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We study the relationship between the projective dimension of 
a squarefree monomial ideal and the domination parameters 
of the associated graph or clutter. In particular, we show that 
the projective dimensions of graphs with perfect dominating 
sets can be calculated combinatorially. We also generalize the 
well-known graph domination parameter τ to clutters, obtain-
ing bounds on the projective dimension analogous to those for 
graphs. Through Hochster’s Formula, our bounds on projec-
tive dimension also give rise to bounds on the homologies of 
the associated Stanley–Reisner complexes.
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1. Introduction

In this paper we continue the theme of [4] and [5] in relating the projective dimension 
of a squarefree monomial ideal to domination parameters of the associated clutter. This 
point of view has proved fruitful in recovering and improving both various bounds on 
projective dimensions of squarefree monomial ideals (see [3], [6]), as well as bounds on 
the homology of the associated Stanley–Reisner complexes.

The first half of the paper deals with graphs that have perfect dominating sets. We 
prove that, in this case, the projective dimension of the associated ideal I(G) is exactly 
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the size of the complement of any perfect dominating set of G (Theorem 3.6). This pro-
vides a class of graphs whose ideals’ projective dimensions can be recovered immediately 
via combinatorial properties of the associated graphs.

In the remainder of the paper, we generalize a domination parameter for graphs 
studied in [4] to clutters. This invariant is denoted τ(C). Our main result (Theorem 5.2) 
asserts that for any clutter C, we have pd(C) ≤ |V (C)| − τ(C). The proof, while using the 
same ideas, is a bit more intricate than the proof for the graph case given in [4].

As usual, bounds on projective dimension translate into bounds on the simplicial 
homology of the associated Stanley–Reisner complex. For instance, we recover the homo-
logical analogue of a result by Barmak on simplicial complex homology (Corollary 5.4).

We also construct an associated graph K(C) for a clutter C, which allows us to bound 
the homology of the associated Stanley–Reisner complex of C (Corollary 5.10).

Our paper is organized as follows. In Section 2, we review the background on graphs 
and their associated ideals, as well as domination parameters. In Section 3, we discuss 
graphs with perfect dominating sets and properties of the associated ideals. Section 4 is 
concerned with the background on clutters (or hypergraphs). Finally, in Section 5, we 
generalize the parameter τ to clutters and prove a result analogous to that proved in [4], 
and derive some corollaries from this new bound on projective dimension.

2. Background and terminology

Let G be a finite simple graph with vertex set V (G). We often identify V (G) with 
the set [n] := {1, 2, . . . , n}. For A ⊆ V (G), we write G[A] for the corresponding induced 
subgraph of G, which is the subgraph on vertex set A consisting of all edges (v, w) of 
G where v, w ∈ A. The independence complex of G, for which we write ind(G), is the 
simplicial complex with vertex set V (G) where A ⊆ V (G) is a face of ind(G) whenever 
G[A] contains no edges (that is, no two elements of A are neighbors).

The Stanley–Reisner ideal of ind(G), for which we write IG, is the ideal in S given by

IG = {xixj : (i, j) is an edge of G}.

Let k be a fixed field. We set S = k[x1, x2, . . . , xn]. The projective dimension of IG, for 
which we write pd(S/IG) or pd(G), is the shortest length of a projective (or equivalently, 
free) resolution of S/IG. The following alternate characterization of projective dimension 
can be derived from Hochster’s Formula (see, for instance, [7]). Here and in what follows, 
we write “H̃i(Σ) = 0” to mean that the reduced homology group H̃i(Σ) is trivial.

The following is an easy corollary of Hochster’s Formula.

Proposition 2.1. The projective dimension of S/IG is the smallest integer i such that for 
all X ⊆ V (G) we have

H̃k(ind(G[X])) = 0

for all k < |X| − i − 1.
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Plugging in X = V (G) into the above proposition yields the following corollary.

Corollary 2.2. The homology of ind(G) satisfies

H̃k(ind(G)) = 0

for k < |V (G)| − pd(G) − 1.

Recall that a vertex of G is isolated if it is contained in no edge. We write G to denote 
G with its isolated vertices removed. As isolated vertices of G do not appear in any 
generator of IG, it follows that IG = IG. More specifically, we have the following.

Observation 2.3. For any graph G, we have pd(G) = pd(G).

