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algebras under a Morita–Tachikawa correspondence. We 
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derive several of their properties, including higher Auslander 
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1. Introduction

A classical result of representation theory is the Morita–Tachikawa correspondence 
[23] providing a bijection between pairs (Λ an artin algebra, M a generator-cogenerator) 
and algebras Γ of dominant dimension at least two. A celebrated special case is Aus-
lander’s bijection relating algebras Λ of finite representation type with algebras Γ of 
global dimension at most two and dominant dimension at least two. This has been 
generalised by Iyama [16] to ‘Higher Auslander correspondence’. More recently, other 
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interesting classes of algebras have been defined by specialising the Morita–Tachikawa 
correspondence: Gendo-symmetric algebras [11,12] correspond to pairs (Λ, M) where Λ
is symmetric; Morita algebras [19] correspond to pairs where Λ is self-injective.

In this paper, another such class of artin algebras is introduced, corresponding to pairs 
where Λ is d-Gorenstein and M is a Gorenstein projective generator. These ‘gendo-d-
Gorenstein algebras’ Γ will be given two different characterisations, in terms of homo-
logical properties (see Theorem 4.2). Both characterisations explain d = injdimΛ Λ in 
terms of Γ . A number of properties of these algebras is established, concerning global 
dimension, Hochschild cohomology, higher Auslander correspondence, and more.

In order to prove these results, a close relation between dominant dimension and 
double centraliser properties on the one hand and Auslander–Bridger’s concept of grade is 
being worked out, extending results of Buchweitz [8]. The results give precise connections 
between these concepts, valid for artin algebras in general. As a by-product, some new 
results about homological conjectures are obtained.

This article is organised as follows: Section 2 is devoted to clarifying the connections 
among grade, double centraliser properties and dominant dimension for artin algebras. 
The main results are Theorem 2.3 characterising the double centraliser property in terms 
of grade, and Theorem 2.14 characterising grade in terms of dominant dimension. Sec-
tion 3 uses the techniques set up in Section 2 to prove some assertions about homological 
conjectures, in particular several sufficient criteria for a ‘grade’ version of the Strong 
Nakayama Conjecture to hold true.

In Section 4, gendo-d-Gorenstein algebras are defined as correspondents of Gorenstein 
algebras under a Morita–Tachikawa correspondence, and characterised (in Theorem 4.2) 
in terms of homological properties. The final Section 5 then provides properties of these 
algebras. The proofs strongly use the techniques provided in Section 2.

2. Grade and dominant dimension

In this section, we will relate grade to double centraliser properties and to dominant 
dimension. By building on [8] we clarify the connections between these concepts.

Let Λ be an artin algebra. Denote by Λ-mod the category of finitely generated left 
Λ-modules. Recall from [26] that the dominant dimension of a module M in Λ-mod, 
which we denote by domdimM , is the maximal number t (or ∞) having the following 
property: let 0 → M → I0 → I1 → · · · → It → · · · be a minimal injective resolution 
of M , then Ij is projective for all j < t (or ∞). Let e be an idempotent of Λ and Λe a faith-
ful projective-injective left Λ-module. Then domdimΛ ≥ 2 if and only if the left Λ-module 
Λe has the double centraliser property which means that EndeΛe(Λe) ∼= Λ (see [26, 7.7]). 
Buchweitz [8, Proposition 2.9] showed for any idempotent e that Λ ∼= EndeΛe(Λe) if and 
only if Auslander–Bridger’s grade of Λ/ΛeΛ as a right Λ-module is greater than 2.

Let M and T be in Λ-mod. Extending the classical theory of dominant dimension, one 
defines the dominant dimension of T relative to M , M - domdimT , as the supremum of all 
n ∈ Z such that there exists an exact sequence 0 → T → M1 → M2 → · · · → Mn with all 
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M i in addM (see [24, Section 3], [20]). Let Γ = EndΛ(M). Auslander and Solberg showed 
that the natural homomorphism αT : T → HomΓ (HomΛ(T, M), M) is an isomorphism 

in Λ-mod if and only if there exists an exact sequence 0 → T
f−→ Mn → Mm, where 

f : T → Mn is a left addM -approximation (see [4, Proposition 2.1]). The latter implies 
that M - domdimT ≥ 2. This allows us to give the following definition.

Definition 2.1. Let Λ be an artin algebra. Let M , T be in Λ-mod and Γ = EndΛ(M). We 
say M has the double centraliser property with respect to T , if the natural homomorphism 
αT : T → HomΓ (HomΛ(T, M), M) is an isomorphism in Λ-mod.

We will give a relation between grade and double centraliser property, using the fol-
lowing definition of grade.

Definition 2.2. (See Auslander–Bridger [2].) Let Λ be an artin algebra and Λ-mod be the 
category of finitely generated left Λ-modules. Let M, X ∈ Λ-mod. The grade of X with 
respect to M , written gradeM X, is defined by

gradeM X = inf
{
i ≥ 0 | ExtiΛ(X,M) �= 0

}
∈ Z ∪ {∞}.

Theorem 2.3. Let Λ be an artin algebra, M and T be in Λ-mod with Γ = EndΛ(M). As-
sume there is an exact sequence Mm f→ Mn → T → 0, and set X = CokerHomΛ(f, M). 
Then M has the double centraliser property with respect to T if and only if gradeM X ≥ 3.

Proof. There is an exact sequence

Mm
f

π1

Mn T 0

K

i1

. (∗)

Applying the functor HomΛ(−, M) to (∗) gives the exact sequence

0 (T,M) (Mn,M)
(f,M)

π2

(Mm,M) X 0

C

i2

where (−, −) denotes the functor HomΛ(−, −). Since HomΛ(Mm, M) is a projective left 
Γ -module, we have Ext1Γ (HomΛ(Mm, M), M) = Ext2Γ (HomΛ(Mm, M), M) = 0. Hence, 
there is a long exact sequence
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0 → HomΓ (X,M) → HomΓ

(
HomΛ

(
Mm,M

)
,M

)
→ HomΓ (C,M) → Ext1Γ (X,M)

→ 0 → Ext1Γ (C,M) → Ext2Γ (X,M) → 0.

So Ext1Γ (C, M) ∼= Ext2Γ (X, M). The map Mn → T induces the commutative diagram

Mn

αMnαMn

T

αT

(HomΛ(Mn,M),M) (HomΛ(T,M),M)

which is part of the following exact commutative diagram

0 K

g

i1
Mn

αMnαMn

T

αT

0

0 (C,M)
(π2,M)

(HomΛ(Mn,M),M) (HomΛ(T,M),M) Ext1Γ (C,M)

where (−, −) denotes the functor HomΓ (−, −) and g is an induced homomorphism. 
Applying the snake lemma yields KerαT

∼= Coker g and CokerαT
∼= Ext1Γ (C, M) ∼=

Ext2Γ (X, M).
Consider the following diagram

Mm

π1

αMm

HomΓ (HomΛ(Mm,M),M)
HomΓ (i2,M)

HomΛ(C,M)

=

K

i1

g

HomΛ(C,M)

HomΓ (π2,M)

Mn
αMn

HomΓ (HomΛ(Mn,M),M)

which commutes because αMn ◦ f = HomΓ ((f, M), M) ◦ αMm and HomΓ (π2, M) ◦ g =
αMn ◦ i1. This induces the following commutative diagram

Mm

π1

HomΓ (i2,M)◦αMm

HomΛ(C,M)

=

Ext1Γ (X,M)

h

0

0 K
g

HomΛ(C,M) Coker g 0

.

By the snake lemma again, h is an isomorphism. So KerαT
∼= Coker g ∼= Ext1Γ (X, M)

and we obtain the exact sequence
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0 → Ext1Γ (X,M) → T
αT−→ HomΓ

(
HomΛ(T,M),M

)
→ Ext2Γ (X,M) → 0.

This completes the proof. �
The next result is dual to Theorem 2.3.

Theorem 2.4. Let Λ be an artin algebra and M ∈ Λ-mod with Γ = EndΛ(M). Let 
T ∈ Λ-mod and 0 → T → Mn f→ Mm be an exact sequence such that X =
Coker HomΛ(M, f). Then the natural homomorphism αT : HomΛ(M, T ) ⊗Γ M → T

is an isomorphism in Λ-mod if and only if Tor1Γ (X, M) = Tor2Γ (X, M) = 0.

