Journal of Algebra 460 (2016) 60-101

Contents lists available at ScienceDirect

JOURNAL OF

Journal of Algebra

www.elsevier.com/locate/jalgebra

Canonical complexes associated to a matrix
CrossMark

Andrew R. Kustin '

@

Department of Mathematics, University of South Carolina, Columbia, SC 29208,

United States

ARTICLE INFO

ABSTRACT

Article history:
Received 15 September 2015
Available online xxxx

Communicated by Luchezar L.

Avramov

MSC:
primary 13D02
secondary 13C40

Keywords:
Buchsbaum—-Rim complex
Depth-sensitivity
Determinantal ring
Duality

Eagon—Northcott complex
Hooks

Koszul complex

Maximal Cohen—Macaulay module

Perfect module
Schur module
Weyl module

E-mail address: kustin@math.sc.edu.

Let ® be an § X g matrix with entries from a commutative
Noetherian ring R, with g < §. Recall the family of generalized
Eagon—Northcott complexes {C}} associated to ®. (See, for
example, Appendix A2 in “Commutative Algebra with a
View Toward Algebraic Geometry” by D. Eisenbud.) For each
integer i, C% is a complex of free R-modules. For example,
C9 is the original “Eagon—Northcott” complex with zero-
th homology equal to the ring R/I4(®) defined by ideal
generated by the maximal order minors of ®; and C} is
the “Buchsbaum-Rim” complex with zero-th homology equal
to the cokernel of the transpose of ®. If ® is sufficiently
general, then each Ci, with —1 < 4, is acyclic; and, if ® is
generic, then these complexes resolve half of the divisor class
group of R/I4(®). The family {C%} exhibits duality; and, if
—1 <4 < f— g+ 1, then the complex C§ exhibits depth-
sensitivity with respect to the ideal I4(®) in the sense that
the tail of C§ of length equal to grade(I4(®)) is acyclic. The
entries in the differentials of C}, are linear in the entries of
® at every position except at one, where the entries of the
differential are g X g minors of ®.

This paper expands the family {C%} to a family of complexes
{Cé;a} for integers ¢ and a with 1 < a < g. The entries in the
differentials of {C;®} are linear in the entries of & at every
position except at two consecutive positions. At one of the
exceptional positions the entries are a X a minors of ®, at the
other exceptional position the entries are (g—a+1) X (g—a+1)
minors of ®.

L The author was partially supported by the Simons Foundation grant number 233597.

http://dx.doi.org/10.1016/j.jalgebra.2016.03.037
0021-8693/© 2016 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/j.jalgebra.2016.03.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:kustin@math.sc.edu
http://dx.doi.org/10.1016/j.jalgebra.2016.03.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2016.03.037&domain=pdf

A.R. Kustin / Journal of Algebra 460 (2016) 60—-101 61

The complexes {C%} are equal to {C3'} and {C%°}. The
complexes {C;’a} exhibit all of the properties of {C%}. In
particular, if —1 <7 <f—gand 1 <a <g, then CZI;“ exhibits
depth-sensitivity with respect to the ideal I4(®).

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a commutative Noetherian ring and F' and G be free R-modules of rank f
and g, respectively, with g < §. Recall that, for each R-module homomorphism

®:G* > F (1.0.1)

there is a family of generalized Eagon—Northcott complexes {C%}. (See, for example,
Definition 3.1, [13, Appendix A.2], [3, 2.16], or [20]. A more complete history of these
complexes may be found in the comments on page 26 in [3].) If

—1<i<f-g+1, (1.0.2)

then C% has length f—g+1; and, if f—g+1 < grade I;(®), then C% is acyclic for i satisfying
(1.0.2). Furthermore, the complexes C, for i satisfying (1.0.2), exhibit depth-sensitivity.
In particular, if s < grade I;(®) for some integer s with 0 < s < f—g+1, then H;(C%) = 0
for f —g+2— s < j and i satisfying (1.0.2). In the generic situation, the complexes C,
with ¢ satisfying (1.0.2), resolve the Cohen—Macaulay elements of the divisor class group
of the determinantal ring R/I;(®). The complexes Cf, with i in the range (1.0.2), exhibit
duality:

Ch = a shift of Hom R(Cé, R) in homological degree,
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for i+ j = f—g. Also, if R is a graded ring, and a matrix representation of @ is a matrix
of linear forms, then the Betti tables for the complexes {C4} are pleasing to the eye.
The maps are linear, except at, at most one position where the maps have degree g.
Moreover, the position of non-linearity slides, along a line of slope 1, from the beginning
of the complex to the end as ¢ varies from 0 to | — g.

We expand the list of canonical complexes which are associated to the R-module
homomorphism (1.0.1). For each pair (i,a) with

—1<i<f—-g and 1<a<y, (1.0.3)
we consider a complex Cfb’a. The classical generalized Eagon—Northcott complexes
{C%1(1.0.2) holds} (1.0.4)

are included in the set

{eg

(1.0.3) holds} (1.0.5)

with Cfp = Cfb’l for -1 <i<f—gand Cé = C'fb_l’g for 0 <i < f§f— g+ 1. The complexes
of (1.0.5) exhibit many of the properties as the listed properties for the generalized
Eagon—Northcott complexes (1.0.4). Each complex of (1.0.5) has length § — g + 1; and

if f — g+ 1 < grade I;(®), then each C5* is acyclic.

The complexes of (1.0.5) exhibit depth-sensitivity. In the generic situation, the complex
Cg" of (1.0.5)

resolves a maximal Cohen-Macaulay module over the ring R/I4(®) of rank (g:})

(1.0.6)

The complexes of (1.0.5) exhibit duality:
Ch®™ = a shift of HomR(CfI;’b, R) in homological degree,

fori+j=f—g—1and a+b= g+ 1. Also, if R is a graded ring, and ® is a map
of degree 1, then the maps of C’é’a are linear, except at, at most two adjacent positions
where the maps have degree a and g + 1 — a. Moreover, the position of non-linearity
slides, along a line of slope 1, from the beginning of the complex to the end as i varies
from —1 to § — g; see Example 7.6.

The Eagon—Northcott [11] complex C3 and the Buchsbaum-Rim complex [6-8] C}
are very important objects in Commutative Algebra and Algebraic Geometry. (For ex-
ample, [1,15,16,21,29] are a small sampling of the recent papers about Buchsbaum-Rim
multiplicity and its application to equisingularity.) We expect that the rest of the fam-
ily (1.0.5) will prove to be valuable tools in these fields.
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The complexes Cg" arise in the study of the homological properties of the primary
components of the content ideal c¢(fgh) of the product of three generic polynomials f,
g, and h. These components have been identified [9, Thm. 4.2] and all but one of the
components is known to be Gorenstein [9, Thm. 4.1 and Rem. 4.3]. The complexes Cfi;a
also arise in the study of the resolutions of the symmetric algebra Sym(I) and the Rees
algebra R(I) of a grade three Gorenstein ideal I = (gi,...,95) in a polynomial ring
over a field k; see, for example, [23] and [24, Cor. 6.3], where the special fiber ring
F(I) =klgi1,...,gn] of I is resolved.

The complexes Cfl;a are straightforward and they are built in a canonical manner.
That is, there are no choices; everything is coordinate-free. The modules in fI;a are
Schur modules and Weyl modules corresponding to hooks. In other words, the modules
in Cfb’“ all are kernels of Koszul complex maps or Eagon—Northcott complex maps; see

4.1 and 4.3. The complex Cfb’a is obtained by concatenating three finite complexes:
K— /\ — L,

where K and L are standard complexes of Weyl and Schur modules, respectively, and
/\ consists of a single exterior power concentrated in one position; see Definition 7.2 for
the details. The complexes K and L are introduced in Section 5.

The main result of this paper is Theorem 8.4 which states that if ® is sufficiently
general, —1 <4, and 1 < a < g, then Cfga is an acyclic complex of free R-modules and
Ho(C4") is a torsion-free R/I(®)-module of rank (871). The most important applications
occur when i also satisfies ¢ < f—g. Indeed, in this situation, Cfb’a has length f—g+1 and,
if f — g+ 1 < grade I;(®), then Hy(Cy") is a perfect R-module of projective dimension
f— g+ 1 resolved by C;* and Extly ®™ (Ho(C5"), R) is a perfect R-module resolved by
Cf{g_i_l’ﬁl_a; furthermore, even if grade Iy(®) < § — g + 1, the complex Cfb’a exhibits
depth-sensitivity with respect to the ideal I5(®) in the sense that

H;(C5") =0 for f — g+ 2 — grade Ij(®) < j, when —1 <i<f—gand 1 <a <g.
(1.0.7)

The depth-sensitivity (1.0.7) allows one to use truncations of various Céa as acyclic
strands in resolutions even when I(®) is known to be less than f — g + 1.

There is a basic similarity between the present paper and the paper [25], which pro-
duces a family of complexes {Df} for each almost alternating homomorphism p. The
family {Dg} shares many properties with the family of generalized Eagon—Northcott
complexes {C%}. The main difference between [25] and the present paper is that the
homomorphism p of [25] is special, in the sense that it is an almost alternating ho-
momorphism; whereas, the complexes {Cé;a} of the present paper and the generalized
Eagon-Northcott complexes {C5} are both constructed from an arbitrary homomor-
phism ®. Nonetheless, the statement of Theorem 8.4 and some steps in its proof are
modeled on [25, Thm. 8.3], although [25] does not contain any analogue to Lemma 8.1,
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which is the key calculation in the present paper. In place of a result like Lemma 8.1,
[25] first treats the generic case and then specializes to the non-generic case. In the
present paper, Lemma 8.1 shows that if the image of ® contains a basis element of F',
then

A . a1
Cg* and Cg' @Cyt

have isomorphic homology for some (“smaller”) R-module homomorphism ®’. To prove
Theorem 8.4, we iterate Lemma 8.1 and apply the acyclicity lemma. The representation
theory that is used in the proof of Lemma 8.1 is begun in (6.3.4) and (6.3.5) and carried
out in Proposition 6.4.

The complexes Cfb’a are defined in 7.2; examples are given in 7.6 and 7.7; the duality
is treated in 7.9; and the zero-th homology

/\f79+a F
im(A\® @)AN ~¢ F
Ho(C5") = { coker(A®*F' &%), if i =0, and
LY PG

9 1<
(P if1<i

if i = —1,

is calculated in 7.11. The Schur module LG is described in 4.1 and 4.3.
2. Notation, conventions, and preliminary results

There are three subsections: Ground rules, Grade and perfection, and Multilinear
algebra.

