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Let (G, V ) be an irreducible multiplicity-free finite-dimensio-
nal representation of a connected reductive complex group G, 
as classified by V.G. Kac [17], and G′ its derived subgroup. 
Denote by g the Lie algebra of G, and U(g) its universal 
enveloping algebra. Assume that there exists a polynomial 
f generating the algebra of G′-invariant polynomials on V
(C[V ]G′ � C[f ]) and such that f /∈ C[V ]G. Such representa-
tions are said to be of Capelli type if the algebra of G-invariant 
differential operators is the image of the center of U(g) under 
the differential of the G-action. They fall into eight cases given 
by R. Howe and T. Umeda [14]: five infinite families and three 
“exceptional” examples.
We prove that the category of regular holonomic DV -modules 
invariant under the action of G′ is equivalent to the category 
of graded modules of finite type over a suitable algebra A, 
except for few special cases. Indeed the Levasseur’s conjecture 
[28, Conjecture 5.17, p. 508] fails in these cases because of the 
disconnectedness of the stabilizers of some “smaller” orbits.
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1. Introduction

Let G be a complex connected reductive algebraic group, and let G′ = [G,G] be 
its derived subgroup. Denote by (G, ρ, V ) or (G,V ) a rational finite-dimensional linear 
representation of G (ρ : G −→ GL(V, C)) and C[V ] the algebra of polynomials on V . The 
action of G on V extends to C[V ]. We will denote by C[V ]G ⊂ C[V ] the subalgebra of 
G-invariant polynomials on V . We assume that (G,V ) is a multiplicity-free space, that is, 
the associated representation of G on C[V ] decomposes without multiplicities. In other 
words, each irreducible representation of G occurs at most once in C[V ] (see Definition 2). 
Note that the irreducible multiplicity-free actions have been classified by V.G. Kac [17]. 
For other classification and properties of multiplicity-free spaces, we refer to the work 
by C. Benson and G. Ratcliff [1], F. Knop [26], A. Leahy [27]. Assume furthermore that 
the multiplicity-free space (G,V ) has a one-dimensional quotient, that is, there exists a 
polynomial f on V such that the subalgebra C[V ]G′ of G′-invariant polynomials on V
is isomorphic to the polynomial algebra with one variable f (i.e., C[V ]G′ � C[f ]), and 
such that f /∈ C[V ]G (see Definition 3). Then, it is known that: G acts on V with an 
open orbit, and in this case the representation (G, V ) is called a prehomogeneous vector 
space (see M. Sato [43,44] or T. Kimura [25, Chap. 2]). Moreover, it is shown in [25, 
p. 39, Proposition 2.22] that: for such a reductive prehomogeneous vector space, there 
exists a constant coefficient differential operator Δ and a polynomial

b(s) = c(s + 1)(s + λ1 + 1) · · · (s + λd−1 + 1) ∈ Rd[s], c > 0, (1)

called the Bernstein–Sato polynomial of f such that

Δfs+1 = b(s)fs. (2)

M. Kashiwara [19] has shown that the roots of this polynomial are rational, i.e., λj ∈ Q

for 1 ≤ j ≤ d − 1.
As usual DV is the sheaf of rings of differential operators on V with holomorphic 

coefficients. Let us now point out that the action of G on C[V ] extends to Γ(V,DV )pol

the C-algebra of differential operators on V with polynomial coefficients in C[V ]. This 
gives rise to a natural algebra: the Weyl algebra Γ (V,DV )G of polynomial coefficients 
G-invariant differential operators on V .

If G is a Lie group, denote by g its Lie algebra and U(g) the associated universal 
enveloping algebra. A representation as above (G,V ) is said to be of “Capelli type” if 
(G,V ) is an irreducible multiplicity-free representation (MF for short) such that: the 
subalgebra of G-invariant global algebraic sections Γ (V,DV )G is the image of Z (U (g)), 
the center of U(g), under the differential τ : g −→ Γ(V,DV )pol of the G-action, i.e.,

τ (Z (U (g))) = Γ (V,DV )G
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(see Definition 4). Note that these representations have been studied by R. Howe and 
T. Umeda in [15,46]: they fall into eight cases. There are five infinite families and three 
“exceptional” examples listed below.

(G, V ) deg f b(s)

(1) (SO(n) × C∗, Cn) 2 (s + 1)(s + n
2 )

(2) (GL(n), S2Cn) n
∏n

i=1(s + i+1
2 )

(3) (GL(n), Λ2Cn), n even n
2

∏n
i=1(s + 2i− 1)

(4) (GL(n) × SL(n), Mn(C)) n
∏n

i=1(s + i)

(5) (Sp(n) ×GL(2),
(
C2n)2) 2 (s + 1)(s + 2n)

(6) (SO(7) × C∗, spin = C8) 2 (s + 1)(s + 4)

(7) (G2 × C∗, C7) 2 (s + 1)(s + 7
2 )

(8) (GL(4) × Sp(2),M4(C)) 4 (s + 1)(s + 2)(s + 3)(s + 4)

If (G,V ) is of Capelli type; in particular if (G,V ) is MF, then V.G. Kac [17] asserts 
that V is decomposed into a finite union of G-orbits (Vk)0�k�d. Let us denote by Λ :=
d⋃

k=0
T ∗
Vk
V ⊂ T ∗V the lagrangian subvariety which is the union of the closure of conormal 

bundles to the G-orbits (see [38]).
Recall that a coherent DV -module M is said to be holonomic if its characteristic vari-

ety char (M) is lagrangian. Equivalently, the characteristic variety is of dimension equal 
to dimV . The holonomic DV -module M is called regular if there exists a global good 
filtration FM on M such that the annihilator of grFM (i.e., the ideal annC[T∗V ]grFM) 
is a radical ideal in grFDV (see [20, Definition 5.2] or [24, Corollary 5.1.11]).

Denote by Modrh
Λ (DV ) the full category whose objects are holomorphic regular holo-

nomic DV -modules M, whose characteristic variety char (M) is contained in Λ, equiva-
lently those which admit global good filtrations stable under the induced action of the Lie 
algebra g of G on M (see Remark 13). The general problem consists in the description 
of the category Modrh

Λ (DV ).
The expected shape to the general solution of the family of problems is as follows. Let 

us first recall that G′ is the derived subgroup of G. We denote by

Ā := Γ (V,DV )G
′
⊂ Γ(V,DV )pol

the C-algebra formed by G′-invariant global algebraic sections of DV , i.e. the algebra of 
polynomial coefficients G′-invariant differential operators. This algebra is well understood 
(see [15,28]), in particular it contains θ the Euler vector field on V . Note that R. Howe and 
T. Umeda [15, Proposition (7.1), p. 578] have proved that when (G, V ) is of Capelli type, 
the algebra Γ (V,DV )G of G-invariant operators is a polynomial algebra on a canonically 
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defined set of generators (Theorem 9). These generators are precisely called the Capelli 
operators. Using these, T. Levasseur [28, Theorem 4.11, p. 491], H. Rubenthaler [40, 
p. 1346, Proposition 3.1, 1)] or [41, p. 24, Theorem 5.3.3] and Z. Yan [47, Theorem 1.9]
gave a general description of algebra Ā. We should also mention the contribution by 
M. Muro, in the real case (G, V ) = (GL(n, R), S2(Rn)) in [31, Proposition 2.1, p. 356]. 
Finally, when (G, V ) = (GL(n, C) ×SL(n, C), Mn(C)), (GL(2m, C), Λ2C2m), the author 
obtained a concrete description with explicit relations in [33, Proposition 6, p. 120], [34, 
Proposition 5, pp. 637–638].

If J := annC[V ]G′ = annC[f ] ⊂ Ā denotes the two sided ideal annihilator of 
G′-invariant polynomials on V , we consider A the quotient algebra Ā/J̄ , going modulo 
a suitable ideal J̄ of Ā described in section 4: J̄ is the preimage in A of the ideal in A/J
defined by specific relations (33), (34), (35), (36) of Proposition 11. Following the work 
by Benson–Ratcliff [1], Howe–Umeda [15], Knop [26] and Levasseur [28], we will deduce 
that the quotient algebra A is generated by the following three operators and relations 
(see Corollary 12): θ the Euler vector field on V , f the multiplication by the polynomial

f(x) of degree d, and the differential operator Δ := f

(
∂

∂x

)
as above satisfying the 

Bernstein–Sato equations:

Δf = c(θ
d

+ 1)(θ
d

+ λ1 + 1) · · · (θ
d

+ λd−1 + 1),

fΔ = c
θ

d
(θ
d

+ λ1) · · · (
θ

d
+ λd−1), c > 0 (3)

and the relations

[θ, f ] = df, [θ,Δ] = −dΔ. (4)

Let Modgr(A) be the category whose objects are finitely generated left A-modules T
such that for each s ∈ T , the C-vector space spanned by the set {θns / n ≥ 1} is finite 
dimensional. In other words, this category consists of all graded left A-modules T of 
finite type for θ the Euler vector field on V .

