in S such that Q\J(S) satisfies the
GKM-property. The Bott—Samelson sheaf corresponding to this sequence is #(s) :=
o091 A (e).

In this definition, #(e) is the Braden-MacPherson sheaf with defect e. It is a very
simple sheaf defined by %(e)¢ = S, B(e)* = 0 for x # e, B(e)? = 0 and p, g = 0 for
all edges E. Thus #(2) = H(e).

Lemma 4.2.2. Let s = (s1,...,5) be a sequence in S such that Q\J(S) satisfies the
GKM-property. Then AB(s) is well-defined and projective with support contained in J(s)
and o'h(B(s)) = (H,, +v)- - (Hy, +v),

Proof. We prove by induction on i = 0,...,1 that 9% o --- 0 951 %(e) is a well-defined
projective sheaf with support contained in J((s1,. .., s;)). The induction starts trivially
with the case ¢ = 0, so suppose that i < [ and the claim for i is true. Then our claim
is also true for ¢ + 1 by Theorem 3.9.1, since J((s1,...,8:)) U J((S1,...,8:))8i+1 C
J((s1,---,8i+1))-

The second statement follows from Lemma 3.10.2. O

4.8. Module @061(5) Q

As we noted in Section 2.8, & # 0 for any « € R. Therefore we can consider the
localization of S with respect to all these elements: Q := S[a™! | a € 1/%] We consider
the direct sum @@,¢;(;) @ as an S-module with the componentwise action of S as well
as a Z-module with the following action
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(2f)o = Zev(rr)fa (8)

for any z € Z and f € @Uel(s) Q. For example,

(), = ev(@)N) /s 9)

or in a different form (¢*f), = z(\)f, for o € I(s),.

For any nonempty sequence s = (s1,...,8;) in g, we have the diagonal embedding
A Doersny @ = Boers) @ defined by A(f)os = A(f)os, = fo for any o € I(s’) and
the antidiagonal embedding A~ : ®UEI(S’) Q — @UEI(S) Q defined by

A7 (flox = fo and A7 (f)ys, = —f, forany o e I(s’).

Let t: D, cr5) Q@ = Doers) @ be the map given by ¢(f)ox = foss L(f)os, = for- As
2 is invertible in ¥, the module P, I(s) () decomposes into a direct sum of its ¢-invariant
elements (image of A) and (-antiinvariant elements (image of A™).

We can translate any S-module endomorphism ¢ of € " Q@ to the S-module

endomorphism A% of @ﬂel(s) Q by

o€l(s

A?(A(f) = Ale(f),  AP(AT(S)) = A7 (e(f) (10)

for any f € B, Q-
We shall actually need the submodule B, ¢;s) S C Byey(s) @- It is an S-submodule
as well as a Z-submodule. The embeddings A and A~ restrict well to these submodules.

4.4. Module X(s)

The following definition is due to P. Fiebig.

Definition 4.4.1. (See [8, Definition 6.1].) We define for all sequences s = (sq,...,s;) in
S the S-submodule X(s) C P, ¢ () S by the following inductive rule:

(1) X(2) == Brer(e)S =5
(2) if s = (s1,...,5) is not empty, then X(s) := A(X(s")) + ¢ A(X(s')), where oy € IT
is such that s; = s,,.

Proposition 4.4.2. (See [8, Proposition 6.14(1)].) X(s) is stable under the action of Z.

The second part of Proposition 6.14 from [8] says that X'(s) is isomorphic as a
Z-module to the Bott—Samelson module corresponding to s. We want to prove a similar
result stating that under some GKM-restriction there is an isomorphism from I'(#(s))
to X(s) that agrees well with restrictions (Theorem 4.5.1).



398 V. Shchigolev / Journal of Algebra 406 (2014) 376—418

4.5. Comparison theorem

Following Fiebig’s paper [8], we define for any Z C W the S-modules MZ and M7 for
any S-submodule M C @, 1(s) @ as follows:

M?* = {fl1e) | f € M}, Mz = {fl1); | f € M and flrs)n1(s)> = 0}

By definition My ¢ M7T C Doer(s), @- Note that Mz = MT =0if I(s)r = @. We also
abbreviate M? := M{#} and M, := M{,y. For an element z € 17\/\, a sheaf . on G and
an S-submodule M C €D, ¢ () @, we define the natural restrictions r? D M) — M
and 2 : M — M® by r%(m) := m, and rM (f) := f|1(s), -

Theorem 4.5.1. Let s be a sequence in S such that Q\J(s) satisfies the GKM-property.
Then there exist a Z-module isomorphism ¢(s) : I'(#(s)) — X(s) and S-module iso-
morphisms ¢, (s) : B(s)* — X(s)* for each x € W such. that the following diagrams are
commutative:

Proof. First, we construct inductively on the length of s, the morphism of S-modules
Pu(s) : B(s)® = Doers), O for each 2 € W. In the case s = &, we define ¢, (9) to be
the identity map if x = e and the zero map otherwise.

For a nonempty sequence s = (s1,...,s;), we define ¢, (s) to be the composition
Pa (S/)GBLPISZ (S/)

B(s)® =T ({x, 28}, B(s)) —» B(s)" ® B(s")" Docis). S

(see the second formula of (7)). Now we define ¢(s) to be the composition

P((6) = Byey #6) = Brery) S
By induction, each ¢, (s) is a morphism of S-modules. Hence and from our definition (8),
we obtain that ¢(s) is a morphism of Z-modules. Moreover, induction shows that each
vz (s) is injective. Hence ¢(s) is also injective.

We shall prove inductively on the length of s that the image of (s) is A'(s). This is
obviously true s = @ as I(@) = {e} and ¢.(9) is the identity map. So suppose that
s = (81,...,5) is a nonempty sequence in S and the claim is proved for the shorter
sequence s’ = (s1,...,5-1). Let us choose oy € IT so that S| = Sq,-

We can identify I'(¢::,A(s')) and I'(A(s')) in the obvious way. So in the notation of
Section 3.8, we have for any section a € I'(%(s')) the section a,y € I'(A(s)) defined by

—

(Gout)z = (Az,azs,) € T'({x, 281}, B(s")). Now Proposition 3.8.1 for 2 =W states that
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[(#6) = T(B(s)),., ® " T(B()),., (11)

out
The definitions of ¢(s) and ¢,(s) above show that ¢(s)(aout) = A(p(s’)(a)) for any
a € T'(A(s')). Hence by induction I'(A(s’))ou: is mapped by ¢(s) onto A(X(s')). As
©(s) is a Z-module homomorphism, the decomposition (11) and Definition 4.4.1 imply
that I'(#(s)) is mapped by ¢(s) onto X(s).