Thus, in many of our applications, we can assume that G has no isolated vertices.
Finally, for x ∈ V (G), we write N(x) to denote the set of neighbors of x in G, and if 

X ⊆ V (G) we set N(X) = ∪x∈XN(x).

3. Graphs with perfect dominating sets

In [4], we relate the projective dimension of a graph G to the so-called domination 
parameters of G. We briefly recall some of the definitions and results from [4].

Definition 3.1. If G is a graph, an independent set A ⊆ V (G) is an independent domi-
nating set of G if V (G) = A ∪N(A). We let i(G) be the smallest size of an independent 
dominating set of G.

Definition 3.2. Let G be a graph. For a set A ⊆ V (G), define γ0(A, G) by

γ0(A,G) = min{|X| : X ⊆ V (G) and A ⊆ N(X)},

and define the domination parameter τ(G) by

τ(G) = max{γ0(A,G) : A ⊆ V (G) is independent}.

The following is well-known, but we state it here for completeness.

Observation 3.3. For any graph G, |V (G)| − i(G) equals BigHeight(IG), the BigHeight 
of IG. Thus |V (G)| − i(G) ≤ pd(G).

One of the main results in [4] relating the projective dimension of a graph to its 
domination parameters is the following.
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Theorem 3.4. (See [4].) For any graph G, we have

pd(G) ≤ |V (G)| − τ(G).

In order to apply Theorem 3.4 and Observation 3.3, we need the notion of a perfect 
dominating set. We use the standard definition of graph distance where for x, y ∈ V (G), 
dist(x, y) is the least number of edges in a path from x to y (so that dist(x, y) = 1 iff 
(x, y) is an edge of G and dist(x, y) = 0 iff x = y). We also set dist(x, y) = ∞ if x and y
are in different connected components of G.

Definition 3.5. Let G be a graph. A set A ⊆ V (G) is a perfect dominating set of G if A
is dominating (i.e., V (G) = A ∪N(A)) and dist(x, y) ≥ 3 for any two vertices x, y ∈ A.

Perfect dominating sets have been studied in depth by those working in graph theory 
and optimization-type problems (see, for instance, [2]).

Note that, unlike the other forms of graph domination discussed, many graphs have 
no perfect dominating sets (the simplest example of such a graph is the 5-cycle). In the 
case when G has a perfect dominating set, however, we can give an exact formula for 
pd(G), as shown by the following.

Theorem 3.6. Suppose G has a perfect dominating set A. Then

pd(G) = |V (G)| − i(G) = |V (G)| − |A| = BigHeight(IG).

Proof. First, suppose G has a nonempty set Z of isolated vertices. Then i(G) = i(G) −|Z|, 
and so |V (G)| − i(G) = |V (G)| + |Z| − (i(G) + |Z|) = |V (G)| − i(G). By Observation 2.3, 
pd(G) = pd(G), and so we may assume that G has no isolated vertices.

Now let A be a perfect dominating set of G, and let X ⊆ V (G) be a set of minimal 
cardinality such that A ⊆ N(X) (so that |X| = γ0(A, G)). First note that X∩A = ∅, since 
no element of A is a neighbor of another. For any x ∈ X, we must have |N(x) ∩A| = 1, 
since if there were a, a′ ∈ N(x) ∩A with a 
= a′, we would have dist(a, a′) ≤ dist(a, x) +
dist(x, a′) = 2, contradicting the assumption that A is a perfect dominating set. Thus, 
for each x ∈ X there is a unique a ∈ A with a ∈ N(x), and so |X| ≥ |A|. If |X| were 
greater than |A|, then X would not be minimal, and so we must have |X| = |A|.

As |X| = γ0(A, G) and A is independent, τ(G) ≥ |X|. Similarly, since A is independent 
and dominating, we have |A| ≥ i(G). Observation 3.3 and Theorem 3.4 now give us:

|V (G)| − |A| ≤ |V (G)| − i(G) ≤ pd(G) ≤ |V (G)| − τ(G)

≤ |V (G)| − |X| = |V (G)| − |A|,

meaning

pd(G) = |V (G)| − |A| = |V (G)| − i(G). �
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Fig. 1. The 6-cycle C6.

The following is already known, though we recover it here.

Corollary 3.7. If G has a perfect dominating set, then any two perfect dominating sets 
of G have the same cardinality.