The functor Ψ : Modrh
Λ (DV ) −→ Modgr(A), defined by taking Ψ(M) to be the set of all 

g-invariant θ-homogeneous global sections of M, with quasi-inverse Φ : Modgr(A) −→
Modrh

Λ (DV ) defined by Φ(T ) := DV ⊗A T , give the equivalence of categories for the 
Capelli type representations, except in few cases described in Remark 1:

Theorem 25. Let (G, V ) be a representation of Capelli type with a one-dimensional quo-
tient except for few special cases. Then the categories Modrh

Λ (DV ) and Modgr(A) are 
equivalent.

We have proved this theorem in the following four infinite families (see [32–36]):

• (G = Sp(n) ×GL(2), 
(
C2n)2)

• (G = GL(n), V = Λ2Cn), n even
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• (G = GL(n) × SL(n), V = Mn(C))
• (G = SO(n) × C∗, V = Cn)

Remark 1. Actually, Levasseur conjectured [28, Conjecture 5. 17, p. 508] this equivalence 
of categories for all the eight Capelli type representations, unfortunately this conjecture 
fails for the following “special cases”:

(GL(n,C), S2Cn) and for n = 3, (SO(3) × C∗, C3). (5)

Indeed, the proof of the conjecture is equivalent to the fact that any object in Modrh
Λ (DV )

is generated by its G′-invariant global sections (see Theorem 16). This argument fails in 
the above special cases because the “smaller” orbits here are not simply-connected (i.e. 
the stabilizers of these orbits are disconnected). More precisely:

– for n = 3, (SO(3) × C∗, C3), the quadratic cone is not simply connected,1
– for (GL(n, C), S2Cn) the action of the general linear group on symmetric matrices, 

all the orbits (except the big one) are not simply-connected. The disconnectedness 
of the stabilizers of these orbits is an obstruction to the G′-invariant sections of the 
DV -module, as it can be seen below.

Counterexample. Consider n = 2, in this case the symmetric matrices S2Cn coincides 
with the adjoint representation of G′ = SL(2, C). There is a simple G′-equivariant 
D-module on the nilpotent cone on which the center of SL(2, C) is acting through the 
sign. This D-module does not admit any non-zero G′-invariant section as a quasi-coherent 
sheaf, and therefore is not generated by G′-invariant sections. For general n > 2, at 
least for n even, consider the orbit in S2Cn corresponding to quadratic forms of rank 
0 < r < n, with r odd. Then there exists a simple SL(n)-equivariant D-module M on 
that orbit such that the central element −1 in SL(n) acts by −1 on global sections of M. 
In particular, there are no SL(n)-invariant global sections.

It turns out that the equivalence between the categories Modrh
Λ (DV ) and Modgr(A)

leads to a description of the “analytic” regular holonomic DV -modules in Modrh
Λ (DV ) in 

terms of “algebraic homogeneous” DV -modules.
By the way, we should note that the problem of classifying holomorphic regular holo-

nomic D-modules or equivalently perverse sheaves on a complex manifold (thanks to the 
Riemann–Hilbert correspondence) has been treated by several authors. The first such 
result (around 1980) was Deligne’s quiver description of perverse sheaves on an affine line 
with only one possible singularity at the origin [7], which under the Riemann–Hilbert cor-
respondence is the case where G = C× acts on V = C by scalar multiplication. Deligne’s 
description uses a characterization of constructible sheaves given in [8,9]. We should 

1 The case n = 3, (SO(3) × C
∗, C3) has been studied in [35, pp. 243–246].



P. Nang / Journal of Algebra 479 (2017) 380–412 385
also mention the contribution of L. Boutet de Monvel [2], who gave a classification of 
holomorphic regular holonomic D-modules in one variable by using pairs of finite dimen-
sional C-vector spaces and certain linear maps. A. Galligo, M. Granger and P. Maisonobe 
[10] obtained using the Riemann–Hilbert correspondence, a classification of regular holo-
nomic DCn-modules with singularities along the hypersurface x1 · · ·xn = 0 by 2n-tuples 
of C-vector spaces with a set of linear maps. L. Narváez-Macarro [37] treated the case 
y2 = xp using the method of Beilinson and Verdier and generalized this study to the 
case of reducible plane curves. R. MacPherson and K. Vilonen [29] treated the case with 
singularities along the curve yn = xm. T. Braden and M. Grinberg [4] studied perverse 
sheaves on complex n × n-matrices, symmetric matrices and 2n × 2n-skew-symmetric 
matrices, each stratified by the rank. They gave an explicit description of the category 
of such perverse sheaves as the category of the representations of a quiver. In [33,34], the 
author classified regular holonomic D-modules associated to the same stratification, and 
in [32,35,36] to other stratifications using D-modules theoretical methods. This paper is 
organized as follows:

In Section 2, we recall notions on the so called representations of Capelli type. In 
section 3, we review some useful results: in particular the one’s saying that: any coherent 
DV -module equipped with a global good filtration, invariant under the action of the Euler 
vector field θ, is generated by finitely many global sections of finite type for θ. Section 4
deals with the concrete description of A the algebra of algebraic G′-invariant differential 
operators following Benson–Ratcliff [1], Howe–Umeda [15], Knop [26], and Levasseur 
results [28, Theorem 4.11, p. 491]. In section 5, we establish the main result, namely 
Theorem 25. This is done by means of the central Theorem 16 saying that: any object 
M in the category Modrh

Λ (DV ) (except in special cases) is generated by finitely many 
global G′-invariant sections. This result leads to the equivalence of categories between 
the category Modrh

Λ (DV ) and the category Modgr(A): the image by this equivalence of a 
regular holonomic DV -module being its set of θ-homogeneous global sections, which are 
invariant under the action of G′.

We refer the reader to [3,13,20–23] for notions on D-modules theory.

2. Review on representations of Capelli type with a one-dimensional quotient

Let G be a connected reductive complex algebraic group. We denote by G′ its derived 
subgroup.

Let ρ : G −→ GL (V ) be a finite dimensional representation of G, again denoted by 
(G,V ). Recall that a polynomial f ∈ C [V ] is called a relative invariant of (G,V ) if there 
exists a rational character χ ∈ X (G) such that g · f = χ(g)f for all g ∈ G. One says 
(see [25, Chap. 2]) that the representation (G,V ) is a (reductive) prehomogeneous vector 
space if G has an open dense orbit Ω in V . In that case, we denote the complement of the 
open dense orbit by S := V \Ω, it is called the singular set of (G,V ). Then, it is known 
(see [25, p. 26, Theorem 2.9]) that, the one-codimensional irreducible components of S are 
of the form {fi = 0}, 1 ≤ i ≤ r, for some relative invariants fi. The fi are algebraically 
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independent, and are called the basic or fundamental relative invariants of (G,V ). Note 
that, any relative invariant can be (up to non-zero constant) written as 

∏r
i=1 fi. When 

the singular set S is an hypersurface, the prehomogeneous vector space (G,V ) is said to 
be regular (see [25, p. 43, Theorem 2.28]).

2.1. Multiplicity-free representations

Let us denote by g the Lie algebra of the connected reductive Lie group G, and by t

the Lie algebra of a maximal torus of G. Denote by B the set of dominant weights 
of (g, t). For a fix finite-dimensional representation (G, V ) of the reductive group G, we 
recall that the action of G on V extends to the algebra of polynomials on V . Then, the 
rational G-module C[V ] decomposes as

C[V ] �
⊕
β∈B

E(β)m(β), (6)

where E(β) is an irreducible g-module with highest weight β ∈ B and m(β) ∈
N ∪ {∞}. We recall that the finite-dimensional linear representation (G, V ) is said to 
be multiplicity-free (MF for short) if its associated representation of G on C[V ] de-
composes without multiplicities. This means that each irreducible representation E(β)
of G occurs at most once in C[V ]. More precisely, we recall the following definition [28, 
Definition 4.1, p. 484]:

Definition 2. The representation (G, V ) is called multiplicity-free if in (6): m(β) ≤ 1 for 
all β. In this case

C[V ] =
⊕
β∈B

V (β)m(β), m(β) = 0, 1,

where V (β) is isomorphic to E(β).