It is natural to ask now what is the image of ¢,(s). To this end, note that our
definitions automatically imply the commutativity of the following diagram:

r(#(s) 22 x(s)

T;ﬂ(s)l l@(s)

T T(S)
B(s)r S22 Boere), S

(s)

The image of ry ®) g by definition X'(s)*. As ¢(s) is an isomorphism and rZ®) is surjec-

tive, the image of p,(s) is also X (s)*. So p.(s) : Z(s)* — X(s)® is an isomorphism. O

Corollary 4.5.2. Let s be a sequence in S such that éJ(S) satisfies the GKM-property. For

any element x € W, the isomorphism ¢(s), in Theorem J.5.1 restricts to the isomor-
phism B(s)y — X(8)s.

Proof. Take any u € #(s),. Set my := wand m,, := 0 for any y # x. Then m € I'(%(s)).
By the commutativity of the diagram in Theorem 4.5.1, we get ¢(s)(m)|r(s), = 0 for any
y # x. Hence ¢(s)(m)|1(s), € X(8)e-

On the other hand, take any f € X(s),. Then f = g|;(), for some g € X(s) such
that g|7s)\1(s), = 0. Consider the section m := ¢(s)~*(g). By the commutativity of
the diagram in Theorem 4.5.1, we get ¢, (s)(m,) = 0, whence m, = 0, as @,(s) is an
isomorphism. Thus we have proved that m, € #(s),. We have ¢, (s)(m,) = f.

Therefore, ¢, (s) restricts to the surjective homomorphism #(s), — X (s),. It is an
isomorphism as ¢, (s) has zero kernel. O

Corollary 4.5.3. Let s = (s1,...,8;) be a sequence in S such that Q\J(S) satisfies the
GKM-property. Suppose that y —— x is an edge of G and f € X(s) is such that

f|1(s)y = 0. Then f|1s), = aglis), for some g € X(s).

Proof. Consider the section m := (s)~!(f) € I'(#(s)). By Theorem 4.5.1, we obtain
©y(s)(my) = 0. Since ¢, (s) is an isomorphism, we have m, = 0. Therefore, p, p(m,) =
py.E(my) = 0. Condition (P3) of Definition 3.5.2 implies m, = au for some u € %(s)”.
Let us extend u to a global section n € I'(#(s)). Then we have (m — an),, = 0. Thus by

(s)

Theorem 4.5.1, we get 7 > o ¢(s)(m — an) = 0. Hence (f — ap(s)(n))|r,s) = 0 and we

can take g 1= ¢(s)(n). O
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4.6. Extended bases of X (s)*
This notion is useful to compute an actual S-basis of X(s)* in Section 4.8.

Definition 4.6.1. Let s be a sequence in S and T C W be a subset such that the graded
S-module X (s)7 is free. A list of homogeneous functions fi,..., f,, € X(s) is called an
extended basis of X (s)? if the restrictions fi|r(s);,-- -, fim|1(s)z form an S-basis of X (s)”.

In the following lemma and in the rest of the paper, we shall often use together the
S-module and the Z-module structures on X(s).

Lemma 4.6.2. Let s = (s1,...,5;) be a sequence in S such that Cz](s) satisfies the GKM-
property. Take © € W such that © < xs; and choose o € IT so that S1 = So,- If

fis-+-, fm is an extended basis of X(s')* and g1, ..., gk is an extended basis of X (s')*"!,
then fi,..., fm, ¢ %g1, ..., % gy is an extended basis of X (s'){=@si},

Proof. We shall use in this proof Lemma 3.4.2 to evaluate ¢**. First, we prove that
the above elements generate X (s'){*7%1} as an S-module. Take an arbitrary function
f € X(s’). By Definition 4.6.1, there exist homogeneous ay, ..., a,;, € S such that

f|I(s’)I:(ailf1+"'+amfm)|l(s’)z- (12)

As we have the edge = M xs;, Corollary 4.5.3 applied to it and the function f —
aif1 — -+ — amfm implies the existence of g € X'(s) such that

(f - alfl — = amfm)l](s’)“l = x(al)gh(s’)ml- (13)

Now by Definition 4.6.1, there exist homogeneous b1, ..., b; € S such that

9lrs,., = g+ 4+ begi)l1(s1)..., - (14)

We claim that flre)uresn,., = (afi + - + amfm — bic™%g —
— bkco‘“mgk)|I(S/)$|_|I(S/)W. Indeed, take any o € I(s'),. The right-hand side evaluated
at o equals a1(f1)s + +* + am(fm)o- By (12), this sum is exactly f,. Now take any
o € I(s')ss,- The right-hand side evaluated at o equals a1(f1)s + -+ + am(fm)o +
x(ag)bigr + - - - + 2(ay)brgr. By (13) and (14), we again get f,.

It remains to prove that the restrictions to I(s),UI(s)ys, of our functions are indepen-

Qy,T

dent over S. Suppose that (a1 fi+- -+ am frn—b1c* g1 —- - -—bi.C gk)|1(5’)zu1(s’)zs, = 0.
Restricting to I(s),, we get (a1 fi+- -+ amfm)|1(s), =0, whence ay = --- = a,,, = 0 by
Definition 4.6.1. Now restricting to I(s)zs,, we get @(cw)(bigi + -+ + bxgr)|1(s),., = 0,
whence by = -+ = by = 0 by the same definition. 0O
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Lemma 4.6.3. Let s = (s1,...,5;) be a sequence in S such that §J(s) satisfies the GKM-
property. Take x € W such that © < xs; and choose a; € IT so that S1 = Sq,- Let
fis-eos fm and g1,. .., g be extended bases of X (s')* and X (s')*5!, respectively. Then

Af1)s - Afm)s A g1) 5., A (< gy)
is an extended basis of both X (s)* and X (s)™s.

Proof. We are going to prove the statement for X'(s)” and indicate which alterations
should be made for X(s)**t. We set for brevity fi4; := A(c**g;) for i =1,...,k and
shall prove that A(f1),..., A(fm+k) is an extended basis of X (s)®.