Proof. Theorem 3.6 shows that any perfect dominating set must have cardinality 
i(G). �

The above corollary can be shown without reference to projective dimension. Indeed, 
writing γ(G) for the smallest cardinality of a set Y such that V (G) = Y ∪ N(Y ), 
we have i(G) ≥ γ(G) (as Y need not be independent). In [4, Theorem 4.1] we show 
that τ(G) ≤ γ(G). Now let G, X, and A be as in the proof of Theorem 3.6. Then 
|A| = |X| ≤ τ(G) ≤ γ(G) ≤ i(G) ≤ |A|, and so any perfect dominating set A satisfies 
|A| = i(G) = γ(G) = τ(G).

Example 3.8. Let C6 denote the 6-cycle as shown in Fig. 1. Then any pair of antipodal 
vertices, such as {a, d} or {b, e} is a perfect dominating set of C6. Thus i(C6) = τ(C6) = 2, 
and we have pd(C6) = 6 − 2 = 4.

Many classes of graphs are known to have perfect dominating sets (such as cycles on 
3n elements and paths). However, a complete classification of such graphs does not seem 
to be known, even for trees.

For k ≥ 0, define a k-star to be a graph with vertices v, x1, x2, . . . , xk and edges (v, xi)
for all i (note that a 0-star is just an isolated vertex). We call the vertices xi leaves, and 
the vertex v the center.

Definition 3.9. Build a graph as follows: Begin with a disjoint union of k-stars, where k is 
allowed to vary. Then add any edges between leaves of these stars (where edges between 
leaves of the same star are allowed). We call such a graph star-constructible.

The following is most likely known, though we were unable to find it in the literature.

Theorem 3.10. A graph G has a perfect dominating set if and only if it is star-
constructible.
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Proof. If G is star-constructible, the centers of the stars is easily seen to form a perfect 
dominating set of G.

For the reverse implication, we induct on the stronger hypothesis that every graph 
G with a perfect dominating set A is star-constructible, where the vertices in A are the 
centers of the stars. Indeed, suppose G has a perfect dominating set A ⊆ V (G). Note 
that, by definition, N(A) = V (G) �A. If no two elements in N(A) are neighbors, then G
is a disjoint union of the stars with vertex sets {a} ∪N(a) for a ∈ A. Otherwise, there is 
some edge e connecting two elements in N(A). Let G′ denote G with this edge deleted. 
By induction on the number of edges, G′ is a star-constructible graph, and A consists of 
the centers of these stars. Since e connects two leaves of these stars, it follows that G is 
star-constructible. �
Proposition 3.11. Let G be a disjoint union of k-stars, and let G′ be a graph obtained 
from G by adding some edges between leaves of these stars. Then pd(G) = pd(G′).

Thus, the projective dimension of a star-constructible graph depends only on the num-
ber of vertices and the number of stars used in building it.

Proof. Both G and G′ have the same perfect dominating set A (which is the centers 
of the k-stars) and the same number of vertices, so Theorem 3.6 gives that pd(G) =
|V (G)| − |A| = |V (G′)| − |A| = pd(G′). �

Here we note an application of Theorem 3.6 to a construction by Francisco and Hà.

Definition 3.12. Let G be a graph. For each vertex v ∈ V (G), introduce a new vertex v′

and a new edge (v, v′). The resultant graph, w(G), is called the whiskering of G.

In [8], the author shows that Iw(G) is sequentially Cohen–Macaulay for any graph G.

Proposition 3.13. For any graph G, we have pd(w(G)) = |V (G)|.

Proof. Let W be the set of vertices added to G to produce w(G). Then |W | = |V (G)|. 
It is easily seen that W is a perfect dominating set of G, so Theorem 3.6 gives us 
pd(w(G)) = |V (w(G))| − |W | = 2|V (G)| − |V (G)| = |V (G)|. �
4. Clutter background

Definition 4.1. Recall that a clutter (or hypergraph) C consists of a finite set of vertices 
V (C) and a set of edges E(C) ⊆ 2V (C), such that no edge properly contains another.

In the case when every edge of C has cardinality 2, we can identify C with a simple 
graph. Note that C may have isolated vertices, which are vertices appearing in no edge 
of C. Note also that these are different from vertices v ∈ V (C) for which {v} ∈ E(C). We 
write C to denote the clutter C with its isolated vertices removed.
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Now fix a characteristic zero field k, and let S = k[x1, x2, . . . , xn]. For a squarefree 
monomial m in S, we write supp(m) for the set {i ∈ [n] : xi|m}. Similarly, if e ⊆ [n], we 
set

xe =
∏
i∈e

xi.