Note that, a classification of MF representations can be found in [1,17,27], and a 
complete list of irreducible MF representations is given in [15, table, p. 612] or [28, 
appendix, p. 508].

2.1.1. Multiplicity-free spaces with a one-dimensional quotient
As above, G′ is the derived subgroup of the complex Lie group G. We recall the 

following definition:

Definition 3. (See Levasseur [28].) A multiplicity-free-space (G, V ) is said to have a one-
dimensional quotient if there exists a non-constant polynomial f0 ∈ C[V ] such that 
f0 /∈ C[V ]G, and such that C[V ]G′ � C[f0].
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2.2. Representations of “Capelli type”

We continue with (G, V ) the finite dimensional representation of the connected re-
ductive Lie group G. We have denoted by g = Lie (G) the Lie algebra of G. We consider 
τ the differential of the G-action defined as follows:

τ : g −→ Γ(V,D)pol, (7)

where Γ(V, D)pol is the algebra of global algebraic sections of DV , i.e. the algebra of 
polynomial coefficients differential operators. For any element ξ in g, the image τ(ξ) is 
a linear derivation on C [V ] given by

τ(ξ)(φ)(v) = d

dt |t=0

(
etξ · φ

)
(v) = d

dt |t=0
φ
(
e−tξ · v

)
, (8)

for all φ ∈ C[V ], v ∈ V . This image is homogeneous of degree zero in the sense that 
[θ, τ(ξ)] = 0. Denote by U (g) the universal enveloping algebra of the Lie algebra g. The 
map τ yields a homomorphism denoted again by τ , and defined by

τ : U (g) −→ Γ(V,DV )pol. (9)

Recall that the group G acts naturally on Γ(V, DV )pol: ∀ g ∈ G, ∀ φ ∈ C[V ], ∀ P ∈
Γ (V,DV )pol,

(g · P ) (φ) = g · P
(
g−1 · φ

)
. (10)

The differential of this action is given by P �→ [τ(ξ), P ] for ξ ∈ g, P ∈ Γ(V, DV )pol. 
Therefore, a subspace I ⊂ Γ(V, DV )pol is stable under G (resp. G′) if and only if 
[τ(g), I] ⊂ I (resp. [τ(g′), I] ⊂ I). Then, we know from [28] that the subalgebra of 
polynomial coefficients G-invariant differential operators

Γ(V,DV )G =
{
P ∈ Γ(V,DV )pol : [τ(g), P ] = 0

}
(11)

is contained in the one’s of G′-invariant differential operators

Ā := Γ(V,DV )G
′
=
{
P ∈ Γ(V,DV )pol : [τ(g′), P ] = 0

}
. (12)

In particular, if Z (U(g)) = U (g)G is the center of U (g) then

τ (Z (U(g))) ⊂ Γ (V,DV )G . (13)

Now, we give the following definition (see [28, Definition 5.1]):
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Definition 4. We say that the representation (G, V ) is of Capelli type if:

• (G, V ) is irreducible and MF;
• τ (Z (U(g))) = Γ (V,DV )G.

Remark 5. In the list of irreducible MF representations (G,V ) given by Howe and Umeda 
(see [15, table, p. 612] or [28, appendix, p. 508]), there are exactly eight of them which 
are of Capelli type with one-dimensional quotient (see Appendix A).

3. Coherent D-modules generated by their θ-homogeneous global sections

We shall denote by DV the sheaf of rings of differential operators on V with holomor-
phic coefficients. If x denotes a typical element of V , and ∂ := ∂

∂x
its dual in DV , let 

θ := Trace(x∂) be the Euler vector field on V .

Definition 6. Let M be a DV -module. A section u in M is said to be homogeneous if 
dimC C [θ]u < ∞, i.e. the C-vector space spanned by the set {θnu / n ≥ 1} is finite 
dimensional. The section u is said to be homogeneous of degree λ ∈ C, if there exists 
j ∈ N such that (θ − λ)ju = 0.

Let us recall the following result which will be used later (see [35, Theorem 1.3]):

Theorem 7. Let M be a coherent DV -module, equipped with a global good filtration 
(Mk)k∈Z

stable under the action of θ. Then,

i) M is generated over DV by finitely many homogeneous global sections, i.e.,

M = DV {s1, · · · , sk ∈ Γ (V,M) , dimC C [θ] sj < ∞, 0 � j � k} .

ii) For any k ∈ N, λ ∈ C, the vector space Γ (V,Mk)
⋂[ ⋃

p∈N

ker (θ − λ)p
]

of homoge-

neous global sections in Mk, of degree λ, is finite dimensional.

Remark 8. We will describe a holomorphic classification of regular holonomic DV -mo-
dules in Modrh

Λ (DV ), but Theorem 7 permits to reduce these objects to “algebraic 
homogeneous” DV -modules.

4. Algebraic invariant differential operators on a class of multiplicity-free spaces

As in the introduction, (G, V ) is a finite-dimensional representation of a connected 
reductive Lie group G and G′ := [G, G] is the derived subgroup of G. Recall that the 
action of the group G extends to various algebras, namely C[V ] = S(V ∗) the algebra 
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of polynomial functions on V , Γ(V,DV )pol the algebra of differential operators with 
polynomial coefficients in C[V ], and C[V ∗] = S(V ) identified with differential operators 
with constant coefficients. We thus obtain algebras of invariants: C[V ]G, S(V )G, and 
Γ (V,DV )G.

If (G, V ) is a prehomogeneous vector space, let f0, · · · , fm be its fundamental relative 
invariants and let χj ∈ X (G), 0 ≤ j ≤ m, be their weight. There exist relative invariants 
f∗
j (∂) ∈ S(V ) with weight χ−1

j , 0 ≤ j ≤ m (see [28, Section 3.1]). We set Δj := f∗
j (∂)

for j = 0, · · · , m.
It is known that the algebra C[V ]G′ of G′-invariant polynomials is a polynomial ring

C[V ]G
′
= C[f0, · · · , fm], (14)

and that

S(V )G
′
= C[Δ0, · · · ,Δm] (15)

(see [28, Lemma 4.2, (d) and formula (4.3), p. 487]).
Consider the following multiplication map

m : C[V ] ⊗ S(V ) −→ Γ(V,DV )pol

φ⊗ f �−→ φf(∂).
(16)

One knows from Howe–Umeda [15] that through this map the (C[V ], G)-module 
Γ (V,DV )pol identifies with C[V ] ⊗ S(V ):

Γ (V,DV )pol � C[V ] ⊗ S(V ) (17)

where the group G acts on Γ (V,DV )pol as follows: ∀ φ ∈ C[V ], ∀ P ∈ Γ (V,DV )pol

(g · P ) (φ) = g · P
(
g−1 · φ

)
. (18)

First, we are interesting in the description of the algebras of G-invariant differential 
operators on a multiplicity-free space following the work by Benson–Ratcliff [1], Howe–
Umeda [15], Knop [26] and Levasseur [28]. Actually, the isomorphism m is G-invariant, 
hence the algebra of G-invariant differential operators decomposes as a direct sum of 
one-dimensional irreducible G-modules CEγ :

Γ(V,DV )G =
⊕
γ∈Γ

CEγ (19)

where Γ is the subsemigroup of B generated by certain linearly independent elements 
γ0, · · · , γr ∈ B (see [15,28]). Let

Eγ (x, ∂x) := m (Eγ) ∈ Γ(V,DV )G (20)
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be the operator corresponding to Eγ . The operators Eγ (x, ∂x) are called Capelli opera-
tors. Put

Ej := Eγj
(x, ∂x) 0 ≤ j ≤ r. (21)

We know from [15, Proposition 7.1] that giving a multiplicity-free representation is equiv-
alent to giving a commutative algebra of G-invariant differential operators:

(G,V ) multiplicity-free ⇐⇒ Γ(V,DV )G commutative. (22)

In that case the algebra Γ(V,DV )G is generated by the Capelli operators Ej for 0 ≤ j ≤ r

(see [15, Theorem 9.1] or [1, Corollary 7.4.4]):

Theorem 9 (Howe–Umeda). For a fix multiplicity-free representation (G, V ), the algebra

Γ(V,DV )G = C [E0, · · · , Er]

is a commutative polynomial ring.