2.1. Ground rules

2.1. Unless otherwise noted, R is a commutative Noetherian ring and all functors are
functors of R-modules; that is, ®, Hom, (_)*, Sym,;, D;, and A\' mean ®z, Hompg,

Hompg(_, R), Sym!*, DE and /\Zé, respectively.

2.2. A complex C : --- — Cy = C1 — Cy — 0 of R-modules is called acyclic if H;(C) =0
for 1 < 5.

2.3. If a complex C has the form
0—+C —Ciog— -+ —C —Co—0,
with Cy # 0 and Cy # 0, then we say that the length of C is £ and we write length(C) = ¢.

2.4. If A is a complex and n is an integer, then A[n] is a new complex with [A[n]]j =AM,
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2.5. If (A, a) 9, (B,b) is a map of complexes, then the total complez (or mapping cone)
of 0, denoted Tot(#), is the complex (T,¢) with T = A[—1] & B as a graded module. The
differential in T is given by

Ajr . Ajo
T]‘ = 66 —— o = T]’_l,
Bj Bj,1

with

o )

t; = .

ijl —bj

2.6. If ® is a matrix (or a homomorphism of free R-modules), then I,.(®) is the ideal
generated by the r X r minors of ® (or any matrix representation of ®).

2.7. If S is a statement then

1, if S is true,
x(5) =
0, if S is false.

2.2. Grade and perfection

2.8. The grade of a proper ideal I in a Noetherian ring R is the length of a maximal
R-regular sequence in I. The unit ideal R of R is regarded as an ideal of infinite grade.

2.9. Let M be a non-zero finitely generated module over a Noetherian ring R and let
ann(M) be the annihilator of M and pdp M be the projective dimension of M. It is
well-known that

gradeann(M) = min{j | Ext’, (M, R) # 0};
therefore, it follows that
gradeann(M) < pdp M. (2.9.1)

If equality holds in (2.9.1), then M is called a perfect R-module. Recall, for example, that

if R is Cohen—Macaulay and M is perfect, then M is Cohen—Macaulay. (This is not the

full story. For more information, see, for example, [3, Prop. 16.19] or [2, Thm. 2.1.5].)
The ideal I in R is called a perfect ideal if R/I is a perfect R-module.

2.10. Let M be a finitely generated R-module. The R-module M has rank r if M, is a
free Ry-module of rank 7 for all associated primes p of Ass R. If every non-zero-divisor
in R is regular on M, then M is called torsion-free. A proof of the following result may
be found in [25, Prop. 1.25].



66 A.R. Kustin / Journal of Algebra 460 (2016) 60-101

Proposition 2.10.1. Let M be a non-zero finitely generated R-module with finite projec-
tive dimension. Suppose that I is a perfect ideal of R with IM = 0. For each integer w,
with 1 <w < pdp M, let F,, be the ideal of R generated by

{z € R|pdg, M, < w}.

If w+1 < grade F,, for all w with grade I +1 < w < pdp M, then M is a torsion-free R/I
module. In particular, if pdy M < grade I, then M is a torsion-free (R/I)-module. O

2.11. The following statement is well-known; see, for example, [19, Cor. 6.10]. It follows
from the fact that if M is a perfect module, then the ideals F,, for M (in the sense 2.10.1)
and the annihilator of M all have the same radical.

Proposition 2.11.1. Let A — R be a homomorphism of Noetherian rings and M be a
non-zero finitely generated perfect A-module. If M ®4 R # 0, then

grade((ann M)R) = pd, M — max{i | Tor; (M,R) #0}. O

In our favorite applications of 2.11.1, we focus on the complex F ® 4 R, where F is a
resolution of M by projective A-modules. We are satisfied with an inequality; and there-
fore, there is no need for us to assume that M ® 4 R # 0. Furthermore, in practice, A is
usually a polynomial ring over the ring of integers. We refer to the following statement
as depth-sensitivity. Of course, these ideas were first worked out in [12,27,28,17], and
especially [18, Cor. 3.1].

Proposition 2.11.2. Let A — R be a homomorphism of Noetherian rings, M be a non-zero
finitely generated perfect A-module, and F be a resolution of M by projective A-modules
with the length of F equal to the projective dimension of M. Then

Hj(F®4 R)=0 for pdy M —grade((ann M)R) +1 < j. O

It is worth observing that if ann M is replaced by any sub-ideal, then the inequality
of 2.11.2 continues to hold.

2.3. Multilinear algebra

2.12. Our complexes are described in a coordinate-free manner. Let V' be a free module
of finite rank d over R. We make much use of the symmetric algebra Sym, V', the divided
power algebra Do (V*), and the exterior algebras A* V and A\*(V*). We use the fact that
Do(V*) is a module over Sym, V and the fact that A*V and A*(V*) are modules over
one another. We also use the fact that these module actions give rise to natural perfect
pairings

ev:Sym, V@ D;(V*)— R and ev:A\' VoA (V*) = R,
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for each integer i. The duals
ev' : R—= Dy(V*)®Sym;V and ev*:R— A\'(V)ONANV

of the above evaluation maps are completely independent of coordinates. It follows that,
if {my} is a basis for Sym; V' (or A"V) and {mj} is the corresponding dual basis for
D;(V*) (or A"(V*)), then the element

ev' (1) =Y m; ®@my € Dy(V*) @Sym, V (or AN'(V)@A\'V) (2.12.1)
4

is completely independent of coordinates. These elements will also be used extensively
in our calculations.

2.12.2. We emphasize a special case of (2.12.1). If wy« is a basis for /\d(V*) and wy is
the corresponding dual basis for /\d V', then the element wy« ® wy is a canonical element
of A*(V*) @ A* V. This element is also used in our calculations.

The following facts about the interaction of the module structures of A*V on A*(V*)
and A*(V*) on \* V are well known; see [4, section 1], [5, Appendix|, and [22, section 1].

Proposition 2.13. Let V' be a free module of rank d over a commutative Noetherian ring
R andletb. € N"V, ¢, € A*V, and ag € N1 (V*).

(a) If r =1, then (br(ag))(cp) = by A (aq(cp)) + (=1) 9y (br Acyp).

(b) If = d, then (br(ag))(cp) = (1) (¢ (aq)) (br).

(c) If p=d, then [by(ag)](cp) = br A ag(cp).

(d) If O : V = V' is a homomorphism of free R-modules and 841, € N7 (V'™), then

(/\S qj*)[((/\r \Ij)(bT))((Serr)] = br[(/\s+r \Ij*)(65+7“)} O

The next result is an application of Proposition 2.13 and the ideas of 2.12. The result
is used in the proof of Observation 7.12.

Proposition 2.14. Let V' be a free module of rank d over a commutative Noetherian ring
Randletb. € N"V,c, € N'V, and ag € N'(V*). Then b, A (ay(cp)) is equal to a sum
of elements of the form b, A (aq,(cp)) where

b;,e/\r/V, ozfz,e/\q/(V*), r'—q¢=r—q, and ¢ <q+d—r—p.

Remark. The element c, has not been changed; but an upper bound has been imposed
on the degree of the \*(V*) contribution to the expression. Of course, the assertion is
only interesting when d < r + p.
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Proof. Let ev*(1) =Y, mi@my € A"P(V*)@ APV, as described in (2.12.1). Notice
that

> mi(meAey) = cp. (2.14.1)
4

To establish (2.14.1), it suffices to test the proposed equation after multiplying both
sides on the left by an arbitrary element z4_, of /\d_p F'. The left side becomes

Z Ta—p Amy(me A cy) = Z[wd,p(m’g)](mg A cp) by 2.13.c
¢ ¢
= (Y lza-plmp)] - me) Acy
¢
=2Xd—p N Cp,

as desired. Apply (2.14.1) and 2.13.c to see that
by A ag(cp) = Zbr A (ag Amg)(me A cp) = Z[br(aq Amg)](me A cp).
¢ ‘
Each my is a sum of elements of the form vy A -+ A vg—p with v; € V. Apply 2.13.a
numerous times to write
[br(ctg AP (V1 A=+ Avg—p A cp)
Fu1 A [br(ag Amp)](va A= ANvg—p A cp)

£[(v1 Abyp)(ag Amp)](va A+ Avg—p A cp)

Fvg Avy A [br(0g A )] (v3 A+ Avg—p A cp)
tu1 A [(v2 Abyp) (g Amp)](vg A Avg—p A cp)
Fuy A [(v1 Aby) (g Amp)](vs A+ Avg—p A cp)
)N

+[(va Avi Aby)(ag Amj)][(vg A=+ Avg—p A cp)

We continue is this manner and express b, A ay(c,) as a sum of elements of the form
z A (@' A br)(ag Amp)l(cp),

where x and 2’ are homogeneous elements of A°* F' and deg x +degz’ = d — p. The proof
is complete because

deg[(z' Aby)(ag Amp)]=q+d—p—dega' —r<qg+d—p-—r. =]
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3. The classical generalized Eagon—Northcott complexes

We recall the classical generalized Eagon—Northcott complexes {C% | i € Z} which
were introduced at (1.0.1).

Definition 3.1. Let R be a commutative Noetherian ring, F' and G be free R-modules of
rank f and g, respectively, with g < §, ® : G* — F be an R-module homomorphism, and
i be an integer.

(a) The complex C is
S NP R @ Dy(G) I N @ Dy(GY) 5 NI R @ Do (GY)

g . . )
N2 AT E o A G ® Symy G 222 AT R A®G @ Sym, G K L
(3.1.1)

with /\ffgﬂ. F ® Do(G*) in position i + 1. In particular, if 7 is an integer, then the
module (C%); is

N7Fo N\ GeSym,_;G, ifj<i, and

Ca)i =9 iy . .
/\ 877 F®Dj_i_1(G*), 1fZ+1 S]

(3.1.2)
(b) The maps ng and Kose may be found in Definition 5.2.a.
(¢) The map A" F ® Do(G*) A2, ANTPF @ A G®Sym, G is
fa = fa A (/\g (b)(wG*) QO wa,
where wg+ ® wg is the canonical element of A*(G*) ® A G from 2.12.2.