Proof. The sequence

0 T Mn
f

π1

Mm

K

i1

(∗∗)

is exact. Applying the functor HomΛ(M, −) to (∗∗) gives the exact sequence

0 (M,T ) (M,Mn)
(M,f)

π2

(M,Mm) X 0

C

i2

where (−, −) denotes the functor HomΛ(−, −). Hence, there is a long exact sequence

0 → Tor2Γ (X,M) → Tor1Γ (C,M) → 0 → Tor1Γ (X,M) → C ⊗Γ M

→
(
M,Mm

)
⊗Γ M → X ⊗Γ M → 0.

Thus, Tor1Γ (C, M) ∼= Tor2Γ (X, M). In the exact commutative diagram

0 Tor1Γ (C,M) (M,T ) ⊗Γ M

αT

(M,Mn) ⊗Γ M

αMn

C ⊗Γ M

g

0

0 T Mn K 0

the map αMn is an isomorphism and g is an induced homomorphism. The snake lemma 
implies that KerαT = Tor1Γ (C, M) ∼= Tor2Γ (X, M) and CokerαT

∼= Ker g.
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By the induced commutative diagram

0 −−−−→ Ker g −−−−→ C ⊗Γ M
g

−−−−→ K −−−−→ 0

h

⏐
⏐� ||

⏐
⏐� i1

⏐
⏐�

0 −−−−→ Tor1Γ (X,M) −−−−→ C ⊗Γ M −−−−→ Mm −−−−→ X ⊗Γ M −−−−→ 0

Ker g ∼= Tor1Γ (X, M), and the following sequence is exact:

0 → Tor2Γ (X,M) → HomΛ(M,T ) ⊗Γ M
αT−→ T → Tor1Γ (X,M) → 0.

This completes the proof. �
Corollary 2.5. Let Λ be an artin algebra and e be an idempotent of Λ. Suppose there is an 

exact sequence 0 → Λ → (Λe)n f→ (Λe)m in Λ-mod. Let X = Coker HomΛ(Λe, f). Then 
Λ and eΛe are Morita equivalent if and only if Tor1eΛe(Λe, X) = Tor2eΛe(Λe, X) = 0. In 
particular, if (Λ, eΛe)-bimodule Λe has double centraliser property, then Λ/ΛeΛ = 0 if 
and only if Tor1eΛe(Λe, X) = Tor2eΛe(Λe, X) = 0.

Proof. We take T = Λ and M = Λe in Theorem 2.4. Then Γ = eΛe and Λe ⊗eΛe

eΛ ∼= Λ if and only if Tor1eΛe(Λe, X) = Tor2eΛe(Λe, X) = 0. However, the former implies 
that Λ/ΛeΛ = 0, which is equivalent to saying that Λ and eΛe are Morita equivalent 
by [8, Corollary 1.10]. By [4, Proposition 2.1], if (Λ, eΛe)-bimodule Λe has the double 
centraliser property, then there is an exact sequence 0 → Λ → (Λe)n → (Λe)m. This 
completes the proof. �

Next we will connect grade with dominant dimension in the sense of Kato [18].

Definition 2.6. (See Kato [18].) Let Λ be an artin algebra and T, M ∈ Λ-mod. T is said 
to have M -dominant dimension greater than or equal to n, written M - domdimT ≥ n, 
if each of the first n terms in a minimal injective resolution of T is cogenerated by M .

Proposition 2.7. Let Λ be an artin algebra, and M and T be in Λ-mod. Suppose 
M -domdimT ≥ 1. Then, for any n ≥ 2, M -domdimT ≥ n if and only if gradeT X ≥ n

for any X ∈ Λ-mod with HomΛ(X, M) = 0.

Proof. Let 0 → T
f0→ I0

f1→ I1
f2→ · · · fi→ Ii

fi+1→ · · · be a minimal injective resolution of ΛT . 
For any X ∈ Λ-mod and i ≥ 1, there is an exact sequence

HomΛ(X, Ii−1) → HomΛ(X, Im fi) → ExtiΛ(X,T ) → 0 (∗∗∗)

Suppose M -domdimT ≥ n. Then Ii ∈ addM for any 0 ≤ i ≤ n − 1. So, if 
HomΛ(X, M) = 0, then HomΛ(X, Ii) = 0 and HomΛ(X, Im fi) = 0 for any 0 ≤ i ≤ n −1. 
Then (∗∗∗) implies ExtiΛ(X, T ) = 0 for any 0 ≤ i ≤ n −1. This proves that gradeT X ≥ n.
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For the converse, we first have that I0 ∈ addM by assumption. We claim that 
HomΛ(X, M) �= 0 for X = Λx and x ∈ Im f1. Otherwise, ExtiΛ(X, T ) = 0 for any 
0 ≤ i ≤ n − 1 by assumption. The vanishing of HomΛ(X, I0) = 0, implies that 
HomΛ(X, Im f1) = 0 by (∗∗∗), which is a contradiction. It follows that Im f1 is cogener-
ated by M . This implies that I1 ∈ addM . By similar arguments, we have In−1 ∈ addM . 
This completes the proof. �
Corollary 2.8. Let Λ be an artin algebra and T be in Λ-mod. Suppose domdimT ≥ 1. 
Then, for any n ≥ 2, domdimT ≥ n if and only if ExtiΛ(X, T ) = 0 for any X ∈ Λ-mod
with HomΛ(X, Λ) = 0 and i = 1, 2, · · · , n − 1.

Proof. This is an immediate consequence of Proposition 2.7. �
In the following, A is an artin algebra and A-mod is the category of finitely generated 

left A-modules. We will relate the grade of A/AeA as a left A-module to D(eA)-dominant 
dimension of A, where e is an idempotent of A and A/AeA is the quotient algebra of A
modulo the idempotent ideal generated by e.

Theorem 2.9. (See Psaroudakis [25, Theorem 3.10].) Let N be in A-mod and n be an 
integer. Then ExtiA(M, N) ∼= ExtieAe (eM, eN) for any M ∈ A-mod and 0 ≤ i ≤
n if and only if there exists an exact sequence 0 → N → HomeAe(eA, I0) → · · · →
HomeAe(eA, In+1) with Ii ∈ add(eAeD(eAe)) for 0 ≤ i ≤ n + 1.

Lemma 2.10. Let N be in A-mod. If ExtieAe(eA, eN) = 0 for 1 ≤ i ≤ n, then for any M
in A-mod, there are canonical isomorphisms

ExtiA
(
M,HomeAe(eA, eN)

) ∼= ExtieAe(eM, eN)

for 0 ≤ i ≤ n.

Proof. Choose an injective resolution of eN as a left eAe-module

0 → eN → I0 → · · · → In → · · ·

such that each Ij ∈ addD(eAe). Since ExtieAe(eA, eN) = 0 for 1 ≤ i ≤ n, there is an 
exact sequence

0 → HomeAe(eA, eN) → HomeAe

(
eA, I0) → · · · → HomeAe

(
eA, In+1)

Theorem 2.9 implies

ExtiA
(
M,HomeAe(eA, eN)

) ∼= ExtieAe(eM, eN)

for any M ∈ A-mod and 0 ≤ i ≤ n. �
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Proposition 2.11. Let n ≥ 2 be an integer. Then A ∼= EndeAe(eA)op and ExtieAe(eA, eA) =
0 for 1 ≤ i ≤ n − 2 if and only if D(eA)-domdimA ≥ n.

Proof. If A ∼= HomeAe (eA, eA)op, and ExtieAe(eA, eA) = 0 for 1 ≤ i ≤ n − 2, then by 
Lemma 2.10 and Theorem 2.9 there is an exact sequence 0 → A → HomeAe(eA, I0) →
· · · → HomeAe(eA, In−1) with Ii ∈ addD(eAe) for 0 ≤ i ≤ n − 1. Because of the 
isomorphism HomeAe(eA, D(eAe)) ∼= D(eA), we get D(eA)- domdimA ≥ n.

If D(eA)- domdimA ≥ n, then there is an exact sequence 0 → A → HomeAe(eA, I0) →
· · · →HomeAe(eA, In−1) with Ii ∈ addD(eAe) for 0 ≤ i ≤n −1 by HomeAe(eA, D(eAe)) ∼=
D(eA). By Theorem 2.9, A ∼= EndeAe(eA)op and ExtieAe(eA, eA) = 0 for 1 ≤ i ≤
n − 2. �
Lemma 2.12. Let M be in A-mod.

