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Let Φ be an f × g matrix with entries from a commutative 
Noetherian ring R, with g ≤ f. Recall the family of generalized 
Eagon–Northcott complexes {Ci

Φ} associated to Φ. (See, for 
example, Appendix A2 in “Commutative Algebra with a 
View Toward Algebraic Geometry” by D. Eisenbud.) For each 
integer i, Ci

Φ is a complex of free R-modules. For example, 
C0
Φ is the original “Eagon–Northcott” complex with zero-

th homology equal to the ring R/Ig(Φ) defined by ideal 
generated by the maximal order minors of Φ; and C1

Φ is 
the “Buchsbaum–Rim” complex with zero-th homology equal 
to the cokernel of the transpose of Φ. If Φ is sufficiently 
general, then each Ci

Φ, with −1 ≤ i, is acyclic; and, if Φ is 
generic, then these complexes resolve half of the divisor class 
group of R/Ig(Φ). The family {Ci

Φ} exhibits duality; and, if 
−1 ≤ i ≤ f − g + 1, then the complex Ci

Φ exhibits depth-
sensitivity with respect to the ideal Ig(Φ) in the sense that 
the tail of Ci

Φ of length equal to grade(Ig(Φ)) is acyclic. The 
entries in the differentials of Ci

Φ are linear in the entries of 
Φ at every position except at one, where the entries of the 
differential are g × g minors of Φ.
This paper expands the family {Ci

Φ} to a family of complexes 
{Ci,a

Φ } for integers i and a with 1 ≤ a ≤ g. The entries in the 
differentials of {Ci,a

Φ } are linear in the entries of Φ at every 
position except at two consecutive positions. At one of the 
exceptional positions the entries are a × a minors of Φ, at the 
other exceptional position the entries are (g −a +1) ×(g −a +1)
minors of Φ.
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The complexes {Ci
Φ} are equal to {Ci,1

Φ } and {Ci,g
Φ }. The 

complexes {Ci,a
Φ } exhibit all of the properties of {Ci

Φ}. In 
particular, if −1 ≤ i ≤ f − g and 1 ≤ a ≤ g, then Ci,a

Φ exhibits 
depth-sensitivity with respect to the ideal Ig(Φ).

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a commutative Noetherian ring and F and G be free R-modules of rank f
and g, respectively, with g ≤ f. Recall that, for each R-module homomorphism

Φ : G∗ → F (1.0.1)

there is a family of generalized Eagon–Northcott complexes {Ci
Φ}. (See, for example, 

Definition 3.1, [13, Appendix A.2], [3, 2.16], or [20]. A more complete history of these 
complexes may be found in the comments on page 26 in [3].) If

−1 ≤ i ≤ f− g + 1, (1.0.2)

then Ci
Φ has length f −g +1; and, if f −g +1 ≤ grade Ig(Φ), then Ci

Φ is acyclic for i satisfying 
(1.0.2). Furthermore, the complexes Ci

Φ, for i satisfying (1.0.2), exhibit depth-sensitivity. 
In particular, if s ≤ grade Ig(Φ) for some integer s with 0 ≤ s ≤ f−g+1, then Hj(Ci

Φ) = 0
for f − g + 2 − s ≤ j and i satisfying (1.0.2). In the generic situation, the complexes Ci

Φ, 
with i satisfying (1.0.2), resolve the Cohen–Macaulay elements of the divisor class group 
of the determinantal ring R/Ig(Φ). The complexes Ci

Φ, with i in the range (1.0.2), exhibit 
duality:

Ci
Φ
∼= a shift of HomR(Cj

Φ, R) in homological degree,
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for i + j = f − g. Also, if R is a graded ring, and a matrix representation of Φ is a matrix 
of linear forms, then the Betti tables for the complexes {Ci

Φ} are pleasing to the eye. 
The maps are linear, except at, at most one position where the maps have degree g. 
Moreover, the position of non-linearity slides, along a line of slope 1, from the beginning 
of the complex to the end as i varies from 0 to f − g.

We expand the list of canonical complexes which are associated to the R-module 
homomorphism (1.0.1). For each pair (i, a) with

−1 ≤ i ≤ f− g and 1 ≤ a ≤ g, (1.0.3)

we consider a complex Ci,a
Φ . The classical generalized Eagon–Northcott complexes

{Ci
Φ|(1.0.2) holds} (1.0.4)

are included in the set

{Ci,a
Φ |(1.0.3) holds} (1.0.5)

with Ci
Φ = Ci,1

Φ for −1 ≤ i ≤ f − g and Ci
Φ = Ci−1,g

Φ for 0 ≤ i ≤ f − g + 1. The complexes 
of (1.0.5) exhibit many of the properties as the listed properties for the generalized 
Eagon–Northcott complexes (1.0.4). Each complex of (1.0.5) has length f − g + 1; and

if f− g + 1 ≤ grade Ig(Φ), then each Ci,a
Φ is acyclic.

The complexes of (1.0.5) exhibit depth-sensitivity. In the generic situation, the complex 
Ci,a
Φ of (1.0.5)

resolves a maximal Cohen–Macaulay module over the ring R/Ig(Φ) of rank
(
g−1
a−1

)
.

(1.0.6)

The complexes of (1.0.5) exhibit duality:

Ci,a
Φ

∼= a shift of HomR(Cj,b
Φ , R) in homological degree,

for i + j = f − g − 1 and a + b = g + 1. Also, if R is a graded ring, and Φ is a map 
of degree 1, then the maps of Ci,a

Φ are linear, except at, at most two adjacent positions 
where the maps have degree a and g + 1 − a. Moreover, the position of non-linearity 
slides, along a line of slope 1, from the beginning of the complex to the end as i varies 
from −1 to f − g; see Example 7.6.

The Eagon–Northcott [11] complex C0
Φ and the Buchsbaum–Rim complex [6–8] C1

Φ
are very important objects in Commutative Algebra and Algebraic Geometry. (For ex-
ample, [1,15,16,21,29] are a small sampling of the recent papers about Buchsbaum–Rim 
multiplicity and its application to equisingularity.) We expect that the rest of the fam-
ily (1.0.5) will prove to be valuable tools in these fields.
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The complexes Ci,a
Φ arise in the study of the homological properties of the primary 

components of the content ideal c(fgh) of the product of three generic polynomials f , 
g, and h. These components have been identified [9, Thm. 4.2] and all but one of the 
components is known to be Gorenstein [9, Thm. 4.1 and Rem. 4.3]. The complexes Ci,a

Φ
also arise in the study of the resolutions of the symmetric algebra Sym(I) and the Rees 
algebra R(I) of a grade three Gorenstein ideal I = (g1, . . . , gn) in a polynomial ring 
over a field k; see, for example, [23] and [24, Cor. 6.3], where the special fiber ring 
F(I) = k[g1, . . . , gn] of I is resolved.

The complexes Ci,a
Φ are straightforward and they are built in a canonical manner. 

That is, there are no choices; everything is coordinate-free. The modules in Ci,a
Φ are 

Schur modules and Weyl modules corresponding to hooks. In other words, the modules 
in Ci,a

Φ all are kernels of Koszul complex maps or Eagon–Northcott complex maps; see 
4.1 and 4.3. The complex Ci,a

Φ is obtained by concatenating three finite complexes:

K →
∧

→ L,

where K and L are standard complexes of Weyl and Schur modules, respectively, and ∧
consists of a single exterior power concentrated in one position; see Definition 7.2 for 

the details. The complexes K and L are introduced in Section 5.
The main result of this paper is Theorem 8.4 which states that if Φ is sufficiently 

general, −1 ≤ i, and 1 ≤ a ≤ g, then Ci,a
Φ is an acyclic complex of free R-modules and 

H0(Ci,a
Φ ) is a torsion-free R/Ig(Φ)-module of rank 

(
g−1
a−1

)
. The most important applications 

occur when i also satisfies i ≤ f −g. Indeed, in this situation, Ci,a
Φ has length f −g +1 and, 

if f − g + 1 ≤ grade Ig(Φ), then H0(Ci,a
Φ ) is a perfect R-module of projective dimension 

f − g + 1 resolved by Ci,a
Φ and Extf−g+1

R (H0(Ci,a
Φ ), R) is a perfect R-module resolved by 

Cf−g−i−1,g+1−a
Φ ; furthermore, even if grade Ig(Φ) < f − g + 1, the complex Ci,a

Φ exhibits 
depth-sensitivity with respect to the ideal Ig(Φ) in the sense that

Hj(Ci,a
Φ ) = 0 for f− g + 2 − grade Ig(Φ) ≤ j, when −1 ≤ i ≤ f− g and 1 ≤ a ≤ g.

(1.0.7)

The depth-sensitivity (1.0.7) allows one to use truncations of various Ci,a
Φ as acyclic 

strands in resolutions even when Ig(Φ) is known to be less than f − g + 1.
There is a basic similarity between the present paper and the paper [25], which pro-

duces a family of complexes {Dq
ρ} for each almost alternating homomorphism ρ. The 

family {Dq
ρ} shares many properties with the family of generalized Eagon–Northcott 

complexes {Ci
Φ}. The main difference between [25] and the present paper is that the 

homomorphism ρ of [25] is special, in the sense that it is an almost alternating ho-
momorphism; whereas, the complexes {Ci,a

Φ } of the present paper and the generalized 
Eagon–Northcott complexes {Ci

Φ} are both constructed from an arbitrary homomor-
phism Φ. Nonetheless, the statement of Theorem 8.4 and some steps in its proof are 
modeled on [25, Thm. 8.3], although [25] does not contain any analogue to Lemma 8.1, 
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which is the key calculation in the present paper. In place of a result like Lemma 8.1, 
[25] first treats the generic case and then specializes to the non-generic case. In the 
present paper, Lemma 8.1 shows that if the image of Φ contains a basis element of F , 
then

Ci,a
Φ and Ci,a

Φ′ ⊕ Ci,a−1
Φ′

have isomorphic homology for some (“smaller”) R-module homomorphism Φ′. To prove 
Theorem 8.4, we iterate Lemma 8.1 and apply the acyclicity lemma. The representation 
theory that is used in the proof of Lemma 8.1 is begun in (6.3.4) and (6.3.5) and carried 
out in Proposition 6.4.

The complexes Ci,a
Φ are defined in 7.2; examples are given in 7.6 and 7.7; the duality 

is treated in 7.9; and the zero-th homology

H0(Ci,a
Φ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∧
f−g+a F

im(
∧a Φ)∧

∧
f−g F

, if i = −1,

coker(
∧g−a+1 Φ∗), if i = 0, and

Lg−a
i+1 G

Φ∗(F )·Lg−a
i G

, if 1 ≤ i

is calculated in 7.11. The Schur module Lp
qG is described in 4.1 and 4.3.

2. Notation, conventions, and preliminary results

There are three subsections: Ground rules, Grade and perfection, and Multilinear 
algebra.

2.1. Ground rules

2.1. Unless otherwise noted, R is a commutative Noetherian ring and all functors are 
functors of R-modules; that is, ⊗, Hom, ( )∗, Symi, Di, and 

∧i mean ⊗R, HomR, 
HomR( , R), SymR

i , DR
i , and 

∧i
R, respectively.

2.2. A complex C : · · · → C2 → C1 → C0 → 0 of R-modules is called acyclic if Hj(C) = 0
for 1 ≤ j.

2.3. If a complex C has the form

0 → C� → C�−1 → · · · → C1 → C0 → 0,

with C0 �= 0 and C� �= 0, then we say that the length of C is � and we write length(C) = �.

2.4. If A is a complex and n is an integer, then A[n] is a new complex with 
[
A[n]

]
j

= An+j .
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2.5. If (A, a) θ−→ (B, b) is a map of complexes, then the total complex (or mapping cone) 
of θ, denoted Tot(θ), is the complex (T, t) with T = A[−1] ⊕B as a graded module. The 
differential in T is given by

Tj =
Aj−1
⊕
Bj

tj−−−−−→
Aj−2
⊕

Bj−1
= Tj−1,

with

tj =
[
aj−1 0
θj−1 −bj

]
.

2.6. If Φ is a matrix (or a homomorphism of free R-modules), then Ir(Φ) is the ideal 
generated by the r × r minors of Φ (or any matrix representation of Φ).

2.7. If S is a statement then

χ(S) =

⎧⎨
⎩

1, if S is true,

0, if S is false.

2.2. Grade and perfection

2.8. The grade of a proper ideal I in a Noetherian ring R is the length of a maximal 
R-regular sequence in I. The unit ideal R of R is regarded as an ideal of infinite grade.

2.9. Let M be a non-zero finitely generated module over a Noetherian ring R and let 
ann(M) be the annihilator of M and pdR M be the projective dimension of M . It is 
well-known that

grade ann(M) = min{j | ExtjR(M,R) �= 0};

therefore, it follows that

grade ann(M) ≤ pdR M. (2.9.1)

If equality holds in (2.9.1), then M is called a perfect R-module. Recall, for example, that 
if R is Cohen–Macaulay and M is perfect, then M is Cohen–Macaulay. (This is not the 
full story. For more information, see, for example, [3, Prop. 16.19] or [2, Thm. 2.1.5].)

The ideal I in R is called a perfect ideal if R/I is a perfect R-module.

2.10. Let M be a finitely generated R-module. The R-module M has rank r if Mp is a 
free Rp-module of rank r for all associated primes p of AssR. If every non-zero-divisor 
in R is regular on M , then M is called torsion-free. A proof of the following result may 
be found in [25, Prop. 1.25].
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Proposition 2.10.1. Let M be a non-zero finitely generated R-module with finite projec-
tive dimension. Suppose that I is a perfect ideal of R with IM = 0. For each integer w, 
with 1 ≤ w ≤ pdR M , let Fw be the ideal of R generated by

{x ∈ R | pdRx
Mx < w}.

If w+1 ≤ gradeFw for all w with grade I+1 ≤ w ≤ pdR M , then M is a torsion-free R/I

module. In particular, if pdR M ≤ grade I, then M is a torsion-free (R/I)-module. �
2.11. The following statement is well-known; see, for example, [19, Cor. 6.10]. It follows 
from the fact that if M is a perfect module, then the ideals Fw for M (in the sense 2.10.1) 
and the annihilator of M all have the same radical.

Proposition 2.11.1. Let A → R be a homomorphism of Noetherian rings and M be a 
non-zero finitely generated perfect A-module. If M ⊗A R �= 0, then

grade((annM)R) = pdA M − max{i | TorAi (M,R) �= 0}. �
In our favorite applications of 2.11.1, we focus on the complex F ⊗A R, where F is a 

resolution of M by projective A-modules. We are satisfied with an inequality; and there-
fore, there is no need for us to assume that M ⊗A R �= 0. Furthermore, in practice, A is 
usually a polynomial ring over the ring of integers. We refer to the following statement 
as depth-sensitivity. Of course, these ideas were first worked out in [12,27,28,17], and 
especially [18, Cor. 3.1].