From now on, we focus our attention in the subalgebras of G (resp. G′)-invariant global 
algebraic sections of DV on multiplicity-free representations with a one-dimensional quo-
tient.

4.1. Invariant differential operators on multiplicity-free spaces with one-dimensional 
quotient

Recall that G′ denotes the derived subgroup of G. Recall also that a multiplicity-free 
representation (G, V ) is said to be with one-dimensional quotient if there exists a poly-
nomial function f ∈ C[V ] such that

C[V ]G
′
= C[f ] and f /∈ C[V ]G. (23)

In fact, the polynomial function f is a relative invariant of degree d of weight χ ∈ X (G), 
and there exists an associated relative invariant differential operator f∗ := f(∂) ∈ C[V ∗]
of degree d with weight χ−1. More precisely, set Δ := f∗(∂). We know from Sato–
Bernstein–Kashiwara (see [25, Proposition 2.22] and [19]) that there exists a polynomial 
b(s) ∈ R[s] of degree n called the Bernstein–Sato polynomial such that:

i) b(s) = c
∏d−1

j=0(s + λj + 1), c > 0;

ii) Δ(fs+1) = b(s)fs;

iii) λj + 1 ∈ Q∗+, 0 � j � d− 1, λ0 = 0

(24)

where Q∗+ is the set of non-zero positive rational numbers.
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Set

f := f0 and Δ := Δ0 = f∗(∂). (25)

Following T. Levasseur [28, Section 4.2], recall that if (G, V ) is a multiplicity-free repre-
sentation of one-dimensional quotient then we have

C[V ]G
′
= C[f ], S(V )G

′
= C[V ∗]G

′
= C[Δ] and E0 = fΔ. (26)

Now, consider A := Γ (V,DV )G
′

the algebra of G′-invariant (polynomial coefficients) 
differential operators on V :

A ⊃ Γ (V,DV )G and J :=
{
P ∈ Γ (V,DV )G / Pfm = 0 for all m ∈ N

}
⊂ A

(27)

is the annihilator of the G′-invariant polynomial functions on V .
Recall that θ denotes the Euler vector field on V , θ ∈ Γ (V,DV )G. T. Levasseur 

[28, Lemma 4.10] proved that: for any G-invariant differential operator P ∈ Γ (V,DV )G, 
there exists an associated Bernstein–Sato polynomial bP (s) ∈ C[s] such that the operator 
P − bP (θ) belongs to J . In particular, one can find a polynomial bEj

(s) associated with 
each Capelli operator Ej , 0 � j � r, such that if we consider Ωj to be

Ωj := Ej − bEj
(θ) ∈ J for j = 0, · · · , r, (28)

then we obtain the following results [28, Theorem 4.11, (i), (v)]:

Theorem 10. If (G, V ) is a fix multiplicity-free representation with one-dimensional quo-
tient, then

A = C 〈f,Δ, θ,Ω1, · · · ,Ωr〉 , (29)

J = Σr
j=1AΩj . (30)

Note that, the operators f and Δ do not commute nor do not commute with the 
operators Ω1, · · · , Ωr.

By the way, using these results, T. Levasseur [28, Theorem 4.15] gives a duality 
(of Howe type) correspondence between (multiplicity-free) representations (with a one-
dimensional quotient) of G and lowest weight modules over the Lie algebra generated 
by f and Δ (which is infinite dimensional when the degree of f is ≥ 3). Actually, this 
duality recovers and extends results obtained by H. Rubenthaler when the representa-
tion (G, V ) is of “commutative parabolic type” (see [39, Proposition 4.2] and also [11, 
Corollary 4.5.17]).
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We should note that when (G, V ) is irreducible, then

Ωr = 0, the two sided ideal J = Σr−1
j=0AΩj = Σr−1

j=0ΩjA, and (31)

A = C 〈f,Δ, θ,Ω1, · · · ,Ωr−1〉 . (32)

In the case (GL(n, R), S2(Rn)) of the real general linear group action on real sym-
metric matrices, M. Muro proved this formula in [31, Proposition 2.1, p. 356]. When 
(G, V ) = (GL(n, C) × SL(n, C), Mn(C)), (GL(2m, C), Λ2C2m), this non-commutative
algebra is obtained with explicit relations in [34, Proposition 5, pp. 637–638], [33, Propo-
sition 6, p. 120]. Actually, the result (32) generalizes the one’s of H. Rubenthanler (see 
[40, Proposition 3.1] or [41, Theorem 5.3.3]) obtained when (G, V ) is an irreducible regu-
lar prehomogeneous representation of commutative parabolic type. We have the following 
proposition.

Proposition 11. Let (G, V ) be an irreducible multiplicity-free representation with a one-
dimensional quotient. The following relations hold in the quotient algebra A/J :

[θ, f ] = df, (33)

[θ,Δ] = −dΔ, (34)

fΔ = c
θ

d
(θ
d

+ λ1) · · · (
θ

d
+ λd−1), c > 0 (35)

Δf = c(θ
d

+ 1)(θ
d

+ λ1 + 1) · · · (θ
d

+ λd−1 + 1), (36)

fjΔj = cj
θ

d
(θ
d

+ λ1) · · · (
θ

d
+ λd−j−1), cj > 0, 0 ≤ j ≤ r (37)

where λk ∈ Q for k = 0, · · · , d − 1.

Proof. We should note that by [28, Remark 4.12, (2)], we have the homogeneity of 
degree d (resp. −d) of the polynomial f (resp. Δ), that is, the formula (33), (34).

Recall that Ωj := Ej − bEj
(θ) ∈ J , for j = 0, · · · , r, so we clearly have

Ej = bEj
(θ) in A/J . (38)

Recall also that from [28, p. 490], we have E0 = fΔ and bE0(s) = b(s − 1) where 
b(s) = c(s + 1)(s + λ1 + 1) · · · (s + λd−1 + 1) is the b-function of f . Then, using this last 
in (38), we get (35)

fΔ = c
θ

d
(θ
d

+ λ1) · · · (
θ

d
+ λd−1) in A/J .

Next, since Δfs+1 = b(s)fs, that is, (Δf)fs = b(s)fs we get the formula (36):
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Δf = b(θ) mod J .

More generally, we may take Ej = fjΔj and using (38) we get

fjΔj = bEj
(θ) in A/J

with bEj
(s) = bj(s − 1) = cjs(s + λ1) · · · (s + λd−j−1), cj > 0, 0 ≤ j ≤ r, that is, the 

formula (37). �
Let K be the ideal of A/J defined by the relations (33), (34), (35), (36) of Proposi-

tion 11. Then the preimage of K under the quotient map A −→ A/J is an ideal of A
containing properly J . Let us denote by J the preimage in A of the ideal K. Denote 
by A the quotient algebra of A by J :

A := A/J . (39)

We have the following corollary which is a particular case of T. Levasseur’s result in [28, 
Theorem 3.9, p. 483] or H. Rubenthaler [40, Theorem 2.8, p. 1345], [41, Theorem 7.3.2, 
p. 37]:

Corollary 12. The quotient algebra A is generated by f, θ, Δ satisfying the relations (33), 
(34), (35), (36):

[θ, f ] = df,

[θ,Δ] = −dΔ,

fΔ = c
θ

d
(θ
d

+ λ1) · · · (
θ

d
+ λd−1),

Δf = c(θ
d

+ 1)(θ
d

+ λ1 + 1) · · · (θ
d

+ λd−1 + 1).