Example 3.2. Adopt the notation of 3.1. We record the classical generalized Eagon North-
cott complexes Cj which have the form:

0= (Co)i—g+1 = (Ch)j—g = -+ = (Ch)2 = (C5)1 — (C5)o — 0.

Of course, these complexes have length f — g + 1. The corresponding indices ¢ are given
in (1.0.4):

Cil: 0 AN F@ D g 1(G*) 25 N'F @ Ds_o(G*) 225 ..

22 NI E @ Do(G*) — 0,
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CY:0— AN FoDj_y(G*) ™ N'F @ Dj_g_1(G*) ™
225 NTEF @ Do(GY) A2, N F o A G®Sym, G — 0,

CL:0= AN FaD; 4 1(G") 22 N'FoDy_g o(G*) 22
1y AR @ Dy(G) A2 AT F @ AT G @ Sym, G
KO$>/\fF®/\gG@)SymlG%O,

C3:0—= \"F®Djg2(G") 5 N' F @ Dy_g5(G") ™=
2, NP2 P Do) A2 AT R @ ARG @ Sym, G

2o, NTTF @ ATG @ Sym, G222 ATF @ A G @ Sym, G — 0,

chotio— /\0 F ® Dy(G*) 225 N' F @ Do(G*)
A AT F @ A\° G @ Symy G 220 AT F o A'G @ Sym, G
Ko, BB AR NG @ Sym_g_ G — 0,
00— /\O(F*) ® Do(G*)

A2 AT AP G ® Symy G B2 AT P @ A°G @ Sym, G
Hose, Koi>/\fF®/\EG(XJSymf_gG—>07 and

Ce 0 AT F@ NG @ Sym G~ A°F @ A\°G @ Sym, G
Koo, B AR A'G @ Sym;_g,y G — 0.

The maps ne and Kosg may be found in Definition 5.2.a.

4. Schur and Weyl modules which correspond to hooks

The modules which comprise the complexes {C4°} are Schur and Weyl modules which
correspond to hooks. We recall some of the elementary properties of these modules.

4.1. Let V be a non-zero free module of rank d over the commutative Noetherian ring R
and let a and b be integers. Define the R-module homomorphisms

ke AV @Sym, V — A“"'V @Sym, ; V and
nt e NVeDV — NV e Dy vV

to be the compositions
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ev* (1)

AV ®@Sym,V ——= (V*@V)® A"V @ Sym, V (4.1.1)

rearrange

(V*o A'V)® (V& Sym, V)

Al —
ModAct @mult /\a 1V ® Symbﬂ V and

AV @DV " AV @ (Ve v e DV (4.1.2)

regroup
—

A"VeV)e (Ve D)W)

It ® ModAct 1
e = N = I

respectively. The map ev*(1) is discussed in (2.12.1), “mult” is multiplication in the
symmetric algebra or the exterior algebra, and “ModAct” is the module action of A*(V*)
on A*V or Sym,(V*) on D,V. Define the R-modules

LyV =kerky and KV =kerny.
In the future, we will often write x and 7 in place of ki and 7.

4.2. The R-modules LV and KV have been used by many authors in many contexts.
In particular, they are studied extensively in [4]; although our indexing conventions are
different than the conventions of [4]; that is,

the module we call LV is called L™V in [4].

4.3. The modules LyV and KV may also be thought of as the Schur modules L)V
and Weyl modules K,V which correspond to certain hooks A. We use the notation of
Examples 2.1.3.h and 2.1.17.h in Weyman [30] to see that the module we call L{V is also
the Schur module L(q41,15-1)V and the module we call K’V is also the Weyl module
K(b+1’1a71)v.

4.4. The complex

05AV®Sym, ,V5 AT Ve Sym, 4.,V - (4.4.1)

S AV @Sym, VS AV @ Sym, V — 0,

which is a homogeneous strand of an acyclic Koszul complex, is split exact for all non-zero
integers c; hence, L{'V is a projective R-module. In fact, L{V is a free R-module of rank

rank LyV = (d+b_1) <a+b—1);
a+b a

see [4, Prop. 2.5]. Similarly, KV is a free R-module of rank
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" d+b\(a+b-1
rank iK'V = <a+b)< b )

The perfect pairing
(A"V ®Sym, V) @ (N"(V*) @ Dy(V")) = R,
induces a perfect pairing
LYV @ KPT (V*) = R, provided (a,b) # (0,0) or (—1,1). (4.4.2)

Each assertion in Observation 4.5 is obvious; but it is very convenient to have all of
these facts gathered in one place.

Observation 4.5. Let R be a commutative Noetherian ring, V be a free R-module of
rank d, and £ be an integer. Then the following modules are canonically isomorphic:

—~
&

LYV = Sym,V,
d

)
(b) L'V = AV @ Sym, |V, provided ¢ +d # 1,
(c) LIV =0, provided £ + d # 0,
(d) LEV =0, provided £ # 0,
(e) LV = /\H1 V', provided £ # —1,
(f) KQV =0, provided ¢ # 0,
(g) K}V = Dy1V, provided ¢ # —1,
(h) K&V = \"V @ DV, and
i)

KV =A\'V.

—~
—

Proof. Assertions (a), (h), and (i) follow from the definitions, and assertions (b), (c),
(d), and (e) are immediate consequences of split exact complex (4.4.1). If ¢ is non-zero,
then we may apply Hom(—, R) to the split exact complex (4.4.1) to obtain the split exact
complex

0 ANV @D (V) L A (V)@ Doy (VF) L ... L AUV @ Do_g(V*) — 0.
Replace V* with V in order to see that
05> AVeDV LA VD VDL LA V@DV -0 (45.1)
is also split exact. Assertions (f) and (g) are consequence of (4.5.1). O

5. The complexes K¢, and L associated to a homomorphism &

The complexes K and L contain Weyl modules K (G*) and Schur modules L§G,
respectively. The complex Cg“, which is the focal point of the present paper, is obtained
by concatenating the complexes K — A — L; see Definition 7.2.
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Data 5.1. Let R be a commutative Noetherian ring, F' and G be free R-modules of finite

rank f and g, respectively, and ® : G* — F' be an R-module homomorphism.

Definition 5.2. Adopt Data 5.1.

(a)

If r and g are integers, then define the R-module homomorphisms
ne : N F&Dy(G*) - N FoD,1(G*)  and
Kosg : \" F ® Sym, G — N Fe Sym, ;G

to be the compositions

1®ev* (1)®1
—_

N F & Dy(G¥) N F &G ®G® De(G)

1EEModA, AT P o A F ® Dy (GY)

mult ®1

2EEL AT FR D, 1 (GF)

and

1®ev* (1)®

N F®Sym, G SN F®G ®G®Sym, G

1®PRmult /\r F ® /\1 F ® Squ+1 G

mult ®1, N Fg Symg,1 G,

respectively, where ev*(1) is described in (2.12.1), ModAct is the module action of
Sym, G on De(G*) and mult is multiplication in the exterior algebra A® F or the
symmetric algebra Sym, G.

If N and p are integers, then define Kg’p to be the maps and modules

Ky?: 05 AN Fo KR (GY) 25 N'Fo KE,_(G) 22 ...
2 ANF o KE(GF) =0

with [Kg’p]j =AN""Fe K7 (G*); and define ]Lg’p to be the maps and modules

0o ANH P LG Ko, ANV2 g ppe Kose, KOﬁ>/\fF<§§>L1fZNG—>O,
with
0 if (p,j) = 0,f —N), and
[Lgm]j _ () =1 ) (5.2.1)

/\f_j F® L{%’fojG7 otherwise,

where the maps are induced by the homomorphisms e and Kosg of (a) and the
modules K?(G*) and LPG are defined in (4.1.2) and (4.1.1).



74 A.R. Kustin / Journal of Algebra 460 (2016) 60-101

Remarks 5.3.
(a) The map
s N(G*) @ Dy(G*) = N"TH(G") ® Dy1 (GY)
of (4.1.2) is equal to the map
M- : N(G*) @ Dy(G*) = NTHG") @ Dy 1(G7)

of 5.2.a.
(b) The map

k¢ NG ®Sym, G — A" G ® Sym,,, G

of (4.1.1) is related to the map Kosiq,,. of 5.2.a by way of the following commutative
diagram:

—a g (-1 "Kosiag. g—a+1 g
A G* @ Sym, Go \° G A G*®@Sym, G N G
ModAct \L = = \L ModAct
A*G ® Sym, G ’ A G ® Sym,, G.

(¢) The maps and modules of Kg’p and Lg’p form complexes because the diagrams

Mid g«
0= A"F @K} (G) = \"F @ N\ (G") ® Dy(G") ————= N F@A"TH(G") ® Dy-1(G")
I
| ne Ne Ne
\ Mid g
0= ANTF@KL (G — NT'FOAP(G™) ® Dg—1(G") —— N"T'F @ A\P71(G") ® Dy—2(G7)

and

05 AN FOLGC———> AN"F@APG®Sym G ———> A\"F@ AP ' G®Sym,,, G

I
| Kosg Kosg Kosg
\

05N FL, ¢ AT F@APG@Sym,,, G ——= AT F@ AP G ®© Sym,,, G

commute.
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6. The complexes Kg and Lg when @ is a direct sum of homomorphisms

In this section we assume that the homomorphism ® : G* — F is a direct sum of
homomorphisms. In Proposition 6.4 we relate the complexes Kg’p and ]Lg’p of Defini-
tion 5.2.b to similar complexes built from smaller data. This result plays a prominent
role in the proof of the acyclicity of the complexes Cfb’a; see Theorem 8.4, which is the
main result of the paper.