Definition 4.2. Let I ⊆ S be a squarefree monomial ideal, and let G be its minimal 
generating set of monomials. We define a clutter C(I) by V (C(I)) = [n] and E(C(I)) =
{supp(m) : m ∈ G}. Similarly, if C is a clutter with V (C) = {x1, x2, . . . , xn}, we define a 
squarefree monomial ideal I(C) ⊆ S by I(C) = (xe : e ∈ E(C)).

Using the above definition, one can study properties of squarefree monomial ideals 
by studying the combinatorics of the corresponding clutters. To this end, we define the 
following two operations.

Definition 4.3. Let C be a clutter, and let A ⊆ V (C). We define two related clutters, 
C + A and C : A, as follows.

• The edges of C + A are the minimal sets of E(C) ∪ {A}, and the vertex set of C + A

is V (C).
• The edges of C : A are the minimal sets of {e � A : e ∈ E(C)}, and the vertex set of 

C : A is V (C) � A.

Observation 4.4. Let C be a clutter. If A ⊆ V (C), then (I(C), xA) = I(C + A) and 
I(C) : xA = I(C : A).

As in the graphical case, for I ⊆ S is an ideal, the projective dimension of S/I is the 
shortest length of a projective (or free) resolution of S/I. If C is a clutter, we write pd(C)
to mean the projective dimension of S/I(C). The following lemma is well-known, but we 
state it here for completeness.

Lemma 4.5. Let C be a clutter. Then for any A ⊆ V (C), we have

pd(C) ≤ max{pd(C + A),pd(C : A)}.

Proof. Consider the following natural short exact sequence:

0 → S

I(C) : xA
→ S

I(C) → S

(I(C), xA) → 0.

This yields pd(S/I(C)) ≤ max{pd(S/(I(C) : xA)), pd(S/(I(C), xA)}, and the lemma 
follows from the above observation. �
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Fig. 2. A clutter C and its independence complex ind(C).

As in Section 2, we can define the independence complex ind(C) of a clutter C to be 
the simplicial complex whose faces are subsets of V (C) containing no edge, and we say 
a set A ⊆ V (C) is independent if it contains no edges. In Fig. 2, the clutter C has edges 
{a, b}, {b, c, d}, and {d, e}. As in Section 2, Hochster’s Formula relates the projective 
dimension of S/I(C) to ind(C).

Proposition 4.6. The projective dimension of S/I(C) is the smallest integer i such that 
for all X ⊆ V (ind(C)) we have

H̃k(ind(C[X])) = 0

for all k < |X| − i − 1 (where the induced clutter C[X] is defined in the obvious way).

And, as in Section 2, the previous proposition yields bounds on the homology of ind(C). 
Namely, plugging in X = V (C) to the previous proposition gives us the following.

Corollary 4.7. The homology of ind(C) satisfies

H̃k(ind(C)) = 0

for k < |V (C)| − pd(C) − 1.

5. The parameter τ for clutters

Definition 5.1. Let C be a clutter. For a set A ⊆ V (C), let γ0(A, C) denote the least 
cardinality of a set X ⊆ V (C) � A such that every a ∈ A is in an edge of C with some 
x ∈ X. We say the set X is a dominating set of A in C. Define an invariant τ(C) by

τ(C) = max{γ0(A, C) : A ⊆ V (C) is independent and has no isolated vertices}.

The parameter τ(C) generalizes the well-known graph domination parameter of the 
same name to clutters. Theorem 5.2 generalizes Theorem 4.4 from [4] to clutters.

Theorem 5.2. For any clutter C, we have pd(C) ≤ |V (C)| − τ(C).
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Proof. Let A ⊆ V (C) be an independent set with γ0(A, C) = τ(C), let X ⊆ V (C) �A be 
the associated set of vertices, and fix x ∈ X. We examine the two cases of Lemma 4.5. In 
both cases, we induct on the number of vertices of C. As we may assume C has no isolated 
vertices, the base case for this induction is when C consists of one vertex and one edge. 
In this case I(C) = (x) and τ(C) = 0, so the bound holds: pd(C) ≤ |V (C)| − τ(C) = 1 −0.