First, we prove that the restrictions fi|rs),, .-, fm+klr(s), generate X'(s)” as an
S-module. Take an arbitrary function f € X(s) and write it as f = A(a) + ¢ A(b)
for suitable a,b € X(s’). Consider the function f* = a + x(a;)b. We claim

Flisr =AU 1s), - (15)
Indeed I(s), = I(s')y* U I(s)zs, 81 by (7). First, take an arbitrary o € I(s'),. Then
for = A(@)gs + (MAD)),,, = Ala)ox + ev(ox) () A(D)os
= aq +a(a)by = [ = A(f1)

ox’

For an arbitrary o € I(s').s,, a similar calculation yields f,s, = A(f1)ys,. Lemma 4.6.2

implies that there exist homogeneous aq, ..., @y, € S such that
I rsanrs,, = @i+ F amirfmi) 1), 016, (16)
Hence
A(f+) ’I(s)m = (alA(fl) R am-i—kA(fm-i-k)) ‘I(s), (17)

Indeed for any o € I(s’),, we get by (16) that

A(er)g'* = f;r =a1(fi)o + + amik(frntk)o = (alA(fl) + -+ am+kA(fm+k))g*

and similarly for o € I(s').s, we get A(fT)os;, = (a1 A(f1) + -+ + amtkA(frmtk))os, - 1
remains now to combine (15) and (17).

Now let us prove that A(f1)|r(s),,--» A(fm+r)|1(s), are linearly independent over S.
Suppose that a1 A(f1)|1(s), + - - F@mskA(fntr)|1(s), = 0 forsome ay, ..., amyr € S. Our
computations in the proof of (17) show that (a1 fi + -+ am+kfrmtr) |15 ,01(57).., = 0-
Hence by Lemma 4.6.2, we get a1 = - -+ = a4 = 0.
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To prove the statement for X(s)**!, we have to consider the function f~ = a —
z(a;)b and prove the following analog of (15): )t fli(s)e., = A(f_)|1(s)”l. Then we apply
Lemma 4.6.2 to obtain a decomposition of f~ and proceed as for X(s)*. O

Clearly, 1 is the extended basis of X(&)° = S and the empty list is a basis of
X (@)* =0 if x # e. Thus Lemma 4.6.3 allows us to construct inductively the extended
basis {b(s)7 }sc1(s), of each module X'(s)”.

The first thing obvious from this inductive construction is that the number of elements
of this extended basis equals the number of elements of I(s),. This observation prompts
us to parameterize elements of our extended basis for X'(s)* by elements of I(s),. We
set b(&)4 = 1. Suppose now that x < xs; and that we have already built elements
{b(s")2} (s, of X(s') and {b(s')2" },esw.., Then we set

b(s)5.
b(s)7s,

()23t :=A(b(s')]) for o €I(s) ; (18)

(19)

b
b(s)Z = A(c**b(s))") for o € I(s)

xs;”

Corollary 4.6.4. Let s be a sequence in S such that Q\J(S) satisfies the GKM-property.
Then {b(s)s }oci(s), 95 an extended basis of X(s)” for any x € W.

4.7. Trees

There is a simple graphical interpretation of the above definition of b(s)Z, which we
describe here with the help of trees.

In the remaining part of Section 4, we usually assume that s = (sq, ..., s;) is a sequence
in S and 8; = Sa,;, Where Qi € 1I.

For each element € W, we define the oriented tree T(s,x) inductively on the length
of s. Every edge ~ of this tree will be labelled by its color ¢(v) € {—1,0,1} and root
r(y) € 1.

First, we define T'(@, z) to be the tree with only one vertex ® (and no edges) if x = e
and to be the empty tree otherwise.

Now suppose that [ > 0. If I(s), = &, then we define T'(s,x) to be the empty tree.
Let I(s), # @ and write {z,zs;} = {y, 2}, where y < z. Then we have I(s’), # @& by the
second formula of (7) and the fact that J(s’) is downwardly closed (see the paragraph
preceding Definition 4.2.1). We define T'(s, z) to be

1 0 ifrx=z2 0 - ifr=y

T(s',y) T(s, 2) T(s',y) T(s', 2)

Note that I(s"), can be empty. In this case, the right subtree is empty and we draw
the remaining left edge vertically in our pictures below (cf. Example 4.7.2). However this
trick is not necessary and reader can consider vertical edges (slightly) right tilted in all
our pictures.
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Our inductive construction allows us to divide edges into levels, by saying that the
uppermost edge in our pictures above is of level [. Note that r(y) = «; for any edge of
level 1.

We have similar definitions for vertices. A vertex a is called a vertex of level i if there is
an edge of level ¢ ending at a. Vertices having no edges ending at them are of level 0 and
called leaves. Moreover, we can associate to vertex a the element ev(a) € w inductively
by saying that ev applied to the uppermost vertex in our pictures above yields x.

We call the unique vertex of T'(s, x) having no edges beginning at it the root. In other
words, the root is the unique vertex of maximal level. Each leaf is connected to the root
by a unique (oriented) path, which we call a mazimal path. To any path m, we associate
the sequence c(m) of 0, 1 and —1 just by reading the colors of edges along it. We shall
also need the sequence [r] that is obtained from 7 as follows:

(9] = for i > 0.

. { [7T1 . '7Ti—1]5i if C(ﬂ'i) 7é 0
a, [7T1 S 7Ti] — )
[y mioq]x  ifc(m) =0
In other words, to get [r], we start with the empty sequence and then go along 7, adding
Sp(m;) = Si to our sequence on the right every time we meet an edge of level i having
nonzero color and adding * otherwise.
To each path 7 in T'(s, x), we can also associate an element of w just by evaluating [r].
In this connection, we will use the abbreviation ev(r) := ev([r]). We shall also use the
notation (7w ---m;)" := my---m—1 to indicate truncation of paths (the loss of the last
edge).
The set I(s), together with the lengths of ev(r), where 7 is a beginning of some
o € I(s);, can be read off the tree T'(s, z) as follows.

Proposition 4.7.1.

(1) 7 [n] sets a one-to-one correspondence between the set of maximal paths in T (s, x)
and the set 1(8),.

(2) ev(m) has length > c(m) for any path 7 in T(s,x) starting at a leaf.

(3) Let a be a vertex of T(s,x) of level i. Then the full subtree T of T(s,x) with root a
is equal to T((s1,...,8:),ev(a)). In particular, ev(rw) = ev(a) for all paths m starting
at a leaf and ending at a.