Proposition 2.11.2. Let A → R be a homomorphism of Noetherian rings, M be a non-zero 
finitely generated perfect A-module, and F be a resolution of M by projective A-modules 
with the length of F equal to the projective dimension of M . Then

Hj(F⊗A R) = 0 for pdA M − grade((annM)R) + 1 ≤ j. �
It is worth observing that if annM is replaced by any sub-ideal, then the inequality 

of 2.11.2 continues to hold.

2.3. Multilinear algebra

2.12. Our complexes are described in a coordinate-free manner. Let V be a free module 
of finite rank d over R. We make much use of the symmetric algebra Sym• V , the divided 
power algebra D•(V ∗), and the exterior algebras 

∧•
V and 

∧•(V ∗). We use the fact that 
D•(V ∗) is a module over Sym• V and the fact that 

∧•
V and 

∧•(V ∗) are modules over 
one another. We also use the fact that these module actions give rise to natural perfect 
pairings

ev : Symi V ⊗Di(V ∗) → R and ev :
∧i

V ⊗
∧i(V ∗) → R,
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for each integer i. The duals

ev∗ : R → Di(V ∗) ⊗ Symi V and ev∗ : R →
∧i(V ∗) ⊗

∧i
V

of the above evaluation maps are completely independent of coordinates. It follows that, 
if {m�} is a basis for Symi V (or 

∧i
V ) and {m∗

�} is the corresponding dual basis for 
Di(V ∗) (or 

∧i(V ∗)), then the element

ev∗(1) =
∑
�

m∗
� ⊗m� ∈ Di(V ∗) ⊗ Symi V (or

∧i(V ∗) ⊗
∧i

V ) (2.12.1)

is completely independent of coordinates. These elements will also be used extensively 
in our calculations.

2.12.2. We emphasize a special case of (2.12.1). If ωV ∗ is a basis for 
∧d(V ∗) and ωV is 

the corresponding dual basis for 
∧d

V , then the element ωV ∗ ⊗ωV is a canonical element 
of 

∧d(V ∗) ⊗
∧d

V . This element is also used in our calculations.

The following facts about the interaction of the module structures of 
∧•

V on 
∧•(V ∗)

and 
∧•(V ∗) on 

∧•
V are well known; see [4, section 1], [5, Appendix], and [22, section 1].

Proposition 2.13. Let V be a free module of rank d over a commutative Noetherian ring 
R and let br ∈

∧r
V , cp ∈

∧p
V , and αq ∈

∧q(V ∗).

(a) If r = 1, then (br(αq))(cp) = br ∧ (αq(cp)) + (−1)1+qαq(br ∧ cp).
(b) If q = d, then (br(αq))(cp) = (−1)(d−r)(d−p)(cp(αq))(br).
(c) If p = d, then [br(αq)](cp) = br ∧ αq(cp).
(d) If Ψ : V → V ′ is a homomorphism of free R-modules and δs+r ∈

∧s+r(V ′∗), then

(
∧s Ψ∗)[((

∧r Ψ)(br))(δs+r)] = br[(
∧s+r Ψ∗)(δs+r)]. �

The next result is an application of Proposition 2.13 and the ideas of 2.12. The result 
is used in the proof of Observation 7.12.

Proposition 2.14. Let V be a free module of rank d over a commutative Noetherian ring 
R and let br ∈

∧r
V , cp ∈

∧p
V , and αq ∈

∧q(V ∗). Then br ∧ (αq(cp)) is equal to a sum 
of elements of the form b′r′ ∧ (α′

q′(cp)) where

b′r′ ∈
∧r′

V, α′
q′ ∈

∧q′(V ∗), r′ − q′ = r − q, and q′ ≤ q + d− r − p.

Remark. The element cp has not been changed; but an upper bound has been imposed 
on the degree of the 

∧•(V ∗) contribution to the expression. Of course, the assertion is 
only interesting when d < r + p.
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Proof. Let ev∗(1) =
∑

� m
∗
� ⊗m� ∈

∧d−p(V ∗) ⊗
∧d−p

V , as described in (2.12.1). Notice 
that ∑

�

m∗
� (m� ∧ cp) = cp. (2.14.1)

To establish (2.14.1), it suffices to test the proposed equation after multiplying both 
sides on the left by an arbitrary element xd−p of 

∧d−p
F . The left side becomes

∑
�

xd−p ∧m∗
� (m� ∧ cp) =

∑
�

[xd−p(m∗
� )](m� ∧ cp) by 2.13.c

=
(∑

�

[xd−p(m∗
� )] ·m�

)
∧ cp

= xd−p ∧ cp,

as desired. Apply (2.14.1) and 2.13.c to see that

br ∧ αq(cp) =
∑
�

br ∧ (αq ∧m∗
� )(m� ∧ cp) =

∑
�

[br(αq ∧m∗
� )](m� ∧ cp).

Each m� is a sum of elements of the form v1 ∧ · · · ∧ vd−p with vi ∈ V . Apply 2.13.a 
numerous times to write

[br(αq ∧m∗
� )](v1 ∧ · · · ∧ vd−p ∧ cp)

=

⎧⎨
⎩
±v1 ∧ [br(αq ∧m∗

� )](v2 ∧ · · · ∧ vd−p ∧ cp)

±[(v1 ∧ br)(αq ∧m∗
� )](v2 ∧ · · · ∧ vd−p ∧ cp)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

±v2 ∧ v1 ∧ [br(αq ∧m∗
� )](v3 ∧ · · · ∧ vd−p ∧ cp)

±v1 ∧ [(v2 ∧ br)(αq ∧m∗
� )](v3 ∧ · · · ∧ vd−p ∧ cp)

±v2 ∧ [(v1 ∧ br)(αq ∧m∗
� )](v3 ∧ · · · ∧ vd−p ∧ cp)

±[(v2 ∧ v1 ∧ br)(αq ∧m∗
� )](v3 ∧ · · · ∧ vd−p ∧ cp)

= · · · .

We continue is this manner and express br ∧ αq(cp) as a sum of elements of the form

x ∧ [(x′ ∧ br)(αq ∧m∗
� )](cp),

where x and x′ are homogeneous elements of 
∧•

F and deg x +deg x′ = d −p. The proof 
is complete because

deg[(x′ ∧ br)(αq ∧m∗
� )] = q + d− p− deg x′ − r ≤ q + d− p− r. �
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3. The classical generalized Eagon–Northcott complexes

We recall the classical generalized Eagon–Northcott complexes {Ci
Φ | i ∈ Z} which 

were introduced at (1.0.1).

Definition 3.1. Let R be a commutative Noetherian ring, F and G be free R-modules of 
rank f and g, respectively, with g ≤ f, Φ : G∗ → F be an R-module homomorphism, and 
i be an integer.

(a) The complex Ci
Φ is

· · · ηΦ−−→
∧f−g−i−2

F ⊗D2(G∗) ηΦ−−→
∧f−g−i−1

F ⊗D1(G∗) ηΦ−−→
∧f−g−i

F ⊗D0(G∗)
∧

g Φ−−−→
∧f−i

F ⊗
∧g

G⊗ Sym0 G
KosΦ−−−→

∧f−i+1
F ⊗

∧g
G⊗ Sym1 G

KosΦ−−−→ · · · ,

(3.1.1)

with 
∧f−g−i

F ⊗D0(G∗) in position i + 1. In particular, if j is an integer, then the 
module (Ci

Φ)j is

(Ci
Φ)j =

⎧⎨
⎩
∧f−j

F ⊗
∧g

G⊗ Symi−j G, if j ≤ i, and∧f−g−j+1
F ⊗Dj−i−1(G∗), if i + 1 ≤ j.

(3.1.2)

(b) The maps ηΦ and KosΦ may be found in Definition 5.2.a.
(c) The map 

∧a
F ⊗D0(G∗) 

∧
g Φ−−−→

∧a+g
F ⊗

∧g
G ⊗ Sym0 G is

fa 
→ fa ∧ (
∧g Φ)(ωG∗) ⊗ ωG,

where ωG∗ ⊗ ωG is the canonical element of 
∧g(G∗) ⊗

∧g
G from 2.12.2.

Example 3.2. Adopt the notation of 3.1. We record the classical generalized Eagon North-
cott complexes Ci

Φ which have the form:

0 → (Ci
Φ)f−g+1 → (Ci

Φ)f−g → · · · → (Ci
Φ)2 → (Ci

Φ)1 → (Ci
Φ)0 → 0.

Of course, these complexes have length f − g + 1. The corresponding indices i are given 
in (1.0.4):

C−1
Φ : 0 →

∧0
F ⊗Df−g+1(G∗) ηΦ−−→

∧1
F ⊗Df−g(G∗) ηΦ−−→ . . .

ηΦ−−→
∧f−g+1

F ⊗D0(G∗) → 0,
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C0
Φ : 0 →

∧0
F ⊗Df−g(G∗) ηΦ−−→

∧1
F ⊗Df−g−1(G∗) ηΦ−−→ . . .

ηΦ−−→
∧f−g

F ⊗D0(G∗)
∧

g Φ−−−→
∧f

F ⊗
∧g

G⊗ Sym0 G → 0,

C1
Φ : 0 →

∧0
F ⊗Df−g−1(G∗) ηΦ−−→

∧1
F ⊗Df−g−2(G∗) ηΦ−−→ . . .

ηΦ−−→
∧f−g−1

F ⊗D0(G∗)
∧

g Φ−−−→
∧f−1

F ⊗
∧g

G⊗ Sym0 G

KosΦ−−−→
∧f

F ⊗
∧g

G⊗ Sym1 G → 0,

C2
Φ : 0 →

∧0
F ⊗Df−g−2(G∗) ηΦ−−→

∧1
F ⊗Df−g−3(G∗) ηΦ−−→ . . .

ηΦ−−→
∧f−g−2

F ⊗D0(G∗)
∧

g Φ−−−→
∧f−2

F ⊗
∧g

G⊗ Sym0 G

KosΦ−−−→
∧f−1

F ⊗
∧g

G⊗ Sym1 G
KosΦ−−−→

∧f
F ⊗

∧g
G⊗ Sym2 G → 0,

...

Cf−g−1
Φ : 0 →

∧0
F ⊗D1(G∗) ηΦ−−→

∧1
F ⊗D0(G∗)

∧g Φ−−−→
∧g+1

F ⊗
∧g

G⊗ Sym0 G
KosΦ−−−→

∧f−g−2
F ⊗

∧g
G⊗ Sym1 G

KosΦ−−−→ . . .
KosΦ−−−→

∧f
F ⊗

∧g
G⊗ Symf−g−1 G → 0,

Cf−g

Φ : 0 →
∧0(F ∗) ⊗D0(G∗)

∧
g Φ−−−→

∧g
F ⊗

∧g
G⊗ Sym0 G

KosΦ−−−→
∧g+1

F ⊗
∧g

G⊗ Sym1 G

KosΦ−−−→ . . .
KosΦ−−−→

∧f
F ⊗

∧g
G⊗ Symf−gG → 0, and

Cf−g+1
Φ : 0 →

∧g−1
F ⊗

∧g
G⊗ Sym0 G

KosΦ−−−→
∧g

F ⊗
∧g

G⊗ Sym1 G

KosΦ−−−→ . . .
KosΦ−−−→

∧f
F ⊗

∧g
G⊗ Symf−g+1 G → 0.

The maps ηΦ and KosΦ may be found in Definition 5.2.a.

4. Schur and Weyl modules which correspond to hooks

The modules which comprise the complexes {Ci,a
Φ } are Schur and Weyl modules which 

correspond to hooks. We recall some of the elementary properties of these modules.

4.1. Let V be a non-zero free module of rank d over the commutative Noetherian ring R
and let a and b be integers. Define the R-module homomorphisms

κa
b :

∧a
V ⊗ Symb V →

∧a−1
V ⊗ Symb+1 V and

ηab :
∧a

V ⊗DbV →
∧a+1

V ⊗Db−1V

to be the compositions
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∧a
V ⊗ Symb V

ev∗(1)−−−−→ (V ∗ ⊗ V ) ⊗
∧a

V ⊗ Symb V (4.1.1)
rearrange−−−−−−→ (V ∗ ⊗

∧a
V ) ⊗ (V ⊗ Symb V )

ModAct ⊗mult−−−−−−−−−−→
∧a−1

V ⊗ Symb+1 V and
∧a

V ⊗DbV
ev∗(1)−−−−→

∧a
V ⊗ (V ⊗ V ∗) ⊗DbV (4.1.2)

regroup−−−−−→ (
∧a

V ⊗ V ) ⊗ (V ∗ ⊗DbV )
mult ⊗ ModAct−−−−−−−−−−→

∧a+1
V ⊗Db−1V,

respectively. The map ev∗(1) is discussed in (2.12.1), “mult” is multiplication in the 
symmetric algebra or the exterior algebra, and “ModAct” is the module action of 

∧•(V ∗)
on 

∧•
V or Sym•(V ∗) on D•V . Define the R-modules

La
bV = kerκa

b and Ka
b V = ker ηab .

In the future, we will often write κ and η in place of κa
b and ηab .

4.2. The R-modules La
bV and Ka

b V have been used by many authors in many contexts. 
In particular, they are studied extensively in [4]; although our indexing conventions are 
different than the conventions of [4]; that is,

the module we call La
bV is called Lb

a+1V in [4].

4.3. The modules La
bV and Ka

b V may also be thought of as the Schur modules LλV

and Weyl modules KλV which correspond to certain hooks λ. We use the notation of 
Examples 2.1.3.h and 2.1.17.h in Weyman [30] to see that the module we call La

bV is also 
the Schur module L(a+1,1b−1)V and the module we call Ka

b V is also the Weyl module 
K(b+1,1a−1)V .

4.4. The complex

0 →
∧d

V ⊗ Symc−d V
κ−→

∧d−1
V ⊗ Symc−d+1 V

κ−→ (4.4.1)

· · · κ−→
∧1

V ⊗ Symc−1 V
κ−→

∧0
V ⊗ Symc V → 0,

which is a homogeneous strand of an acyclic Koszul complex, is split exact for all non-zero 
integers c; hence, La

bV is a projective R-module. In fact, La
bV is a free R-module of rank

rankLa
bV =

(
d + b− 1
a + b

)(
a + b− 1

a

)
;

see [4, Prop. 2.5]. Similarly, Ka
b V is a free R-module of rank
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rankKa
b V =

(
d + b

a + b

)(
a + b− 1

b

)
.