5. DV -modules on representations of “Capelli type” with one-dimensional quotient 
generated by their invariant global sections

In this section, we continue with the representation (G, V ) of the connected (reductive) 
Lie group G as in Section 4, and G′ its derived subgroup. It is well known, in this case, 
that G (resp. G′) acts on V with finitely many orbits (Vk)0�k�d (see [17]). Let Λ ⊂ T ∗V

be the lagrangian subvariety which is the union of the closure of conormal bundles T ∗
Vk
V

(see Panyushev [38]). We recall that the action of G on V defines a morphism (see (7), 
(8)) τ : g −→ ΘV , ξ �→ τ(ξ) from the Lie algebra g of G to the subalgebra ΘV of DV

consisting of vector fields on V , i.e. the tangent sheaf on V . So the lagrangian variety Λ
is defined by the common zeros of the principal symbols of vector fields corresponding 
to infinitesimal generators of G.
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Recall that a DV -module is said to be holonomic if it is coherent and its characteristic 
variety is lagrangian. Equivalently the characteristic variety is of dimension equal to 
dimV . A holonomic DV -module M is regular if there exists a global good filtration 
FM on M such that the annihilator of grFM (i.e., the ideal annC[T∗V ]grFM) is a 
radical ideal in grFDV (see [20, Definition 5.2] or [24, Corollary 5.1.11]). As in the 
introduction, we denote by Modrh

Λ (DV ) the full category consisting of all holomorphic 
regular holonomic DV -modules whose characteristic variety is contained in Λ. Let M be 
an object in Modrh

Λ (DV ). We know from Brylinski and Kashiwara [6, p. 389, (1.2.4)] that 
M has a global good filtration (Mj)j∈Z satisfying the following condition:

For a differential operator P of degree m (P ∈ Γ(U, DV (m)) where U is an open subset 
of V ), if its principal symbol σm(P ) vanishes on the characteristic variety char(M), then 
we have

PMj ⊂ Mj+m−1 for any j ∈ Z. (40)

In particular, if ξ is a vector field (corresponding to an infinitesimal generator of G) which 
describes the characteristic variety Λ, its principal symbol vanishes on Λ ⊃ char(M) (so 
vanishes on char(M)). Then the relation (40) implies that

ξMj ⊂ Mj+1−1, that is (41)

ξMj ⊂ Mj for any j ∈ Z. (42)

Then we have the following

Remark 13. The objects of the category Modrh
Λ (DV ) are holomorphic regular holonomic 

DV -modules equipped with global good filtrations which are preserved by the action of 
the Lie algebra g of G.

We recall the following definition:

Definition 14. Let G be an algebraic group acting on a smooth variety V , and α :
G × V −→ V the group action morphism (α (g, v) = g · v (g ∈ G, v ∈ V )). One says 
that the group G acts on a well filtered DV -module M if it preserves the good fil-
tration on M, and there exists an isomorphism of DG×V -modules u : α+(M) ∼−→
pr+V (M) satisfying the associativity condition coming from the group multiplication of 
G (prV : G× V −→ V, (g, v) �−→ v is the projection onto V ).

We specialize further to the case where (G, V ) is of Capelli type, i.e., (G, V ) is an irre-
ducible multiplicity-free-space such that Γ (V,DV )G is equal to the image of the center of 
U(g) under the differential τ : g −→ Γ (V,DV )pol of the G-action (see Definition 4). More 
precisely, assume that (G, V ) is a representation of Capelli type with a one-dimensional 
quotient, i.e., there exists a non-constant polynomial f such that f /∈ C[V ]G, and such 
that C[V ]G′ � C[f ] (see Definition 3).
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Let G̃ be the universal covering group of the group G, and M be a holomorphic regular 
holonomic DV -module in Modrh

Λ (DV ). From [35, Proposition 1.6], the infinitesimal action 
of G on M lifts to an action of G̃ on M compatible with the action of G on V and DV .
Therefore, we deduced the following remark:

Remark 15. The action of G on V extends to an action of the universal covering G̃ on 
DV -modules M in Modrh

Λ (DV ). Specially the derived subgroup G′ acts on M. Note 
that this action is the one that derivates are given by D-module action of corresponding 
vector fields as specified in Remark 13.

This section consists in the proof of the main general argument of the paper. We show, 
except in few special cases (see Remark 1, (5)), that any DV -module M in the category 
Modrh

Λ (DV ) is generated by its invariant global sections under the action of G′.

Theorem 16. A DV -module M in Modrh
Λ (DV ) is generated by its G′-invariant global 

sections, except in special cases.2

Actually the proof proceeds in a number of steps described below.

5.1. Extension of sections and G′-invariance

For the proof of Theorem 16, we shall use an algebraic point of view. Since the 
concerning DV -modules are regular holonomic, it is equivalent to consider the algebraic 
case or the analytic one. We need the following two lemmas in the proof:

Lemma 17. ([45, Lemma 1, p. 247, n◦ 55]) Let V be an affine variety, f a regular function 
on V , and Ω the set of points x ∈ V such that f(x) �= 0. Let F be a coherent algebraic 
sheaf on V , and s ∈ Γ (Ω,F) a section of F on Ω. Then, for any large enough N ∈ N, 
there exists a section s′ of F on the whole V (s′ ∈ Γ (V,F)), such that s′ = sfN on Ω, 
i.e.,

s′|Ω = sfN . (43)

Lemma 18. Consider G′ the complex algebraic group acting on the affine algebraic variety 
V , f a G′-invariant regular function on V

(
f ∈ C[V ]G′

)
, Ω the complement in V of the 

hypersurface defined by f = 0, and F a G′-equivariant coherent algebraic sheaf on V . 
Then, for any G′-invariant section s of F on Ω (s ∈ Γ (Ω,F)G

′
) there exists some N � 0

such that sfN extends to a G′-invariant global section.

Proof. Recall that V is an affine algebraic variety, i.e. V = SpecA, where A := C[V ] is 
an affine algebra over C and Ω = SpecA[ 1

f ] with A[ 1
f ] = C[V ][ 1

f ] = C[Ω].

2 Remark 1, (5).
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Since F is a coherent algebraic sheaf on V , then F is a finitely generated A-module. 
We consider the restriction of F on Ω:

F [Ω] := F
⊗
A

A[ 1
f

]. (44)

The previous lemma says that any section s of F on Ω (s ∈ Γ (Ω,F)) extends to a global 
section m (m ∈ Γ (V,F)) such that

m|Ω = sfp for p � 0. (45)

So, from (44) and (45), the section s can be written as

s = m

fr
for r � 0. (46)

Recall that the group G′ acts on A and on F . Then, for any g ∈ G′ acting on s, we have

g.s = g.

(
m

fr

)
= g.m

g.fr
. (47)

Since s is a G′-invariant section (g.s = s) and f is a G′-invariant regular function 
(f = g.f), then the previous equality becomes:

s = g.m

fr
. (48)

Using (46) we get

m

fr
= g.m

fr
⇐⇒ m− g.m

fr
= 0. (49)

This means that there exists a large integer N � 0 such that

(m− g.m)fN = 0 ⇐⇒ mfN = (g.m)fN . (50)

Since f is G′-invariant (fN = g.fN ), this last becomes

mfN = (g.m)(g.fN ), (51)

that is,

mfN = g.(mfN ). (52)

Thus mfN is a G′-invariant global section extending s
(
mfN ∈ Γ (V,F)G

)
. �
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5.2. Simple holonomic DV -modules with support on the closure of the orbits

Recall that for each irreducible multiplicity free representation (G, V ) with a one-
dimensional quotient there exists a polynomial f ∈ C [V ], called the relative invariant of 
(G,V ), satisfying g · f = χ(g)f for all g ∈ G, where χ ∈ X (G) is a rational character. 
In fact, f is a G′-invariant homogeneous polynomial of degree d. The action of G on 
V has d + 1 orbits which we denote by (Vk)0�k�d. We should note that the G-orbits 
closures

(
V k

)
0�k�d

in such an action are linearly ordered by inclusion as proved in [15, 
pp. 607–608, (13.1)–(13.6)]:

V = V d � V d−1 � · · · � V 0 = {0}.

Let us denote again by f the mapping f : V −→ C, x �−→ f (x). Here we introduce 
some subquotient modules of the inverse image by the mapping f of the DC-module
OC

( 1
t

)
, t ∈ C, which will be used in the proof of Theorem 16 above.