The first statement of part (3) is of principal importance, as it allows us to apply
induction on the length of s for our trees. The identification of part (1) allows us to
apply functions f € @,¢(), @ to maximal paths m by f(w) = f([«]). The same
formula identifies €5 @ with the set of functions mapping maximal paths 7 in
T(s,z) to Q.

o€l(s)y

Example 4.7.2. Let s = (s, $2, S1, S2, $1), where s1 and sy are simple reflections in the
Weyl group of type Ay, and x = sos1. The tree T'(s, x) is as follows
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S281

In this picture, we have also attached ev(a) to every vertex a. The operation [-] applied to
the maximal paths read from left to right yields the following sequences: (x, *, x, 2, $1),
(81,%,81,82,81), (%, S2,%,%,81), (*,82,51,%, %), (81,82, $1, 2, %), which as one can easily
see comprise I(s)., i.e. all ways to obtain x from subsequences of s.

x

» constructed in Sec-

The tree T'(s, x) allows us to compute the extended basis b(s)
tion 4.6. To do it, we classify edges as follows:

/ N

right tilted right tilted left tilted

We define elements b, € X((s1,...,s;)) for all paths 7 in T'(s, z) of length 7 starting
at a leaf as follows.

Definition 4.7.3. We set by := 1. Let # = 71 - - - m; be a path in T'(s,z) of length ¢ > 0
starting at a leaf. We define b, := A(b,/) if 7; is right tilted and

by = A (Cr(m) + ‘Wbﬁ

if m; is left tilted.

According to our convention, r(m;) = «;. We shall use this notation latter in our
proofs.
This definition is specially formulated to yield the following equality.

Lemma 4.7.4. b(s){;) = br for all mazimal paths 7 in T(s, x).

Proof. Induction on the length of s (the length of 7). First suppose that s = @. It suffices
to consider the case z = e, since otherwise T'(s, x) is empty and there are no paths to
consider. By our definitions here and in Section 4.6, we have b(@)§ = by = 1.
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Now suppose that the length of s is nonzero. Take a maximal path 7 = w1 ---m
in T'(s,z). We set 2’ := ev(n’). So [r’] € I(s'),s. By Proposition 4.7.1(3), we obtain that
7' is the maximal path in T'(s, 2’), whence by the inductive hypothesis

’

b(s') . = b (20)

Case 1: m is right tilted. In this case *’ < z's;. Suppose first that ¢(m;) = 0. Then
x =’ and [r] = [r']*. Then by (18), (20) and Definition 4.7.3, we get

b(s)fy = b(s)ip. = A(b(s')], ]) = A(by) = b,.

Now suppose that c(m;) = 1. Then 2 = z’s; and [r] = [7']s;. Then by (18), (20) and
Definition 4.7.3, we get

’

b(s)fy = b(s) 7, = A(b(s),) = Abr) =D

[7']s1 [m']

Case 2: m is left tilted. In this case a’s; < z’. Suppose first that c(m;) = 0. Then
x =2’ and [w] = [7']*. Then by (19) (where & = a’s;), (20) and Definition 4.7.3, we get

x z's;)s o,z sy a’ c —x's (a ) 2’
b(s)fy = b(s){o " = A(c MﬁWQA(2llw&WJ

(87 ! (67 /—
:AG;%ﬂMMJZAG;t%L&@m>:m.

Now suppose that c(m;) = —1. Then xs; = 2’ and [r] = [#’]s;. Then by (19), (20) and
Definition 4.7.3, we get

s o 2!
b5y = bls)E = A b)) = A T b))

(67 ! (6% /4
:AG;%wMMJZAG;tﬂL&@M>:m. -

4.8. Basis of X(s)”
To calculate this basis, we introduce the product of paths.

Definition 4.8.1. Let m and p be two paths in T'(s,z) starting from leaves and having
equal lengths. We set (7, p) := (bz)(,)-

Hence and from Definition 4.7.3, we obtain immediately (&, &) = 1.

Let ay,...,a, be the leaves of T(s,z) labelled from left to right. Denote by
7M. 7™ the maximal paths connecting these vertices to the root of T(s,x). From
Corollary 4.6.4 and Lemma 4.7.4, we deduce the following fact.
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Corollary 4.8.2. Let's be a sequence in S such that G\J(S) satisfies the GKM-property. Then
there exists a homogeneous S-basis vy,...,v, of X(s)® such that v;(w0)) = (70 7))
foranyi,j=1,...,n.

Proof. It suffices to set v; := b, |1, O

In this corollary, we apply elements v; € X(s)® directly to paths 7(7) in view of the
identification of Proposition 4.7.1(1).

The following lemma shows how to calculate the product (m, p) using a very simple
rule.

Lemma 4.8.3. Let m and p be paths in T(s,x) starting from leaves and having equal
lengths. Let X and p be edges of T'(s,x) such that mA and pu are again paths. We have

(m, p) if X is right tilted,
(A p1) = GG+ @G gy ,
5 (m,p) if X is left tilted.

Proof. Clearly, A and p are edges of the same level, say i. We have r(\) = r(u) = o4
and also [pu]” = [p]. Suppose first that A is right tilted. By Definitions 4.8.1 and 4.7.3,
we get (T, pit) = (ba)pu] = A(Dx)[pu = (br)) = (7, p). Now suppose that A is left
tilted. By Definitions 4.8.1 and 4.7.3 and formula (9), we get

(mA, pp) = (b)) = A (@b”> ol (CMLW]DW) £

_ ev(p)() ;eV(W)(ai) (ba)yy) = ev(m)(r(A)) ;eV(p)(r(u))

Using our above notation, we denote by E(s,x) the n x n matrix whose ijth entry is
(7D, 7())). Under the hypothesis and in the notation of Corollary 4.8.2, we have

U1 €1
=E(s,z)| |, (21)
Up, en
where e; : {71, ..., 7™M} — Q is the function such that e;(7\9)) = §;;.

Lemma 4.8.4. The matriz E(s,z) is upper triangular. Its diagonal entries are products
of images a of roots a € R and its first row is an array of 1’s.

Proof. Take integers 4,7 such that 1 < j < i < n. The maximal paths 7(*) = W%i) e 7Tl(i)
and () = ﬂj) : --7rl(]) merge at some vertex a. Denote by k the level of a. As j # 1,
we have k > 0. By Lemma 4.8.3, the product (W(i), ﬂ(j)) is proportional to the product
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(ﬁ(i)wl(:),ﬁ(j)ﬂg)), where 7() = WY) - ~7r,(21 and 7) = ng) - -W,(ijl. Set z := ev(7(")
and g := ev(7())). We have ay = I‘(?T](:)) = r(w,(cj)). By construction of T'(s, z), we have
Y = ZSay-

Since j < i, the edge 77,(:) is left tilted. Hence by Lemma 4.8.3, we get

(7Dr® 7D70)) = M _o

The second and third statements follow immediately from Lemma 4.8.3. O

Now that we have matrix E(s,x) together with the rule how to calculate it (Corol-
lary 4.8.2 and Lemma 4.8.3), we can recover rk’ %(s)® from the tree T'(s,z). The degree
of a path 7 in T'(s, z) is the number of left tilted edges of this path multiplied by 2. We
denote this number by degw. We have

k' B(s)” = Z{U* degm | m is a maximal path in T'(s, ) }.