The perfect pairing

(
∧a

V ⊗ Symb V ) ⊗ (
∧a(V ∗) ⊗Db(V ∗)) → R,

induces a perfect pairing

La
bV ⊗Ka+1

b−1 (V ∗) → R, provided (a, b) �= (0, 0) or (−1, 1). (4.4.2)

Each assertion in Observation 4.5 is obvious; but it is very convenient to have all of 
these facts gathered in one place.

Observation 4.5. Let R be a commutative Noetherian ring, V be a free R-module of 
rank d, and � be an integer. Then the following modules are canonically isomorphic:

(a) L0
�V = Sym� V ,

(b) Ld−1
� V ∼=

∧d
V ⊗ Sym�−1 V , provided � + d �= 1,

(c) Ld
�V = 0, provided � + d �= 0,

(d) L�
0V = 0, provided � �= 0,

(e) L�
1V

∼=
∧�+1

V , provided � �= −1,
(f) K0

� V = 0, provided � �= 0,
(g) K1

� V
∼= D�+1V , provided � �= −1,

(h) Kd
� V =

∧d
V ⊗D�V , and

(i) K�
0V =

∧�
V .

Proof. Assertions (a), (h), and (i) follow from the definitions, and assertions (b), (c), 
(d), and (e) are immediate consequences of split exact complex (4.4.1). If c is non-zero, 
then we may apply Hom(−, R) to the split exact complex (4.4.1) to obtain the split exact 
complex

0 →
∧0(V ∗) ⊗Dc(V ∗) η−→

∧1(V ∗) ⊗Dc−1(V ∗) η−→ . . .
η−→

∧d(V ∗) ⊗Dc−d(V ∗) → 0.

Replace V ∗ with V in order to see that

0 →
∧0

V ⊗DcV
η−→

∧1
V ⊗Dc−1V

η−→ . . .
η−→

∧d
V ⊗Dc−dV → 0 (4.5.1)

is also split exact. Assertions (f) and (g) are consequence of (4.5.1). �
5. The complexes KKKΦ, and LLLΦ associated to a homomorphism Φ

The complexes K and L contain Weyl modules Ka
b (G∗) and Schur modules La

bG, 
respectively. The complex Ci,a

Φ , which is the focal point of the present paper, is obtained 
by concatenating the complexes K →

∧
→ L; see Definition 7.2.
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Data 5.1. Let R be a commutative Noetherian ring, F and G be free R-modules of finite 
rank f and g, respectively, and Φ : G∗ → F be an R-module homomorphism.

Definition 5.2. Adopt Data 5.1.

(a) If r and q are integers, then define the R-module homomorphisms

ηΦ :
∧r

F ⊗Dq(G∗) →
∧r+1

F ⊗Dq−1(G∗) and

KosΦ :
∧r

F ⊗ Symq G →
∧r+1

F ⊗ Symq+1 G

to be the compositions

∧r
F ⊗Dq(G∗) 1⊗ev∗(1)⊗1−−−−−−−−→

∧r
F ⊗G∗ ⊗G⊗Dq(G∗)

1⊗Φ⊗ModAct−−−−−−−−−→
∧r

F ⊗
∧1

F ⊗Dq−1(G∗)
mult ⊗1−−−−−→

∧r+1
F ⊗Dq−1(G∗)

and
∧r

F ⊗ Symq G
1⊗ev∗(1)⊗1−−−−−−−−→

∧r
F ⊗G∗ ⊗G⊗ Symq G

1⊗Φ⊗mult−−−−−−−→
∧r

F ⊗
∧1

F ⊗ Symq+1 G

mult ⊗1−−−−−→
∧r+1

F ⊗ Symq+1 G,

respectively, where ev∗(1) is described in (2.12.1), ModAct is the module action of 
Sym• G on D•(G∗) and mult is multiplication in the exterior algebra 

∧•
F or the 

symmetric algebra Sym• G.
(b) If N and p are integers, then define KN,p

Φ to be the maps and modules

KN,p
Φ : 0 →

∧0
F ⊗Kp

N (G∗) ηΦ−−→
∧1

F ⊗Kp
N−1(G∗) ηΦ−−→ . . .

ηΦ−−→
∧N

F ⊗Kp
0 (G∗) → 0

with [KN,p
Φ ]j =

∧N−j
F ⊗Kp

j (G∗); and define LN,p
Φ to be the maps and modules

0 →
∧N+1

F ⊗ Lp
1G

KosΦ−−−→
∧N+2

F ⊗ Lp
2G

KosΦ−−−→ · · · KosΦ−−−→
∧f

F ⊗ Lp
f−NG → 0,

with

[LN,p
Φ ]j =

⎧⎨
⎩

0 if (p, j) = (0, f−N), and∧f−j
F ⊗ Lp

f−N−jG, otherwise,
(5.2.1)

where the maps are induced by the homomorphisms ηΦ and KosΦ of (a) and the 
modules Kp

q (G∗) and Lp
qG are defined in (4.1.2) and (4.1.1).
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Remarks 5.3.

(a) The map

ηab :
∧a(G∗) ⊗Db(G∗) →

∧a+1(G∗) ⊗Db−1(G∗)

of (4.1.2) is equal to the map

ηidG∗ :
∧a(G∗) ⊗Db(G∗) →

∧a+1(G∗) ⊗Db−1(G∗)

of 5.2.a.
(b) The map

κa
b :

∧a
G⊗ Syma G →

∧a−1
G⊗ Symb+1 G

of (4.1.1) is related to the map KosidG∗ of 5.2.a by way of the following commutative 
diagram:

∧g−a
G∗ ⊗ Symb G⊗

∧g
G

ModAct ∼=

(−1)g−aKosidG∗ ∧g−a+1
G∗ ⊗ Symb+1 G⊗

∧g
G

ModAct∼=∧a
G⊗ Symb G

κa
b ∧a−1

G⊗ Symb+1 G.

(c) The maps and modules of KN,p
Φ and LN,p

Φ form complexes because the diagrams

0 →
∧r F ⊗ Kp

q (G∗)

ηΦ

∧r F ⊗
∧p(G∗) ⊗ Dq(G∗)

ηidG∗

ηΦ

∧r F ⊗
∧p+1(G∗) ⊗ Dq−1(G∗)

ηΦ

0 →
∧r+1F ⊗ Kp

q−1(G
∗)

∧r+1F ⊗
∧p(G∗) ⊗ Dq−1(G∗)

ηidG∗ ∧r+1F ⊗
∧p+1(G∗) ⊗ Dq−2(G∗)

and

0 →
∧r F ⊗ Lp

qG

KosΦ

∧r F ⊗
∧p G ⊗ Symq G

κ

KosΦ

∧r F ⊗
∧p−1 G ⊗ Symq+1 G

KosΦ

0 →
∧r+1 F ⊗ Lp

q+1G
∧r+1 F ⊗

∧p G ⊗ Symq+1 G
κ ∧r+1 F ⊗

∧p−1 G ⊗ Symq+2 G

commute.
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6. The complexes KKKΦ and LLLΦ when Φ is a direct sum of homomorphisms

In this section we assume that the homomorphism Φ : G∗ → F is a direct sum of 
homomorphisms. In Proposition 6.4 we relate the complexes KN,p

Φ and LN,p
Φ of Defini-

tion 5.2.b to similar complexes built from smaller data. This result plays a prominent 
role in the proof of the acyclicity of the complexes Ci,a

Φ ; see Theorem 8.4, which is the 
main result of the paper.

Data 6.1. Let R be a commutative Noetherian ring, F and G be free R-modules of rank 
f and g, respectively, and Φ : G∗ → F be an R-module homomorphism. Decompose F
and G as

F = F ′ ⊕ F ′′ and G = G′ ⊕G′′,

where F ′, F ′′, G′ and G′′ are free R-modules and rankF ′′ = rankG′′ = 1 and let

F ∗ = F ′∗ ⊕ F ′′∗ and G∗ = G′∗ ⊕G′′∗

be the corresponding decompositions of F ∗ and G∗. Assume that

Φ =
[
Φ′ 0
0 Φ′′

]
,

where Φ′ : G′∗ → F ′ and Φ′′ : G′′∗ → F ′′ are R-module homomorphisms.

Notation 6.2. Adopt Data 6.1.

(a) Let A(Φ′′) and B(Φ′′) represent the complexes

A(Φ′′) : 0 → R
KosΦ′′−−−−→ F ′′ ⊗G′′ → 0

and

B(Φ′′) : 0 → G′′∗ Φ′′
−−→ F ′′ → 0.

(b) Let π′ : F → F ′ be the projection map which corresponds to the direct sum decom-
position F = F ′ ⊕ F ′′.

(c) If a, b, c, d, and e are integers, then let

incl† :
∧a

F ′ ⊗
∧b

G⊗ Symc G⊗
∧d

F ′′ ⊗ Syme G
′′ →

∧a+d
F ⊗

∧b
G⊗ Symc+e G

be the R-module homomorphism given by

(multiplication in
∧•

F ) ⊗ (the identity map in
∧•

G) ⊗ (multiplication in Sym• G).



76 A.R. Kustin / Journal of Algebra 460 (2016) 60–101
(d) If a, b, c, d, and e are integers, then let

quot† :
∧a+d

F ⊗
∧b+e

G⊗ Symc G →
∧a

F ′ ⊗
∧b

G′ ⊗ Symc G
′ ⊗

∧d
F ′′ ⊗

∧e
G′′

be the R-module homomorphism given by
⎛
⎝ the projection map∧a+d F →

∧a F ′ ⊗
∧d F ′′

induced by F = F ′ ⊕ F ′′

⎞
⎠⊗

⎛
⎝ the projection map∧b+e G →

∧b G′ ⊗
∧e G′′

induced by G = G′ ⊕G′′

⎞
⎠⊗

⎛
⎝ the quotient map

Sym• G → Sym• G
′

induced by G/G′′ = G′

⎞
⎠.

(e) If a, b, c, and d are integers, then let

incl‡ :
∧a

F ′ ⊗
∧b(G′∗) ⊗Dc(G′∗) ⊗

∧d(G′′∗) →
∧a

F ⊗
∧b+d(G∗) ⊗Dc(G∗)

be the R-module homomorphism given by

(inclusion) ⊗ (multiplication) ⊗ (inclusion).

(f) If a, b, c, d, and e are integers, then let

quot‡ :
∧a+d

F ⊗
∧b(G∗) ⊗Dc+e(G∗)

→
∧a

F ′ ⊗
∧b(G′∗) ⊗Dc(G∗) ⊗

∧d
F ′′ ⊗De(G′′∗)

be the R-module homomorphism given by

⎛
⎝ the projection map∧a+d F →

∧a F ′ ⊗
∧d F ′′

induced by F = F ′ ⊕ F ′′

⎞
⎠⊗

(
the identity map

on
∧•(G∗)

)
⊗

⎛
⎜⎜⎜⎜⎝

Dc+e(G∗) ev∗(1)⊗1−−−−−−→
De(G′′∗) ⊗ Syme G

′′ ⊗Dc+e(G∗)
1⊗ModAct−−−−−−−→ De(G′′∗) ⊗Dc(G∗)
exchange−−−−−−→ Dc(G∗) ⊗De(G′′∗)

⎞
⎟⎟⎟⎟⎠,

where ev∗(1) is described in (2.12.1) and ModAct is the module action of Sym• G

on D•(G∗).

Proposition 6.4 asserts that (6.4.1) and (6.4.3) are short exact sequences of complexes. 
Observation 6.3 considers the modules in (6.4.1) and (6.4.3) in the arbitrary position j. 
Recall the function χ from 2.7.

Observation 6.3. Adopt Data 6.1 and Notation 6.2.

(a) If p, q, r are integers, then

0 →

∧r
F ′ ⊗ Lp

qG
⊕∧r−1

F ′ ⊗ Lp G⊗ F ′′ ⊗G′′

incl†−−−→
∧r

F ⊗ Lp
qG
q−1
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0 0 0

0 →

∧r F ′ ⊗ Lp
q
G

⊕∧r−1 F ′ ⊗ Lp
q−1G ⊗ F ′′ ⊗ G′′

incl† ∧r F ⊗ Lp
q
G

quot†
∧r−1 F ′ ⊗ Lp

q
G′ ⊗ F ′′

⊕∧r−1 F ′ ⊗ Lp−1
q

G′ ⊗ F ′′ ⊗ G′′
→ 0

0 →

∧r F ′ ⊗
∧p G ⊗ SqG
⊕∧r−1 F ′ ⊗

∧p G ⊗ Sq−1G ⊗ F ′′ ⊗ G′′

incl†

κ

∧r F ⊗
∧p G ⊗ SqG

quot†

κ

∧r−1 F ′ ⊗
∧p G′ ⊗ SqG

′ ⊗ F ′′

⊕∧r−1 F ′ ⊗
∧p−1 G′ ⊗ SqG

′ ⊗ F ′′ ⊗ G′′
→ 0

κ

0 →

∧r F ′ ⊗
∧p−1 G ⊗ Sq+1G

⊕∧r−1 F ′ ⊗
∧p−1 G ⊗ SqG ⊗ F ′′ ⊗ G′′

incl†

κ

∧r F ⊗
∧p−1 G ⊗ Sq+1G

quot†

κ

∧r−1 F ′ ⊗
∧p−1 G′ ⊗ Sq+1G

′ ⊗ F ′′

⊕∧r−1 F ′ ⊗
∧p−2 G′ ⊗ Sq+1G

′ ⊗ F ′′ ⊗ G′′
→ 0

κ

0 →

∧r F ′ ⊗ Lp−2
q+2G

⊕∧r−1 F ′ ⊗ Lp−2
q+1G ⊗ F ′′ ⊗ G′′

incl† ∧r F ⊗ Lp−2
q+2G

quot†
∧r−1 F ′ ⊗ Lp−2

q+2G
′ ⊗ F ′′

⊕∧r−1 F ′ ⊗ Lp−3
q+2G

′ ⊗ F ′′ ⊗ G′′
→ 0

0 0 0

Fig. 6.3.1. This picture is a commutative diagram which is used in the proof of Observation 6.3.a. The middle 
two rows are exact. The columns are exact provided 2 ≤ p + q. We use “S” as an abbreviation for “Sym”.

quot†−−−−→

∧r−1
F ′ ⊗ Lp

qG
′ ⊗ F ′′

⊕
χ((p, q) �= (1, 0))

(∧r−1
F ′ ⊗ Lp−1

q G′ ⊗ F ′′ ⊗G′′) → 0

is an exact sequence of R-modules.
(b) If p, q, r are integers, then

0 →

∧r
F ′ ⊗Kp

q (G′∗)
⊕∧r

F ′ ⊗Kp−1
q (G′∗) ⊗G′′∗

incl‡−−−→
∧r

F ⊗Kp
q (G∗)

quot‡−−−−→
χ
(
(p, q) �= (0, 1)

)(∧r
F ′ ⊗Kp

q−1(G∗) ⊗G′′∗)
⊕∧r−1

F ′ ⊗Kp
q (G∗) ⊗ F ′′

→ 0

is an exact sequence of R-modules.