Data 6.1. Let R be a commutative Noetherian ring, F' and G be free R-modules of rank
f and g, respectively, and ® : G* — F be an R-module homomorphism. Decompose F’
and G as

F=F@oF" and G=G'0G",
where F', F”, G’ and G are free R-modules and rank F” = rank G” = 1 and let
F*=F"@F' and G'=G"aG"
be the corresponding decompositions of F* and G*. Assume that
o 0
®= [0 @”] ’
where ® : G'* — I’ and ®” : G""* — F” are R-module homomorphisms.
Notation 6.2. Adopt Data 6.1.
(a) Let A(®") and B(®") represent the complexes
A@"): 0 R-Z2S B oG — 0
and
B(@"): 0—G" 25 0.
(b) Let @’ : F — F’ be the projection map which corresponds to the direct sum decom-
position F = F' @ F”.
(¢) If @, b, ¢, d, and e are integers, then let
incl’ : A\ F' @ A’ G ®Sym,G® \* F” @ Sym, G — /\a+dF®/\bG®Symc+eG
be the R-module homomorphism given by

(multiplication in A*® F) ® (the identity map in A®G) ® (multiplication in Sym, G).
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(d) If a, b, ¢, d, and e are integers, then let
quot’ : AT F o AT G @ Sym, G = AN F' @ \°G' @ Sym, G’ @ NP F" @ \° G

be the R-module homomorphism given by

the projection map the projection map the quotient map
/\a+dF N /\a F/ ® /\d F// ® /\b+e G — /\b G/ ® /\e G// ® Sym. G — Sym. G/
induced by F = F' & F” induced by G = G’ & G” induced by G/G" = G’

(e) If a, b, ¢, and d are integers, then let
incl* : A*F' @ A\*(G"*) @ Do(G"*) @ NUG") = N F @ \"(G*) @ D.(G*)
be the R-module homomorphism given by
(inclusion) ® (multiplication) ® (inclusion).
(f) If a, b, ¢, d, and e are integers, then let

quott : A" F @ \"(G*) ® Dese(G¥)
S N F' o N'(G) ® D(G*) @ N F" @ Do(G")

be the R-module homomorphism given by

the projection ma; Det(G7) —
+d P / I;c)l 1" the identity map DE(G”*) ® Syme el ® Deye (G*)
NTF = N oA\ F o 1®ModAct .
on A*(G") SENOCA, De(G") ®@ Do(GF)

induced by F = F' @ F"

exchange DC(G*) ® De(G//*)
where ev*(1) is described in (2.12.1) and ModAct is the module action of Sym, G
on Do (G*).

Proposition 6.4 asserts that (6.4.1) and (6.4.3) are short exact sequences of complexes.
Observation 6.3 considers the modules in (6.4.1) and (6.4.3) in the arbitrary position j.
Recall the function x from 2.7.

Observation 6.3. Adopt Data 6.1 and Notation 6.2.

(a) If p, q, v are integers, then

N F' ® LbG -
0— < 2, N'F® LPG
/\r—l F ® qu’_lG ® F ® G a
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0 0 0
N F' ® LEG inett auot! NTUF @ LIG @ B
0 — &3] —> A"FQ® LZG _— > @ — 0
NP ®L G®F®G" P NUF ® LG @ P @ G
N N
AN F ®NG® S,G inelt auott ANUF QNG ® 5,6 @ F
0 — 23] — > AN"FAING®S,G ———> @ =0
AN F QAN C® S, G0 F ®G" ANTE QN G ®S,E ® F © G
ANF' @AN'G® S G inel! quot! AN TF QAN 1G @ S, G @ F
0 — ® ——> N FON'GQ® Sy 1G —> . ® — 0
/\7»71 F'® /\p—1 G®S,G® F'® G" /\7»71 F'® /\p72 ¢ ® Sq+]G, ® F' Q@ G"
AN F' @ L 2G inett quot! ANTUF @ LP G @ F
0 — =) %—/\TF®L’;;§G%- ® — 0
AUF @ LYEG @ FY @ G NUF @ LPEG @ P g G

Fig. 6.3.1. This picture is a commutative diagram which is used in the proof of Observation 6.3.a. The middle
two rows are exact. The columns are exact provided 2 < p + q. We use “S” as an abbreviation for “Sym”.

r—1
N F @ LEG @ F”
S —0
X(p,a) # (LOYN T F ol ' e F ed")

quotT

is an exact sequence of R-modules.
(b) If p, q, v are integers, then

N F' ® KE(G'™) et r
0— ©® E— /\ F®Kfl’(G*)
A F'@ KiH(G™) @ G
uot* x((p7q) 7& (07 1))(/\T F'e K§—1(G*) ® G”*)
@ —0
r—1 *
N F @ KP(G) @ F"

is an exact sequence of R-modules.

Remark 6.3.3. If r = 1 and I/ = 0, then F' = F” has rank one and no harm occurs if we
set F' = F" equal to R (that is, apply — ® F*). In this case, 6.3.a is

i uot
0= Lh_,G @G 25 126 1 16" & x((p,g) # (1,0)) (15716 9 G) >0,
(6.3.4)
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AN F'® K2 (G'™) et

in NS

quot! N F ® KI_ (G") ®G"*
KMN(G*) — > -
NF e KRG @ 6 R AUE ® KP(GT) © F

') ')

A F' @ A\"(G'*) ® D,(G'")
A F® AH(G) @ Dy (GT) @ G

inel? ot

A F' @ \'(G") ® D1 (G*) ® G”'°
— N F QNG

AU E @ AP(GT) @ Dy(G*) @ F”

) ® DG — So

A F' @ NFU(G) @ Dyi (G7) imatt awert AT F @ AI(GT) @ Dy2(GT) ® G
& —> A" F R ATN(G") ® D, 1 (G*) ———>
AF' @A (G'™) ® Dy—1(G'") ® G"* NTHE @ APTH(GY) ® D1 (G*) @ F

AT F' @ KIH(G') et

inel quott AN F' @ KIT3(G™) ® G
0= ————————— N F®KI*3(G")

—_— — 0

)
A F'® KM (G') @ G ANTHF @ KPP(GT) © F

Fig. 6.3.2. This picture is a commutative diagram which is used in the proof of Observation 6.3.b. The middle
two rows are exact. The columns are exact provided 2 < p + q.

If r =0, then 6.3.b is

Ké’(G'*) g !
0 ® 2 KD(GY) 2 x((pg) # (0,1)) (KD, (G @ G"°) = 0.
(Ky (G ®aE™)
(6.3.5)

The exact sequences (6.3.4) and (6.3.5) are results from representation theory; see, for
example, [30, 2.3.1] or [14, Exercise 6.11]. The versions we give are stated explicitly,
require no assumptions about characteristic, and are precisely the results that we use in

the proof of Lemma 8.1. In fact, our proof of Proposition 6.4 was created by starting
with proofs of (6.3.4) and (6.3.5).

Proof. (a). If p < 0 or ¢ < 0, then all of the modules in 6.3.a are zero. If ¢ = 0, then
6.3.a is

inclt r uJr r—
0= x(p=0A"F 25 x(p=NF 2 x(p=0) N F' @ F" 0,

which is exact for all p. (Notice that we used the factor x((p,q) # (0,0)) in our proof
that 6.3.a is exact for all p when ¢ =0.) If p = 0, then 6.3.a is
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N F'®Sym, G el
® L F
0= r—1 v " " /\ ®Sym ¢
AN FeSm, GF"®G

ety AT @ Sym, G @ F 5 0,
which is exact for all g. Henceforth, we assume 2 < p 4+ ¢g. Observe that Fig. 6.3.1 is
a commutative diagram; each column is split exact; and the middle two rows are split
exact. The assertion follows from the snake lemma and the fact that the bottom incl’ in
Fig. 6.3.1 is automatically an injection.

(b). If p < 0 or ¢ < 0, then all of the modules in 6.3.b are zero. If ¢ = 0, then 6.3.b is

N F' e N'(GT) nat
0— @ 2 AN F e NG
AN F NG o6
quot

/\T 1F/ ®/\P(G*) QF" — 0,

which is exact for all integers p. If p = 0, then 6.3.b is

incl* uo r—
0= x(a =N F' 25 x(g =) N F 25 x(g = ) N P & F 0,

which is exact for all integers q. Henceforth, we assume 2 < p+¢. Observe that Fig. 6.3.2
is a commutative diagram; each column is split exact; and the middle two rows are split
exact. Once again, the assertion follows from the snake lemma and the fact that the
bottom incl* in Fig. 6.3.2 is automatically an injection. O

The complexes ]Lg’p and Kg’p may be found in Definition 5.2.b; the complexes A(P"”)
and B(®") are defined in Notation 6.2; and some comments about the total complex (or
mapping cone) of a map of complexes is in 2.5.

Proposition 6.4. Adopt Data 6.1 and Notation 6.2. Let p and N be integers. The following
statements hold.

(a) Assume that p # 0. Then there is a canonical short exact sequence of complexes

. Lgil’p ® F"

inclt u !

0 — Tot (Lﬂ P ® A((I)“)) oL, Lp duot ® S0, (6.4.1)
]Lg/fl,pfl ® " ® G//

In particular, if ®" is an isomorphism, then quot! induces an isomorphism
N-1, N—1p—1 N,
H LY @ By (LY 7 = (L), (6.4.2)

for all j.
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(b) Assume that p # 0. Then there is a canonical short exact sequence of complexes

Ky?
0 @ dnlt gedNop G0t (Kffo;;p ®B(c1>”)) 0. (6.4.3)
&Y o G

In particular, if ®" is an isomorphism, then incl* induces an isomorphism
H; (Ky/”) @ H; (Kp” ™) = H; (K ™), (6.4.4)
for all j.

Remark 6.4.5. The conclusion of Proposition 6.4.b does not hold when p = 0 and 1 <
N < {. In this case, KI? and KY? are 0 = AV F/ = 0and 0 — A" F — 0, respectively,
with each non-zero module in position zero, and Kg,’p -1
(6.4.4) does not hold.

The conclusion of Proposition 6.4.a also does not hold when p = 0. In particular,
N0

is the zero complex. Thus,

is the complex

0 AV F®Sym, G £22 ANT? P @ Sym, G S22,

Kosg

== N F @ Sym;_y G — 0.
In the typical situation

Hi_n 1Ly ) = AVF, HiyaLy ") =A"1F,
and (6.4.2) fails to hold.