(1) Then D(eA)-domdimM ≥ n + 1 if and only if ExtiA(X, M) = 0 for any X ∈
A/AeA-mod and 0 ≤ i ≤ n. In particular, D(eA)-domdimA ≥ n + 1 if and only if 
gradeA X ≥ n + 1 for any X ∈ A/AeA-mod if and only if gradeA A/AeA ≥ n + 1.

(2) Let 0 → M1 → M → M2 → 0 be a short exact sequence of A-modules. Let n =
D(eA)-domdimM and ni = D(eA)-domdimMi for i = 1, 2. Then n ≥ min{n1, n2}. 
Moreover,

(a) n1 < n ⇒ n2 = n1 − 1.
(b) n1 = n ⇒ n2 ≥ n − 1; n1 = n + 1 ⇒ n2 ≥ n; n1 ≥ n + 2 ⇒ n2 = n.
(c) n < n2 ⇒ n1 = n.
(d) n = n2 ⇒ n1 ≥ n2; n = n2 + 1 ⇒ n1 ≥ n2 + 1; n ≥ n2 + 2 ⇒ n1 = n2 + 1.

Proof. The isomorphism AD(eA) ∼= AHomeAe(eA,D(eAe)) and [25, Proposition 3.4]
imply that D(eA)- domdimM ≥ n + 1 if and only if ExtiA(X, M) = 0 for any X ∈
A/AeA-mod and 0 ≤ i ≤ n. This implies that D(eA)- domdimA ≥ n + 1 if and only if 
gradeA X ≥ n +1 for any X ∈ A/AeA-mod. If gradeA A/AeA = n, then ExtiA(X, A) = 0
for any X ∈ A/AeA-mod and 0 ≤ i ≤ n − 1 by [8, Lemma 2.2]. This means that 
gradeA X ≥ n = gradeA A/AeA for any X ∈ A/AeA-mod. This completes the proof.

(2) Applying the functor HomA(X, −) to the exact sequence above for any X ∈
A/AeA-mod, yields a long exact sequence

· · · → ExtiA(X,M) → ExtiA(X,M2) → Exti+1
A (X,M1) → Exti+1

A (X,M) → · · ·

By (1), it is clear that n ≥ min{n1, n2}. If n1 < n, then by the long exact sequence, 
ExtiA(X, M2) = 0 for 0 ≤ i ≤ n1 − 2 and Extn1−1

A (X, M2) ∼= Extn1(X, M1) �= 0. So 
n2 = n1 − 1. Similarly, (b), (c) and (d) hold. �
Remark 2.13. For a finite dimensional algebra A over a field k, Iyama has proved in [16, 
Proposition 3.5.1] that D(eA)- domdimA ≥ n + 1 if and only if gradeA X ≥ n + 1 for 
any X ∈ A/AeA-mod; this is one equivalence in Lemma 2.12(1).
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Theorem 2.14. Let n be a non-negative integer. Then gradeA A/AeA = n if and only if 
D(eA)- domdimA = n.

Proof. If gradeA A/AeA = n, then by Lemma 2.12(1) D(eA)- domdimA ≥ n. 
We claim that D(eA)- domdimA � n + 1. Otherwise, by Lemma 2.12(1) again, 
ExtnA(A/AeA, A) = 0. This is a contradiction.

If D(eA)- domdimA = n, then by Lemma 2.12(1) gradeA A/AeA ≥ n. We claim that 
gradeA A/AeA � n +1. Otherwise, by Lemma 2.12(1) again, D(eA)- domdimA ≥ n +1. 
This is a contradiction. This implies that gradeA A/AeA = n. �
Appendix

The grade of the A-module A/AeA is closely related to another homological dimension, 
the faithful dimension (in our case, of Ae) defined by Buan and Solberg [7]. In this 
appendix we make this connection precise and explain how faithful dimension can be 
used in our context.

First we recall the definitions due to Buan and Solberg [7]. Let A be an artin algebra 

and M be an A-module. There is a complex η : 0 → A 
f1

→ M1 f2

→ M2 → · · · fn

→ Mn → · · ·, 
with Ki = Coker f i for i ≥ 1 and K0 = A, such that each Ki → M i+1 is a minimal 
left addM -approximation. Let ηn denote the truncated complex ending in Mn obtained 
from η. Then M is said to have faithful dimension n if ηn is exact, but ηn+1 is not. If η
is exact, then M has infinite faithful dimension. This dimension is denoted by fadimM .

There is also a complex θ : · · · → M ′
n

f ′
n→ · · · f ′

2→ M ′
1

f ′
1→ D(Aop) → 0, with K ′

i = Im f ′
i

such that each M ′
i → K ′

i is a minimal right addM -approximation. Let θn denote the 
truncated complex starting in M ′

n obtained from θ. Then M is said to have cofaithful 
dimension n if θn is exact, but θn+1 is not. This dimension is denoted by cofadimM .

Proposition 2.15. (See Buan–Solberg [7, Proposition 2.1 and Proposition 2.2].) Let A be 
an artin algebra and n be a non-negative integer. Then:

(1) fadimAe = n if and only if cofadimAe = n.
(2) The (A, eAe)-bimodule Ae has the double centraliser property if and only if Ae has 

faithful dimension at least 2.
(3) Suppose that the (A, eAe)-bimodule Ae has the double centraliser property. Then 

Ae has faithful dimension n if and only if ExtieAe(Ae, Ae) = 0 for 1 ≤ i ≤ n − 2 and 
Extn−1

eAe (Ae, Ae) �= 0.

In the context of this paper, these results translate into the first two statements of 
the following corollary. Combining Proposition 2.15 with Theorem 2.14 then gives the 
connection between grade and faithful dimension.

Corollary 2.16. Let A be an artin algebra and n be a non-negative integer.
(1) The (A, eAe)-bimodule Ae has double centraliser property if and only if D(Ae)-

domdimA ≥ 2;
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(2) A ∼= EndeAe(Ae), ExtieAe(Ae, Ae) = 0 for 1 ≤ i ≤ n − 2 and Extn−1
eAe (Ae, Ae) �= 0

if and only if D(Ae)-domdimA = n;
(3) Ae has faithful dimension n if and only if gradeA A/AeA = n.

Proof. By Proposition 2.15, Ae has faithful dimension n if and only if D(Ae)-
domdimA = n, and the (A, eAe)-bimodule Ae has double centraliser property if and 
only if Ae has faithful dimension at least 2, and Ae has faithful dimension n ≥ 2
if and only if A ∼= EndeAe(Ae), ExtieAe(Ae, Ae) = 0 for 1 ≤ i ≤ n − 2 and 
Extn−1

eAe (Ae, Ae) �= 0. So the (A, eAe)-bimodule Ae has double centraliser property if 
and only if D(Ae)- domdimA ≥ 2, and also A ∼= EndeAe(Ae), ExtieAe(Ae, Ae) = 0
for 1 ≤ i ≤ n − 2 and Extn−1

eAe (Ae, Ae) �= 0 if and only if D(Ae)- domdimA = n. By 
Theorem 2.14, Ae has faithful dimension n if and only if gradeA A/AeA = n. �
Remark 2.17. (1) and (2) in Corollary 2.16 imply Proposition 2.11.

3. Application to homological conjectures

In this section, we will give some consequences for homological conjectures.
We first recall two crucial definitions. Let Λ be an artin algebra. Following Jans [17], 

a Λ-module X is said to have an ultimately closed injective resolution at n if, in an 
injective resolution (I•, δi) of X, Im δn =

⊕m
j=1 W

j with each W j isomorphic to a direct 
summand of some Im δj , 0 ≤ j ≤ n − 1. A Λ-module M is called self-orthogonal if 
ExtiΛ(M, M) = 0 for any i ≥ 1.

Lemma 3.1. Let Λ, T , M and αT be as in Definition 2.1. Let Mn
dn−→ Mn−1

dn−1−→ · · · →
M1

d1−→ M0 → T → 0 with Mi ∈ addM be an exact sequence in Λ-mod. Suppose that 
M is self-orthogonal and M has an ultimately closed injective resolution at n − 1 as a 
left Γ -module. If ExtiΛ(T, M) = 0 for any 1 ≤ i ≤ n − 1, then αT is an isomorphism.