Remark 6.3.3. If r = 1 and F ′ = 0, then F = F ′′ has rank one and no harm occurs if we 
set F = F ′′ equal to R (that is, apply − ⊗ F ∗). In this case, 6.3.a is

0 → Lp
q−1G⊗G′′ incl†−−−→ Lp

qG
quot†−−−−→ Lp

qG
′ ⊕ χ

(
(p, q) �= (1, 0)

)(
Lp−1
q G′ ⊗G′′) → 0.

(6.3.4)
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0 0 0

0 →

∧r F ′ ⊗ Kp
q
(G′∗)

⊕∧r F ′ ⊗ Kp−1
q

(G′∗) ⊗ G′′∗

incl‡ ∧r F ⊗ Kp
q
(G∗)

quot‡
∧r F ′ ⊗ Kp

q−1(G
∗) ⊗ G′′∗

⊕∧r−1 F ′ ⊗ Kp
q
(G∗) ⊗ F ′′

→ 0

0 →

∧r F ′ ⊗
∧p(G′∗) ⊗ Dq(G′∗)

⊕∧r F ′ ⊗
∧p−1(G′∗) ⊗ Dq(G′∗) ⊗ G′′∗

incl‡

ηidG∗

∧r F ⊗
∧p(G∗) ⊗ Dq(G∗)

quot‡

ηidG∗

∧r F ′ ⊗
∧p(G∗) ⊗ Dq−1(G∗) ⊗ G′′∗

⊕∧r−1 F ′ ⊗
∧p(G∗) ⊗ Dq(G∗) ⊗ F ′′

→ 0

ηidG∗

0 →
∧r F ′ ⊗

∧p+1(G′∗) ⊗ Dq−1(G′∗)
⊕∧r F ′ ⊗

∧p(G′∗) ⊗ Dq−1(G′∗) ⊗ G′′∗

incl‡

ηidG∗

∧r F ⊗
∧p+1(G∗) ⊗ Dq−1(G∗)

quot‡

ηidG∗

∧r F ′ ⊗
∧p+1(G∗) ⊗ Dq−2(G∗) ⊗ G′′∗

⊕∧r−1 F ′ ⊗
∧p+1(G∗) ⊗ Dq−1(G∗) ⊗ F ′′

→ 0

ηidG∗

0 →

∧r F ′ ⊗ Kp+2
q−2 (G

′∗)
⊕∧r F ′ ⊗ Kp+1

q−2 (G
′∗) ⊗ G′′∗

incl‡ ∧r F ⊗ Kp+2
q−2 (G

∗)
quot‡

∧r F ′ ⊗ Kp+2
q−3 (G

∗) ⊗ G′′∗

⊕∧r−1 F ′ ⊗ Kp+2
q−2 (G

∗) ⊗ F ′′
→ 0

0 0 0

Fig. 6.3.2. This picture is a commutative diagram which is used in the proof of Observation 6.3.b. The middle 
two rows are exact. The columns are exact provided 2 ≤ p + q.

If r = 0, then 6.3.b is

0 →
Kp

q (G′∗)
⊕(

Kp−1
q (G′∗) ⊗G′′∗) incl‡−−−→ Kp

q (G∗) quot‡−−−−→ χ
(
(p, q) �= (0, 1)

)(
Kp

q−1(G∗) ⊗G′′∗) → 0.

(6.3.5)

The exact sequences (6.3.4) and (6.3.5) are results from representation theory; see, for 
example, [30, 2.3.1] or [14, Exercise 6.11]. The versions we give are stated explicitly, 
require no assumptions about characteristic, and are precisely the results that we use in 
the proof of Lemma 8.1. In fact, our proof of Proposition 6.4 was created by starting 
with proofs of (6.3.4) and (6.3.5).

Proof. (a). If p < 0 or q < 0, then all of the modules in 6.3.a are zero. If q = 0, then 
6.3.a is

0 → χ(p = 0)
∧r

F ′ incl†−−−→ χ(p = 0)
∧r

F
quot†−−−−→ χ(p = 0)

∧r−1
F ′ ⊗ F ′′ → 0,

which is exact for all p. (Notice that we used the factor χ((p, q) �= (0, 0)) in our proof 
that 6.3.a is exact for all p when q = 0.) If p = 0, then 6.3.a is
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0 →

∧r
F ′ ⊗ Symq G

⊕∧r−1
F ′ ⊗ Symq−1 G⊗ F ′′ ⊗G′′

incl†−−−→
∧r

F ⊗ Symq G

quot†−−−−→
∧r−1

F ′ ⊗ Symq G
′ ⊗ F ′′ → 0,

which is exact for all q. Henceforth, we assume 2 ≤ p + q. Observe that Fig. 6.3.1 is 
a commutative diagram; each column is split exact; and the middle two rows are split 
exact. The assertion follows from the snake lemma and the fact that the bottom incl† in 
Fig. 6.3.1 is automatically an injection.

(b). If p < 0 or q < 0, then all of the modules in 6.3.b are zero. If q = 0, then 6.3.b is

0 →

∧r
F ′ ⊗

∧p(G′∗)
⊕∧r

F ′ ⊗
∧p−1(G′∗) ⊗G′′∗

incl‡−−−→
∧r

F ⊗
∧p(G∗)

quot‡−−−−→ ∧r−1
F ′ ⊗

∧p(G∗) ⊗ F ′′ → 0,

which is exact for all integers p. If p = 0, then 6.3.b is

0 → χ(q = 0)
∧r

F ′ incl‡−−−→ χ(q = 0)
∧r

F
quot‡−−−−→ χ(q = 0)

∧r−1
F ′ ⊗ F ′′ → 0,

which is exact for all integers q. Henceforth, we assume 2 ≤ p +q. Observe that Fig. 6.3.2
is a commutative diagram; each column is split exact; and the middle two rows are split 
exact. Once again, the assertion follows from the snake lemma and the fact that the 
bottom incl‡ in Fig. 6.3.2 is automatically an injection. �

The complexes LN,p
Φ and KN,p

Φ may be found in Definition 5.2.b; the complexes A(Φ′′)
and B(Φ′′) are defined in Notation 6.2; and some comments about the total complex (or 
mapping cone) of a map of complexes is in 2.5.

Proposition 6.4. Adopt Data 6.1 and Notation 6.2. Let p and N be integers. The following 
statements hold.

(a) Assume that p �= 0. Then there is a canonical short exact sequence of complexes

0 → Tot
(
LN,p
π′◦Φ ⊗ A(Φ′′)

)
incl†−−−→ LN,p

Φ
quot†−−−−→

LN−1,p
Φ′ ⊗ F ′′

⊕
LN−1,p−1

Φ′ ⊗ F ′′ ⊗G′′
→ 0. (6.4.1)

In particular, if Φ′′ is an isomorphism, then quot† induces an isomorphism

Hj(LN−1,p
Φ′ ) ⊕ Hj(LN−1,p−1

Φ′ ) ∼= Hj(LN,p
Φ ), (6.4.2)

for all j.
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(b) Assume that p �= 0. Then there is a canonical short exact sequence of complexes

0 →
KN,p

Φ′

⊕
(KN,p−1

Φ′ ⊗G′′∗)

incl‡−−−→ KN,p
Φ

quot‡−−−−→ Tot
(
KN−1,p

π′◦Φ ⊗ B(Φ′′)
)
→ 0. (6.4.3)

In particular, if Φ′′ is an isomorphism, then incl‡ induces an isomorphism

Hj(KN,p
Φ′ ) ⊕ Hj(KN,p−1

Φ′ ) ∼= Hj(KN,p
Φ ), (6.4.4)

for all j.

Remark 6.4.5. The conclusion of Proposition 6.4.b does not hold when p = 0 and 1 ≤
N ≤ f. In this case, KN,p

Φ′ and KN,p
Φ are 0 →

∧N
F ′ → 0 and 0 →

∧N
F → 0, respectively, 

with each non-zero module in position zero, and KN,p−1
Φ′ is the zero complex. Thus, 

(6.4.4) does not hold.
The conclusion of Proposition 6.4.a also does not hold when p = 0. In particular, 

LN,0
Φ is the complex

0 →
∧N+1

F ⊗ Sym1 G
KosΦ−−−→

∧N+2
F ⊗ Sym2 G

KosΦ−−−→ . . .

KosΦ−−−→
∧f

F ⊗ Symf−N G → 0.

In the typical situation

Hf−N−1(LN,0
Φ ) =

∧N
F, Hf−N−1(LN−1,0

Φ′ ) =
∧N−1

F ′,

and (6.4.2) fails to hold.

Proof. (a). There is nothing to prove if p ≤ 0; so we assume that 1 ≤ p. Notice that (6.4.1)
in position j is

0 →

∧f−j
F ′ ⊗ Lp

f−j−NG
⊕∧f−j−1

F ′ ⊗ Lp
f−j−N−1G⊗ F ′′ ⊗G′′

incl†−−−→
∧f−j

F ⊗ Lp
f−j−NG

quot†−−−−→

∧f−j−1
F ′ ⊗ Lp

f−j−NG′ ⊗ F ′′

⊕
χ((p, j) �= (1, f−N))

∧f−j−1
F ′ ⊗ Lp−1

f−j−NG′ ⊗ F ′′ ⊗G′′
→ 0,

which is 6.3.a with r replaced by f − j and q replaced by f − j −N ; hence, each row of 
(6.4.1) is a short exact sequence. To see that (6.4.1) is a map of complexes, one verifies 
that Fig. 6.4.6 is a commutative diagram, and this is straightforward. Thus, (6.4.1) is a 
short exact sequence of complexes.



A.R. Kustin / Journal of Algebra 460 (2016) 60–101 81
∧r F ′ ⊗ Lp
qG

⊕∧r−1 F ′ ⊗ Lp
q−1G ⊗ F ′′ ⊗ G′′

incl†

[ Kosπ′◦Φ 0
KosΦ′′ −Kosπ′◦Φ

]

∧r F ⊗ Lp
qG

quot†

KosΦ

∧r−1 F ′ ⊗ Lp
qG

′ ⊗ F ′′

⊕∧r−1 F ′ ⊗ Lp−1
q G′ ⊗ F ′′ ⊗ G′′

[ −KosΦ′ 0
0 −KosΦ′

]

∧r+1 F ′ ⊗ Lp
q+1G

⊕∧r F ′ ⊗ Lp
qG ⊗ F ′′ ⊗ G′′

incl† ∧r+1 F ⊗ Lp
q+1G

quot†
∧r F ′ ⊗ Lp

q+1G
′ ⊗ F ′′

⊕∧r F ′ ⊗ Lp−1
q+1G

′ ⊗ F ′′ ⊗ G′′

Fig. 6.4.6. In the proof of Proposition 6.4.a one verifies that this diagram (with p and q both positive) 
commutes in order to see that (6.4.1) is a map of complexes.

∧r F ′ ⊗ Kp
q (G′∗)

⊕∧r F ′ ⊗ Kp−1
q (G′∗) ⊗ G′′∗

incl‡

[
ηπ′◦Φ 0

0 ηπ′◦Φ

]

∧r F ⊗ Kp
q (G∗)

quot‡

ηΦ

∧r F ′ ⊗ Kp
q−1(G

∗) ⊗ G′′∗

⊕∧r−1 F ′ ⊗ Kp
q (G∗) ⊗ F ′′

[
ηΦ′ 0
Φ′′ −ηΦ′

]

∧r+1 F ′ ⊗ Kp
q−1(G

∗)
⊕∧r+1 F ′ ⊗ Kp−1

q−1 (G∗) ⊗ F ′′ ⊗ G′′∗

incl‡ ∧r+1 F ⊗ Kp
q−1(G

∗)
quot‡

∧r+1 F ′ ⊗ Kp
q−2(G

∗) ⊗ G′′∗

⊕∧r F ′ ⊗ Kp
q−1(G

∗) ⊗ F ′′

Fig. 6.4.7. In the proof of Proposition 6.4.b one verifies that this diagram commutes in order to see that (6.4.3)
is a map of complexes.

The assertion (6.4.2) is now obvious. Indeed, the hypothesis that Φ′′ is an isomorphism 

ensures that the complex Tot
(
LN,p
π′◦Φ ⊗ A(Φ′′)

)
on the left side of (6.4.1) has homology 

zero and the long exact sequence of homology associated to the short exact sequence of 
complexes (6.4.1) yields (6.4.2).

(b). Assume that 1 ≤ p. Notice that (6.4.3) in position j is

0 →

∧N−j
F ′ ⊗Kp

j (G′∗)
⊕∧N−j

F ′ ⊗Kp−1
j (G′∗) ⊗G′′∗

incl‡−−−→
∧N−j

F ⊗Kp
j (G∗)

quot‡−−−−→

∧N−j
F ′ ⊗Kp

j−1(G∗) ⊗G′′∗

⊕∧N−j−1
F ′ ⊗Kp

j (G∗) ⊗ F ′′
→ 0,

which is 6.3.b with r replaced by N − j and q replaced by j. The parameter p is not 
zero by hypothesis; hence, Observation 6.3.b ensures that each row of (6.4.3) is a short 
exact sequence. To see that (6.4.3) is a map of complexes, one verifies that Fig. 6.4.7 is a 
commutative diagram, and this is straightforward. Thus, (6.4.3) is a short exact sequence 
of complexes. The assertion (6.4.4) is now obvious, as in the proof of (6.4.2). �
7. The definition and elementary properties of the complexes Ci,a

Φ

The maps and modules of Ci,a
Φ are introduced in 7.2. It is shown in 7.4 that each Ci,a

Φ
is a complex. Examples are given in 7.6 and 7.7. The relationship between the classical 
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generalized Eagon–Northcott complexes {Ci
Φ} and the complexes {Ci,a

Φ } is examined 
in 7.8. The duality in the family {Ci,a

Φ } is studied in 7.9. Information about the length of 
Ci,a
Φ is recorded in 7.10. The zero-th homology of Ci,a

Φ , for −1 ≤ i, may be found in 7.11. 
The fact that Ig(Φ) annihilates H0(Ci,a

Φ ), for −1 ≤ i, is established in 7.12.

Data 7.1. Let R be a commutative Noetherian ring, F and G be free R-modules of rank 
f and g, respectively, with g ≤ f, Φ : G∗ → F be an R-module homomorphism.