Proof. (a). There is nothing to prove if p < 0; so we assume that 1 < p. Notice that (6.4.1)
in position j is

F=J P
/\ e Lf_j_NG inclt F—j
0— ® — A F®L$_j_NG
N7 el GoF' ®G"
—j—N-—

/\f j— 1F/®Lf i NG/®FII
S¥ — 0,
X((pd) #@Lf-NY)NT T F el (G oF oG

quotT
—_—

which is 6.3.a with r replaced by f — j and ¢ replaced by § — j — N; hence, each row of
(6.4.1) is a short exact sequence. To see that (6.4.1) is a map of complexes, one verifies
that Fig. 6.4.6 is a commutative diagram, and this is straightforward. Thus, (6.4.1) is a
short exact sequence of complexes.
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N F @ LG inett auot’ NUF QLG @ F
® A" F®LEG —— @
/\r—l F/ ® L271G ® F// ® G// /\r—l F/ ® Lg—lG/ ® F// ® G//
Kos,/0g 0 —Kosg 0
\L [ Kosg 4(05,,0(,,} Kose \L [ 0 —Kosg
/\TJrl F'® LZ+1G inclt . ) quot! N F'® LZHGI ®F"
—_—
P ANT'FR LG (&3
/\r F’ ® LZG ® P ® G// /\7‘ F' ® LglllG/ ® F" ® leld

Fig. 6.4.6. In the proof of Proposition 6.4.a one verifies that this diagram (with p and ¢ both positive)
commutes in order to see that (6.4.1) is a map of complexes.

A" F' ® Kg(G'™) imelt quot? AN F' @ Ki_(G")®G""

619 N F®KI(G") —— y ®

™ ’ - 1% 11 * ™— ! * 1"

N F @ KEL(G'™")®G N F@K)G)®F
Nrtos O ngr 0

e . |z

NHF @ Y (GY) ot N @ KD _,(G) @G
& —— NT'F®KP_(G*) —

S
/\r+1 F/ ® Ké):ll(c*) ® F// ® G//* /\1‘ F/ ® K5,1(G*) ® F//

Fig. 6.4.7. In the proof of Proposition 6.4.b one verifies that this diagram commutes in order to see that (6.4.3)
is a map of complexes.

The assertion (6.4.2) is now obvious. Indeed, the hypothesis that ®” is an isomorphism
ensures that the complex Tot (fo’fq) ® A(@”)) on the left side of (6.4.1) has homology
zero and the long exact sequence of homology associated to the short exact sequence of
complexes (6.4.1) yields (6.4.2).

(b). Assume that 1 < p. Notice that (6.4.3) in position j is

N KJ(GT) et .
0= ® =S AV R @ KP(GY)
AN F e KNG e G
AN oK (G e G
@ — 0,
N—j—1 %
/\ J FI®K;?(G )®F”

quoti
—_—

which is 6.3.b with r replaced by N — j and ¢ replaced by j. The parameter p is not
zero by hypothesis; hence, Observation 6.3.b ensures that each row of (6.4.3) is a short
exact sequence. To see that (6.4.3) is a map of complexes, one verifies that Fig. 6.4.7 is a
commutative diagram, and this is straightforward. Thus, (6.4.3) is a short exact sequence
of complexes. The assertion (6.4.4) is now obvious, as in the proof of (6.4.2). O

7. The definition and elementary properties of the complexes Cfi;a

The maps and modules of fb’a are introduced in 7.2. It is shown in 7.4 that each Cfl;a
is a complex. Examples are given in 7.6 and 7.7. The relationship between the classical
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generalized Eagon-Northcott complexes {C5} and the complexes {C5"} is examined
in 7.8. The duality in the family {Cfb’a} is studied in 7.9. Information about the length of
Cfp’a is recorded in 7.10. The zero-th homology of Cé;“, for —1 < ¢, may be found in 7.11.
The fact that I;(®) annihilates Ho(Cg®), for —1 <4, is established in 7.12.

Data 7.1. Let R be a commutative Noetherian ring, F' and G be free R-modules of rank
f and g, respectively, with g <§, ® : G* — F be an R-module homomorphism.

Definition 7.2. Adopt Data 7.1. Recall the complexes Kg’p and Lg’p of Definition 5.2.b
and Remark 5.3.c and the homomorphism « of 4.1. Let i and a be integers with 1 < a < g.
Define the maps and modules (Cg*, d) to be

0= Kho e[ — 9] 4 ATreteilp dypisiclema g (7.2.1)
with [C5%)is1 = AT 79T F. The differentials

i d; ; diyi i
€5 ive —= [Cg"ir1 — [C5")i

are
(€l = [Kg * o = AT PO KGGT) = N PO A'(GY)
%} /\f—g—i—l re /\aF &lt> /\f—g+a—i—1F _ [Cé;“]m
and

C5%is = N8R RLLMUN

1IQATI° @k
s

/\f*g+a7i71 F® /\g+1fa(G*) ® /\g+17a G
/\f—g-i-a—i—l F® /\g-‘rl—aF ® LG

mult ®1
—_—

N Fe Ly "G =L, = ..
Remark 7.3. We give two other descriptions of the modules in Cfp’a:

N7 Fe L G, if j <,
[Cga]j _ /\f*ﬁHa*z 1 F, if j=44+1, and (7.3.1)
/\f_9+1—j F® qu_i_Q(G*)’ if 542 < j’
and Cfp’a looks like
2 NI R e KRG 25 AT e K6 L AT R
/\g+1,a o

N FeLieq 220, \T-H pg pimeg B2y (7.3.2)

with AT78T*"""! F in position i + 1.
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Observation 7.4. Adopt Data 7.1. Let i and a be integers with 1 < a < g. Then the maps
and modules (C3%,d) of Definition 7.2 form a complex.

Proof. One obtains Cfi;a by pasting together two well-known complexes; hence it suffices
to show that

i d; ; d; i d; i d; i
(Cg")irs —= (Cg")iga —— (Cg")ix1 —— (C5")i = (C5")i1

is a complex; furthermore, by the duality of Observation 7.9, it suffices to show that

i d; i d; i d; ]
(Ca")ive — (Cg")ir1 = (Cg")i = (Cg")im1
is a complex. Take f e A8 "1 F = (C5")it1. We compute

(diodit1)(f) =d; (Zz FANTT @) (mp) @ s(me) e N TTF @ LG = (Cfi;“)i)
= S0 0 F AN @) (my) A0 (ng) @ K(me) - (1@ ne)
e N FoLIG=(Cs")i s
= 30 0 S f AN @) (my Ang) @ g (me) @ ngs - e
=30 0 S FANTZT @) (M) @ nj (nf (M) @ ngn - g

where
evi(1) = X, mi ® my e N ar o NG,
ev (1) =2, np @ne = @ ngr € G*® (G, and
v (1) =32, Mj ® My, e NP Gro NPT G

are the canonical elements of (2.12.1). One easily verifies that

D020 My Ang @me @ ny :ZZME ® ng (M) @ ne
L v

eNTPGro N TG G.

(Merely evaluate both sides at a typical element of AT *G o AT 7 G* @ G*.) It is
obvious that

Zél Ze// nZI A nz” ® Nygr - Nyprr = 0 S /\2 G* ® Sym2 G

Take f € A9 Fand v € A*(G*) = K§(G*), see 4.5.i. So, f @ 7 is in (C5")isa-
We compute
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(i1 0 diso) (f ©7) = disa (FA A" ®)() € N7 F = (€5 )
= S0 AN @) A AT @) (mj) @ r(me)
e NTFe LG = (Cy")
= S f AN @)y Ami) @ w(me)

=0. |

Remark 7.5. If a is equal to 0 or g + 1, then it is possible to construct a complex Cfb’a
using the recipe of Remark 7.3. These complexes are

C?‘I;o . 0— /\f—g—i—l F identity map /\f—g—i—l F s 0,
with the non-zero modules appearing in positions ¢ + 2 and ¢ + 1; and
Cootl. 0 ANTTF =0,
with the non-zero module appearing in position ¢ 4 1.

Example 7.6. Adopt Data 7.1 with (g,f) = (5,9). We record the complexes C4* of Defi-
nition 7.2 and Observation 7.4 which have the form:

0= (Cx™s — (Ca™)a — (C5™)3 = (CE™)2 — (CE"1 — (C5™)o — 0.

Of course, these complexes have length f — g+ 1 = 5.

Coll i 0 N F® KNG 25 N'F @ KNG M N’ F QKNG X N*F ® KI(G*) 2 \'F @ K} (G)—»/\Jpao
COl: 0= A F @ KNG 2 AR @ KNG B AP F @ KNG I N F e KNG AL At E AT A P Lic - o
CLls 0 A F @ KNG 25 AR ® KNG 25 A F @ KNG L5 v A5 A p @ Lic X A" F @ LiG — 0
el 0 N F R KNG I NP @ KNG A A E A AT R @ Lic B NS R Lic KU A P g LiG - 0
cdl. o 0 1oy N2ooa N6 1g Koss a7 Koss 2 Kose g0

310 N FRKNG) AL AN R AL AR Lic B AR Lic B2 AR LI K2 A F @ LIG 0

et 0 N F AL AP Lic Xy AR @ Lic Ko, N F@Lic 2 \sperLic X2 PF@Lic -0

Kosa Kosa Kosg

cy': 0 N'F®LIG = \SF ® LIG NF®LiG E2 TP Lia K22 S P Lic B2 AP P @ LG -0
Cy? i 0 NP F® K2(G*) I N'F® K2(G") 25 A2 F ® K2(G*) 25 \°F @ K2H(G*) 1% /\4F®K§(G')A7—®>/\5F~>O
€O 0 N F® K2(GY) 25 A\LF @ K2(G) 5 \PF @ K2(G*) 25 N\ F @ K2(G*) X5 Ao F M5 A0 p @ 136 — 0
cl?: 05 N F®K2(G") X N'F ® KXG*) /\2F®K2(G)—>/\1F—>/\BF®LG Ko, N F @ L3G — 0
ez O~>/\°F®Kf(G")&A’F@Kg(c*)&/ﬁF&A’F@L?G Ko, NS F @ LEG B2, A F @ L3G - 0

Kosa | Kosq

€32 0 N F @ K2(GT) LI g2 p M (o p @ 3G K0y \T R @ L3G K2, AS P @ L3G K2, A0 F @ LIG - 0

.
cizi 0 N F AN MR Lie K AP Lic KO AT R @ LG KU AP e L K0 N F @ LEG - 0
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CxM 0= N F @ KHGY) M NV R @ KNG M A2 F @ KNG M N F @ KNG U AV F @ KGN AT E o
Co% 0 N F® KHGT) 2 A\LF @ K3(GY) 25 \PF @ K3(G*) 25 N F @ K3GT) 5 Ao F A5 A0 p @ 126 — 0

CLP: 0 AV F @ K3 G™) 25 N'F @ KHGY) 25 N2 F @ KHG) L8 Ao r A2 \sp e L2e X%, A9 @ L2G — 0

€2 0o N F®K3GY) 2 NP @ KNG A5 At F A AT g Lie K At P Lie KO AP @ 126 — 0
33 . 0 NOF 3oaey AP a3 N2 g6 2 Kosa a7 Koo as Kose  ro