Proof. We first claim that there is an exact sequence

0 → ExtnΓ (Y,M) → T
αT−→ HomΓ

(
HomΛ(T,M),M

)
→ Extn+1

Γ (Y,M) → 0 (�)

where Y = CokerHomΛ(dn, M).
The case n = 1 follows from Theorem 2.3. Now suppose n ≥ 2. Since M is self-

orthogonal and ExtiΛ(T, M) = 0 for 1 ≤ i ≤ n − 1, there is an exact sequence

0 → HomΛ(T,M) → HomΛ(M0,M) → · · · → HomΛ(Mn,M) → ΓY → 0

where Y = CokerHomΛ(dn, M). As HomΛ(Mj , M) is Γ -projective for each j ≥ 0, we get 
ExtiΓ (X, M) ∼= Exti+n−1

Γ (Y, M) where X = Coker HomΛ(d1, M). This yields the exact 
sequence (�).
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Exactness of the induced sequence 0 → HomΓ (Y, M) → Mn
dn−→ Mn−1 → · · · d0−→

M0 → T → 0 implies ExtiΓ (Y, M) = 0 for any 1 ≤ i ≤ n − 1.
Let 0 → M

δ0

−→ I0 δ1

−→ I1 → · · · δi−→ Ii → · · · be an ultimately closed injective 
resolution of M at n − 1. Then Im δn−1 =

⊕m
j=1 W

j such that each W j is a direct 
summand of some Im δj with 0 ≤ j ≤ n − 2. So ExtnΓ (Y, M) ∼= Ext1Γ (Y, Im δn−1) ∼=⊕m

j=1 Ext1Γ (Y, W j). Since 
⊕m

j=1 Ext1Γ (Y, Im δj) ∼=
⊕m

j=1 Extj+1
Γ (Y, M) = 0 as above, it 

follows that ExtnΓ (Y, M) = 0. Similarly Extn+1
Γ (Y, M) =

⊕m
j=1 Extj+2

Γ (Y, M) = 0. Thus 
αT is an isomorphism. �

Recall from [8] the Strong Nakayama Conjecture (SNC) for noetherian algebras: Let Λ
be a noetherian algebra. If M is a finitely generated Λ-module, then ExtiΛ(M, Λ) = 0 for 
any i ≥ 0 implies M = 0. Let (Λ, e) be a Wedderburn context [8, Definition 2.15] with Λ
a noetherian algebra. Buchweitz proved that if SNC holds, then ExtiΛ(Λ/ΛeΛ, Λ) = 0 for 
all i ≥ 0 implies that Λ/ΛeΛ = 0, which he calls the Idempotent Nakayama Conjecture 
(INC). Inspired by this result, we formulate the following condition:

Condition (SNC′). Let Λ be a noetherian algebra. If T and M are two finitely generated 
Λ-modules, then ExtiΛ(T, M) = 0 for any i ≥ 0 implies T = 0.

Note that when choosing T = M and M = Λ in SNC′, then SNC′ is exactly SNC.

Corollary 3.2. Let Λ, T , M and αT be as Lemma 3.1. Then SNC′ holds.

Proof. By Lemma 3.1, αT is an isomorphism. Since HomΛ(T, M) = 0, it follows that 
T = 0. �

The next proposition generalises [9, Theorem 2].

Proposition 3.3. Under the assumption of Lemma 3.1, suppose ΛM is flat. If
ExtiΛ(T, Λ) = 0 for any i ≥ 0, then T = 0. That is, SNC holds.

Proof. By [2, Theorem 2.8], the following sequence is exact for any i ≥ 0,

ExtiΛ(T,Λ) ⊗Λ M → ExtiΛ(T,M) → TorΛ1 (X,M),

where X = Coker(P ∗
0 → P ∗

1 ) with P1 → P0 → Ωi(T ) → 0 being an exact sequence 
in modΛ where P0 and P1 are projective. Because ΛM is flat, TorΛ1 (X, M) = 0. So 
ExtiΛ(T, M) = 0 for any i ≥ 0, which implies T = 0 by Corollary 3.2. �
Lemma 3.4. Let Λ be an artin algebra and M ∈ Λ-mod self-orthogonal with Γ =
EndΛ(M). Let T ∈ Λ-mod and 0 → T → M0 f1

−→ M1 → · · · fn

−→ Mn be an exact 
sequence with M i ∈ addM . If ExtiΛ(M, T ) = 0 for any 1 ≤ i ≤ n − 1, then there is the 
following exact sequence
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0 → Torn+1
Γ (Y,M) → HomΛ(M,T ) ⊗Γ M

αT−→ T → TornΓ (Y,M) → 0

where Y = CokerHomΛ(M, fn).

Proof. The case n = 1 follows from the proof of Theorem 2.4. Now suppose n ≥ 2. 
Consider the exact sequence

0 → T → M0 → M1 → · · · fn

−→ Mn.

Since M is self-orthogonal and ExtiΛ(M, T ) = 0 for any 1 ≤ i ≤ n − 1, the following 
sequence

0 → (M,T ) →
(
M,M0) →

(
M,M1) →

(
M,M2) → · · · →

(
M,Mn

)
→ Y → 0

is exact, where (−, −) denotes the functor HomΛ(−, −) and Y = Coker(M, fn). Note that 
Tori+n−1

Γ (Y, M) ∼= ToriΓ (X, M) where X = Coker(M, f1). Then we have the following 
exact sequence, again by Theorem 2.4

0 → Torn+1
Γ (Y,M) → HomΛ(M,T ) ⊗Γ M

αT−→ T → TornΓ (Y,M) → 0. �
Corollary 3.5. Let Λ be an artin algebra and M ∈ Λ-mod self-orthogonal with Γ =
EndΛ(M). Let T ∈ Λ-mod and 0 → T → M0 f0

→ M ′ → · · · fn

→ Mn be an exact sequence 
with M i ∈ addM . If M has an ultimately closed projective resolution at n − 1 as a left 
Γ -module and ExtiΛ(M, T ) = 0 for any 1 ≤ i ≤ n − 1, then αT is an isomorphism. In 
particular, SNC′ holds.

Proof. Let · · · → Pi
di→ Pi−1 → · · · → P0

d0→ M → 0 be an ultimately closed projective 
resolution of M at n −1 as a Γ -module. Then Im dn−1 =

⊕m
j=1 Uj such that each Uj is a 

direct summand of some Im dj with 0 ≤ j ≤ n −2. So, TornΓ (Y, M) ∼= Tor1Γ (Y, Im dn−1) ∼=⊕m
j=1 Tor1Γ (Y, Uj). Since 

⊕m
j=1 Tor1Γ (Y, Im dj) ∼=

⊕m
j=1 Torj+1

Γ (Y, M) = 0 by assump-
tion, it follows that TornΓ (Y, M) = 0. Similarly, Torn+1

Γ (Y, M) =
⊕m

j=1 Torj+2
Γ (Y, M) = 0. 

Thus αT is an isomorphism by Lemma 3.4. If HomΛ(M, T ) = 0, then T = 0 by the above 
arguments. �
Proposition 3.6. Under the assumption of Corollary 3.5, suppose ΛT is flat. If 
ExtiΛ(M, Λ) = 0 for any i ≥ 0, then M = 0. That is, SNC holds.

Proof. The proof of Proposition 3.3 works here as well. �
4. Morita–Tachikawa correspondence for Gorenstein algebras

In this section we characterise by intrinsic properties the algebras corresponding to 
Gorenstein algebras (paired with Gorenstein projective generators) under (an extended 
version of) Morita–Tachikawa correspondence.
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Recall from [14,10] that a noetherian algebra A is Iwanaga–Gorenstein (for short, 
Gorenstein) if injdimA A < ∞ and injdimAA < ∞. A Gorenstein algebra A is 
d-Gorenstein if injdimA A ≤ d < ∞. Let A be an artin algebra. Denote by A-mod 
(resp. mod-A) the category of finitely generated left (resp. right) A-modules, and A-proj 
(resp. proj-A) the full subcategory of finitely generated projective left (resp. right) 
A-modules. An A-module M is said to be Gorenstein projective in A-mod (resp. mod-A), 
if there is an exact sequence P • = · · · −→ P−1 −→ P 0 d0

−→ P 1 −→ P 2 −→ · · · in 
A-proj (resp. proj-A) with HomA(P •, Q) exact for any A-module Q in A-proj (resp. 
proj-A), such that M ∼= ker d0. Denote by A-Gproj (resp. Gproj-A) the full subcate-
gory of Gorenstein projective modules in A-mod (resp. mod -A). Note that the functor 
HomA(−, A) : A-Gproj → Gproj-A is a duality of categories.