Definition 7.2. Adopt Data 7.1. Recall the complexes KN,p
Φ and LN,p

Φ of Definition 5.2.b
and Remark 5.3.c and the homomorphism κ of 4.1. Let i and a be integers with 1 ≤ a ≤ g. 
Define the maps and modules (Ci,a

Φ , d) to be

0 → Kf−g−i−1,a
Φ [−i− 2] d−→

∧f−g+a−i−1
F

d−→ Lf−i−1,g−a
Φ → 0, (7.2.1)

with [Ci,a
Φ ]i+1 =

∧f−g+a−i−1
F . The differentials

[Ci,a
Φ ]i+2

di+2−−−→ [Ci,a
Φ ]i+1

di+i−−−→ [Ci,a
Φ ]i

are

[Ci,a
Φ ]i+2 = [Kf−g−i−1,a

Φ ]0 =
∧f−g−i−1

F ⊗Ka
0 (G∗) =

∧f−g−i−1
F ⊗

∧a(G∗)
1⊗

∧a Φ−−−−−→
∧f−g−i−1

F ⊗
∧a

F
mult−−−→

∧f−g+a−i−1
F = [Ci,a

Φ ]i+1

and

[Ci,a
Φ ]i+1 =

∧f−g+a−i−1
F

1⊗ev∗(1)−−−−−−→
∧f−g+a−i−1

F ⊗
∧g+1−a(G∗) ⊗

∧g+1−a
G

1⊗
∧

g+1−a Φ⊗κ−−−−−−−−−−→
∧f−g+a−i−1

F ⊗
∧g+1−a

F ⊗ Lg−a
1 G

mult ⊗1−−−−−→
∧f−i

F ⊗ Lg−a
1 G = [Lf−i−1,g−a

Φ ]i = [Ci,a
Φ ]i.

Remark 7.3. We give two other descriptions of the modules in Ci,a
Φ :

[Ci,a
Φ ]j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∧f−j
F ⊗ Lg−a

i+1−jG, if j ≤ i,∧f−g+a−i−1
F, if j = i + 1, and∧f−g+1−j

F ⊗Ka
j−i−2(G∗), if i + 2 ≤ j,

(7.3.1)

and Ci,a
Φ looks like

· · · ηΦ−−→
∧f−g−i−2

F ⊗Ka
1 (G∗) ηΦ−−→

∧f−g−i−1
F ⊗Ka

0 (G∗)
∧a Φ−−−→

∧f−g+a−i−1
F

∧
g+1−a Φ−−−−−−→

∧f−i
F ⊗ Lg−a

1 G
KosΦ−−−→

∧f−i+1
F ⊗ Lg−a

2 G
KosΦ−−−→ · · · , (7.3.2)

with 
∧f−g+a−i−1

F in position i + 1.
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Observation 7.4. Adopt Data 7.1. Let i and a be integers with 1 ≤ a ≤ g. Then the maps 
and modules (Ci,a

Φ , d) of Definition 7.2 form a complex.

Proof. One obtains Ci,a
Φ by pasting together two well-known complexes; hence it suffices 

to show that

(Ci,a
Φ )i+3

di+3−−−→ (Ci,a
Φ )i+2

di+2−−−→ (Ci,a
Φ )i+1

di+1−−−→ (Ci,a
Φ )i

di−→ (Ci,a
Φ )i−1

is a complex; furthermore, by the duality of Observation 7.9, it suffices to show that

(Ci,a
Φ )i+2

di+2−−−→ (Ci,a
Φ )i+1

di+1−−−→ (Ci,a
Φ )i

di−→ (Ci,a
Φ )i−1

is a complex. Take f ∈
∧f−g+a−i−1

F = (Ci,a
Φ )i+1. We compute

(di ◦ di+1)(f) = di

(∑
� f ∧ (

∧g+1−a Φ)(m∗
� ) ⊗ κ(m�) ∈

∧f−i
F ⊗ Lg−a

1 G = (Ci,a
Φ )i

)
=

∑
�

∑
�′ f ∧ (

∧g+1−a Φ)(m∗
� ) ∧ Φ(n∗

�′) ⊗ κ(m�) · (1 ⊗ n�′)

∈
∧f−i+1

F ⊗ Lg−a
2 G = (Ci,a

Φ )i−1

=
∑

�

∑
�′
∑

�′′ f ∧ (
∧g+2−a Φ)(m∗

� ∧ n∗
�′) ⊗ n∗

�′′(m�) ⊗ n�′′ · n�′

=
∑

L

∑
�′
∑

�′′ f ∧ (
∧g+2−a Φ)(M∗

L) ⊗ n∗
�′′(n∗

�′(M)) ⊗ n�′′ · n�′

= 0,

where

ev∗(1) =
∑

� m
∗
� ⊗m� ∈

∧g+1−a
G∗ ⊗

∧g+1−a
G,

ev∗(1) =
∑

�′ n
∗
�′ ⊗ n�′ =

∑
�′′ n

∗
�′′ ⊗ n�′′ ∈ G∗ ⊗G, and

ev∗(1) =
∑

L M∗
L ⊗ML ∈

∧g+2−a
G∗ ⊗

∧g+2−a
G

are the canonical elements of (2.12.1). One easily verifies that
∑

�

∑
�′ m

∗
� ∧ n∗

�′ ⊗m� ⊗ n�′ =
∑
L

∑
�′

M∗
L ⊗ n∗

�′(ML) ⊗ n�′

∈
∧g+2−a

G∗ ⊗
∧g+1−a

G⊗G.

(Merely evaluate both sides at a typical element of 
∧g+2−a

G ⊗
∧g+1−a

G∗ ⊗G∗.) It is 
obvious that

∑
�′
∑

�′′ n
∗
�′ ∧ n∗

�′′ ⊗ n�′ · n�′′ = 0 ∈
∧2

G∗ ⊗ Sym2 G.

Take f ∈
∧f−g−i−1

F and γ ∈
∧a(G∗) = Ka

0 (G∗), see 4.5.i. So, f ⊗ γ is in (Ci,a
Φ )i+2. 

We compute
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(di+1 ◦ di+2)(f ⊗ γ) = di+1

(
f ∧ (

∧a Φ)(γ) ∈
∧f−g+a−i−1

F = (Ci,a
Φ )i+1

)
=

∑
� f ∧ (

∧a Φ)(γ) ∧ (
∧g−a+1 Φ)(m∗

� ) ⊗ κ(m�)

∈
∧f−i

F ⊗ Lg−a
1 G = (Ci,a

Φ )i

=
∑

� f ∧ (
∧g+1 Φ)(γ ∧m∗

� ) ⊗ κ(m�)

= 0. �
Remark 7.5. If a is equal to 0 or g + 1, then it is possible to construct a complex Ci,a

Φ
using the recipe of Remark 7.3. These complexes are

Ci,0
Φ : 0 →

∧f−g−i−1
F

identity map−−−−−−−−→
∧f−g−i−1

F → 0,

with the non-zero modules appearing in positions i + 2 and i + 1; and

Ci,g+1
Φ : 0 →

∧f−i
F → 0,

with the non-zero module appearing in position i + 1.

Example 7.6. Adopt Data 7.1 with (g, f) = (5, 9). We record the complexes Ci,a
Φ of Defi-

nition 7.2 and Observation 7.4 which have the form:

0 → (Ci,a
Φ )5 → (Ci,a

Φ )4 → (Ci,a
Φ )3 → (Ci,a

Φ )2 → (Ci,a
Φ )1 → (Ci,a

Φ )0 → 0.

Of course, these complexes have length f − g + 1 = 5.

C−1,1
Φ : 0 →

∧0 F ⊗ K1
4 (G

∗) ηΦ−−→
∧1 F ⊗ K1

3 (G
∗) ηΦ−−→

∧2 F ⊗ K1
2 (G

∗) ηΦ−−→
∧3 F ⊗ K1

1 (G
∗) ηΦ−−→

∧4 F ⊗ K1
0 (G

∗)
∧1 Φ−−−→

∧5 F → 0

C0,1
Φ : 0 →

∧0 F ⊗ K1
3 (G

∗) ηΦ−−→
∧1 F ⊗ K1

2 (G
∗) ηΦ−−→

∧2 F ⊗ K1
1 (G

∗) ηΦ−−→
∧3 F ⊗ K1

0 (G
∗)

∧1 Φ−−−→
∧4 F

∧5 Φ−−−→
∧9 F ⊗ L4

1G → 0

C1,1
Φ : 0 →

∧0 F ⊗ K1
2 (G

∗) ηΦ−−→
∧1 F ⊗ K1

1 (G
∗) ηΦ−−→

∧2 F ⊗ K1
0 (G

∗)
∧1 Φ−−−→

∧3 F
∧5 Φ−−−→

∧8 F ⊗ L4
1G

KosΦ−−−→
∧9 F ⊗ L4

2G → 0

C2,1
Φ : 0 →

∧0 F ⊗ K1
1 (G

∗) ηΦ−−→
∧1 F ⊗ K1

0 (G
∗)

∧1 Φ−−−→
∧2 F

∧5 Φ−−−→
∧7 F ⊗ L4

1G
KosΦ−−−→

∧8 F ⊗ L4
2G

KosΦ−−−→
∧9 F ⊗ L4

3G → 0

C3,1
Φ : 0 →

∧0 F ⊗ K1
0 (G

∗)
∧1 Φ−−−→

∧1 F
∧5 Φ−−−→

∧6 F ⊗ L4
1G

KosΦ−−−→
∧7 F ⊗ L4

2G
KosΦ−−−→

∧8 F ⊗ L4
3G

KosΦ−−−→
∧9 F ⊗ L4

4G → 0

C4,1
Φ : 0 →

∧0 F
∧5 Φ−−−→

∧5 F ⊗ L4
1G

KosΦ−−−→
∧6 F ⊗ L4

2G
KosΦ−−−→

∧7 F ⊗ L4
3G

KosΦ−−−→
∧8 F ⊗ L4

4G
KosΦ−−−→

∧9 F ⊗ L4
5G → 0

C5,1
Φ : 0 →

∧4 F ⊗ L4
1G

KosΦ−−−→
∧5 F ⊗ L4

2G
KosΦ−−−→

∧6 F ⊗ L4
3G

KosΦ−−−→
∧7 F ⊗ L4

4G
KosΦ−−−→

∧8 F ⊗ L4
5G

KosΦ−−−→
∧9 F ⊗ L4

6G → 0

C−1,2
Φ : 0 →

∧0 F ⊗ K2
4 (G

∗) ηΦ−−→
∧1 F ⊗ K2

3 (G
∗) ηΦ−−→

∧2 F ⊗ K2
2 (G

∗) ηΦ−−→
∧3 F ⊗ K2

1 (G
∗) ηΦ−−→

∧4 F ⊗ K2
0 (G

∗)
∧2 Φ−−−→

∧6 F → 0

C0,2
Φ : 0 →

∧0 F ⊗ K2
3 (G

∗) ηΦ−−→
∧1 F ⊗ K2

2 (G
∗) ηΦ−−→

∧2 F ⊗ K2
1 (G

∗) ηΦ−−→
∧3 F ⊗ K2

0 (G
∗)

∧2 Φ−−−→
∧5 F

∧4 Φ−−−→
∧9 F ⊗ L3

1G → 0

C1,2
Φ : 0 →

∧0 F ⊗ K2
2 (G

∗) ηΦ−−→
∧1 F ⊗ K2

1 (G
∗) ηΦ−−→

∧2 F ⊗ K2
0 (G

∗)
∧2 Φ−−−→

∧4 F
∧4 Φ−−−→

∧8 F ⊗ L3
1G

KosΦ−−−→
∧9 F ⊗ L3

2G → 0

C2,2
Φ : 0 →

∧0 F ⊗ K2
1 (G

∗) ηΦ−−→
∧1 F ⊗ K2

0 (G
∗)

∧2 Φ−−−→
∧3 F

∧4 Φ−−−→
∧7 F ⊗ L3

1G
KosΦ−−−→

∧8 F ⊗ L3
2G

KosΦ−−−→
∧9 F ⊗ L3

3G → 0

C3,2
Φ : 0 →

∧0 F ⊗ K2
0 (G

∗)
∧2 Φ−−−→

∧2 F
∧4 Φ−−−→

∧6 F ⊗ L3
1G

KosΦ−−−→
∧7 F ⊗ L3

2G
KosΦ−−−→

∧8 F ⊗ L3
3G

KosΦ−−−→
∧9 F ⊗ L3

4G → 0

C4,2
Φ : 0 →

∧1 F
∧4 Φ−−−→

∧5 F ⊗ L3
1G

KosΦ−−−→
∧6 F ⊗ L3

2G
KosΦ−−−→

∧7 F ⊗ L3
3G

KosΦ−−−→
∧8 F ⊗ L3

4G
KosΦ−−−→

∧9 F ⊗ L3
5G → 0
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C−1,3
Φ : 0 →

∧0 F ⊗ K3
4 (G

∗) ηΦ−−→
∧1 F ⊗ K3

3 (G
∗) ηΦ−−→

∧2 F ⊗ K3
2 (G

∗) ηΦ−−→
∧3 F ⊗ K3

1 (G
∗) ηΦ−−→

∧4 F ⊗ K3
0 (G

∗)
∧3 Φ−−−→

∧7 F → 0

C0,3
Φ : 0 →

∧0 F ⊗ K3
3 (G

∗) ηΦ−−→
∧1 F ⊗ K3

2 (G
∗) ηΦ−−→

∧2 F ⊗ K3
1 (G

∗) ηΦ−−→
∧3 F ⊗ K3

0 (G
∗)

∧3 Φ−−−→
∧6 F

∧3 Φ−−−→
∧9 F ⊗ L2

1G → 0

C1,3
Φ : 0 →

∧0 F ⊗ K3
2 (G

∗) ηΦ−−→
∧1 F ⊗ K3

1 (G
∗) ηΦ−−→

∧2 F ⊗ K3
0 (G

∗)
∧3 Φ−−−→

∧5 F
∧3 Φ−−−→

∧8 F ⊗ L2
1G

KosΦ−−−→
∧9 F ⊗ L2

2G → 0

C2,3
Φ : 0 →

∧0 F ⊗ K3
1 (G

∗) ηΦ−−→
∧1 F ⊗ K3

0 (G
∗)