33, N F@KS(G) A A e A A p @ Lie K0 N R @ L2e K2 AP @ L2a K25 AP @ L2G - 0

¢ o 2 Ao s 2 Kom a6 Kosa 7 Koss 1s Kosu 4o 2

4300 5 N2F AT AR @ L2a KO AR @ L26 <20 AT R @ L2G K20, AP F @ L2G S0, A\ F @ L2G — 0

Cilt i 0 N F @ KNG B NUF @ KAGT) 255 \*F @ KHG™) 25 NP F @ KHGT) 25 NF @ KNG A5 A F 5o

Col: 0 N\ F ® KHGY) 25 \LF @ KNGY) 5 A F e Ki(G) 25 N F @ KNG M5 AT M5 N FeLlic — o

Kosy

clt: 05 N F ® KHG™) M N'F @ KHG") 2 /\2F®K4(G)—>/\°F—>/\SF®LG N F®LLG—0

C2t: 0o N F R KNG 2 NLF @ KHG) A AR AN AT R g Ll B NS F e Lic K A0 R LG 0

e 0 N FRKNG) AL A F A N peLic K AT R LG K N PR LG K A FR LIG 50

P N 0 1

citi 0 NF AN NS PR Ll B AR LIG K \TF @ LIG K2 \SF @ LG K A F R LIG - 0

C?" i 0 N'F @R KZ(GY) 5 N?F @ KJ(GY) ™5 N°F R KJ(GY) 25 N'F®KJ(G) I N°F @ KNG") 5 \°F ® KJ(G*) = 0
e 0 N F @ KIGY) s NUF @ KI(GY) M \2F @ KIGY) 2 NP F @ KNG 25 N F @ k3G A% A F - 0

Y 0 N°F ® KJ(G™) M N'F @ KJ(G*) 5 \? F @ Ki(G*) 2 /\3F®K5(G)—»/\5F—>/\9F®L G =0

Koss

CLP 0= A F ®KI(G™) 25 AR @ KNG 25 A2 F @ KI(G) L5 ATF A5 A F @ LG X2 A9 F @ LG — 0

€255 0 N F @ KNG 25 AVF @ KI(G) L5 ps P A5 AT R @ L0G K A8 F @ LG K2 A\ F @ LIG — 0

Kosg. Kosg.

€25 0 N F R KHGH) L5 A F A A p @ LG K0 AT R g L9G6 K AP g LG K A F R L0G o 0

Kosq Kosg Kosg Kosy

g
cisi 0 A F MY AR LG K0 NS F @ LG KU NTF @ L0G KU AR P @ LG K N P @ L2G - 0

Example 7.7. If f =g+ 1 and ¢ = 0, then C%a@)/\fF* is
0 f * a * /\a(b a f *
0N FOINF@K{G)— N"FoNF
SN f g—a
AN N Fo N Fro LG - 0,

which is naturally isomorphic to

dy

0= AN F*@ NG 2 Ao rs 25 A2 G = o, (7.7.1)

with dy(wp- ® ) = (A B) () (wp-) and di(65-a) = (A" @) (dy_a), for wp- €
/\fF*, Yo € N*(G*), and ¢5_, € /\f_a F. In particular, if f = 4, g = 3, a = 2, and
® = (®; ;) is given by a 4 x 3 matrix, then (7.7.1) is

0— RS %2, g6 Ly B3 0
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with

A(L,2;1,2) A(L,3:1,2) A(1,41,2) A(3,4,1,2) A(2,41,2) A(2,3;1,2)
di = | A(1,2:1,3) A(1,3;1,3) A(1,4:1,3) A(3,4;1,3) A(2,4:1,3) A(2,3;1,3)
A(1,2:2,3) A(L,3;2,3) A(1,42,3) A(3,4:2,3) A(2,42,3) A(2,3:2,3)

and
TA3,4:1,2)  A(3,4:1,3)  A(3,4;2,3)
—A(2,4;1,2) —A(2,4;1,3) —A(2,4;2,3)
do — A(2, 3 ]-7 2) A(2,3;1,3) A(2,3;2,3)
YT AM21,2) A(LZL3) A(L22,3) |7
A( 7 72> _A(1537173> _A(1?372a3)
A(1,4;1,2) A(1,4;1,3) A(1,4;2,3) |
where
. D, 1 ‘I’u}
A1, j;k,0) = det ’ .
(i ) = det [ 0!

Observation 7.8. Adopt Data 7.1. Recall the complexes {C%} of Definition 3.1 and the
complexes {C’Zba} of Definition 7.2 and Observation 7.4. Then, for each integer i, the
complexes

Ch, C', and Cy e A'G
are canonically isomorphic.

Proof. Use the formulas (3.1.2) and (7.3.1), Observation 4.5, and the fact that A\’ G ®
A® G* is canonically isomorphic to R to see that the modules

€y, (Cgh;, and (Cy "%); @ A\°G

are canonically isomorphic for all j. These canonical isomorphisms induce the required
canonical isomorphisms of complexes. O

Observation 7.9. Adopt Data 7.1. Let i and a be integers with 1 < a < g. Then the
complexes

Cyt @ N(F*) and (C7 M0 (- g+ 1)

of Definition 7.2 and Observation 7.4 are canonically isomorphic.
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Remark. The symbol “[—(f — g + 1)]” refers to a shift in homological degree, see 2.4. In

particular, for each integer j,

(Cy o = — g+ D))y = (CF ) g )”

Proof. Use the formula (7.3.1), Observation 4.5, and the fact that /\e F* is canonically
isomorphic to /\fﬁ[ F® N\ (F*), for all integers ¢ to see that the modules

(Cg"); ® N'(F) and  ((Cy * ™7 gy )

are canonically isomorphic for all j. Indeed,

12

Il

((C;—g—i—lag—&-l—a

)f—g-i-l—j)*

(N FeLYZ] G ifit+2<],
(AT x| ifi+1=4, and
(N Fe K 7@, ifj<i

N (F) @ K, ,(G*), ifi+2<y,

/\g+i+1—a(F*)7 ifi+1=j,and by (4.4.2)
N (F*) @ LG, ifj=<i

N R K, (G e N (F), ifi+2<],

/\f*Q*i*H‘IF ® /\f(F*), ifi+1=7, and

N7 FoLI ! G N(EF), if j <

(C5™); © N'(F™).

The complex Cfl;a is obtained by patching together two well-known complexes. The du-

ality among the pieces is well understood. We focus on the duality at the patch:

(Ci®)ir2 ® N(F7) —— = (€501 & N(F?) —— = (i) & N (")

—g—i—1,g+1— .4 —g—i—1,g+1— « dar fog—i—1,g+1—
((Chomimbetmay ) —— (O e ) ) —— (T )

! | !

)

which is the same as

N=31 R g Kg(G*) @ N (F*) — > NI-o+e=i=1 pg AT(Fr) — > AT P @ 187G @ AT(F7)
0 1

l | |

* *

AT PR LiTIG) ——————— (AR ———— (N Fe K§T(G)
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The vertical maps are comprised of the canonical isomorphisms A" F@ AT F* = AT~¢ F
and the isomorphisms induced by the perfect pairing of 4.4.2. There is no difficulty in
checking that the diagram commutes up to sign. O

Our conventions concerning the length of a complex are given in 2.3.

Observation 7.10. Adopt Data 7.1. Let i and a be integers with 1 < a < g. Recall the
complezes {Cg"} of Definition 7.2 and Observation 7.4.

(a) If =1 <, then (Cg“)j =0 forj < —1 and length(Cfb’a) <.
(b) Ifi<f—gandf—g+2<j, then (Cg"); = 0.
(c) Assume

-1<i<f—g, or(i,a)=F—g+1,1), or (i,a) = (-2,9).

Then (Cfb’a)j =0 for j < —1 and for f —g+ 2 < j; in particular, Cfﬁa is a complex
of length at most f —g+ 1.

Proof. Use (7.3.1). If j < —1 < i, then the A® F contribution to (C5"); is N F=o.
Ifi <f—gandf—g+2<j, then the A* F contribution to (C5*); is A" *™7 F =0,
The other assertions are checked in a similar manner. O

Observation 7.11. Adopt Data 7.1. Let i and a be integers with 1 < a < g. Recall the
complezes {Cg"} of Definition 7.2 and Observation 7.4. Then

/\fﬂwra F
im(A® @)ANT ¢ F
Ho(C5") = { coker(A*“T' &%), ifi=0, and
LYG

H 1<
> (F) LG if 1 <u.

ifi=—1,

Proof. Fix a basis element wg- of A\' F* and, for each j, let o : A’ F — A7 F* be the
non-canonical isomorphism which sends f; to f;(wp-).
For ¢ = 0, consider the commutative square

_ a— dl a —a a
(O3 = N5 F " (050 = NV F © 139G ——= Hy(C3) —— 0

ulo ula@(alﬁ.e)

/\g+1—a F* /\B-H_a o /\g—a+1 G

(7.11.1)
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For 1 <4, consider the commutative square

. _ —a d i,a —a ba
(Cen=NT"FRLI'G — (C3")o = N F @ LI G — Hy(Cg") —= 0

Zlol(@l :lﬂ()@l

* —a 4 —a
F*@ LG LerlG,

(7.11.2)

where 6(¢® Z@A@ ®Bg) = Zé Ay ® (I)*(qb) - By for p € F*, Ay € /\g—a G, By € SymlG
and

ZZ A, ® By € L?_aG - /\g—a G® Symi G.

In both diagrams, (7.11.1) and (7.11.2), the top line is exact by 7.10.a. For i = —1, the
sequence

(Cq:l,a)l — /\f—gF® /\a G* d_l> (Cq:l,a)o — /\f—Q-HLF N Ho(C;LG) =0

is exact and dy sends fj_g @74 to fi—g A (A" ®)(70). O
Observation 7.12. Adopt Data 7.1. Let i and a be integers with 1 < a < g. Recall _the
complezes {C3"} of Definition 7.2 and Observation 7.4. Then I4(®) annihilates Ho(Cg")
for all i with —1 <.
Proof. We show that I4(P) - (Cfp’a)o C imd, for each relevant ¢. Consider the arbitrary
element r = [(A\® ®)(we+)](¢y) of I4(P), where wg- € A G* and ¢y € \°® F*.