Lemma 4.1. Let A be an artin R-algebra over a commutative artin ring R. Let e be 
an idempotent of A and d a non-negative integer. Suppose there is an exact sequence 
of finitely generated right A-modules 0 → eA → I0 → · · · → Id → 0 with each Ij ∈
add(D(Ae)), and an exact sequence of finitely generated left A-modules 0 → Ae → E0 →
· · · → Ed → 0 with each Ej ∈ add(D(eA)). Then Ae is a finitely generated Gorenstein 
projective right eAe-module and eAe is a d-Gorenstein artin R-algebra.

Proof. Since A is an artin R-algebra and Ae is a finitely generated left A-module, eAe =
EndA(Ae)op is an artin R-algebra and Ae is a finitely generated right eAe-module, and 
also A/AeA is an artin R-algebra. Consider the triangle

Ae⊗L

eAe eA
f→ A → X• → Ae⊗L

eAe eA[1] (�)

in D(Aop ⊗R A), where f is the composition Ae ⊗L

eAe eA → Ae ⊗eAe eA mult.−→ A of 
natural maps. Applying the functor eA ⊗L

A − to (�) provides us with an isomorphism 
eA ⊗L

A f . Thus eA ⊗L

A X• = 0 holds. This means that eHi(X•) = 0 and hence Hi(X•) ∈
A/AeA-mod for any i ∈ Z. Since Ae and eA are concentrated in degree 0, Hi(Ae ⊗L

eAeeA)
vanishes for i > 0, and then Hi(X•) = 0 for any i > 0.

Applying the functor HomA(Ae, −) to the exact sequence 0 → AAe → E0 →
· · · → Ed → 0 with each Ej ∈ add(AD(eA)) for 0 ≤ j ≤ d yields an exact se-
quence 0 → eAeeAe → E′0 → · · · → E′d → 0 with each E′j ∈ add(eAeD(eAe)) for 
0 ≤ j ≤ d. Therefore, injdimeAe eAe ≤ d. Lemma 2.10(1) and injdimA Ae ≤ d imply 
ExtiA(X, Ae) = 0 for any X ∈ A/AeA-mod and i ∈ Z, and so RHomA(X•, Ae) = 0. 
Applying RHomA(−, Ae) to (�) yields a series of isomorphisms

Ae = RHomA(A,Ae) ∼= RHomA

(
Ae⊗L

eAe eA,Ae
)

∼= RHomeAe

(
eA,RHomA(Ae,Ae)

)

∼= RHomeAe(eA, eAe)
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in D((A)op⊗R eAe). This means that Ae ∼= HomeAe(eA, eAe) as (A, eAe)-bimodules and 
ExtieAe(eA, eAe) = 0 for i �= 0.

Applying the functor HomA(eA, −) to the exact sequence of right A-modules 0 →
eA → I0 → · · · → Id → 0 with each Ij ∈ add(D(Ae)), gives an exact sequence 0 →
eAeeAe → I ′0 → · · · → I ′d → 0 with each I ′j ∈ add(D(eAe)eAe) for 0 ≤ j ≤ d. This 
implies that injdim eAeeAe ≤ d. As above, we obtain that eAe is d-Gorenstein, and Ae

is a Gorenstein projective right eAe-module. �
Now we state the main theorem of this section, which generalises [11, Theorem 3.2]

and [23, Section 16]. Note that projective modules always are Gorenstein projective, and 
thus Gorenstein projective generators exist.

Theorem 4.2. Let A be an artin R-algebra. Then the following statements are equivalent:
(1) A is isomorphic to the endomorphism algebra of a finitely generated Gorenstein 

projective generator over a d-Gorenstein artin R-algebra for d a non-negative integer.
(2) There is an idempotent e of A and a non-negative integer d such that there is an 

exact sequence of finitely generated right A-modules 0 → eA → I0 → · · · → Id → 0
with each Ij ∈ add(D(Ae)), and an exact sequence of finitely generated left A-modules 
0 → Ae → E0 → · · · → Ed → 0 with each Ej ∈ add(D(eA)), and the (A, eAe)-bimodule 
Ae has the double centraliser property.

(2′) There is an idempotent e of A and a non-negative integer d such that there is 
an exact sequence of finitely generated right A-modules 0 → eA → I0 → · · · → Id → 0
with each Ij ∈ add(D(Ae)), and an exact sequence of finitely generated left A-modules 
0 → Ae → E0 → · · · → Ed → 0 with each Ej ∈ add(D(eA)), and the (eAe, A)-bimodule 
eA has the double centraliser property.

(3) There is an idempotent e of A and a non-negative integer d such that eA is a finitely 
generated left Gorenstein projective eAe-module and injdim(eAA) = injdim(AAe) =
d < ∞, also D(eA)-domdimA ≥ 2.

Proof. (1) =⇒ (2) Let B be a d-Gorenstein artin R-algebra and M a Gorenstein projec-
tive generator in mod -B such that A = EndB(M). We may write M = N ⊕B for some 
N ∈ mod-B. Let e : M � B be the canonical projection, regarded as an element of A. 
Then B ∼= eAe and M ∼= Ae. This implies A ∼= EndeAe(Ae).

Since eAe is d-Gorenstein, there exists an exact sequence 0 → eAeeAe → J0 → J1 →
· · · → Jd → 0 such that each J i ∈ addD(eAeeAe). Since Ae is a finitely generated 
Gorenstein projective right eAe-module, applying the functor HomeAe(Ae, −) yields an 
exact sequence of right A-modules 0 → HomeAe(Ae, eAe) → HomeAe(Ae, J0) → · · · →
HomeAe(Ae, Jd) → 0. Since HomeAe(Ae, D(eAeeAe)) ∼= D(Ae) as right A-modules, 
we get that HomeAe(Ae, J i) ∈ addD(Ae)A for 0 ≤ i ≤ d. Now we claim that 
HomeAe(Ae, eAe) ∼= eA as (eAe, A)-bimodules. Indeed, since A ∼= EndeAe(Ae), we get 
from [8, Proposition 2.9] that HomA(A/AeA, eA) = 0 and Ext1A(A/AeA, eA) = 0. So 
HomA(AeA, eA) ∼= HomA(A, eA) as (eAe, A)-bimodules by the short exact sequence 
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0 → AeA → A → A/AeA → 0 of A-bimodules. Moreover, the proof of [8, Lemma 2.11]
shows that HomA(AeA, eA) ∼= HomA(Ae ⊗eAe eA, eA) as (eAe, A)-bimodules. Thus, 
there are the following isomorphisms

HomeAe(Ae, eAe) ∼= HomeAe

(
Ae,HomA(eA, eA)

)

∼= HomA(Ae⊗eAe eA, eA)

∼= HomA(AeA, eA)

∼= HomA(A, eA) = eA

of right (eAe, A)-bimodules. Hence eA is a left Gorenstein projective eAe-module, and 
there is an exact sequence of right A-modules 0 → eA → I0 → · · · → Id → 0 with each 
Ij ∈ add(D(Ae)).

Again using that eAe is a d-Gorenstein artin R-algebra, there exists an exact se-
quence 0 → eAeeAe → J ′0 → J ′1 → · · · → J ′d → 0 such that each J ′i ∈
addD(eAeeAe). Since eA is a finitely generated Gorenstein projective left eAe-module, 
applying the functor HomeAe(eA, −) yields an exact sequence of left A-modules 0 →
HomeAe(eA, eAe) → HomeAe(eA, J ′0) → · · · → HomeAe(eA, J ′d) → 0. Since D(eA) ∼=
HomeAe(eA, D(eAeeAe)) as left A-modules, we get that HomeAe(Ae, J ′i) ∈ addA D(eA)
for 0 ≤ i ≤ d. Hence by HomeAe(eA, eAe) ∼= Ae, we obtain an exact sequence of left 
A-modules 0 → Ae → E0 → · · · → Ed → 0 with each Ej ∈ add(D(eA)).

(2) =⇒ (1) by Lemma 4.1.
(1) ⇒ (3) By the arguments in (1) =⇒ (2) there is an idempotent e such that 

A ∼= EndeAe(Ae), where eAe is a d-Gorenstein algebra and Ae is a finitely generated 
right eAe-module. Moreover, eA ∼= HomeAe(Ae, eAe) and inj.dim eAA = injdimA Ae =
d < ∞. Hence, eA is a finitely generated left Gorenstein projective eAe-module and 
A ∼= EndeAe(eA)op. By Proposition 2.11, D(eA)- domdimA ≥ 2.