∧3 Φ−−−→
∧4 F

∧3 Φ−−−→
∧7 F ⊗ L2

1G
KosΦ−−−→

∧8 F ⊗ L2
2G

KosΦ−−−→
∧9 F ⊗ L2

3G → 0

C3,3
Φ : 0 →

∧0 F ⊗ K3
0 (G

∗)
∧3 Φ−−−→

∧3 F
∧3 Φ−−−→

∧6 F ⊗ L2
1G

KosΦ−−−→
∧7 F ⊗ L2

2G
KosΦ−−−→

∧8 F ⊗ L2
3G

KosΦ−−−→
∧9 F ⊗ L2

4G → 0

C4,3
Φ : 0 →

∧2 F
∧3 Φ−−−→

∧5 F ⊗ L2
1G

KosΦ−−−→
∧6 F ⊗ L2

2G
KosΦ−−−→

∧7 F ⊗ L2
3G

KosΦ−−−→
∧8 F ⊗ L2

4G
KosΦ−−−→

∧9 F ⊗ L2
5G → 0

C−1,4
Φ : 0 →

∧0 F ⊗ K4
4 (G

∗) ηΦ−−→
∧1 F ⊗ K4

3 (G
∗) ηΦ−−→

∧2 F ⊗ K4
2 (G

∗) ηΦ−−→
∧3 F ⊗ K4

1 (G
∗) ηΦ−−→

∧4 F ⊗ K4
0 (G

∗)
∧4 Φ−−−→

∧8 F → 0

C0,4
Φ : 0 →

∧0 F ⊗ K4
3 (G

∗) ηΦ−−→
∧1 F ⊗ K4

2 (G
∗) ηΦ−−→

∧2 F ⊗ K4
1 (G

∗) ηΦ−−→
∧3 F ⊗ K4

0 (G
∗)

∧4 Φ−−−→
∧7 F

∧2 Φ−−−→
∧9 F ⊗ L1

1G → 0

C1,4
Φ : 0 →

∧0 F ⊗ K4
2 (G

∗) ηΦ−−→
∧1 F ⊗ K4

1 (G
∗) ηΦ−−→

∧2 F ⊗ K4
0 (G

∗)
∧4 Φ−−−→

∧6 F
∧2 Φ−−−→

∧8 F ⊗ L1
1G

KosΦ−−−→
∧9 F ⊗ L1

2G → 0

C2,4
Φ : 0 →

∧0 F ⊗ K4
1 (G

∗) ηΦ−−→
∧1 F ⊗ K4

0 (G
∗)

∧4 Φ−−−→
∧5 F

∧2 Φ−−−→
∧7 F ⊗ L1

1G
KosΦ−−−→

∧8 F ⊗ L1
2G

KosΦ−−−→
∧9 F ⊗ L1

3G → 0

C3,4
Φ : 0 →

∧0 F ⊗ K4
0 (G

∗)
∧4 Φ−−−→

∧4 F
∧2 Φ−−−→

∧6 F ⊗ L1
1G

KosΦ−−−→
∧7 F ⊗ L1

2G
KosΦ−−−→

∧8 F ⊗ L1
3G

KosΦ−−−→
∧9 F ⊗ L1

4G → 0

C4,4
Φ : 0 →

∧3 F
∧2 Φ−−−→

∧5 F ⊗ L1
1G

KosΦ−−−→
∧6 F ⊗ L1

2G
KosΦ−−−→

∧7 F ⊗ L1
3G

KosΦ−−−→
∧8 F ⊗ L1

4G
KosΦ−−−→

∧9 F ⊗ L1
5G → 0

C−2,5
Φ : 0 →

∧1 F ⊗ K5
5 (G

∗) ηΦ−−→
∧2 F ⊗ K5

4 (G
∗) ηΦ−−→

∧3 F ⊗ K5
3 (G

∗) ηΦ−−→
∧4 F ⊗ K5

2 (G
∗) ηΦ−−→

∧5 F ⊗ K5
1 (G

∗) ηΦ−−→
∧6 F ⊗ K5

0 (G
∗) → 0

C−1,5
Φ : 0 →

∧0 F ⊗ K5
4 (G

∗) ηΦ−−→
∧1 F ⊗ K5

3 (G
∗) ηΦ−−→

∧2 F ⊗ K5
2 (G

∗) ηΦ−−→
∧3 F ⊗ K5

1 (G
∗) ηΦ−−→

∧4 F ⊗ K5
0 (G

∗)
∧5 Φ−−−→

∧9 F → 0

C0,5
Φ : 0 →

∧0 F ⊗ K5
3 (G

∗) ηΦ−−→
∧1 F ⊗ K5

2 (G
∗) ηΦ−−→

∧2 F ⊗ K5
1 (G

∗) ηΦ−−→
∧3 F ⊗ K5

0 (G
∗)

∧5 Φ−−−→
∧8 F

∧1 Φ−−−→
∧9 F ⊗ L0

1G → 0

C1,5
Φ : 0 →

∧0 F ⊗ K5
2 (G

∗) ηΦ−−→
∧1 F ⊗ K5

1 (G
∗) ηΦ−−→

∧2 F ⊗ K5
0 (G

∗)
∧5 Φ−−−→

∧7 F
∧1 Φ−−−→

∧8 F ⊗ L0
1G

KosΦ−−−→
∧9 F ⊗ L0

2G → 0

C2,5
Φ : 0 →

∧0 F ⊗ K5
1 (G

∗) ηΦ−−→
∧1 F ⊗ K5

0 (G
∗)

∧5 Φ−−−→
∧6 F

∧1 Φ−−−→
∧7 F ⊗ L0

1G
KosΦ−−−→

∧8 F ⊗ L0
2G

KosΦ−−−→
∧9 F ⊗ L0

3G → 0

C3,5
Φ : 0 →

∧0 F ⊗ K5
0 (G

∗)
∧5 Φ−−−→

∧5 F
∧1 Φ−−−→

∧6 F ⊗ L0
1G

KosΦ−−−→
∧7 F ⊗ L0

2G
KosΦ−−−→

∧8 F ⊗ L0
3G

KosΦ−−−→
∧9 F ⊗ L0

4G → 0

C4,5
Φ : 0 →

∧4 F
∧1 Φ−−−→

∧5 F ⊗ L0
1G

KosΦ−−−→
∧6 F ⊗ L0

2G
KosΦ−−−→

∧7 F ⊗ L0
3G

KosΦ−−−→
∧8 F ⊗ L0

4G
KosΦ−−−→

∧9 F ⊗ L0
5G → 0

Example 7.7. If f = g + 1 and i = 0, then C0,a
Φ ⊗

∧f
F ∗ is

0 →
∧0

F ⊗
∧f

F ∗ ⊗Ka
0 (G∗)

∧a Φ−−−→
∧a

F ⊗
∧f

F ∗

∧
g+1−a Φ−−−−−−→

∧f
F ⊗

∧f
F ∗ ⊗ Lg−a

1 G → 0,

which is naturally isomorphic to

0 →
∧f

F ∗ ⊗
∧a(G∗) d2−−→

∧f−a
F ∗ d1−−→

∧f−a
G → 0, (7.7.1)

with d2(ωF∗ ⊗ γa) = [(
∧a Φ)(γa)](ωF∗) and d1(φf−a) = (

∧f−a Φ∗)(φf−a), for ωF∗ ∈∧f
F ∗, γa ∈

∧a(G∗), and φf−a ∈
∧f−a

F . In particular, if f = 4, g = 3, a = 2, and 
Φ = (Φi,j) is given by a 4 × 3 matrix, then (7.7.1) is

0 → R3 d2−−→ R6 d1−−→ R3 → 0
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with

d1 =

⎡
⎣Δ(1, 2; 1, 2) Δ(1, 3; 1, 2) Δ(1, 4; 1, 2) Δ(3, 4; 1, 2) Δ(2, 4; 1, 2) Δ(2, 3; 1, 2)

Δ(1, 2; 1, 3) Δ(1, 3; 1, 3) Δ(1, 4; 1, 3) Δ(3, 4; 1, 3) Δ(2, 4; 1, 3) Δ(2, 3; 1, 3)
Δ(1, 2; 2, 3) Δ(1, 3; 2, 3) Δ(1, 4; 2, 3) Δ(3, 4; 2, 3) Δ(2, 4; 2, 3) Δ(2, 3; 2, 3)

⎤
⎦

and

d2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δ(3, 4; 1, 2) Δ(3, 4; 1, 3) Δ(3, 4; 2, 3)
−Δ(2, 4; 1, 2) −Δ(2, 4; 1, 3) −Δ(2, 4; 2, 3)
Δ(2, 3; 1, 2) Δ(2, 3; 1, 3) Δ(2, 3; 2, 3)
Δ(1, 2; 1, 2) Δ(1, 2; 1, 3) Δ(1, 2; 2, 3)
−Δ(1, 3; 1, 2) −Δ(1, 3; 1, 3) −Δ(1, 3; 2, 3)
Δ(1, 4; 1, 2) Δ(1, 4; 1, 3) Δ(1, 4; 2, 3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where

Δ(i, j; k, �) = det
[Φi,k Φi,�

Φj,k Φj,�

]
.

Observation 7.8. Adopt Data 7.1. Recall the complexes {Ci
Φ} of Definition 3.1 and the 

complexes {Ci,a
Φ } of Definition 7.2 and Observation 7.4. Then, for each integer i, the 

complexes

Ci
Φ, Ci,1

Φ , and Ci−1,g
Φ ⊗

∧g
G

are canonically isomorphic.

Proof. Use the formulas (3.1.2) and (7.3.1), Observation 4.5, and the fact that 
∧g

G ⊗∧g
G∗ is canonically isomorphic to R to see that the modules

(Ci
Φ)j , (Ci,1

Φ )j , and (Ci−1,g
Φ )j ⊗

∧g
G

are canonically isomorphic for all j. These canonical isomorphisms induce the required 
canonical isomorphisms of complexes. �
Observation 7.9. Adopt Data 7.1. Let i and a be integers with 1 ≤ a ≤ g. Then the 
complexes

Ci,a
Φ ⊗

∧f(F ∗) and (Cf−g−i−1,g+1−a
Φ )∗[−(f− g + 1)]

of Definition 7.2 and Observation 7.4 are canonically isomorphic.
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Remark. The symbol “[−(f − g + 1)]” refers to a shift in homological degree, see 2.4. In 
particular, for each integer j,

((Cf−g−i−1,g+1−a
Φ )∗[−(f− g + 1)])j = ((Cf−g−i−1,g+1−a

Φ )f−g+1−j)∗.

Proof. Use the formula (7.3.1), Observation 4.5, and the fact that 
∧�

F ∗ is canonically 
isomorphic to 

∧f−�
F ⊗

∧f(F ∗), for all integers � to see that the modules

(Ci,a
Φ )j ⊗

∧f(F ∗) and ((Cf−g−i−1,g+1−a
Φ )f−g+1−j)∗

are canonically isomorphic for all j. Indeed,

((Cf−g−i−1,g+1−a
Φ )f−g+1−j)∗

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∧g−1+j

F ⊗ La−1
j−i−1G)∗ if i + 2 ≤ j,

(
∧g+i+1−a

F )∗, if i + 1 = j, and

(
∧j

F ⊗Kg+1−a
i−j (G∗))∗, if j ≤ i

∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∧g−1+j(F ∗) ⊗Ka
j−i−2(G∗), if i + 2 ≤ j,∧g+i+1−a(F ∗), if i + 1 = j, and∧j(F ∗) ⊗ Lg−a

i−j+1G, if j ≤ i

by (4.4.2)

∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∧f−g+1−j
F ⊗Ka

j−i−2(G∗) ⊗
∧f(F ∗), if i + 2 ≤ j,∧f−g−i−1+a

F ⊗
∧f(F ∗), if i + 1 = j, and∧f−j

F ⊗ Lg−a
i−j+1G⊗

∧f(F ∗), if j ≤ i

= (Ci,a
Φ )j ⊗

∧f(F ∗).

The complex Ci,a
Φ is obtained by patching together two well-known complexes. The du-

ality among the pieces is well understood. We focus on the duality at the patch:

(Ci,a
Φ )i+2 ⊗

∧f(F ∗)
d

(Ci,a
Φ )i+1 ⊗

∧f(F ∗)
d

(Ci,a
Φ )i ⊗

∧f(F ∗)

((Cf−g−i−1,g+1−a
Φ )f−g−1−i)∗

d∗
((Cf−g−i−1,g+1−a

Φ )f−g−i)∗
d∗

((Cf−g−i−1,g+1−a
Φ )f−g+1−i)∗,

which is the same as

∧f−g−i−1 F ⊗Ka
0 (G∗) ⊗

∧f(F ∗)
d ∧f−g+a−i−1 F ⊗

∧f(F ∗)
d ∧f−i F ⊗ Lg−a

1 G⊗
∧f(F ∗)

(
∧g+1+i F ⊗ La−1

1 G)∗
d∗

(
∧g+i+1−a F )∗

d∗
(
∧i F ⊗Kg+1−a

0 (G∗))∗.
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The vertical maps are comprised of the canonical isomorphisms 
∧�

F ⊗
∧f

F ∗ ∼=
∧f−�

F ∗

and the isomorphisms induced by the perfect pairing of 4.4.2. There is no difficulty in 
checking that the diagram commutes up to sign. �

Our conventions concerning the length of a complex are given in 2.3.

Observation 7.10. Adopt Data 7.1. Let i and a be integers with 1 ≤ a ≤ g. Recall the 
complexes {Ci,a

Φ } of Definition 7.2 and Observation 7.4.

(a) If −1 ≤ i, then (Ci,a
Φ )j = 0 for j ≤ −1 and length(Ci,a

Φ ) ≤ f.
(b) If i ≤ f − g and f − g + 2 ≤ j, then (Ci,a

Φ )j = 0.
(c) Assume

−1 ≤ i ≤ f− g, or (i, a) = (f− g + 1, 1), or (i, a) = (−2, g).

Then (Ci,a
Φ )j = 0 for j ≤ −1 and for f − g + 2 ≤ j; in particular, Ci,a

Φ is a complex 
of length at most f − g + 1.

Proof. Use (7.3.1). If j ≤ −1 ≤ i, then the
∧•

F contribution to (Ci,a
Φ )j is 

∧f−j
F = 0. 

If i ≤ f − g and f − g + 2 ≤ j, then the 
∧•

F contribution to (Ci,a
Φ )j is 

∧f−g+1−j
F = 0. 

The other assertions are checked in a similar manner. �
Observation 7.11. Adopt Data 7.1. Let i and a be integers with 1 ≤ a ≤ g. Recall the 
complexes {Ci,a

Φ } of Definition 7.2 and Observation 7.4. Then

H0(Ci,a
Φ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∧
f−g+a F

im(
∧a Φ)∧

∧
f−g F

, if i = −1,

coker(
∧g−a+1 Φ∗), if i = 0, and

Lg−a
i+1 G

Φ∗(F )·Lg−a
i G

, if 1 ≤ i.

Proof. Fix a basis element ωF∗ of 
∧f

F ∗ and, for each j, let σ :
∧j

F →
∧f−j

F ∗ be the 
non-canonical isomorphism which sends fj to fj(ωF∗).