We prove the assertion for i = —1 by showing that 7- A’ ®T* F Cim(A* ®)AA\ " ° F.

Let fi—g+a € /\f_g+a F. Apply Proposition 2.14 in order to write r - fj_g44, Which is
equal to

fi-ara A da((A°®)(wa-))),
as a sum of elements of the form
£ 7o ((A®)(we)):
for homogeneous elements f € A* F and ¢ € \* F with
degp<g+f-(F-g+a)—g=g-a

Apply Proposition 2.13.d to see that
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FAO((A®)we-)) = £ A AT 0) ([(A*50")(9)] (we-))-

This completes the proof when i = —1 because a < g — deg ¢.
Consider ¢ = 0. In light of (7.11.1), it suffices to show that

r(ATTTUG) C (AT (AT ). (7.12.1)
Let gg+1—o be an element of /\g+1_a G. Observe that

(A" @)[gg+1-a(we)]] (0q)

is an element of A®T' 7% F* and AT ®* carries this element to

(A @) ([(A™ ®)lgg41-alwe)]] (64))

= [ga+1-a(wa )] ((A° ©7)(69)) by 2.13.d
= gar1-a Awa- (AT )(6y)) by 2.13.c
=T 09g+1—-a-

The claim (7.12.1) has been established. This completes the proof when i = 0.

One further consequence of (7.12.1) is that G C &*(F*). (Take a to be g to obtain
this conclusion.)

We prove the assertion for 1 < i by showing that

rL{ "G CO(F* @ LT °G),
in the notation of (7.11.2). Observe that the exact sequence (4.4.1) yields
LG = k(A" G @ Sym,; G)
since 0 < g —a + %+ 1. On the other hand,
(AT G @ Sym,;_, G) C LI °G.
It follows that
rL G CrG (,-;(/\E“a+1 G ® Sym,_, G)) CrG- (Lg—“G)
CO*(F*) - LI "G =46(F*® LI "Q),

“'77

where the multiplication “-” means multiply into the symmetric algebra factor. The proof

is complete for 1 <i. O
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8. The acyclicity of C3*

Theorem 8.4 is the main result of the paper. It asserts if ® is sufficiently general,
then C4” is a resolution of Ho(Cy®) and Hy(C4®) is a torsion-free (R/I4(®))-module, for
—1 <iand 1 < a < g. The depth-sensitivity assertion, Corollary 8.5, was promised in
(1.0.7), and is in fact our main motivation for writing the paper. Corollary 8.6 records

the fact, promised in (1.0.6), that in the generic situation, with —1 < i < § — g, then
1

1) over the determinantal

Hp(C4") is a maximal Cohen-Macaulay module of rank (8-
ring R/I4(®). Recall, from 7.11, that

/\f*g+a F
im(A® ®)ANT—8 F
Ho(C5") = { coker(A®“*' &%), if i =0, and
LY ’G

L) 1<
(P LG if 1<q.

if i = —1,

Theorem 8.4 follows readily from Lemma 8.1 by way of the acyclicity lemma. If
I;(®) = R, then it is shown in Lemma 8.1 that

Cy* and Cylecyt!
have isomorphic homology for some smaller R-module homomorphism ®’.
Lemma 8.1. Adopt Data 6.1 and Notation 6.2 with g < f and ®" an isomorphism.
Let a and i be integers with 1 < a < g — 1. Recall the complex CZ“ of Definition 7.2

and Observation 7.4. Then there exists a canonical complex D of free R-modules and
canonical short exact sequences

i incl® i.a uot '
0 — Tot (LLT;;W‘“ ® A(@")) ncll, gha U p g (8.1.1)
and
i 1 * inclt u * —g—1i—2,a .
0= Cht e (Chr oGy b, p AU, qog (K;,o%b 20 _ 9] ® ]B%(<I>”)) 0.
(8.1.2)

In particular, there are canonical isomorphisms
H,(CL") = H,(C5%) & (Hj €N e G) (8.1.3)

for all integers j.
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Remarks 8.1.4.

(a) Lemma 8.1 does apply when a = 1 provided one interprets Cfb’ﬁl_l using Re-
mark 7.5. The complex C&;? of Remark 7.5 is split exact; so the ultimate conclusion
of Lemma 8.1 when a =1 is

H;(C') = H;(Cy),

for all integers j. In light of Observation 7.8, this conclusion is well-known.
(b) Lemma 8.1 is false when a = g, even if one interprets Cg using Remark 7.5. The
correct statement is that

H;(Cg®) = H;(Cgf™") and  H;(C3%) 2 H,(Cgf) ® H,(CgP ™).

Indeed,
H;(CL%) = H,(Cahh) by Observation 7.8
SHCEY) by (a)
=~ H;(Cyd ) by Observation 7.8.

On the other hand, the complex Cfp’,g has non-zero homology because the complex is
non-zero in exactly one position; see Remark 7.5

Proof of Lemma 8.1. We know from Definition 7.2 that Cfb’a is the complex
0— K;_g_i_17“[—i —2] LN /\‘LE’Jra*i*1 J RN ]Lfb_i_l’g_a — 0,

with [C5%)i1 = N/ 79T "L B The parameter g — a is positive; so, we know from
Proposition 6.4.a that

]Lf*iflgfa ® F"
f—i—l,g—a ) incl’ o f_i—1,g—a quot’ &
0 — Tot (]Lﬂ,oq) N )) —— L — ® =0
LZI)—/i—lg—a 1 QF"®G"
is a short exact sequence of complexes. It follows that

Tot (Lf/g;vﬂ “®A(<I>”)> inll, g (8.1.5)

is an injection of complexes. Let D be the cokernel of (8.1.5). Observe that (8.1.1) is a
short exact sequence of complexes and that D is isomorphic to

f—i—2,9—a %
fog—i—lar d_ pf-gta—i—1 - quot’od Lo, OF
0—Kg =i =2 = A F— ‘ ® — 0.
]Lfl;szgfafl ® jad ® Q"
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The parameter a is positive; and therefore, we also know from Proposition 6.4.b that

Ki-g-i-la
@’ incl* —g—i—1,a uot? —g—i—2.a
0— @ el gfemihe 00, mop (K;,C?@ > ®IB%(<I>”)) =0
(Kl‘bf/gfzfl,afl ® G//*)

is a short exact sequence of complexes. It follows that

1 A
D 2 o (Kf;fg““ ® B(cb”)) [—i— 2]
is a surjection of complexes with kernel isomorphic to the complex:

—g—i—1l,a .
Kl ° [—i — 2] o L
0 — ® doincl /\f gta—i 1F
K, 0 e o - 2 0 G
—i—2.,9—
L;,l g=a o pu

® —0. (8.1.6)
L,&;iilgiail ® FI/ ® G//

quotJr od
_—

Thus,

w'od

incl* uot? ——i— .
0= (8.1.6) 2y p WO, g (Kf 9-i=2a g B(@”)) [i—2] 50 (8.1.7)

is a short exact sequence of complexes. Observe that

i,a 7,a—1 *
Chra (Ch oG (8.1.8)
(8.1.6)7
given by
L [d 0] ) [d o} . L
KE 87 (=i — 2] 04d Nmete=i=t g’ 04d L im2emes
0— D — @D I 5> —0
Kl e—imla=l_; _ 9] @ G N ote—is2 pr g g L i-29-e g g/
id 0 0 19e”
l { o id] [inel inclt o(1@®") ] l [1®Kos,,,, o
Kzl;giiil’a[*i — 2] doincl® ) quot’ od H—'fI;iizygia ®F”
0 o S s Afeteiclp ® -0,
Kl e—imla=1_; _ 9] @G LI i—2e-e1l g pr g g

. . . i ia—1
is an isomorphism of complexes. (The complexes Cg;" and Cg/' "~ have been read from

Definition 7.2.) Combine (8.1.7) and (8.1.8) in order to see that (8.1.2) is a short exact
sequence of complexes. The isomorphisms of (8.1.3) follow immediately from the short
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exact sequences (8.1.1) and (8.1.2) because the two total complexes have all homology
equal to zero since ®” is an isomorphism. 0O

In Lemma 8.3 we iterate Lemma 8.1. The basic set-up is similar to, but not the same
as, the set-up of Data 6.1.

Data 8.2. Let R be a commutative Noetherian ring, F' and G be free R-modules of rank
f and g, respectively, with g < f, and ® : G* — F be an R-module homomorphism.
Decompose I and G as

F=F&F' and G=G &G,

where F', F”, G’ and G” are free R-modules and rank F”/ = rank G’ = r for some

integer r with 1 <r < g—1 and let
F*=F"a@F" and G"'=G"aG"”

be the corresponding decompositions of F™* and G*. Assume that

. 0
= ol (8.2.1)

where @/ : G’ — F’ is an R-module homomorphism and ®/ : G”* — F" is an R-module
isomorphism.

Lemma 8.3. Adopt Data 8.2. Let i and a be integers with 1 < a < g. Recall the complex
C3® of Definition 7.2 and Observation 7.4.

(a) If1 <r <g-—1, then
g—r
;(Ce") = P ;g (8.3.1)
B=1

b) If r =g —1, then the following statements hold:
(

. phay ~ 17 o0l (57D

() Hy(csm) = Hy(cy! )6,

(ii) if I4(®) = R, then the complex C5" is split exact; and
(iii) if I(®) is a proper ideal of grade at least f — g+ 1, then Cl " s a resolution of

(R/Io(®))6-1).

Proof. (a). We are given



A.R. Kustin / Journal of Algebra 460 (2016) 60—-101 95

where @/ is an isomorphism of free modules of rank r. We may rearrange the data so
that

0 0
d=|0 @ 0],
0o 0 &

where ®” is an isomorphism of free modules of rank one and ®"” is an isomorphism of
free modules of rank r — 1. Let

(ID/T 0
' = |: 0 (I)///:| .