In Example 4.7.2, we the degrees of paths read from left to right are 0,2,2,2, 4 respec-
tively. So tk” Z((s1, 52,51, 52,51))%2%t =1 + 302 +v~4,

4.9. Automorphism P(s)

We start with recollection of some constructions from Fiebig’s paper [8]. In [8, Defi-
nition 6.12], Fiebig defined the endomorphism P(s) of @, 1(s) Q@ by the following rules:

(1) P(@) is the identity map.
(2) If s # @ and P(s') is already defined, then we set P(s) := ¢® o AP,

Asis noted in that paper, the endomorphism P(s) is diagonal, whence a Z-endomorphism.
This means that there exists a function P(s) € €D, ¢ @ such that (P(s)(f))s =
P(8)o fo for any o € I(s) and f € P, ¢ () Q-

The reason for Fiebig to introduce P(s) was to calculate the costalk X(s), from the
stalk X (s)” (see Sections 6.5 and 6.7 of [8] or formula (22) of this paper). Thus the
elements P(s), are used to calculate the transition matrix (23) from a basis of Z(s)” to
a basis of %(s),.

Lemma 4.9.1. P(Q)g = 1. If s = (s1,...,5) # & then P(s), = ev(c)(ay)P(s') s for any
o€ l(s).

Proof. The first claim is clear as (P(@)(f))o = fo.

Now take any f € @,c7) @, 0 € I(s') and u € {*,5}. We set € := 0 if u = x and
g:=1if u = 5. We denote A” := A and A! := A~. For any § € {0,1}, by (9) and (10),
we get
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(P()(A%(1))),, = (AP (A())),, = ev(ow)(a) A% (P(s)(F),,
= (—1)%ev(ou) (o) (P(s') (), = (—l)EéeV(ou)(al)P(s')afg
= ev(ou) (al)P(s’)({m)/A‘s(f)au.

Recalling the first formula of (7) and that any element of @ I(s) (Q is representable as
A(f) 4+ A~ (g) finishes the proof. O

This lemma shows that each P(s), is a product of images & of |s| roots o € R,
whence an invertible element of Q). Therefore P(s) is a (homogeneous) automorphism of

@D, er(s) @ With the inverse given by (P(s)"Yf))o = (P(8)s) " fo
Now we define P, € S for all paths 7 in T'(s, ) starting at a leaf as follows (cf. Defi-
nition 4.7.3).

Definition 4.9.2. We set Py := 1. Let # = 71 - - -m; be a path in T'(s,z) of length i > 0
starting at a leaf. We define P, := ev(7)(r(m;)) Py .

This definition is specially formulated to yield the following equality (see Lemma 4.9.1).
Lemma 4.9.3. P(s)[x] = Px for all mazimal paths w in T'(s, ).

In this paper, we want to study the transition matrix from a basis of Z(s)” to a basis
of %(s)[y (rather than %(s),). Proposition 3.5.4 predicts that we have to take certain
quotients of P(s),. So our following aim is to divide all P, for paths 7 ending at a fixed
point by their common divisor. To this end, we define elements D, € Q for any path m
in T'(s, z) starting at a leaf as follows.

Definition 4.9.4. We set Dy := 1. Let # = - - - ; be a path in T'(s,z) of length ¢ > 0
starting at a leaf. We define

ev(m)(r(m;)) Dy ife(m) =1
Dy =< Dy if ¢(m;) = 0;

v (x(m) De if e(m) = 1.

For any element z € V/\7, we define D(x) to be the product of all labels of edges of G
ending at = each multiplied by —1. We make the following simple observation.

Lemma 4.9.5. Let 2 € W and o € I such that xsq < x. Then D(z) = ¥D(xs4), where
v is the unique negative root in the set {x(a), —z(a)}.

Proof. Denote by Y (z) the set of all 7 € R~ such that s,z < z. So D(z) = [[Y (z). By
the exchange property, |Y (z)| = ¢(z). It is enough to prove that Y (z) = Y (xs4) U {7}.
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lz = xs, < z. Hence and from v < 0,

First, by (1), we have 8,2 = 5;(0)T = 2542~
we get v € Y (x). This formula also implies syxs, = & > x5, whence v ¢ Y (xs4).

Now take 7 € Y (z5,). By definition, we have s xsq < 25, < x. Corollary 2.7.4(1)
implies s;x < x. The equality is impossible as s, # 1. Hence s,z < x and 7 € Y (z).

We have proved that Y (z) D Y (zs,) U {7}. The inverse inclusion follows from the

fact that the cardinalities of both sets equal ¢(z) = {(zs,) +1. O
Lemma 4.9.6. D, = D(ev(n)).

Proof. Induction on the length of 7. We obviously have Dy = D(ev(@)) = D(e) = 1,
since no edge ends at e.

Now suppose that 7 = 7y - - - 7; is a path of length i > 0. We set for brevity x := ev(m).
We have «; :=r(m;) and s; = s4,.

Case 1: ¢(m;) = 1. In this case z(a;) < 0. Indeed, if we had z(a;) > 0 then
l(xs;) > £(x) by Proposition 2.6.1, which is a contradiction. Hence by Definition 4.9.4,
Lemma 4.9.5 and the inductive hypothesis, we get Dy = z(a;)Dp = x(o;)D(z5;) =
D(x).

Case 2: c(m;) = 0. We have by Definition 4.9.4 and the inductive hypothesis D, =
D, = D(ev(n')) = D(x).

Case 3: c¢(m;) = —1. In this case z(o;) > 0. Indeed, if we had z(a;) < 0 then
l(xs;) < L(x) by Proposition 2.6.1, which is a contradiction. Lemma 4.9.5 implies
D(xs;) = —x(a;)D(x). Hence by Definition 4.9.4, and the inductive hypothesis, we get

Dy =—2(ay) Dp =—x(a;) D(ws;) =D(x). a

This lemma shows that D, € S (although this is not obvious from the definition).
We will be especially interested in the quotient Q. = Pr/D;.

Lemma 4.9.7. Qp = 1. Let m = 7y - - - m; be a path in T(s,x) of length i > 0 starting at
a leaf. Then

Qﬂ" ’Lf C(7TZ‘) =1
Qr = v Em)Qw  ife(m) =0;
—ev(m)(r(m) " Qu if em) = —1.