For i = 0, consider the commutative square

(C0,a
Φ )1 =

∧f−g+a−1
F

d1

∼= σ

(C0,a
Φ )0 =

∧f
F ⊗ Lg−a

1 G

∼= σ⊗(4.5.e)

H0(C0,a
Φ ) 0

∧g+1−a
F ∗

∧
g+1−a Φ∗ ∧g−a+1

G.

(7.11.1)
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For 1 ≤ i, consider the commutative square

(Ci,a
Φ )1 =

∧f−1
F ⊗ Lg−a

i G
d1

∼= σ1⊗1

(Ci,a
Φ )0 =

∧f
F ⊗ Lg−a

i+1 G

∼= σ0⊗1

H0(Ci,a
Φ ) 0

F ∗ ⊗ Lg−a
i G

δ
Lg−a
i+1 G,

(7.11.2)

where δ(φ ⊗
∑

� A� ⊗B�) =
∑

� A� ⊗ Φ∗(φ) ·B� for φ ∈ F ∗, A� ∈
∧g−a

G, B� ∈ Symi G

and

∑
� A� ⊗B� ∈ Lg−a

i G ⊆
∧g−a

G⊗ Symi G.

In both diagrams, (7.11.1) and (7.11.2), the top line is exact by 7.10.a. For i = −1, the 
sequence

(C−1,a
Φ )1 =

∧f−g
F ⊗

∧a
G∗ d1−−→ (C−1,a

Φ )0 =
∧f−g+a

F → H0(C−1,a
Φ ) → 0

is exact and d1 sends ff−g ⊗ γa to ff−g ∧ (
∧a Φ)(γa). �

Observation 7.12. Adopt Data 7.1. Let i and a be integers with 1 ≤ a ≤ g. Recall the 
complexes {Ci,a

Φ } of Definition 7.2 and Observation 7.4. Then Ig(Φ) annihilates H0(Ci,a
Φ )

for all i with −1 ≤ i.

Proof. We show that Ig(Φ) · (Ci,a
Φ )0 ⊆ im d1 for each relevant i. Consider the arbitrary 

element r = [(
∧g Φ)(ωG∗)](φg) of Ig(Φ), where ωG∗ ∈

∧g
G∗ and φg ∈

∧g
F ∗.

We prove the assertion for i = −1 by showing that r ·
∧f−g+a

F ⊆ im(
∧a Φ) ∧

∧f−g
F . 

Let ff−g+a ∈
∧f−g+a

F . Apply Proposition 2.14 in order to write r · ff−g+a, which is 
equal to

ff−g+a ∧ φg

(
(
∧gΦ)(ωG∗)

)
,

as a sum of elements of the form

f ∧ φ
(
(
∧gΦ)(ωG∗)

)
,

for homogeneous elements f ∈
∧•

F and φ ∈
∧•

F with

degφ ≤ g + f− (f− g + a) − g = g− a.

Apply Proposition 2.13.d to see that
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f ∧ φ
(
(
∧gΦ)(ωG∗)

)
= f ∧ (

∧g−deg φΦ)
([

(
∧deg φΦ∗)(φ)

]
(ωG∗)

)
.

This completes the proof when i = −1 because a ≤ g − degφ.
Consider i = 0. In light of (7.11.1), it suffices to show that

r(
∧g+1−a

G) ⊆ (
∧g+1−a Φ∗)(

∧g+1−a
F ∗). (7.12.1)

Let gg+1−a be an element of 
∧g+1−a

G. Observe that

[
(
∧a−1 Φ)[gg+1−a(ωG∗)]

]
(φg)

is an element of 
∧g+1−a

F ∗ and 
∧g+1−a Φ∗ carries this element to

(
∧g+1−a Φ∗)

([
(
∧a−1 Φ)[gg+1−a(ωG∗)]

]
(φg)

)
= [gg+1−a(ωG∗)]

(
(
∧g Φ∗)(φg)

)
by 2.13.d

= gg+1−a ∧ ωG∗

(
(
∧g Φ∗)(φg)

)
by 2.13.c

= r · gg+1−a.

The claim (7.12.1) has been established. This completes the proof when i = 0.
One further consequence of (7.12.1) is that rG ⊆ Φ∗(F ∗). (Take a to be g to obtain 

this conclusion.)
We prove the assertion for 1 ≤ i by showing that

rLg−a
i+1 G ⊆ δ(F ∗ ⊗ Lg−a

i G),

in the notation of (7.11.2). Observe that the exact sequence (4.4.1) yields

Lg−a
i+1 G = κ(

∧g−a+1
G⊗ Symi G)

since 0 < g − a + i + 1. On the other hand,

κ(
∧g−a+1

G⊗ Symi−1 G) ⊆ Lg−a
i G.

It follows that

rLg−a
i+1 G ⊆ rG ·

(
κ(

∧g−a+1
G⊗ Symi−1 G)

)
⊆ rG ·

(
Lg−a
i G

)
⊆ Φ∗(F ∗) · Lg−a

i G = δ(F ∗ ⊗ Lg−a
i G),

where the multiplication “·” means multiply into the symmetric algebra factor. The proof 
is complete for 1 ≤ i. �
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8. The acyclicity of Ci,a
Φ

Theorem 8.4 is the main result of the paper. It asserts if Φ is sufficiently general, 
then Ci,a

Φ is a resolution of H0(Ci,a
Φ ) and H0(Ci,a

Φ ) is a torsion-free (R/Ig(Φ))-module, for 
−1 ≤ i and 1 ≤ a ≤ g. The depth-sensitivity assertion, Corollary 8.5, was promised in 
(1.0.7), and is in fact our main motivation for writing the paper. Corollary 8.6 records 
the fact, promised in (1.0.6), that in the generic situation, with −1 ≤ i ≤ f − g, then 
H0(Ci,a

Φ ) is a maximal Cohen–Macaulay module of rank 
(
g−1
a−1

)
over the determinantal 

ring R/Ig(Φ). Recall, from 7.11, that

H0(Ci,a
Φ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∧
f−g+a F

im(
∧a Φ)∧

∧
f−g F

, if i = −1,

coker(
∧g−a+1 Φ∗), if i = 0, and

Lg−a
i+1 G

Φ∗(F )·Lg−a
i G

, if 1 ≤ i.

Theorem 8.4 follows readily from Lemma 8.1 by way of the acyclicity lemma. If 
I1(Φ) = R, then it is shown in Lemma 8.1 that

Ci,a
Φ and Ci,a

Φ′ ⊕ Ci,a−1
Φ′

have isomorphic homology for some smaller R-module homomorphism Φ′.

Lemma 8.1. Adopt Data 6.1 and Notation 6.2 with g ≤ f and Φ′′ an isomorphism. 
Let a and i be integers with 1 ≤ a ≤ g − 1. Recall the complex Ci,a

Φ of Definition 7.2
and Observation 7.4. Then there exists a canonical complex D of free R-modules and 
canonical short exact sequences

0 → Tot
(
Lf−i−1,g−a
π′◦Φ ⊗ A(Φ′′)

)
incl†−−−→ Ci,a

Φ
quot†−−−−→ D → 0 (8.1.1)

and

0 → Ci,a
Φ′ ⊕

(
Ci,a−1
Φ′ ⊗G′′∗) incl‡−−−→ D quot‡−−−−→ Tot

(
Kf−g−i−2,a

π′◦Φ [−i− 2] ⊗ B(Φ′′)
)
→ 0.
(8.1.2)

In particular, there are canonical isomorphisms

Hj(Ci,a
Φ ) ∼= Hj(Ci,a

Φ′ ) ⊕
(

Hj(Ci,a−1
Φ′ ) ⊗G′′∗

)
(8.1.3)

for all integers j.
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Remarks 8.1.4.

(a) Lemma 8.1 does apply when a = 1 provided one interprets Ci,a−1
Φ′ using Re-

mark 7.5. The complex Ci,0
Φ′ of Remark 7.5 is split exact; so the ultimate conclusion 

of Lemma 8.1 when a = 1 is

Hj(Ci,1
Φ ) ∼= Hj(Ci,1

Φ′ ),

for all integers j. In light of Observation 7.8, this conclusion is well-known.
(b) Lemma 8.1 is false when a = g, even if one interprets Ci,g

Φ′ using Remark 7.5. The 
correct statement is that

Hj(Ci,g
Φ ) ∼= Hj(Ci,g−1

Φ′ ) and Hj(Ci,g
Φ ) � Hj(Ci,g

Φ′ ) ⊕ Hj(Ci,g−1
Φ′ ).

Indeed,

Hj(Ci,g
Φ ) ∼= Hj(Ci+1,1

Φ ) by Observation 7.8
∼= Hj(Ci+1,1

Φ′ ) by (a)
∼= Hj(Ci,g−1

Φ′ ) by Observation 7.8.

On the other hand, the complex Ci,g
Φ′ has non-zero homology because the complex is 

non-zero in exactly one position; see Remark 7.5.

Proof of Lemma 8.1. We know from Definition 7.2 that Ci,a
Φ is the complex

0 → Kf−g−i−1,a
Φ [−i− 2] d−→

∧f−g+a−i−1
F

d−→ Lf−i−1,g−a
Φ → 0,

with [Ci,a
Φ ]i+1 =

∧f−g+a−i−1
F . The parameter g − a is positive; so, we know from 

Proposition 6.4.a that

0 → Tot
(
Lf−i−1,g−a
π′◦Φ ⊗ A(Φ′′)

)
incl†−−−→ Lf−i−1,g−a

Φ
quot†−−−−→

Lf−i−2,g−a
Φ′ ⊗ F ′′

⊕
Lf−i−2,g−a−1

Φ′ ⊗ F ′′ ⊗G′′
→ 0

is a short exact sequence of complexes. It follows that

Tot
(
Lf−i−1,g−a
π′◦Φ ⊗ A(Φ′′)

)
incl†−−−→ Ci,a

Φ (8.1.5)

is an injection of complexes. Let D be the cokernel of (8.1.5). Observe that (8.1.1) is a 
short exact sequence of complexes and that D is isomorphic to

0 → Kf−g−i−1,a
Φ [−i− 2] d−→

∧f−g+a−i−1
F

quot† ◦d−−−−−→
Lf−i−2,g−a

Φ′ ⊗ F ′′

⊕
f−i−2,g−a−1 ′′ ′′

→ 0.

LΦ′ ⊗ F ⊗G
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The parameter a is positive; and therefore, we also know from Proposition 6.4.b that

0 →
Kf−g−i−1,a

Φ′

⊕
(Kf−g−i−1,a−1

Φ′ ⊗G′′∗)

incl‡−−−→ Kf−g−i−1,a
Φ

quot‡−−−−→ Tot
(
Kf−g−i−2,a

π′◦Φ ⊗ B(Φ′′)
)
→ 0

is a short exact sequence of complexes. It follows that

D quot‡−−−−→ Tot
(
Kf−g−i−2,a

π′◦Φ ⊗ B(Φ′′)
)
[−i− 2]

is a surjection of complexes with kernel isomorphic to the complex:

0 →
Kf−g−i−1,a

Φ′ [−i− 2]
⊕

Kf−g−i−1,a−1
Φ′ [−i− 2] ⊗G′′∗

d◦incl‡−−−−−→
∧f−g+a−i−1

F

quot† ◦d−−−−−→
Lf−i−2,g−a

Φ′ ⊗ F ′′

⊕
Lf−i−2,g−a−1

Φ′ ⊗ F ′′ ⊗G′′
→ 0. (8.1.6)

Thus,

0 → (8.1.6) incl‡−−−→ D quot‡−−−−→ Tot
(
Kf−g−i−2,a

π′◦Φ ⊗ B(Φ′′)
)
[−i− 2] → 0 (8.1.7)

is a short exact sequence of complexes. Observe that

Ci,a
Φ′ ⊕ (Ci,a−1

Φ′ ⊗G′′∗)

(8.1.6),

(8.1.8)

given by

0 →
K

f−g−i−1,a
Φ′ [−i − 2]

⊕
K

f−g−i−1,a−1
Φ′ [−i − 2] ⊗ G′′∗

[
d 0

0 d

]

[ id 0

0 id

]

∧
f−g+a−i−1 F ′

⊕∧
f−g+a−i−2 F ′ ⊗ G′′∗

[
d 0

0 d

]

[
incl incl† ◦(1⊗Φ′′)

]

L
f−i−2,g−a−1
Φ′

⊕
L
f−i−2,g−a
Φ′ ⊗ G′′∗

→ 0

[
0 1⊗Φ′′

1⊗KosΦ′′ 0

]

0 →
K

f−g−i−1,a
Φ′ [−i − 2]

⊕
K

f−g−i−1,a−1
Φ′ [−i − 2] ⊗ G′′∗

d◦incl‡ ∧
f−g+a−i−1 F

quot† ◦d L
f−i−2,g−a
Φ′ ⊗ F ′′

⊕
L
f−i−2,g−a−1
Φ′ ⊗ F ′′ ⊗ G′′

→ 0,

is an isomorphism of complexes. (The complexes Ci,a
Φ′ and Ci,a−1

Φ′ have been read from 
Definition 7.2.) Combine (8.1.7) and (8.1.8) in order to see that (8.1.2) is a short exact 
sequence of complexes. The isomorphisms of (8.1.3) follow immediately from the short 
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exact sequences (8.1.1) and (8.1.2) because the two total complexes have all homology 
equal to zero since Φ′′ is an isomorphism. �

In Lemma 8.3 we iterate Lemma 8.1. The basic set-up is similar to, but not the same 
as, the set-up of Data 6.1.

Data 8.2. Let R be a commutative Noetherian ring, F and G be free R-modules of rank 
f and g, respectively, with g ≤ f, and Φ : G∗ → F be an R-module homomorphism. 
Decompose F and G as

F = F ′ ⊕ F ′′ and G = G′ ⊕G′′,

where F ′, F ′′, G′ and G′′ are free R-modules and rankF ′′ = rankG′′ = r for some 
integer r with 1 ≤ r ≤ g − 1 and let

F ∗ = F ′∗ ⊕ F ′′∗ and G∗ = G′∗ ⊕G′′∗

be the corresponding decompositions of F ∗ and G∗. Assume that

Φ =
[Φ′

r 0
0 Φ′′

r

]
, (8.2.1)

where Φ′
r : G′∗ → F ′ is an R-module homomorphism and Φ′′

r : G′′∗ → F ′′ is an R-module 
isomorphism.

Lemma 8.3. Adopt Data 8.2. Let i and a be integers with 1 ≤ a ≤ g. Recall the complex 
Ci,a
Φ of Definition 7.2 and Observation 7.4.