Case 1. pd(C) ≤ pd(C + x). Let B ⊆ V (C) be the set of vertices only appearing in edges 
with x, and assume that B 
= ∅. Note that I(C + x) = (I(C − x − B), x), and thus 
pd(C + x) = pd(C − x −B) + 1. Let Q be the set of isolated vertices in C − x −B, and 
write A as a disjoint union A = A′ � AQ � AB where AQ = A ∩ Q, AB = A ∩ B, and 
A′ = A � (AQ ∪ AB). Because every edge of C − x − B is an edge of C, the set A′ is 
independent in C − x − B, and by construction it contains no isolated vertices. Let Y
be a dominating set of A′ in C − x − B with |Y | = γ0(A′, C − x − B). For each vertex 
a ∈ AQ, choose a vertex z ∈ V (C) � A such that z and a are neighbors (this is possible 
since A is independent), and call the resulting set Z. Then |Z| ≤ |AQ|, by construction.

Moreover, it is easy to see that Y ∪Z ∪ x is a dominating set of A in C, as any vertex 
in A′ has a neighbor in Y , any vertex in AQ has a neighbor in Z, and any vertex in AB

is a neighbor of x. Thus, |Y ∪Z ∪ x| ≥ τ(C) = |X|. As isolated vertices do not affect the 
projective dimension of a clutter, we have pd(C − x −B) = pd(C − x −B −Q). Isolated 
vertices do not affect the invariant τ either, and so |Y | ≤ τ(C−x −B−Q). By induction 
on the number of vertices, pd(C − x −B−Q) ≤ |V (C − x −B−Q)| − τ(C − x −B−Q). 
Thus, we have

pd(C) ≤ pd(C + x) = pd(C − x−B) + 1 = pd(C − x−B −Q) + 1

≤ |V (C − x−B −Q)| − τ(C − x−B −Q) + 1

= |V (C)| − 1 − |B| − |Q| − τ(C − x−B −Q) + 1

≤ |V (C)| − |B| − |Q| − |Y | ≤ |V (C)| − 1 − |Z| − |Y | ≤ |V (C)| − τ(C),

where in the final line we have used the fact that |Q| ≥ |AQ| ≥ |Z| and the assumption 
that B 
= ∅.

If instead B = ∅ then, using the notation above, Y ∪Z is a dominating set of A in C, 
and so the final line of the above becomes

pd(C) ≤ |V (C)| − |Q| − |Y | ≤ |V (C)| − |Z| − |Y | ≤ |V (C)| − τ(C).

Case 2. pd(C) ≤ pd(C : x). As in the first case, let Q be the set of isolated vertices of 
C : x and set AQ = A ∩ Q. Let e1, e2, . . . , et be all edges of C contained in A ∪ x, and 

set A′ = (A �
(⋃t

i=1 ei

)
) � Q. By construction, A′ is independent in C : x and has no 

isolated vertices. Let Y ⊆ V (C : x) � A be a dominating set of A′ with |Y | = γ0(A′, C)
(and so |Y | ≤ τ(C : x)). For every vertex a ∈ AQ, choose a neighbor z of a in C, and 
let Z be the collection of all such neighbors (so that |Z| ≤ |AQ| ≤ |Q|). Now note that 
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Y ∪Z ∪x is a dominating set of A in C, and so |Y ∪Z ∪x| ≥ τ(C). As isolated vertices do 
not affect the projective dimension of a clutter, we have pd(C : x) = pd((C : x) −Q). By 
induction on the number of vertices, pd((C : x) −Q) ≤ |V ((C : x) −Q)| − τ((C : x) −Q). 
Thus,

pd(C) ≤ pd(C : x) = pd((C : x) −Q) ≤ |V ((C : x) −Q)| − τ((C : x) −Q)

= |V (C)| − 1 − |Q| − τ(C : x) ≤ |V (C)| − 1 − |Z| − |Y |
≤ |V (C)| − |Y ∪ Z ∪ x| ≤ |V (C)| − τ(C). �

Observation 5.3. Combining [5, Remark 3.4] and Theorem 5.2, we can bound the pro-
jective dimension of a clutter from above and below: For any clutter C, we have

|V (C)| − i(C) ≤ pd(C) ≤ |V (C)| − τ(C).

By Corollary 4.7, Theorem 5.2 gives us the following.

Corollary 5.4. Let Δ be a simplicial complex and CΔ its clutter of minimal non-faces. 
Then H̃i(Δ) = 0 for i < τ(CΔ) − 1.

This allows us to generalize the homological version of the following theorem of Bar-
mak.