(3) ⇒ (1) Since D(eA)- domdimA ≥ 2, it follows from Proposition 2.11 that A ∼=
EndeAe(eA)op. Therefore by the dual of [8, Proposition 2.9], HomA(A/AeA, Ae) = 0
and Ext1A(A/AeA, Ae) = 0. From the proof of the dual of [8, Lemma 2.11] we also 
get that HomA(AeA, Ae) ∼= HomA(Ae ⊗eAe eA, Ae) as (A, eAe)-bimodules. Hence we 
obtain HomA(AeA, Ae) ∼= HomA(A, Ae) as (A, eAe)-bimodules, from the short exact 
sequence 0 → AeA → A → A/AeA → 0 of A-bimodules. So, there is an isomorphism 
Ae ∼= HomeAe(eA, eAe) of (A, eAe)-bimodules. Since eA ∈ eAe-Gproj, we get that Ae ∈
Gproj-eAe and eA ∼= HomeAe(Ae, eAe), and also ExtieAe(Ae, eAe) = ExtieAe(eA, eAe) =
0 for any i ∈ Z.

For any M ∈ mod-eAe, we claim that Extd+1
eAe (M, eAe) = 0. Let N := M ⊗eAe eA

and P • be a projective resolution of N as a right A-module. Then P •e is a complex in 
add(Ae)eAe and P •e is quasi-isomorphic to Ne ∼= M . Thus by injdim eAA = d < ∞, 
there are isomorphisms
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Extd+1
eAe (M, eAe) ∼= Hd+1(HomeAe

(
P •e, eAe

))

∼= Hd+1(HomA

(
P •,HomeAe(Ae, eAe)

))

∼= Hd+1HomA

(
P •, eA

) ∼= Extd+1
A (N, eA)

= 0

This means that injdim eAeeAe ≤ d. For any Y ∈ eAe-mod, we claim that
Extd+1

eAe (Y, eAe) = 0. Let Z := Ae ⊗eAe Y and Q• be a projective resolution of Z as 
a left A-module. Then eQ• is a complex in addeAe(eA) and eQ• is quasi-isomorphic to 
eZ ∼= Y . Thus by injdimA Ae = d < ∞, there are isomorphisms

Extd+1
eAe (Y, eAe) ∼= Hd+1(HomeAe

(
eQ•, eAe

))

∼= Hd+1(HomA

(
Q•,HomeAe(eA, eAe)

))

∼= Hd+1HomA

(
Q•, Ae

) ∼= Extd+1
A (Z,Ae)

= 0

This means that injdimeAe eAe ≤ d. Hence eAe is a d-Gorenstein algebra.
(2) ⇐⇒ (2′) follows from the proof of Lemma 4.1. �
A special case of Theorem 4.2 can be given a shorter proof using Iyama’s results 

in [16].
Special case: Let A be a finite dimensional k-algebra over a field k. Then the following 
statements are equivalent:

(1) A is isomorphic to the endomorphism algebra of a finite dimensional Gorenstein 
projective right generator over a finite dimensional d-Gorenstein k-algebra, for d a non-
negative integer.

(2) There is an idempotent e of A and a non-negative integer d such that there is an 
exact sequence of finite dimensional right A-modules 0 → eA → I0 → · · · → Id → 0
with each Ij ∈ add(D(Ae)), and an exact sequence of finite dimensional left A-modules 
0 → Ae → E0 → · · · → Ed → 0 with each Ej ∈ add(D(eA)), and the (A, eAe)-bimodule 
Ae has the double centraliser property.

Proof. (1) =⇒ (2) The isomorphism A ∼= EndeAe(Ae) is shown as in the beginning of 
the proof of Theorem 4.2.

Since eAe is a d-Gorenstein algebra, eAe is a d-cotilting right eAe-module. As Ae

is a Gorenstein projective right eAe-module, ExtieAe(Ae, eAe) = 0 for any i ≥ 1. Note 
that eAeeAe ∈ add(Ae)eAe. By [16, Proposition 3.4.3(1)], (HomeAe(Ae, eAe), D(Ae)) is 
a d-extension pair of right A-modules in the sense of [16]. By [16, Proposition 3.4.1], the 
two sequences 0 → HomeAe(Ae, eAe) → I0 → · · · → Id → 0 with each Ii ∈ addD(Ae), 
and 0 → P−d → · · · → P 0 → D(Ae) → 0 with each P j ∈ add HomeAe(Ae, eAe), are 
exact. The latter implies that there is an exact sequence 0 → Ae → E0 → · · · → Ed → 0



134 N. Gao, S. Koenig / Journal of Algebra 427 (2015) 118–141
with each Ej ∈ addDHomeAe(Ae, eAe). Now the proof can be finished as above, using 
the results of [8] to show that HomeAe(Ae, eAe) ∼= eA as right A-modules.

(2) =⇒ (1) By assumption and [16, Proposition 3.4.1], (Ae, D(eA)) is a d-extension 
pair of left A-modules. Then by [16, Proposition 3.4.3(2)] and its proof, eAe is a d-
cotilting left eAe-module, ExtieAe(eA, eAe) = 0 for any i ≥ 1 and Ae ∼= HomeAe(eA, eAe)
as left A-modules. This means that eAe is a d-Gorenstein algebra, and eA is a 
Gorenstein projective left eAe-module. Since the (A, eAe)-bimodule Ae has the dou-
ble centraliser property, we see from the proof of (1) =⇒ (2) in Theorem 4.2 that 
Ae ∼= HomeAe(eA, eAe) as right eAe-modules. So, Ae is a Gorenstein projective right 
eAe-module. �
Definition 4.3. Let A be an artin R-algebra. We say A is a gendo-d-Gorenstein algebra
for some non-negative integer d, and e is an associated idempotent, if A satisfies one 
of the equivalent conditions of Theorem 4.2. When d is not specified, A is called a 
gendo-Gorenstein algebra.

Here, as in [12], ‘gendo’ refers to endomorphism ring of a generator.

Remark 4.4. Let A be a gendo-Gorenstein algebra and e an associated idempotent. 
Then Ae ∼= HomeAe(eA, eAe) as (A, eAe)-bimodules and eA ∼= HomeAe(Ae, eAe) as 
(eAe, A)-bimodules.

5. Properties of gendo-Gorenstein algebras

In this section, we will give further properties of gendo-Gorenstein algebras, including 
higher Auslander correspondence.

Let A be an artin algebra. Let X be a full subcategory of mod -A and M ∈ mod-A. 
Recall from [3] that a complex · · · → X2 → X1 → X0 → M is called a right X -resolution
of M if Xi ∈ X and · · · → HomA(−, X1) → HomA(−, X0) → HomA(−, M) → 0 is exact 
on X . We write reldimX M ≤ n if M has a right X -resolution with Xn+1 = 0.

An algebra is of finite Cohen–Macaulay type, or simply, CM-finite, if there are only 
finitely many isomorphism classes of indecomposable finitely generated Gorenstein pro-
jective modules, see [5]. Clearly, an algebra A is CM-finite if and only if there is an 
A-module E such that A-Gproj = addE.

Now we will consider some special cases of Theorem 4.2.

Corollary 5.1. Let A be a gendo-d-Gorenstein algebra and e an associated idempotent. 
If Ae is also a cogenerator of mod -eAe, then eAe is a self-injective algebra and A is a 
Morita algebra. In this case, add(Ae)eAe = mod -eAe if and only if gldimA = 2.

Proof. Since Ae is a cogenerator of mod -eAe, D(eAe) is a right Gorenstein pro-
jective eAe-module. By assumption, eAe is d-Gorenstein. This implies that
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projdimD(eAe)eAe ≤ d. So D(eAe) is a projective right eAe-module, and eAe is self-
injective and eA ∼= D(Ae) as right A-modules. Thus, A is a Morita algebra. In this case, 
add(Ae)eAe = mod -eAe if and only if reldimAe X = 0 for any X ∈ mod-eAe if and only 
if gldimA = 2 by [22, Theorem 2.6]. �
Corollary 5.2. Let A be a gendo-d-Gorenstein algebra for some d ≥ 2. Let e be an 
associated idempotent such that Gproj-eAe = add(Ae)eAe. Then gldimA = d.