(a) If 1 ≤ r ≤ g − 1, then

Hj(Ci,a
Φ ) ∼=

g−r⊕
β=1

Hj(Ci,β
Φ′

r
)
( r
a−β

)
. (8.3.1)

(b) If r = g − 1, then the following statements hold:
(i) Hj(Ci,a

Φ ) ∼= Hj(Ci,1
Φ′

g−1
)
(
g−1
a−1

)
,

(ii) if Ig(Φ) = R, then the complex Ci,a
Φ is split exact; and

(iii) if Ig(Φ) is a proper ideal of grade at least f − g + 1, then Ci,a
Φ is a resolution of 

(R/Ig(Φ))
(
g−1
a−1

)
.

Proof. (a). We are given

Φ =
[Φ′

r 0
′′

]
,
0 Φr
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where Φ′′
r is an isomorphism of free modules of rank r. We may rearrange the data so 

that

Φ =

⎡
⎣Φ′

r 0 0
0 Φ′′′ 0
0 0 Φ′′

⎤
⎦ ,

where Φ′′ is an isomorphism of free modules of rank one and Φ′′′ is an isomorphism of 
free modules of rank r − 1. Let

Φ′ =
[Φ′

r 0
0 Φ′′′

]
.

Apply Lemma 8.1 and Remarks 8.1.4.a and 8.1.4.b to obtain

Hj(Ci,a
Φ ) ∼= χ(a ≤ g− 1) Hj(Ci,a

Φ′ ) ⊕ χ(2 ≤ a) Hj(Ci,a−1
Φ′ ), (8.3.2)

where χ is described in 2.7. Notice that (8.3.2) agrees with (8.3.1) when r = 1 because

(
1

a− β

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if β = a and 1 ≤ a ≤ g− 1,

1, if β = a− 1 and 2 ≤ a ≤ g,

0, if β /∈ {a− 1, a} and 1 ≤ β ≤ g− 1.

Induction on r applied to (8.3.2) now yields

Hj(Ci,a
Φ ) ∼= χ(a ≤ g− 1)

(g−1)−(r−1)⊕
β=1

Hj(Ci,β
Φ′

r
)
(r−1
a−β

)
⊕ χ(2 ≤ a)

(g−1)−(r−1)⊕
β=1

Hj(Ci,β
Φ′

r
)
( r−1
a−1−β

)
.

The constraints χ(a ≤ g − 1) and χ(2 ≤ a) are redundant. Indeed, if g ≤ a, then

β ≤ g− r =⇒ r ≤ g− β ≤ a− β =⇒
(
r−1
a−β

)
= 0,

and if a ≤ 1, then

1 ≤ β =⇒ a− 1 − β ≤ −1 =⇒
(

r−1
a−1−β

)
= 0.

Thus,

Hj(Ci,a
Φ ) ∼=

g−r⊕
β=1

Hj(Ci,β
Φ′

r
)
(r−1
a−β

)
⊕

g−r⊕
β=1

Hj(Ci,β
Φ′

r
)
( r−1
a−1−β

)

∼=
g−r⊕
β=1

Hj(Ci,β
Φ′

r
)
( r
a−β

)
.
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(b). Assertion (bi) is a special case of (a). Recall that Φ′
g−1 : G′∗ → F ′ is a homomor-

phism, G′ is a free module of rank one, and F ′ is a free module of rank f −g +1. The com-
plex Ci,1

Φ′
g−1

is the Koszul complex on a generating set for I1(Φ′
g−1) = Ig(Φ). If Ig(Φ) = R, 

then Ci,1
Φ′

g−1
is split exact. This is (bii). Otherwise, the hypothesis f − g + 1 ≤ grade Ig(Φ)

ensures that grade Ig(Φ) is generated by a regular sequence and therefore Ci,1
Φ′

g−1
is a 

resolution of H0(Ci,1
Φ′

g−1
) = R/Ig(Φ). This is (biii). �

Theorem 8.4 is the main result of the paper.

Theorem 8.4. Adopt Data 7.1. Let i and a be integers with 1 ≤ a ≤ g. Recall the complex 
Ci,a
Φ from Definition 7.2 and Observation 7.4. Assume that Ig(Φ) is a proper ideal of R

with f − g + 1 ≤ grade Ig(Φ).

(a) If length(Ci,a
Φ ) = f − g + 1 and (Ci,a

Φ )j = 0 for j ≤ −1, then the following statements 
hold.

(i) The complex Ci,a
Φ is acyclic.

(ii) The R-module H0(Ci,a
Φ ) is perfect of projective dimension f − g + 1.

(iii) The (R/Ig(Φ))-module H0(Ci,a
Φ ) is torsion-free.

(iv) If f −g +2 ≤ grade Ig−1(Φ), then the (R/Ig(Φ))-module H0(Ci,a
Φ ) has rank 

(
g−1
a−1

)
.

(b) If −1 ≤ i and f − t + 1 ≤ grade It(Φ) for all t with f + 1 − length(Ci,a
Φ ) ≤ t ≤ g − 1, 

then
(i) the complex Ci,a

Φ is acyclic,
(ii) Hj(Cf−g−i−1,g+1−a

Φ ) = Extf−g+1−j
R (H0(Ci,a

Φ ), R) for all j, and
(iii) Hj(Cf−g−i−1,g+1−a

Φ ) = 0 for 1 ≤ j.
(c) If −1 ≤ i, f − g + 2 ≤ length(Ci,a

Φ ), and

f− t + 2 ≤ grade It(Φ), for all t with f + 1 − length(Ci,a
Φ ) ≤ t ≤ g− 1, (8.4.1)

then H0(Ci,a
Φ ) is a torsion-free (R/Ig(Φ))-module of rank 

(
g−1
a−1

)
.

Remarks 8.4.2.

(a) Recall from Lemma 8.3.bii that if Ig(Φ) = R, then Ci,a
Φ is split exact.

(b) Observation 7.10 contains elementary facts about the length of the complexes Ci,a
Φ . 

In particular, the hypotheses of (a) are satisfied when

−1 ≤ i ≤ f− g, or (i, a) = (f− g + 1, 1), or (i, a) = (−2, g).

(c) In the generic case (when Φ can be represented by a matrix of variables) all of the 
grade hypotheses of Theorem 8.4 are automatically satisfied because

f− t + 2 ≤ (g− t + 1)(f− t + 1), whenever 1 ≤ t ≤ g− 1.

(d) The modules H0(Ci,a
Φ ) are recorded in Observation 7.11.
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Proof. Throughout this proof, let C represent Ci,a
Φ and � and represent length(C).

(ai). The complex C has the form

0 → Cf−g+1 → · · · → C1 → C0 → 0;

see Observation 7.10. Let p be a prime ideal of R with grade p ≤ f − g. Observe that

grade p ≤ f− g < f− g + 1 ≤ grade Ig(Φ) ≤ grade Ig−1(Φ).

Thus, there is a (g − 1) × (g − 1) minor of Φ which is a unit in Rp and we may apply 
Lemma 8.3.biii in order to conclude that Cp is acyclic. The acyclicity criterion (see, for 
example, [2, 1.4.13]) now guarantees that C is acyclic.

(aii). We know from Observation 7.12 that Ig(Φ) ⊆ ann(H0(C)); and therefore,

pdR H0(C) ≤ f− g + 1 by ai

≤ grade Ig(Φ) by hypothesis

≤ grade ann(H0(C))

≤ pdR H0(C) by (2.9.1).

The proof of (aii) is complete; see 2.9, if necessary.
Assertion (aiii) is a consequence of Proposition 2.10.1.
(aiv). The R-module R/Ig(Φ) is perfect of projective dimension f − g + 1. (See, for 

example, [10, Cor. 5.2], [26, Thm. 1], or [3, 2.7].) Let p ∈ SpecR be an associated prime 
of R/Ig(Φ). It follows that grade p = f − g + 1 and Ig−1(Φ) � p. Thus, Corollary 8.3.biii 

may be applied to Φp in order to conclude that H0(Ci,a
Φ )p ∼= H0(R/Ig(Φ))

(
g−1
a−1

)
p . The proof 

of (aiv) is complete; see 2.10.
(bi). We induct on �. The base case, � = f −g +1, is established in (ai). We now study 

the case with f − g + 2 ≤ �. As in the proof of (ai) we apply the acyclicity criterion and 
prove that Cp is acyclic for all prime ideals p of R with grade p < �. Fix such a p. The 
hypotheses of (b) with t = f + 1 − � now ensure that

grade p < � ≤ grade If+1−�(Φ).

Thus, there is an (f + 1 − �) × (f + 1 − �) minor of Φ which is a unit in Rp and, after 
rearrangement,

Φp =
[Φ′

f+1−� 0
0 Φ′′

f+1−�

]
,

as described in (8.2.1). Apply Corollary 8.3.a in order to conclude that
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Hj(C)p is a direct sum of suitably many copies of modules from the

set {Hj(Ci,β
Φ′

f+1−�
) | 1 ≤ β ≤ g− (f + 1 − �)}.

(8.4.3)

Observe that

f− t + 1 ≤ grade It(Φ) ≤ grade It(Φp) = grade It−(f+1−�)(Φ′
f+1−�)

for all t with f + 1 − � ≤ t ≤ g − 1. Let

f′ = f− (f + 1 − �), g′ = g− (f + 1 − �), and t′ = t− (f + 1 − �).

We have shown that

f′ − t′ + 1 ≤ grade It′(Φ′
f+1−�) for all t′ with 0 ≤ t′ ≤ g′ − 1.

It follows that the hypotheses of (b) apply to Ci,β
Φ′

f+1−�
for each β with 1 ≤ β ≤ g′. On 

the other hand,

length(Ci,β
Φ′

f+1−�
) ≤ rank(the target of Φ′

f+1−�) = f′ = f− (f + 1 − �) = �− 1.

By induction on �, each Ci,β
Φ′

f+1−�
is acyclic; and therefore Cp is also acyclic by (8.4.3).

(bii) and (biii). Now that we know that C is a resolution of H0(C), assertion (bii) can 
be read from Observation 7.9; and (biii) follows from (bii) because the grade f − g + 1
ideal Ig(Φ) is contained in the annihilator of H0(C).

(c). We already know from (bi) that

C is a free resolution of H0(C) of length �. (8.4.4)

For each integer w, let Fw be the ideal in R generated by:

{x ∈ R | pdRx
H0(Ci,a

Φ )x < w}.

Claim 8.4.5. If f + 1 − � ≤ t ≤ g − 1, then It(Φ) ⊆ Ff−t+1.

Proof of Claim 8.4.5. If Δ is a t × t minor of Φ, then one can arrange the data so that

ΦΔ =
[Φ′

t 0
0 Φ′′

t

]
,

where Φ′′
t is an isomorphism of free RΔ-modules of rank t as is described in Data 8.2. 

Apply Corollary 8.3.a to see that

Hj(C)Δ ∼=
g−t⊕
β=1

Hj(Ci,β
Φ′

t
)
( t
a−β

)
, for all j. (8.4.6)
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Apply (8.4.4) to see that each Ci,β
Φ′

t
which actually appears in (8.4.6) (that is, with (

t
a−β

)
�= 0) is also acyclic. Thus,

pdRΔ
H0(C)Δ ≤ max{length(Ci,β

Φ′
t
) | 1 ≤ β ≤ g− t} ≤ rank(the target of Φ′

t) = f− t.

This completes the proof of Claim 8.4.5.

Combine hypothesis (8.4.1) and Claim 8.4.5 to see that

f + 1 − � ≤ t ≤ g− 1 =⇒ (f− t + 1) + 1 = f− t + 2 ≤ grade It(Φ) ≤ gradeFf−t+1.

Let w = f − t + 1. We have shown that

f− g + 2 ≤ w ≤ � =⇒ w + 1 ≤ gradeFw.

Apply Proposition 2.10.1 to conclude that the R/Ig(Φ) module H0(C) is torsion-free.
We re-use the rank calculation of (aiv). If p ∈ AssR(R/Ig(Φ)), then

grade p = f− g + 1 < f− g + 3 ≤ grade Ig−1(Φ);

hence, Corollary 8.3.biii may be applied to Φp, as was done in (aiv), to conclude that 
rank H0(C) =

(
g−1
a−1

)
. �

The next result was promised in (1.0.7), and is our main motivation for writing the 
paper.

Corollary 8.5. Adopt Data 7.1. Let and i and a be integers with 1 ≤ a ≤ g. Recall the 
complex Ci,a

Φ from Definition 7.2 and Observation 7.4. If −1 ≤ i ≤ f − g, then

Hj(Ci,a
Φ ) = 0 for f− g + 2 − grade Ig(Φ) ≤ j.

Proof. Assertion 8.4.a may be applied in the generic case with the ring equal to the 
polynomial ring Z[{xi,j}] and the homomorphism given by a matrix of indeterminates. 
The present assertion is a consequence of Proposition 2.11.2. �

The next result was promised in (1.0.6).

Corollary 8.6. If k is a field, g ≤ f are positive integers, R is the polynomial ring

R = k[{xi,j | 1 ≤ j ≤ g, 1 ≤ i ≤ f}],

Φ : Rg → Rf is the generic map given by



100 A.R. Kustin / Journal of Algebra 460 (2016) 60–101
⎡
⎢⎣
x1,1 . . . x1,g
...

...
xf,1 . . . xf,g

⎤
⎥⎦ ,

and M = H0(Ci,a
Φ ) for some i and a with −1 ≤ i ≤ f −g and 1 ≤ a ≤ g, then annR(M) =

Ig(Φ) and M is a maximal Cohen–Macaulay (R/Ig(Φ))-module of rank 
(
g−1
a−1

)
.

Proof. The ring R is Cohen–Macaulay and the R-module M is perfect (by Theo-
rem 8.4.a); hence M is a Cohen–Macaulay R-module. If p is in AssR M , then Ig(Φ) ⊆
ann(M) ⊆ p (see Observation 7.12) and f − g +1 = grade p (by [2, 1.4.15]). On the other 
hand, Ig(Φ) is already a prime ideal of R of grade f − g + 1. It follows that Ig(Φ) = p, 
Ig(Φ) = annR M , SuppR(M) = SuppR(R/Ig(Φ)), and AssR M = {Ig(Φ)}. �
Remark 8.7. A module over a local Artinian ring has rank only if it is free. Example 7.7
shows that the hypothesis f −g +2 ≤ grade Ig−1(Φ) is needed in Theorem 8.4.aiv. Indeed, 
if R = k[x, y], for some field k, and

Φ =

⎡
⎢⎢⎣
x 0 0
y x 0
0 y x

0 0 y

⎤
⎥⎥⎦ ,

then H0(C0,2
Φ ) is an R/I3(Φ)-module which does not have any rank. It is easy to see that 

the length of H0(C0,2
Φ ) is twice the length of R/I3(Φ) = k[x, y]/(x, y)3; however, H0(C0,2

Φ )
has the wrong Betti numbers, as a module over R, to be a free R/I3(Φ)-module.
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