Denote by L := f+
(
OC

(
1
t

))
= OV

(
1
f

)
the DV -module generated by its 

G′-invariant homogeneous sections e−m := f−m (where m is a non negative integer: 
m ∈ Z≥0) satisfying the following equations obtained from (36), (37): (0 ≤ k ≤ d)

fe−m = e−m+1, (53)

Δe−m = −cm (−m + λ1) · · · (−m + λd−1) e−m−1, with λm+1 ≥ λm, (54)

fkΔke−m = −ckm (−m + λ1) · · · (−m + λd−k−1) e−m. (55)

In particular, we note that

Δe−m = 0 for m = λ0 = 0, m = λj , 1 � j � d− 1, λj ∈ Z≥0 or λj ∈
1
2Z≥0. (56)

Let Lm ⊂ L be submodules generated by e−m (m = 0, 1, · · · , d) in OV

(
1
f

)
. One has 

the chain

L0 := OV ⊂ L1 := DV f
−1 ⊂ · · · ⊂ Ld := DV f

−d. (57)

We have the following lemma:

Lemma 19. Assume λm � λm+1, 0 � m � d − 1, the submodule Lλm
generated by e−λm

in O
(

1
f

)
does not contain the sections e−λk

for k > m; in particular

Lλm+1 �= Lλm
.
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Proof. Let s ∈ Lm be an homogeneous G′-invariant section in Lm:

s = Pe−m with P ∈ DV . (58)

The action of the group G′ on the section s is defined as follows: for any g ∈ G′

gs = gP · ge−m. (59)

Since the sections s and e−m are G′-invariant (i.e. gs = s and ge−m = e−m) the previous
equality becomes

s = gP · e−m. (60)

Using (58) and (60) we get

gP · e−m = Pe−m ⇐⇒ gP = P. (61)

This means that P is a G′-invariant differential operator (P ∈ A). Then the section s
can be written as

s = Pe−m with P ∈ Ā (62)

an homogeneous G′-invariant differential operator in Ā.
If we denote by deg s, degP the homogeneity degrees of s and P respectively, that is 

θs = (deg s) s, [θ, P ] = (degP )P , then if deg s < −m, degP < 0, we have

P = QΔ (63)

(with Q a differential operator such that degQ = degP + 1) and

s = QΔe−m. (64)

Since Δe−λm
= 0 for 0 � m � d − 1 (see (56)), we obtain for s ∈ Lλm

s = Pe−λm
= QΔe−λm

= 0. (65)

In particular, the submodule Lλm
does not contain e−λ(m+1) and Lλm+1 �= Lλm

for 
0 � m � d − 1. �

Now, we are interested in the following successive quotient modules Lm/Lm−1. 
Note that the submodule Lm is generated by the invariant homogeneous sections 
e0, e−1, · · · , e−m. Denote by ẽ−m := e−m mod Lm−1 the class of e−m modulo Lm−1. 
We can see that the quotient module Lm/Lm−1 is generated by one only element ẽ−m

homogeneous of degree −dm satisfying the following relations:
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Lm/Lm−1 :=

⎧⎪⎪⎨⎪⎪⎩
one generator ẽ−m := e−m mod Lm−1

θẽ−m = −dmẽ−m

Δẽ−m = 0

We have the following result:

Proposition 20. Assume λm−1 � λm, the successive quotients Lλm
/Lλm−1 are simple 

holonomic DV -modules of multiplicity 1 supported by V d−m respectively for 0 � m � d.

Proof. We will work with an algebraic point of view. Actually, since the concerning 
D-modules are regular holonomic it becomes the same to consider the algebraic case or 
the analytic one. Let us consider the affine variety V with the stratification (Vr)0�r�d. 
We want to show what follows:

Let j be the inclusion in V of the open set Ω = V \V d−1 where V d−1 is the hypersurface 
defined by f = 0. Let us give a filtration on the direct image j∗OΩ by the sub-D-modules 
Lλm

generated by the e−λm
= f−λm , 0 � m � d. Actually the global sections of the 

direct image j∗O are the quotients of polynomials by any power of f . So it is a DV -module 
generated by f−λd . Then we know that j∗OΩ = Lλd

, and we would like the successive 
quotients Lλm

/Lλm−1 to be simple modules, and that Lλm
/Lλm−1 (where Lλ−1=0) to be 

with support on V d−m, and moreover that on Vd−m the quotients Lλm
/Lλm−1 correspond 

to the trivial D-module O by the Kashiwara equivalence (see [18]).
We proceed by induction on d, the result being clear for d = 0, 1. Let us prove the 

case d, assuming the induction hypothesis.
In the neighborhood of a point of Vr, the space V (with its stratification) is homeo-

morphic to the space Vr × [V for the value d− r of d]. Actually, it is locally isomorphic 
(i.e. an étale morphism). The induction hypothesis thus ensures that everything goes as 
we want out of V0. It remains to see that

1) Lλr
/Lλr−1 does not contain any sections with support in {0}, nor quotient submod-

ules with support in {0}, for r < d.
2) Lλd

/Lλd−1 is the Dirac module in {0}.

The group G acts linearly on V . In the language of D-modules, this is an horizontal action 
that is there is an isomorphism of D-modules on V × G (see Definition 14). Denote by 
Q the largest quotient (sub-object) of Lλr

/Lλr−1 supported by {0}. On Q this gives the 
structure

Q ∼ δ{0} ⊗W (66)

where δ{0} is the Dirac module in {0} equipped with an obvious action and W is a 
vector space with a trivial action. An homotopy argument asserts that the D-module 
whose sections are with schematic support {0} corresponds by Riemann–Hilbert to the 
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sheaf with support {0} on which G acts trivially. So, if Q0 is the subspace of sections 
with schematic support in {0}, then we obtain that for a section q ∈ Q0,

q
∏

dxij (67)

is invariant under the action of G. Now, because G is a reductive group and since we are 
in the algebraic case, the section q ∈ Q0 lifts into a section of the module Lλr

with the 
same variance. It thus appears that the section q ∈ Q0 lifts into f(x)−λd . Since f(x)−λd

is not in Lλd
(see Lemma 19) then 1) follows and 2) also: the section q cannot be the 

image of f(x)−λd , thus Q0 is of dimension one. �
Let us consider the quotient modules of OV ( 1

f
) by the Lλm−1 for m = 1, · · · , d:

Qm := OV

(
1
f

)
/Lλm−1 = OV

(
1
f

)
/DV f

−λ(m−1) . (68)

Then each DV -modules Qm is also generated by its invariant homogeneous sections, and 
we can see that: for λm−1 � λm (1 � m � d) there exists a Jordan–Hölder chain:

Qm := OV

(
1
f

)
/Lλm−1 , Lλm−1/Lλm−2

, Lλm−2/Lλm−3
, · · · , Lλ2/Lλ1 , Lλ1/Lλ0 , Lλ0

(69)

(with Lλ0 = L0 = 0) supported respectively by

V d−m, V d−(m−1), V d−(m−2), · · · , V d−2, V d−1, V d = V

(1 � m � d − 1).
So we have the following lemma:

Lemma 21. The modules Qm := O
(

1
f

)
/Lλm−1 are supported by V d−m (1 � m � d −1).

We have the following proposition:

Proposition 22. Any section s ∈ Γ 
(
V \V d−m−1, Qm

)
of the DV -module Qm in the com-

plement of V d−m−1 extends to V (m = 1, · · · , d − 1).

Proof. We should note that V d−m is smooth out of V d−m−1, and is a normal variety 
along V d−m−1 for m = 1, · · · , d −1 (see [5]). Recall that λm−1 � λm. Consider the chain

Qm := OV

(
1
f

)
/Lλm−1 , Lλd

/Lλm−1 , Lλd−1/Lλm−1 , · · · ,

Lλm−2/Lλm−1 , Lλm−1/Lλm−1 = 0. (70)



P. Nang / Journal of Algebra 479 (2017) 380–412 401
Put Rk := Lλk
/Lλm−1 for k = m − 1, · · · , d. The DV -module Lλm

(resp. Qm) is the 
union of modules Lλk

, 0 � k � m (resp. Rk, m − 1 � k � d) such that the associated 
graded modules gr (Qm) is the sum of quotient modules

gr (Qm) =
d⊕

k=m−1

Rk/Rk−1 �
d⊕

k=m−1

Lλk
/Lλk−1 . (71)

Recall that we have denoted ẽ−λk
:= e−λk

mod Lλk−1 (1 ≤ k ≤ m), then

gr (Qm) =
d⊕

k=m−1

OT∗
Vd−m

V ẽ−λk
. (72)

In this case the property of extension here is true for functions because V d−m is normal 
along V d−m−1. �

We are now ready to prove the Theorem 16 saying that the DV -modules studied here 
are generated by G′-invariant sections, except for few special cases. In the proof we are 
using a descending induction on orbits; but some few “smaller” orbits in V are not as 
nice as the open orbits because their stabilizers in G′ are disconnected.

5.3. Proof of Theorem 16

Recall that the irreducible multiplicity free representation (G, V ) has a Zariski open 
dense orbit Ω, and a relative invariant f (i.e., there exists a character χ ∈ X (G) such that 
g ·f = χ(g)f for g ∈ G) which is a G′-invariant homogeneous polynomial of degree d such 
that C[V ]G′ � C[f ]. In this case, we know from V.G. Kac [17] that G has finitely many 
orbits, namely d +1 orbits. We denote by Vk the closure of the G-orbits Vk for 0 � k � d

with V0 = {0}. Let us consider again f as the mapping f : V −→ C, x �→ f(x), and 
V d−1 the hypersurface defined by f = 0, then we have Ω := V \V d−1 the complement in 
V of V d−1.