Proof. Since A is gendo-d-Gorenstein and e is an associated idempotent of A, eAe is 
d-Gorenstein and A ∼= EndeAe(Ae). Since eAe is CM-finite by Gproj-eAe = add(Ae)eAe, 
[22, Theorem 2.6] implies gldimA ≤ d. By Theorem 4.2, gldimA ≥ d. Thus, 
gldimA = d. �
Proposition 5.3. Let A be a gendo-d-Gorenstein algebra and e an associated idempotent. 
Then projdim HomA(Ae, D(eA)) ≤ d as both left and right eAe-modules.

Proof. There is an exact sequence of left A-modules 0 → Ae → E0 → · · · → Ed → 0
with each Ej ∈ add(D(eA)). Applying the functor HomA(−, D(eA)) to this sequence, 
we get an induced exact sequence 0 → HomA(Ed, D(eA)) → · · ·HomA(E0, D(eA)) →
HomA(Ae, D(eA)) → 0 with each HomA(Ei, D(eA)) ∈ add(HomA(D(eA), D(eA))) ∼=
add eAeeAe. This implies projdim HomA(Ae, D(eA)) ≤ d as a right eAe-module. By 
a similar argument, projdim HomA(Ae, D(eA)) ≤ d as a left eAe-module, using the 
exact sequence 0 → eA → I0 → · · · → Id → 0 of right A-modules with each Ij ∈
add(D(Ae)). �
Proposition 5.4. Let A be a gendo-d-Gorenstein algebra and e be its associated 
idempotent. Let EndGproj-eAe(Ae) := EndeAe(Ae)/〈eAe〉 where 〈eAe〉 is the ideal of 
Gproj-eAe given by all maps which factor through an object in add(eAe)eAe. Then 
EndGproj-eAe(Ae) ∼= A/AeA.

Proof. Since EndeAe(Ae) ∼= A and HomeAe(Ae, eAe) ∼= eA as right A-modules, by The-
orem 4.2, there is an equivalence of categories

HomeAe(Ae,−) : add(Ae)eAe → proj-A

which sends eAe to eA. Thus EndGproj-eAe(Ae) = EndeAe(Ae)/〈eAe〉 ∼= EndA(A)/〈eA〉 ∼=
A/AeA. �

Let R be a commutative noetherian ring and A be an associative unital R-algebra over 
R that is projective as an R-module. We denote the nth Hochschild cohomology group of 
A with coefficients in A itself by HHn(A). It is known that HHn(A) ∼= ExtnA⊗RAop(A, A)
as groups.
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Lemma 5.5. Let A be an artin R-algebra that is projective as an R-module, and e an 
idempotent of A such that (eAe, A)-bimodule eA has the double centraliser property. Let 
n ≥ 2 be an integer. Then ExtieAe(eA, eA) = 0 for 1 ≤ i ≤ n −2 and Extn−1

eAe (eA, eA) �= 0
if and only if gradeA A/AeA = n. In this case, HHi(eAe) ∼= HHi(A) for 0 ≤ i ≤ n − 2.

Proof. By Proposition 2.11, A ∼= HomeAe(eA, eA) and ExtieAe(eA, eA) = 0 for 1 ≤
i ≤ n − 2 if and only if D(eA)-domdimA ≥ n. We claim that D(eA)- domdimA = n. 
Otherwise, by Proposition 2.11 again, we get that Extn−1

eAe (eA, eA) = 0, a contradiction. 
So by Theorem 2.14, A ∼= HomeAe(eA, eA), ExtieAe(eA, eA) = 0 for 1 ≤ i ≤ n − 2 and 
Extn−1

eAe (eA, eA) �= 0 if and only if gradeA A/AeA = n. If gradeA A/AeA = n, then the 
dual of [8, Theorem 5.5] implies HHi(eAe) ∼= HHi(A) for 0 ≤ i ≤ n − 2. �

Recall from [13, 3.2.5] that a k-algebra A over a field k is called bimodule d-Calabi–Yau
for some integer d ≥ 2 if projdimA AA < ∞ and RHomAop⊗kA(A, Aop ⊗k A)[d] ∼= A in 
D(Aop ⊗k A).

Example 5.6. Let A be a finite dimensional k-algebra over a field k, and e(�= 1) an 
idempotent of A. Assume that A is a bimodule d-Calabi–Yau algebra for d ≥ 2. Then:

(1) gradeA A/AeA = d;
(2) HHi(eAe) ∼= HHi(A) for 0 ≤ i ≤ d − 2.

Proof. By [1, Theorem 2.2], A is gendo-d-Gorenstein such that A ∼= HomeAe (eA, eA), 
and ExtieAe(eA, eA) = 0 for 1 ≤ i ≤ d − 2. Also by the proof of [1, Proposition 2.6] and 
[1, Lemma 2.5] we see that Extd−1

eAe (eA, eA) �= 0. Hence by Lemma 5.5 we obtain that 
gradeA A/AeA = d and HHi(eAe) ∼= HHi(A) for 0 ≤ i ≤ d − 2. �

In the following we will show higher Auslander correspondence for gendo-d-Gorenstein 
algebras. We first recall the notion of maximal orthogonal subcategory.

Let B be a resolving subcategory of an abelian R-category A with enough projectives. 
Let C be a functorially finite subcategory of B and l ≥ 0. Recall from [16, Section 2.4] that 
C is a maximal l-orthogonal subcategory of B, if C ⊥l C and C = C⊥l∩B = ⊥lC∩B, where 
C ⊥l C means ExtiB(X, Y ) = 0 for any X, Y ∈ C and 0 < i ≤ l, C⊥l := {X ∈ B | C ⊥l X}
and ⊥lC := {X ∈ B | X ⊥l C}.

Lemma 5.7. Let A be an artin algebra and M be in A-Gproj. Put M∗ = HomA(M, A). 
Then addA M is a maximal l-orthogonal subcategory of A-Gproj if and only if addM∗

A

is a maximal l-orthogonal subcategory of Gproj-A.

Proof. Since HomA(−, A) is a duality between A-Gproj and Gproj-A, it is enough to show 
that ExtiA(M, E) = 0 implies ExtiA(E∗, M∗) = 0 for any E ∈ A-Gproj and 0 < i ≤ l.
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Take a minimal projective resolution of M ,

· · · → P1 → P0 → M → 0. (∗)

Applying the functor HomA(−, E) to the sequence (∗), and using ExtiA(M, E) = 0 for 
0 < i ≤ l, we get the exact sequence

0 → HomA(M,E) → HomA(P0, E) → · · · → HomA(Pl+1, E). (∗∗)

On the other hand, applying the functor HomA(−, A) to the sequence (∗), gives an 
induced exact sequence

0 → M∗ → P ∗
0 → P ∗

1 → · · · . (∗∗∗)

Again using that HomA(−, A) is a duality between A-Gproj and Gproj-A, the functor 
HomA(E∗, −) on the sequence (∗∗∗) yields the exact sequence

0 → HomA

(
E∗,M∗) → HomA

(
E∗, P ∗

0
)
· · · → HomA

(
E∗, P ∗

l+1
)
. (∗∗∗∗)

Comparing (∗∗) and (∗∗∗∗) implies ExtiA(E∗, M∗) = 0 for 0 < i ≤ l. �
Theorem 5.8. Let A be a gendo-d-Gorenstein algebra for some d ≥ 0 and e be an associ-
ated idempotent. If add (Ae)eAe is a maximal (n −2)-orthogonal subcategory of Gproj-eAe

for some integer n ≥ 2, then gldimA ≤ n + max{0, d − 2} and D(eA)-domdimA ≥ n. 
In particular, if d ≤ 2, then gldimA ≤ n.

Proof. Note that A ∼= EndeAe(eA) and eA ∼= HomeAe(Ae, eAe) as left eAe-modules 
by Theorem 4.2. Since add (Ae)eAe is a maximal (n − 2)-orthogonal subcategory of 
Gproj-eAe, it follows from Lemma 5.7 that addeAe(eA) is a maximal (n − 2)-orthogonal 
subcategory of eAe-Gproj. Thus ExtieAe(eA, eA) = 0 for 1 ≤ i ≤ n − 2. Hence by Propo-
sition 2.11 we get D(eA)- domdimA ≥ n. By [15, Proposition 2.2.2], reldimeA X ≤ n − 2
for any X ∈ eAe-Gproj. Hence by [22, Theorem 2.6], gldimA ≤ n + max{0, d − 2}. 
Therefore, d ≤ 2, implies gldimA ≤ n. �
Theorem 5.9. Let A be an artin R-algebra. Let e be an idempotent of A such that 
Ae ∈ Gproj-eAe and eA ∼= HomeAe(Ae, eAe) as left eAe-modules. If gldimA ≤ n

and D(eA)-domdimA ≥ n for some integer n ≥ 2, then add (Ae)eAe is a maximal 
(n − 2)-orthogonal subcategory of Gproj-eAe.