In particular, @, € S.

Proof. The result follows from Definitions 4.9.2 and 4.9.4. O

Remark. We can consider P, for all maximal paths 7 in a fixed tree T'(s, z). Lemmas 4.9.6
and 4.9.7 show that we can divide all these elements simultaneously by D(z) in S and
calculate the quotient.
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4.10. Inclusion HB(s)y C HB(s)”
We briefly recall Fiebig’s construction of the module Y(s) dual to X'(s).

Definition 4.10.1. (See [8, Definition 6.6].) We define for all sequences s in S the
S-submodule Y(s) C €D, ¢ (s @ by the following inductive rule:

(1) y(@) = @o’@](@) S=S;
(2) if s = (s1,...,5) is not empty, then Y(s) := A(Y(s")) + (c*)"LA(Y(s')), where
oy € IT is such that s; = sq,.

For any S-submodule M C @, I(s Q7 we define, following Fiebig, its dual by

DM = {ze @ Q‘ Z zgmaeSforanymeM}.
o€l(s) o€l(s)

We define similarly DN for any S-submodule N C Q, replacing I(s) with I(s),.

o€l(s)s
Proposition 4.10.2. (See [8, Lemmas 6.8, 6.9 and 6.13].) DX(s) = Y(s), D(X(s)*) =
Y(s), and X(s) = P(s)(V(s)).

Here P(s) is the automorphism defined in Section 4.9. As we noted this automor-
phism is diagonal. So it restricts to the automorphism P(s), of @, ¢ ), @ defined by
(P(8)2(f))e == P(s)o fo for any f € D, ¢ (), @ and o € I(s),. From P10p0s1t1on 4.10.2,
we obviously get

P(S)w (y(s)m) = X(S)w (22)

Hence and from Proposition 4.10.2, we can calculate the costalk X(s), once we know the
stalk X'(s)®. This remarkable argument allowed Fiebig in [8] to obtain an upper bound
for the primes for which Lusztig’s character formula does not hold.

Recall the basis vy, ..., v, from Corollary 4.8.2. Then there exist elements v, ..., v,
of D(X(s)®) = V(8)x such that ZUGI (s). Vi)o (V)0 = 0; j forany 4, j = 1,...,n. A simple
calculation shows that v], ..., v is a basis of y( )a- Conmder the dlagonal matrix P(s, z)
whose iith-entry is P,y and elements v := P(s),(v}). By (22), we get that v{,... v/

is a basis of X(s),, and, using (21), we get
vy el v

v, en Un,
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By Corollary 4.5.2, we get that the matrix in the right-hand side is the transition
matrix from a basis of Z(s)” to a basis of H(s), if Q\J(S) satisfies the GKM-property.
Proposition 3.5.4 shows that to obtain the transition matrix from the same basis of
H(s)" to a basis of %(s)[;), we have to divide the above matrix by D(x). Fortunately,
we can divide P(s,z) by D(z) and calculate the quotient with the help of the function Q
inductively defined in Lemma 4.9.7.

Denote by Q(s, z) the diagonal matrix whose #ith-entry is Q. ).

Theorem 4.10.3. Let s be a sequence in S such that Q\J(S) satisfies the GKM-property.
Let 7 ... 7™ be mazimal paths in T(s,x) counted from left to right. Then there
exist a homogeneous basis of B(s)® with elements of degrees deg M degn(™ and a
homogeneous basis of %(s)(y) with elements of degrees 2(|s| — £(z)) —deg ™, ... 2(|s| —
{(x)) — deg ™) such that the transition matriz from the first basis to the second one is

&(s,z) = (E(s,2) ") Q(s,x) E(s, ).
5. Low rank cases
5.1. Ezxchange and comparison of roots
For the calculations in this section, we shall use the following simple arguments.

Lemma 5.1.1 (Exzchange of roots). Let s = (s1,...,s) be a sequence in S. Let 7 =
w1 Tm be a path in T(s,x) starting at a leaf such that 7, is left tilted. Then there
exists a path p = p1 -+ pm in T(s,x) such that

(1) pm is right tilted, starts at a leaf and ends at the same vertex as .
(2) [p'] is obtained from '] by replacing the simple reflection at some position i with *.

If p is a path satisfying these conditions, then p is called a descendant of m and the
following equality is satisfied:

(3) ev(m - mm-1)(x(mm)) = —c(mi) ev(pr - - pi1)(x(pi))-

Proof. As usual, we assume that s; = s,,, where o; € I1. Denote by pm the unique right
tilted edge ending at the same vertex as m,,. Let a and b be the beginnings of p,, and
Tm respectively. We set y = ev(a) = ev(p’) and z := ev(b) = ev(n’). By our construction
y < z and z$,, = y. So we get

ev(m')sm < ev(n). (24)

By the exchange property, ev(n’)s,, = ev(u), where u is the sequence obtained from [7’]
by replacing its ith entry with * for some . Hence u € I((s1,...,Sm—1))y- By Proposi-
tion 4.7.1(1), there exists a maximal path p’ in T'((s1,...,Sm—1),y) such that [p'] = u.
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By Proposition 4.7.1(3) the full subtree of T'(s, z) with root a is T((s1,.- -, Sm—1),Y)-
So we can consider the path p := p'p,,, in T'(s, x). Properties (1) and (2) are automatically
satisfied for this choice of p.

Let us write u = vxw, where v is the beginning of u of length ¢ — 1. Then [r'] =
vs;w. We get ev(v)s; ev(w)sy, = ev(n')sy, = 28m = y = ev(u) = ev(v) ev(w). Hence
ev(w)spmev(w) ™! = s;. By (1), we get Sev(w)(a,,) = Sa,- As we noted in Section 2.6,
we get from this equality that ev(w)(au,) = eq; for some € € {1, —1}. Multiplying this
equality first by s; and then by ev(v) on the left, we get

ev (') (am) = ev(v)s; ev(w)(am) = —eev(v)(a;). (25)
By (24) and Proposition 2.6.1, ev(m1 -« Tpm—1)(au,) < 0. On the other hand, ev(v) =
ev(my - -mi—1). Hence ev(v)(a;) > 0 if ¢(m;) = 1 and ev(v)(ay) < 0 if ¢(m;) = —1, the
case c(m;) = 0 being impossible. In the first case ¢ = 1 and in the second case ¢ = —1.