Let M be a holomorphic regular holonomic DV -module in the category Modrh
Λ (DV ). 

One sets

MG′
:= DV {m1, · · · ,mp ∈ Γ(V,M)G

′
such that dimCC[θ]mj < ∞ for 1 � j � p}

the submodule of M generated, over DV , by finitely many homogeneous global sections, 
which are invariant under the action of G′. We will see successively that the quotient 
module M�MG′ is supported by V d−m (0 � m � d − 1), and the monodromy is trivial 
since the orbits V d−m\V d−m−1 are simply-connected (except for special cases described 
in Remark 1).
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First, we claim that on the open dense orbit Ω, we have the equality M = MG′ .
Indeed, let j : Ω −→ V be the open embedding. The restriction MΩ := j+ (M)

is a G′-equivariant DΩ-module. Notice that, if we denote again by f the mapping f :
V −→ A1, this identifies Ω/G with Gm = A1\{0}. The generic stabilizers H in G′ of 
points in Ω are connected (see Appendix C, Remark), so the G′-equivariant DΩ-module 
MΩ is the pullback by f of a DΩ/G-module N on Ω/G:

MΩ = f+ (N ) with N a DΩ/G-module. (73)

Thus on Ω, the G′-invariant sections of MΩ, i.e., Γ (Ω,MΩ)G
′

(which are exactly the 
inverse images by f of Γ (Gm,N ) the sections on Gm of N ) generate Γ (Ω,MΩ) as a 
Γ (Ω,OΩ)-module:

Γ (Ω,MΩ)G
′
= f−1 (Γ (Gm,N )) , (74)

and

Γ (Ω,MΩ) = Γ (Ω,OΩ)
{

Γ (Ω,MΩ)G
′}

= Γ (Ω,OΩ)
{
f−1 (Γ (Gm,N ))

}
. (75)

Now, for every section m ∈ Γ (Ω,MΩ), one can find a sufficiently large integer N � 0
such that the section obtained by multiplication by fN , that is,

mfN ∈ Γ (Ω,MΩ) (76)

extends to a global section of M (see Lemma 17), i.e., the section mfN lifts to a global 
section

m̃fN ∈ Γ (V,M) . (77)

If m is a G′-invariant section on Ω (m ∈ Γ (Ω,MΩ)G
′
), so is mfN , i.e.,

mfN ∈ Γ (Ω,MΩ)G
′
. (78)

Then, according to the Lemma 18, we can choose this lifting section m̃fN to be 
G′-invariant:

m̃fN ∈ Γ (V,M)G
′
. (79)

Thus, by (75) (and since the mapping f is invertible on Ω), the image of Γ (V,M)G
′
in 

Γ (Ω,MΩ)G
′
generates Γ (Ω,MΩ)G

′
as a Γ (Ω,OΩ)-module.
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Since Ω is an affine variety, we see that the restriction of MG′ to Ω equals MΩ:

j+
(
MG′

)
= MΩ. (80)

Hence on Ω, the quotient module M/MG′ is zero, namely

M/MG′
= 0 on Ω, (81)

and its support lies in the hypersurface V d−1:

supp
(
M/MG′

)
⊂ V d−1. (82)

Now, since we already know that M is a G′-equivariant DV -module (see Remark 15), 
then MG′ is also G′-equivariant, hence such is the quotient module M/MG′ . Moreover, 
since V d−1 has a finite number of G′-orbits, which, except for few special cases (see 
Remark 1, (5)), are simply-connected (see J. Haris [12, Theorem 1, p. 85] for case (7), 
J. Igusa [16] for case (6), J. Milnor [30] for cases (4) and (8), Nang [32, Prop. 3, p. 194]
for case (5), Nang [33, Prop. 1, p. 117] for case (3), [34–36]), we will obtain that M/MG′

is supported by the closure of the G′-orbits, i.e.,

Supp
(
M/MG′

)
⊂ V k for 0 ≤ k ≤ d− 2. (83)

Indeed, since M is supported by the hypersurface V d−1, then M is locally isomorphic 
out of V d−2 to a direct sum of copies of the Dirac module on V d−1 that is

Q1 = OV (1/f)/OV . (84)

As the monodromy here is trivial (because the orbits are simply-connected) then M is 
isomorphic, globally outside V d−2 to a direct sum of a finite number of copies of Q1, i.e.

M|V \V d−2
�

N⊕
i=1

Q1|V \V d−2
. (85)

One knows that Q1 is naturally generated by its G′-invariant global sections. The re-
lation (85) implies that M is generated out of V d−2 by invariant sections s1, · · · , sp in 

Γ 
(
V \V d−2, Q1

)G′

, i.e.

M|V \V d−2
= DV < s1, · · · , sp > with sj ∈ Γ

(
V \V d−2, Q1

)G′

. (86)

The Proposition 22 says that the sections (sj)1�j�p extend to global sections (σj)1�j�p ∈
Γ (V, Q1)G

′
:
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M|V \V d−2
= DV < σ1, · · · , σp >|V \V d−2

with σj ∈ Γ (V, Q1)G
′
. (87)

Now taking the restriction on V \V d−2 of the quotient of M by MG′ gives

(
M/MG′

)
|V \V d−2

� M|V \V d−2
/MG′

|V \V d−2
= 0 that is (88)

Supp
(
M/MG′

)
⊂ V d−2. (89)

In the same way by recurrence on m, if M is with support on V d−m, (0 � m � d − 1) 
then there is a morphism M −→ QN

m which is an isomorphism out of V d−m−1, such that 
M/MG′ is with support on V d−m−1 because the submodules of Qm are also generated 
by their invariant homogeneous sections.

Finally, if M is supported by V0 (the Dirac module with support at the origin) then 
the result is obvious.

6. Equivalence of categories

In this section, we establish the main result of this paper: Theorem 25.
Recall that A = C 〈f,Δ, θ,Ω1, · · · ,Ωr−1〉 is the algebra of G′-invariant differential 

operators. Since the Euler vector field θ belongs to A, we can decompose the algebra A
under the adjoint action of θ:

A =
⊕
k∈N

A [k] , A [k] = {P ∈ A : [θ, P ] = kP} (90)

and we can check that

∀ k, l ∈ N, A [k] · A [l] ⊂ A [k + l] , (91)

so A is a graded algebra.
Recall also that J ⊂ A is the annihilator of C[f ]. We have denoted J the preimage 

in A of the ideal in A/J defined by the relations (33), (34), (35), (36) of Proposition 11:

[θ, f ] = df,

[θ,Δ] = −d,Δ,

fΔ = c
θ

d
(θ
d

+ λ1) · · · (
θ

d
+ λd−1),

Δf = c(θ
d

+ 1)(θ
d

+ λ1 + 1) · · · (θ
d

+ λd−1 + 1).

We put A the quotient of A by J : A := A/J (see Corollary 12).
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Now, since J is an ideal of A it decomposes also under the adjoint action of θ:

J =
⊕
k∈N

J [k] , J [k] = J ∩ A [k] . (92)

Note that J is an homogeneous ideal of the graded algebra A, thus the quotient algebra 
A = A/J is naturally graded by

A [k] :=
(
A/J

)
[k] = A [k] /J [k] . (93)

As in the introduction, we denote by Modgr(A) the category whose objects are finitely 
generated left A-modules T such that for each s ∈ T , the C-vector space spanned by the 
set {θns / n ≥ 1} is finite dimensional. Equivalently the category consisting of graded 
A-modules T of finite type such that dimC C [θ]u < ∞ for any u in T . In other words, 
T is a direct sum of finite dimensional C-vector spaces:

T =
⊕
α∈C

Tα, Tα :=
⋃
p∈N

ker (θ − α)p (with dimC Tα < ∞) (94)

equipped with the endomorphisms f , θ, Δ of degree d, 0, −d, respectively and satisfying 
the relations (33), (34), (35), (36) of Proposition 11 with (θ − α) being a nilpotent 
operator on each Tα.

Recall that Modrh
Λ (DV ) stands for the category consisting of holomorphic regular holo-

nomic DV -modules whose characteristic variety is contained in Λ the union of conormal 
bundles to the orbits for the action of G on the complex vector space V .