Proof. Since D(eA)- domdimA ≥ n, Proposition 2.11 implies A ∼= EndeAe(eA) and 
ExtieAe(eA, eA) = 0 for 1 ≤ i ≤ n − 2. Since gldimA ≤ n and eA is a generator 
in eAe-mod, it follows from [22, Theorem 2.6] that reldimeA X ≤ n − 2 for any X ∈
eAe-Gproj. By assumption, Ae ∈ Gproj-eAe and eA ∼= HomeAe(Ae, eAe), and thus eA ∈
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eAe-Gproj. Now by [16, Proposition 2.4.1], addeAe(eA) is a maximal (n − 2)-orthogonal 
subcategory of eAe-Gproj. By Lemma 5.7, the proof is complete. �
Corollary 5.10. Let A be a gendo-d-Gorenstein algebra for d ≤ 2 and e an associated 
idempotent. Then add (Ae)eAe is a maximal (n −1)-orthogonal subcategory of Gproj-eAe

for some integer n ≥ 1 if and only if gldimA ≤ n + 1 and D(eA)-domdimA ≥ n + 1.

Proof. This is an immediate consequence of Theorems 5.8 and 5.9. �
Before we state the next proposition, we fix some notation. Let A be an artin algebra 

and e be an idempotent. We denote by eAe-Gproj the stable category of eAe-Gproj
modulo projectives. The algebra EndeAe(eA) := EndeAe(eA)/〈eAe〉 is called the stable 
endomorphism algebra of eA. Note that if eA is a Gorenstein projective eAe-module, 
then EndeAe(eA) is the same as EndeAe-Gproj(eA).

Next we show that the stable endomorphism algebra EndeAe(eA) has nice properties 
for n = 2.

Proposition 5.11. Let A be an artin R-algebra. Let e be an idempotent of A such that 
eA ∈ Gproj-eAe. If gldimA ≤ 3 and D(eA)-domdimA ≥ 3, then there is an equivalence 
of categories

eAe-Gproj/add(eA) ∼= mod-EndeAe(eA)

Moreover, eAe is CM-finite if and only if the stable endomorphism algebra EndeAe(eA)
is of finite representation type. In particular, EndeAe(eA) is a 1-Gorenstein algebra.

Proof. The proof of Theorem 5.9 implies that addeAe(eA) is a maximal 1-orthogonal 
subcategory of eAe-Gproj. It follows from [16, Proposition 2.4.1] that reldimeA X ≤ 1
for any X ∈ eAe-Gproj. Hence by [6, Theorem 7.1] there is an equivalence of categories

eAe-Gproj/add(eA) ∼= mod-EndeAe(eA)

and also eAe is CM-finite if and only if the stable endomorphism algebra EndeAe(eA)
is of finite representation type. By [21, Theorem 4.3], EndeAe(eA) is a 1-Gorenstein 
algebra. �

Now we will establish n + 1-dimensional Auslander correspondence for gendo-d-
Gorenstein algebras.

Proposition 5.12. Let R be a commutative artin ring and d ≤ 2 be a non-negative integer. 
For any n ≥ 1, there exists a bijection between the set of equivalence classes of finite 
maximal (n − 1)-orthogonal subcategories C of Gproj-Λ containing Λ for d-Gorenstein 
artin R-algebras Λ, and the set of Morita-equivalence classes of gendo-d-Gorenstein artin 
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R-algebras Γ with gldimΓ ≤ n + 1 and D(eΓ )-domdimΓ ≥ n + 1, where e is an 
associated idempotent of Γ . The bijection is given by C �→ Γ := EndΛ(M) for an additive 
generator M of C.

Proof. Let Λ be a d-Gorenstein artin R-algebra and C be a finite maximal (n − 1)-
orthogonal subcategory of Gproj-Λ containing Λ. Since C is finite, we may assume that 
C = addM with M an additive generator. Set Γ := EndΛ(M). Since Λ is a d-Gorenstein 
artin R-algebra and M is a finitely generated Gorenstein projective generator in mod -Λ, 
we may write M = N ⊕Λ for some N ∈ mod-Λ. Let e : M � Λ be the canonical projec-
tion. Then Λ ∼= eΓe and M ∼= Γe. This implies Γ ∼= EndeΓe(Γe). Thus, by Theorem 4.2, 
Γ is a gendo-d-Gorenstein artin R-algebra, and e is an associated idempotent. Since 
addeΓe(Γe) is maximal (n − 1)-orthogonal in Gproj-eΓe, it follows from Corollary 5.10
that gldimΓ ≤ n + 1 and D(eΓ )- domdimΓ ≥ n + 1.

Let Γ be a gendo-d-Gorenstein artin R-algebra such that gldimΓ ≤ n + 1 and 
D(eΓ )- domdimΓ ≥ n + 1. Then by Theorem 4.2 and Corollary 5.10, eΓe ia a 
d-Gorenstein artin R-algebra and addeΓe(Γe) is maximal (n −1)-orthogonal in Gproj-eΓe

such that eΓe ∈ add (Γe)eΓe. We take C to be add (Γe)eΓe. �
One implication of a special case of Proposition 5.12 can be derived directly from 

Iyama’s Theorem 4.4.1 in [16]. The other implication is different, since unlike [16] we 
don’t assume the condition: projdimΓ/ΓeΓ X ≤ n + 1 for any Γ/ΓeΓ -module X.

Special case: Let k be a field and d ≤ 2 be a non-negative integer. For any n ≥ 1, there ex-
ists a bijection between the set of equivalence classes of finite maximal (n −1)-orthogonal 
subcategories C of Gproj-Λ containing Λ for finite dimensional d-Gorenstein k-algebras Λ, 
and the set of Morita-equivalence class of finite dimensional gendo-d-Gorenstein 
k-algebras Γ with gldimΓ ≤ n + 1 and D(eΓ )- domdimΓ ≥ n + 1, where e is an 
associated idempotent. It is given by C �→ Γ := EndΛ(M) for an additive generator M
of C.

Proof. Let C be a finite maximal (n −1)-orthogonal subcategory of Gproj-Λ containing Λ
for a finite dimensional d-Gorenstein k-algebra Λ. Since C is finite, we may assume that 
C = addM with M an additive generator. Set Γ := EndΛ(M). Since Λ is a d-Gorenstein 
algebra and M is a finite dimensional Gorenstein projective generator in mod -Λ, it fol-
lows that Λ is a d-cotilting right Λ-module and addM is a maximal (n − 1)-orthogonal 
subcategory of ⊥ΛΛ containing Λ. It follows from [16, Definition 4.1] that (Γ, M, Λ)
is an Auslander triple of type (0, d, n). By [16, Theorem 4.4.1(2) and Definition 4.4], 
gldimΓ ≤ max{n + 1, d} = n + 1, and (HomΛ(M, Λ), DM) is a d-extension pair of right 
Γ -modules and right Γ -module HomΓ (M, Γ ) is n-superprojective. Then [16, Proposi-
tion 3.4.1 and 3.5.1] shows that there is an idempotent e of Γ such that M = Γe and 
D(Γe)- domdimΓ ≥ n + 1.
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Note that D(Γe)- domdimΓ ≥ n + 1 implies, by Proposition 2.11, that
ExtieΓe(Γe, Γe) = 0 for 0 < i ≤ n − 2. Hence by Lemma 5.7, ExtieΓe(eΓ, eΓ ) = 0
for 0 < i ≤ n − 2. Proposition 2.11 now implies that D(eΓ )- domdimΓ ≥ n + 1.

Let Γ be a gendo-d-Gorenstein artin R-algebra such that gldimΓ ≤ n + 1 and 
D(eΓ )- domdimΓ ≥ n + 1. Then by Theorem 4.2 and Corollary 5.10, eΓe ia a 
d-Gorenstein artin R-algebra and addeΓe(Γe) is maximal (n −1)-orthogonal in Gproj-eΓe

such that eΓe ∈ add (Γe)eΓe. We choose C to be add (Γe)eΓe. �
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