It remains to apply (25) and recall that ev(v) =ev(py---pi—1). O

We shall also use the following method to compare roots. Let z,y € W and a,p e R.

Then by (2), we get zs,y(8) —zy(B) = 2(sa(y(B)) —y(B)) = —(y(B), &)’ x(«). We apply
(3) and get

!

w5y (B) — xy(B) = —(xy(B), 2(e)) x(a) = (z5ay(8), 2(a)) x(a). (26)
5.2. 2 X 2-matrices
Let s = (s1,...,8) be a sequence in S such that the expression w = §1---§ is

reduced and G¢,, satisfies the GKM-property. As usual, we assume that s; = s,,, where
o; € ﬁ

We want to calculate the defect of the projection p, s, : B(s)® — %(s)°® in the case
when the ungraded rank of %(s)* is 2. In this case, |I(s),| = 2 and the tree T'(s,x)
has two maximal paths 7(1) = 7751) . "7"1(1) and 72 = 7r§2) . "771(2) labelled from left
to right. Denote by k be the level of the vertex where 7(*) and 7(?) merge. By our
gz) = 7r,(€2_)1)sk) < E(ev(wf) x 7r,(€2_)1)) This inequality and the fact
that the expression w = s1---s; is reduced imply that there is some ¢ = 1,...,k — 1
with c(ﬁgz)) =0.

By Corollary 3.3.3 and Theorem 4.10.3 the defect d(py,s,) can be read off the zero
degree entries of the matrix @(s,z) = (E(s,7)"1)TQ(s,2)E(s, ). The multiplication
rule for paths given in Lemma 4.8.3 implies that

E(s,z) = <1 _1 >
7\ o 2(ag) |’
) )

where z = ev(m;”’ ---m,; ;). We shall consider only the case when &(s, ) has entries of

construction £(ev(m

degree 0, since otherwise d(pz,52) = 0. Then deg Q1) = deg Q.»y < 4. Since c(7r§2)) =0,
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we get c(w,(f))

that ng) . ~7r,(€1) is a descendant of 7T§2) e 7r,(€2). Hence c(w£1)) = 0 and c(wj(.l)) = 0 for
some j € {1,...,k—1}\ {i}.

We claim that j < 4. Indeed suppose that on the contrary ¢ < j. Then
S1 - 8 Sy = 2 = ev(ﬂgl)...wl(gl_)l)sk = Sy--8;-+- 8- s Hence s;---sp_q =
Sj+1 - 8k, which contradicts the fact that w = s; -+ - s; is a reduced expression. Graph-

= 0 and the colors of all other edges of 7(?) equal 1. Lemma 5.1.1 implies

ically, our situation is as follows:

?1)

1 0
aE Qg
0| ;|0
Y1 21

0|y

Here y, 41,92, 21, € are the elements of w corresponding to the vertices closest to them.

y:sl...sj...éi...sk_l’ ylzsl"'gj“'si—17 y2z$1...5j_17

21 = 81°°+8i—1, 2 =818 " Sk_1-

All unmarked edges in the picture above have color 1. By part (3) of Lemma 5.1.1, we
have z(ar) = —y2(c;j). Applying Lemma 4.9.7, we get

Qls.z) = (yl(ai)yz(aj) 0 ) 7

0 z(ag) z1 ()
5(5,2) y1(as) y2 (o) y1 ()
s, T) = _ ,
yl(ai) yl(azz)a-:?(al)

Now (26) implies that

z(ai) — 1) = —(ya (), yo ()Y yalay) = (yi (), ya(ey)) z(a). (27)
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Hence the only entry of @(s, z) having degree 0 is (y1 (), y2(;))’. Consider the following

elements of Wey: w = s1-+-8-+-8;, v =815 ---5,. We have u # v, since otherwise
Sj+1°+ 8k = Sj---Sg—1, which contradicts the fact that the expression w = s1---5
+z1 (i)

+y1 (o ~
v and x Enles) u of G

By (27), the labels of this edges are equal unless (y1(a;),y2(a;))" # 0. Hence and from

is reduced. So we have two different edges =
Corollary 3.3.3, we get the following result.
Lemma 5.2.1. Lets = (s1,...,5) be a sequence in S such that the expression w 1= 81 - - - Sy
is reduced and G,y satisfies the GKM-property. If the ungraded rank of %(s)” is 2 (i.e.
|I(s).| = 2), then the defect of the projection py s, : B(s)* — B(s)°% isv=2 if f(x) = 12
and 0 otherwise.

5.8. 3 X 3-matrices

Consider the same situation as in Section 5.2 with the only difference that the un-
graded rank of #(s)* is 3. A priori, the following cases are possible:

A Qg A Ak

Lo oo

Case 1 Case 2

We claim that the first case is impossible. Indeed, we have two elements ¢ and 7 of
I((s1,...,8t-1)). such that ¢ = Gsgp and 7 = T*p, where |G| = |F| = k — 1. Since
y = zs; < z, we can apply the exchange property to both representations z = ev(o)
and z = ev(7). We get that there are numbers a,b = 1,...,¢t — 1 such that y = ev(o,)
and y = ev(7,), where o, is obtained from o by replacing its ath entry s, by * and 7, is
obtained from 7 by replacing its bth entry s, by .

First notice that if a > k or b > k then ev(p)s; = ev(p), where p is obtained from
p by replacing one simple reflection with . Then we get two different representations
y =ev(dsgp) and y = ev(7xp) contrary to our picture. So a < k and b < k.

The case where a < k and b < k is impossible, as we would get o, # 7, whence
y =ev(o,) and y = ev(7,) are different representations. On the other hand, b < & in any
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case, as the kth entry of 7 is already *. Hence we get @ = k. This equality implies that
ev(p)s: = spev(p). We have y = ev(dxp) and y = zs; = ev(T#p)s; = ev(7)ev(p)s; =
ev(7)si ev(p) = ev(Tskp), which are again different representations of y. This contradicts
the picture of case 1.

So only case 2 is possible. Consider the projection p, s, : %(s)* — %(s)’*. Clearly
d(pg,s2) = 0 if &(s,x) does not contain entries of degree 0. Hence we consider only the
case where deg Q, < 4 for any maximal path 7 in T'(s, ).

Denote by 7, 7(2) 7(3) the maximal paths in T(s,z) labelled from left to right.
Let us apply the arguments of Section 5.2 to the subtree with root a (see the right
picture above). Hence we get C(?TJ(-I)) =0, c(m, @ )) =0, c(r (2)) =0, c(ﬂ',(f)) = 0 for some
j < i < k. Taking into account deg Q, < 4, we get that the color of any other edge
of 7 and 7 has color 1. In particular, deg Q, 1) = deg Q, 2y = deg Q_» = 4 and
C(Trt(?’)) =0.