Let M be an object in the category Modrh
Λ (DV ), denote by Ψ (M) the submodule 

of Γ (V,M) consisting of G′-invariant homogeneous global sections u in M such that 
dimC C [θ]u < ∞:

Ψ (M) :=
{
u ∈ Γ (V,M)G

′
, dimC C [θ]u < ∞

}
. (95)

We are going to show that Ψ (M) is an object in Modgr(A) except in the special cases.
Let (σ1, · · · , σp) ∈ Γ (V,M)G

′
be a finite family of homogeneous invariant global 

sections generating the DV -module Ψ (M) (see Theorem 16):

Ψ (M) := DV 〈σ1, · · · , σp〉 . (96)

We are going to see that the family (σ1, · · · , σp) generates also Ψ (M) as an A-module: 
indeed, an invariant section σ ∈ Ψ (M) can be written as

σ =
p∑

qj (X,D)σj where qj ∈ DV . (97)

j=1
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Let Gc be the compact maximal subgroup of G′ and denote by q̃j :=
∫
Gc

g · qjdg the 
average of qj over Gc. Then, the average q̃j belongs to the algebra A (i.e., q̃j ∈ A). Now, 
denote by fj the class of q̃j modulo J :

fj := q̃j mod J that is fj ∈ A. (98)

Therefore, we also have

σ =
p∑

j=1
q̃jσj =

p∑
j=1

fjσj with fj ∈ A. (99)

This last means that

Ψ (M) := A〈σ1, · · · , σp〉 , (100)

and Ψ (M) is an A-module. Moreover, according to Theorem 7 ii), we have

Ψ (M) =
⊕
α∈C

Ψ (M)α (101)

where

Ψ (M)α := [Ψ (M)]
⋂⎡⎣⋃

p∈N

ker(θ − α)p
⎤⎦ (with dimC Ψ (M)α < ∞) (102)

is the finite dimensional C-vector space of homogeneous global sections of degree α ∈ C

in Ψ (M). Finally, we can check that

A [k] Ψ (M)α ⊂ Ψ (M)α+k for all k ∈ N, α ∈ C. (103)

So, Ψ (M) is a graded A-module of finite type for the Euler vector field θ thanks to 
(100)–(103). This means that Ψ (M) is an object in Modgr(A).

Conversely, let T be an object in the category Modgr(A), one associates to it the 
DV -module

Φ (T ) := M0
⊗
A

T (104)

where M0 := DV /J . Then Φ (T ) is an object in the category Modrh
Λ (DV ).

Thus, we have defined two functors

Ψ : Modrh
Λ (DV ) −→ Modgr(A), (105)

Φ : Modgr(A) −→ Modrh
Λ (DV ). (106)
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We need the two following lemmas:

Lemma 23. The canonical morphism

T −→ Ψ(Φ (T )), t �−→ 1 ⊗ t (107)

is an isomorphism, and defines an isomorphism of functors

IdModgr(A) −→ Ψ ◦ Φ, (108)

except in special cases

Proof. Let (G, V ) be a Capelli type representation different from the special cases. We 
have set M0 := DV /J . Denote by ε (the class of 1D modulo J ) the canonical generator 
of M0. Recall that Gc is the compact maximal subgroup of G′. Let h ∈ DV , denote by 
h̃ ∈ A its average on Gc and by ϕ the class of h̃ modulo J , that is, ϕ ∈ A.

Since ε is G′-invariant, we get h̃ε = h̃ε = εϕ. Moreover, we have h̃ϕ = 0 if and only 
if h̃ ∈ J , in other words ϕ = 0. Therefore, the average operator (over Gc)

DV −→ A, h �−→ h̃

induces a surjective morphism of A-modules v : M0 −→ A. More generally, for any 
A-module T in the category Modgr(A) the morphism v ⊗ 1T is surjective

vT : M0
⊗
A

T −→ A
⊗
A

T = T (109)

which is the left inverse of the morphism

uT : T −→ M0
⊗
A

T , t �−→ ε⊗ t, (110)

that is, (v ⊗ 1T ) ◦ (ε⊗ 1T ) = v (ε) = 1T . This means that the morphism uT is injective. 
Next, the image of uT is exactly the set of invariant sections of M0

⊗
A

T = Φ (T ), that 

is, Ψ(Φ(T )): indeed if σ =
p∑

i=1
hi ⊗ ti is an invariant section in M0

⊗
A

T , we may replace 

each hi by its average h̃i ∈ A, then we get

σ =
p∑

i=1
h̃i ⊗ ti = ε⊗

p∑
i=1

h̃iti ∈ ε⊗ T, (111)

that is, 
p∑

i=1
h̃iti ∈ T . Therefore, the morphism uT is an isomorphism from T to Ψ (Φ (T ))

and defines an isomorphism of functors. �
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Next, we note the following:

Lemma 24. The canonical morphism

w : Φ (Ψ (M)) −→ M (112)

is an isomorphism and defines an isomorphism of functors

Φ ◦ Ψ −→ IdModrh
Σ (DV ), (113)

except in special cases.

Proof. As in the Theorem 16, except in the special cases, the DV -module M is generated 
by a finite family of invariant sections (σi)i=1,··· ,p ∈ Ψ (M) so that the morphism w is 
surjective. Now, consider Q the kernel of the morphism w : Φ (Ψ (M)) −→ M. It is also 
generated over DV by its invariant sections , that is, by Ψ (Q). Then we get

Ψ (Q) ⊂ Ψ [Φ (Ψ (M))] = Ψ (M) (114)

where we used Ψ ◦ Φ = IdModgr(A) (see the preceding Lemma 23). Since the morphism 
Ψ (M) −→ M is injective (Ψ (M) ⊂ Γ (V, M)), we obtain Ψ (Q) = 0. Therefore Q = 0
(because Ψ (Q) generates Q). �

This section ends by Theorem 25 established by means of the preceding lemmas.

Theorem 25. Let (G, V ) be a representation of Capelli type with a one-dimensional quo-
tient, except in special cases. Then the functors Φ and Ψ induce equivalence of categories

Modrh
Λ (DV ) ∼−→ Modgr(A). (115)
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Appendix A. Representations of Capelli type with one-dimensional quotient

(G, V ) deg f b(s)

(1) (SO(n) × C∗, Cn) 2 (s + 1)(s + n
2 )

(2) (GL(n), S2Cn) n
∏n

i=1(s + i+1
2 )

(3) (GL(n), Λ2Cn), n even n
2

∏n
i=1(s + 2i− 1)

(4) (GL(n) × SL(n), Mn(C)) n
∏n

i=1(s + i)

(5) (Sp(n) ×GL(2),
(
C2n)2) 2 (s + 1)(s + 2n)

(6) (SO(7) × C∗, spin = C8) 2 (s + 1)(s + 4)

(7) (G2 × C∗, C7) 2 (s + 1)(s + 7
2 )

(8) (GL(4) × Sp(2),M4(C)) 4 (s + 1)(s + 2)(s + 3)(s + 4)

Appendix B. Generic isotropy subgroups GX0
for representations of Capelli type

(G, V ) GX0 := isotropy subgroup at generic point X0 ∈ V \f−1(0)

(1) (SO(n) × C∗, Cn) SO(1) × SO(n− 1)

(2) (GL(n), S2Cn) O(n)

(3) (GL(n), Λ2Cn), n even Sp(n
2 )

(4) (GL(n) × SL(n), Mn(C)) Sp(1) × Sp(n− 1)

(5) (Sp(n) ×GL(2),
(
C2n)2) SL(n)

(6) (SO(7) × C∗, spin = C8) SO(1) × SO(6)

(7) (G2 × C∗, C7)

(8) (GL(4) × Sp(2),M4(C))

(see A. Sasada [42, (1), (2), (3), (13), (15), pp. 79–83] or Sato–Kimura [44, (1), (2), (3), 
(13), (15), pp. 144–145]).
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Appendix C. Generic isotropy subgroups H for derived subgroups G′ of the group G

(G′, V ) H = isotropy subgroup at a generic point X0 ∈ V \f−1(0)

(1) (SO(n), Cn) SO(1) × SO(n− 1)

(2) (SL(n), S2Cn) SO(n)

(3) (SL(n), Λ2Cn), n even Sp(n
2 )

(4) (SL(n) × SL(n), Mn(C)) Sp(1) × Sp(n− 1)

(5) (Sp(n) × SL(2),
(
C2n)2) SL(n)

(6) (SO(7), spin = C8) SO(1) × SO(6)

(7) (G2, C
7)

(8) (SL(4) × Sp(2),M4(C))

Remark. The generic isotropy3 subgroups H of (G′, V ) are connected.
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