Theorem 5.5. (See [1].) Let G be a graph with vertex set V , and let A ⊆ V be a set of 
vertices such that the distance between any two members of A is at least 3. If Δ is the 
independence complex of G, then Δ is (|A| − 2)-connected.

We use the standard definition of clutter distance, namely if x and y are two vertices 
of a clutter C, let E0, E1, E2, . . . , Ek be a sequence of edges of minimal length such that 
x ∈ E0, y ∈ Ek, and Ei ∩ Ei+1 
= ∅ for all i. We set dist(x, y) = k.

Definition 5.6. Let A be a subset of the vertices of some clutter C. We say A is a distance-3
set if dist(a1, a2) ≥ 3 for any distinct vertices a1, a2 ∈ A.

Corollary 5.7. Let C be a clutter, and let A ⊆ V (C) be a distance-3 set. Then the inde-
pendence complex Δ of C satisfies H̃i(Δ) = 0 for i ≤ |A| − 2.

Proof. The set A is clearly independent. Now let X ⊆ V (C) �A be a dominating set of A
in C of minimal possible cardinality. Note that any x ∈ X must have exactly one neighbor 
in A. Indeed, if x had no neighbors in A, then X would not be a minimal cardinality 
dominating set. If a1, a2 ∈ A were both neighbors of x, we would have dist(x, a1) =
dist(x, a2) = 1, meaning dist(a1, a2) < 3. Thus τ(C) ≥ |X| = |A|, and the result follows 
from Corollary 5.4. �
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In using the above corollary, one must search for a large distance-3 set A in V (C). 
However, this is equivalent to the problem of finding a large distance-3 set in an associated 
graph K(C).

Definition 5.8. For a clutter C, define a graph K(C) on the same vertex set as follows. If 
x, y ∈ V (K(C)) = V (C) are distinct, then (x, y) is an edge of K(C) if and only if there 
exists an edge E of C with x, y ∈ E.

One can think of K(C) as the graph obtained by replacing each edge of C with the 
complete graph on that edge’s vertices.

The proof of the following is immediate.

Proposition 5.9. A set A ⊆ V (C) = V (K(C)) is a distance-3 set in C if and only if it is 
a distance-3 set in K(C).

Combining Corollary 5.7 and Proposition 5.9, we have the following.

Corollary 5.10. Let Δ be a simplicial complex, let CΔ be its clutter of minimal non-faces, 
and let K(CΔ) be the associated graph. If A is a distance-3 set in K(CΔ), then H̃i(Δ) = 0
for i ≤ |A| − 2.

Acknowledgments

The first author was partially supported by National Science Foundation grants 
DMS 0834050 and DMS 1104017. The second author was partially supported by an 
Oklahoma State University Dean’s Incentive Grant. We thank Heather Ranney for her 
contributions, as well as the anonymous referee for many helpful suggestions and correc-
tions.

References

[1] J. Barmak, Star clusters in independence complexes of graphs, Adv. Math. 241 (2013) 33–57.
[2] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296.
[3] R. Bouchat, H.T. Hà, A. O’Keefe, Path ideals of rooted trees and their graded Betti numbers, 

J. Combin. Theory Ser. A 118 (8) (2011) 2411–2425.
[4] H. Dao, J. Schweig, Projective dimension, graph domination parameters, and independence complex 

homology, J. Combin. Theory Ser. A 120 (2) (2013) 453–469.
[5] H. Dao, J. Schweig, Bounding the projective dimension of a squarefree monomial ideal via domination 

in clutters, Proc. Amer. Math. Soc. 143 (2015) 555–565.
[6] K.-N. Lin, J. McCullough, Hypergraphs and the regularity of square-free monomial ideals, preprint.
[7] E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, 

vol. 227, Springer-Verlag, New York, 2005.
[8] Rafael Villerreal, Cohen–Macaulay graphs, Manuscripta Math. 66 (3) (1990) 277–293.

http://refhub.elsevier.com/S0021-8693(15)00105-2/bib6261726D616Bs1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib4269s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib70617468696465616C7331s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib70617468696465616C7331s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib445331s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib445331s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib445332s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib445332s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib6D73s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib6D73s1
http://refhub.elsevier.com/S0021-8693(15)00105-2/bib76s1

	Further applications of clutter domination parameters to projective dimension
	1 Introduction
	2 Background and terminology
	3 Graphs with perfect dominating sets
	4 Clutter background
	5 The parameter τ for clutters
	Acknowledgments
	References