Now the only possibility to get deg Q.3 = 4 is that c(m(]?’)) = 0 for some ¢ < ¢t and

the colors of all edges of 7(3) except 7r((13) and 7r,§3) is 1. As wgl) 7Tt(1)1 or 7r§2) 7rt(2)1

is a descendant of 7753) ﬂfs)l, we have ¢ = k or ¢ = ¢ or ¢ = j. The last two cases
are impossible, as the expression w = s -- - s; is reduced. So ¢ = k and we get the only

possible picture

*w

/\ anl0
1, !
Y z 21

0] ;|0
yi 21
0|

’
Y2

i Ll

Here again all unmarked edges have color 1. The multiplication rule for paths given in

Lemma 4.8.3 implies that
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1 1 1
E(s,z)=10 2() M
0 0 z(ov)

By Lemma 4.9.7, we get Q(s,z) = diag(y] (o) y4(ey;), 2 (o) 21 (), 2(ew) 21 (o).
Lemma 5.1.1 implies the following relations: z(ay) = —z1 (o), 2’(ax) = —y5(e;) and
formula (26) the following:
a1(ak) = 2/ (o) = = (' (o), 21 (04)) 24 (0),
!/
#(ai) = yi(en) = (21(0a), va(ay)) ya(oy)-

We can express all the roots occurring in E(s,z) and Q(s,z) via yj(«a;) and y5(c;) as
follows:

—yolay),  Zi(ai) = yi(as) + bys(ay),
—yi(e) —bys(eg),  za(aw) = ayy () + (ab — )ys(a;), (28)

2 (o)

z(ov)

where a = (y5(;), 21 (a;)) and b = (2] (0;), y5(c;))’. Plugging this into the formulas for
E(s,z) and Q(s, z), we get

Vi) vhlay) yilay) i)

P(s,z) = yh (o) b 1-2
(o ab a’b

ay12(04 ) 1— L -

The determinant of the lower right 2 x 2 matrix is ab— 1. Consider the following elements
of W<wi

PN ~

u:'sl"'sj”'sly v:sl...st...sl'

As the expression w = s1 - - - 51 is reduced, we get u # v. So we have two different edges

g Eale) i) o Q\gw. By the last formula of (28), the labels of these

edges are proportional unless ab — 1 # 0. Hence and from Corollary 3.3.3, we get the

v and x
following result.

Lemma 5.3.1. Lets = (s1,...,5;) be a sequence in & such that the ETPTession w := 81 - - - Sy
is reduced and Q\gw satisfies the GKM-property. If the ungraded rank of AB(s)* is 3
(i.e. |I(s).z| = 3), then the defect of the projection pys. : B(s)® — B(s)°F is 20~2 if
(x) =1—2 and 0 otherwise.
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5.4. Decomposition of HB(s)
In view of (4), Lemmas 5.2.1 and 5.3.1 imply the following result.

Corollary 5.4.1. Let s = (s1,...,8;) be a sequence in S such that the erpression w =
5181 1s reduced and Gg,, satisfies the GKM-property. Then

Bs) = Bw)o > Bx)(-2)
(z)=l(w)—2
[1(s)z|=2
& Y 28@) (-2 B@1)(r) @ & B(xn)(r),

I(z)=l(w)—2
|I(S)z|=3

where |1(8)z,| >3 foranyi=1,...,n.

Note that our constructions do not depend on the characteristic of F as long as it
is not 2 and we have the corresponding GKM-property. Therefore, we can convert our
knowledge of the characters of Bott—Samelson modules for char F = 0 into the statement
on these characters for positive characteristic.

Definition 5.4.2. Fix some n € N. The unit e € W is always n-reachable.

An element w € W is n-reachable if and only if there exists some reduced expression
w = s1---8 with s; € S such that (He, +v)---(Hgy +v) = Hy + 3, o\ fr,wHz and
one of the following conditions holds for any = < w:

(1) few(1) < n and z is n-reachable.
(2) fow € VZ[v].

Obviously, any element of W is n-reachable for suitable n.

Corollary 5.4.3. If w € W is 3-reachable and such that é\gw satisfies the GKM-property,
then v' ) h(B(w)) = H,.

Proof. We apply induction on ¢(w), the case w = e being obvious. Suppose that w € W
is 3-reachable and w # e. Consider a reduced representation w = s1 ---s; as in Defini-
tion 5.4.2. Our aim is to prove that %(s) decomposes into a sum of Braden—-MacPherson
sheaves as in the case charF = 0 and that each summand except %#(w) has the form
P(x) for some 3-reachable z < w. To this end, we calculate the defect d(%(s)) and
apply (4).

Under the notation of Definition 5.4.2, we have f; ., = v!=4@) vk’ A(s)® for any x < w
by Lemma 4.2.2. So the first possible case is that the ungraded rank of %(s)* is not
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Table 1

Number of 1- and 3-reachable elements for types A;—As.
Type of the root system Ay Aoz As Ay As
number of 1-reachable elements 2 5 14 42 132
number of 3-reachable elements 2 6 22 83 310

greater than 3 and x is 3-reachable. In this case, the defect d(py s5) is given by Lem-
mas 5.2.1 and 5.3.1 and we can apply induction to obtain the character of the possible
direct summand Z(x). Note that g<m satisfies the GKM-property, as Q<w does so.

In the second possible case, we have f, ., € vZ[v]. It follows that all generators of
#(s)" have degrees less than [ —£(z). By Theorem 4.10.3, the generators of %(s)[,] have
degrees more than | — ¢(z). Hence the matrix &(s, z) does not have entries of degree 0
and the defect d(pgsz) is zero. This means that Z(x) cannot be a direct summand
of B(s). O

This corollary is trivially true for 1-reachable elements, since they are just those w € w
that have a reduced representation w = sy - - - s; such that (Hy, +v) - (Hs, +v) = Hy
On the other hand, there are a lot of 3-reachable elements that are not 1-reachable, see,
for example, Table 1.

It is also interesting to compare the set of 3-reachable elements with the set separated
elements defined in [4, Definition 1]. For type Bs, the only not separated elements are sts
and tst. Both of them are 2-reachable. For type Bs, there are the following 10 elements
of the Weyl group that are not separated but 3-reachable (cf. [4, Section 5.3]):

utu, tut, utsu, tuts, utsut, tsuts, sutu, tsutu, stut, stsut.
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