Apply Lemma 8.1 and Remarks 8.1.4.a and 8.1.4.b to obtain
H;(Cg") = x(a < g—1)H;(Cg") & x(2 < a) Hy(C5 ), (8.3.2)
where x is described in 2.7. Notice that (8.3.2) agrees with (8.3.1) when r = 1 because

1, iff=aand 1 <a<g-—1,
1
= if 3=a— <a<
(a—5> 1, f f=a—1and 2<a<g,
0, f¢{a—1l,aland1 <pg<g-1
Induction on r applied to (8.3.2) now yields

, (g-1)—(r—1) o (g-1)—(r—1) o
HCs) =xe<e-1) P W) oxe<a O Hicg) .
B=1 B=1

The constraints x(a < g — 1) and x(2 < a) are redundant. Indeed, if g < a, then
B<g-r = r<g-f<a-f = (125 =0,
and if a < 1, then

1< = a-1-f<-1= (/7' =0

a—1—-p
Thus,
. g-r . r—1 T . r—1
H,(C5") = PH; €)= & ey
B=1 B=1
g—r

12

H,(C) o).
1

=
Il
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(b). Assertion (bi) is a special case of (a). Recall that ®;_; : G'* — F” is a homomor-
phism,_ G’ is a free module of rank one, and F” is a free module of rank f—g+ 1. The com-
plex Cfl,’,1 is the Koszul complex on a generating set for I1(®]_;) = I4(®). If I;(®) = R,

9—1
then C:I)’,l is split exact. This is (bii). Otherwise, the hypothesis f — g+ 1 < grade I4(®)
g—1 .
ensures that grade I (®) is generated by a regular sequence and therefore C;’,l is a

. g-1
resolution of Hy (Cfp’,l_l) = R/I4(®). This is (bili). O
Theorem 8.4 is the main result of the paper.

Theorem 8.4. Adopt Data 7.1. Let i and a be integers with 1 < a < g. Recall the complex
Cg" from Definition 7.2 and Observation 7.4. Assume that I4(®) is a proper ideal of R
with §f — g+ 1 < grade I(®).

(a) Iflength(Cy*) =f—g+1 and (C5*); = 0 for j < —1, then the following statements
hold.
(i) The complex Cfb’“ is acyclic.
(ii) The R-module Hy (Cé’a) is perfect of projective dimension §f —g+ 1.
(iti) The (R/I4(®))-module Ho(C5®) is torsion-free.
(iv) Iff—g+2 < grade I;_1(®), then the (R/I4(®))-module Hy(C4*) has rank (2.
(b) If =1 <i and §f —t + 1 < grade It(®) for all t with f+ 1 — length(Cga) <t<g-1,
then
(i) the complex Cé;a is acyclic,
(i) H;(Ch oot = Extl, 971 (Ho(Cy®), R) for all j, and
(iti) H;(Ch o7 h9t %) =0 for 1 < j.
(¢) If -1 <, f— g+ 2 < length(Cz"), and

f—t+2<grade,(®), for allt withj+1—length(Cy*) <t<g—1, (8.4.1)

then Ho(C5®) is a torsion-free (R/I4(®))-module of rank (gj)

Remarks 8.4.2.

(a) Recall from Lemma 8.3.bii that if I,(®) = R, then C3” is split exact.
(b) Observation 7.10 contains elementary facts about the length of the complexes Cg".
In particular, the hypotheses of (a) are satisfied when

-1<i<f—g, or (iva):(fig‘i’lal)a or (iva):(*lg)'

(¢) In the generic case (when ® can be represented by a matrix of variables) all of the
grade hypotheses of Theorem 8.4 are automatically satisfied because

f—t+2<(g—t+1)(f—t+1), whenever 1 <t<g-—1.

(d) The modules Ho(Cx®) are recorded in Observation 7.11.
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Proof. Throughout this proof, let C represent Cfi;a and ¢ and represent length(C).
(ai). The complex C has the form

0—=Ci_gg1— - —C1 —Co—0;
see Observation 7.10. Let p be a prime ideal of R with gradep < §f — g. Observe that
gradep <f—g<f—g+1 < gradely(®) < grade I;_(P).

Thus, there is a (g — 1) x (g — 1) minor of ® which is a unit in R, and we may apply
Lemma 8.3.biii in order to conclude that C, is acyclic. The acyclicity criterion (see, for
example, [2, 1.4.13]) now guarantees that C is acyclic.

(aii). We know from Observation 7.12 that I;(®) C ann(H(C)); and therefore,

pdpHo(C) <f—g+1 by ai
< grade I;(®) by hypothesis
< gradeann(Hy(C))
< pdy Ho(C) by (2.9.1).

The proof of (aii) is complete; see 2.9, if necessary.

Assertion (aiii) is a consequence of Proposition 2.10.1.

(aiv). The R-module R/I,(®) is perfect of projective dimension §f — g + 1. (See, for
example, [10, Cor. 5.2], [26, Thm. 1], or [3, 2.7].) Let p € Spec R be an associated prime
of R/I4(®). It follows that gradep = — g+ 1 and I;_1(®) € p. Thus, Corollary 8.3.biii
may be applied to ®,, in order to conclude that Hy(C5®), = HO(R/IQ(Q));(;E’D. The proof
of (aiv) is complete; see 2.10.

(bi). We induct on £. The base case, £ = f — g+ 1, is established in (ai). We now study
the case with f — g + 2 < £. As in the proof of (ai) we apply the acyclicity criterion and
prove that C, is acyclic for all prime ideals p of R with gradep < £. Fix such a p. The
hypotheses of (b) with ¢ = f + 1 — ¢ now ensure that

gradep < £ < grade [j41_¢(P).

Thus, there is an (f+ 1 —¢) x (f + 1 — ¢) minor of ® which is a unit in R, and, after
rearrangement,

P! 0
®, = f+1—2¢

0 B,

as described in (8.2.1). Apply Corollary 8.3.a in order to conclude that
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H;(C), is a direct sum of suitably many copies of modules from the
set {Hj(CfI;fHJ) [1<B<g-(+1-0} (843)
Observe that
f—t+1<gradel;(®) < grade I;(®,) = grade I;_(j11-¢) (P11 )
forall t withf+1—-¢<t<g—1. Let
f=f—(F+1-0), gd=g-—(F+1-4), and ' =t—(F+1-1).
We have shown that

=t 4+1 < gradely (P ,_,) forallt’ with0<¢ <g' —1.

It follows that the hypotheses of (b) apply to Cg’il,z for each  with 1 < 8 < ¢'. On
the other hand, '

length(C;’fﬂJ) < rank(the target of ®{ , ,) =§ =f—(Ff+1-0)=(—1.

By induction on ¢, each Cfp”,il#Z is acyclic; and therefore C, is also acyclic by (8.4.3).
(bii) and (biii). Now that we know that C is a resolution of Hy(C), assertion (bii) can
be read from Observation 7.9; and (biii) follows from (bii) because the grade f — g+ 1
ideal I4(®) is contained in the annihilator of Hy(C).
(c). We already know from (bi) that

C is a free resolution of Hy(C) of length ¢. (8.4.4)
For each integer w, let F,, be the ideal in R generated by:
{r € R|pdg, Ho(C5"). < w}.
Claim 8.4.5. If f+1 — ¢ <t < g — 1, then I[,(®) C Fj_¢41.

Proof of Claim 8.4.5. If A is a ¢ X ¢t minor of ®, then one can arrange the data so that

Or — o, 0
27 lo o)

where @} is an isomorphism of free Ra-modules of rank t as is described in Data 8.2.

Apply Corollary 8.3.a to see that

—t
H;(0)a = @H;(cy) ), forall j. (8.4.6)
1

=]

™
Il
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Apply (8.4.4) to see that each C;’f which actually appears in (8.4.6) (that is, with
(aig) # 0) is also acyclic. Thus,

pdg, Ho(C)a < max{length(CfIf) | 1 <3< g-—t}<rank(the target of ®}) =f—¢.
This completes the proof of Claim 8.4.5.
Combine hypothesis (8.4.1) and Claim 8.4.5 to see that
f+1-4<t<g—-1= (f—t+1)+1=Ff—t+2 < grade;(®) < grade Fj_;4.
Let w =§—t+ 1. We have shown that
f—g+2<w<{ = w+1<gradeF,.

Apply Proposition 2.10.1 to conclude that the R/I;(®) module Hy(C) is torsion-free.
We re-use the rank calculation of (aiv). If p € Assgr(R/I4(®)), then

gradep=f—g+1<f—g+3 <gradely_1(P);

hence, Corollary 8.3.biii may be applied to ®,, as was done in (aiv), to conclude that
rank Ho(C) = (97]). O

a—1

The next result was promised in (1.0.7), and is our main motivation for writing the
paper.

Corollary 8.5. Adopt Data 7.1. Let and i and a be integers with 1 < a < g. Recall the
complex Cg" from Definition 7.2 and Observation 7.4. If =1 < i <{—g, then

H;(C5") =0 for §—g+2— gradel4(®) <.
Proof. Assertion 8.4.a may be applied in the generic case with the ring equal to the
polynomial ring Z[{z; ;}] and the homomorphism given by a matrix of indeterminates.
The present assertion is a consequence of Proposition 2.11.2. 0O
The next result was promised in (1.0.6).
Corollary 8.6. If k is a field, g < | are positive integers, R is the polynomial ring

®: R — R' is the generic map given by
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11 ... Tig

Tri oo Tig

and M = HO(Cé;a) for some i and a with —1 < i <f—gand1 <a <g, then anng(M) =
I4(®) and M is a mazimal Cohen—Macaulay (R/I4(®))-module of rank (°_7).

Proof. The ring R is Cohen—Macaulay and the R-module M is perfect (by Theo-
rem 8.4.a); hence M is a Cohen-Macaulay R-module. If p is in Assg M, then I (®) C
ann(M) C p (see Observation 7.12) and f— g+ 1 = gradep (by [2, 1.4.15]). On the other
hand, I;(®) is already a prime ideal of R of grade § — g + 1. It follows that I;(®) = p,
I4(®) = anng M, Suppr(M) = Suppr(R/I4(®)), and Assp M = {I[,(®)}. O

Remark 8.7. A module over a local Artinian ring has rank only if it is free. Example 7.7
shows that the hypothesis f —g+2 < grade I;_; (®) is needed in Theorem 8.4.aiv. Indeed,
if R = k[z,y], for some field k, and

< 8 O O

o ow &
ow 8 O

then Ho(CY?) is an R/I3(®)-module which does not have any rank. It is easy to see that
the length of Hy(Cy”) is twice the length of R/I3(®) = k[x,y]/(z,y)?; however, Hy(Co”)
has the wrong Betti numbers, as a module over R, to be a free R/I5(®P)-module.
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