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exact factorizations of fusion categories to exact sequences of 
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1. Introduction

Finite groups with exact factorization are fundamental objects in group theory which 
naturally show up in many interesting results in the theories of Hopf algebras and ten-
sor categories (see, e.g., [6,11,12,14,16]). Recall that a finite group G admits an exact 
factorization G = G1G2 into a product of two subgroups G1, G2 ⊆ G of G if G1 and 
G2 intersect trivially and the order of G is the product of the orders of G1 and G2. 
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Equivalently, G = G1G2 is an exact factorization if every element g ∈ G can be uniquely 
written in the form g = g1g2, where g1 ∈ G1 and g2 ∈ G2.

Our first goal in this paper is to provide a categorical generalization of the notion 
of exact factorizations of finite groups. More precisely, we introduce and study the new 
notion of an exact factorization B = A • C of a fusion category B into a product of two 
fusion subcategories A, C ⊆ B of B. We say that B = A • C is an exact factorization 
if A ∩ C = Vec and FPdim(B) = FPdim(A)FPdim(C). Then in Theorem 3.8 we prove 
that B = A • C if and only if every simple object of B can be uniquely expressed in the 
form X ⊗ Y , where X, Y are simple objects of A, C, respectively. For example, exact 
factorizations B = Vec(G1) •Vec(G2) are classified by groups G with exact factorization 
G = G1G2 and a cohomology class ω ∈ H3(G, k×) which is trivial on G1 and G2 (but 
not necessarily on G).

Recall next that the theory of exact sequences of tensor categories was introduced by 
A. Bruguières and S. Natale [4,5] as a categorical generalization of the theory of exact 
sequences of Hopf algebras. In their definition of an exact sequence of tensor categories

A ι−→ B F−→ C

the category A is forced to have a tensor functor to Vec (so to be the representation 
category of a Hopf algebra). Later on in [7] we generalized the definition of [4] further to 
eliminate this drawback, and in particular to include the example of the Deligne tensor 
product B := A � C for any finite tensor categories A, C. We did so by replacing the 
category Vec by the category End(N ) of endofunctors of an indecomposable A-module 
category N , and defined the notion of an exact sequence

A ι−→ B F−→ C � End(N ) (1)

with respect to N . We showed that the dual of an exact sequence is again an exact 
sequence. We also showed that for any exact sequence (1),

FPdim(B) = FPdim(A)FPdim(C),

and that this property in fact characterizes exact sequences (provided that ι is injective, 
F is surjective, and A ⊆ Ker(F )). Moreover, we showed that if in an exact sequence (1), 
A and C are fusion categories, then so is B.

Our second goal in this paper is to relate exact factorizations of fusion categories 
with exact sequences. More precisely, in Theorem 4.1 we prove that an exact sequence 
of fusion categories (1) defines an exact factorization B∗

C�N = C • A∗
N , and vice versa, 

any exact factorization B = A • C of fusion categories gives rise to an exact sequence (1)
with respect to any indecomposable module category N over A.

The structure of the paper is as follows. In Section 2 we recall some necessary back-
ground on module categories over fusion categories, exact sequences of fusion categories, 
and the class of group-theoretical fusion categories. In Section 3 we introduce and study 
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factorizations B = AC and exact factorizations B = A • C of a fusion category B into 
a product of fusion subcategories A, C ⊆ B of B. In Section 4 we prove Theorem 4.1, 
in which we relate exact factorizations of fusion categories to exact sequences of fusion 
categories with respect to an indecomposable module. We then apply our results to 
group-theoretical fusion categories, and deduce in Corollary 4.2 that any extension of a 
group-theoretical fusion category by another one is Morita equivalent to a fusion category 
with an exact factorization into a product of two group-theoretical fusion subcategories. 
We also discuss some examples of exact factorizations and exact sequences (e.g., of Kac 
(quasi-)Hopf algebras in Corollary 4.4), and propose some natural questions.

Remark 1.1. We plan to extend the results of this paper to nonsemisimple finite tensor 
categories in a subsequent paper.

2. Preliminaries

Throughout the paper, k will denote an algebraically closed field of characteristic 0. 
All the categories mentioned in this paper are assumed to be k-linear abelian and finite.

We refer the reader to the book [8] as a general reference for the theory of fusion 
categories.

2.1. Module categories

Let A be a fusion category over k (see [8]). Let M be a left semisimple A-module 
category, and let N be a right semisimple A-module category. Consider the tensor prod-
uct N �A M (see [10]). Namely, if A1, A2 are algebras in A such that M = mod − A1
and N = A2 − mod, then N �A M is the category of (A2, A1)-bimodules in A, which 
can also be described as the category of left A2-modules in M, or the category of right 
A1-modules in N (see [8, Section 7.8]).

Recall that a left semisimple A-module category M is said to be indecomposable if 
it is not a direct sum of two nonzero module categories. Let M be an indecomposable 
A-module category.1 Let End(M) be the abelian category of endofunctors of M, and 
let A∗

M := EndA(M) be the dual category of A with respect to M, i.e., the category of 
A-linear endofunctors of M. Recall that composition of functors turns End(M) into a 
multifusion category, and A∗

M into a fusion category.
Let Gr(A) be the Grothendieck ring of A. Recall that we have a character

FPdim : Gr(A) → R,

attaching to X ∈ A the Frobenius–Perron dimension FPdim(X) of X. Recall also that 
we have a virtual object RA ∈ Gr(A) ⊗Z R, such that

XRA = RAX = FPdim(X)RA

1 Here and below, by “a module category” we will mean a “left semisimple module category”, unless 
otherwise specified.
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for all X ∈ Gr(A). Namely, we have RA =
∑

i FPdim(Xi)Xi, where Xi are the simple 
objects of A. We set FPdim(A) := FPdim(RA) [9].

Also, if M is an indecomposable A-module category, let Gr(M) be the Grothendieck 
group of M. Let {Mj} be the basis of simple objects of M. It follows from the Frobenius–
Perron theorem that there is a unique up to scaling element RM ∈ Gr(M) ⊗Z R such 
that for every X ∈ Gr(A), XRM = FPdim(X)RM. Namely, we have that

RM =
∑

j

FPdim(Mj)Mj .

The numbers FPdim(Mj) are defined uniquely up to scaling by the property

FPdim(X ⊗M) = FPdim(X)FPdim(M), X ∈ A, M ∈ M,

and it is convenient to normalize them in such a way that

FPdim(RM) = FPdim(A),

which we will do from now on (see [8, Proposition 3.4.4, Exercise 7.16.8], and [10, Sub-
section 2.2]). It is clear that

RAMj = FPdim(Mj)RM.

2.2. Exact sequences of fusion categories with respect to a module category

Let A ⊆ B, C be fusion categories, and let M be an indecomposable module category 
over A. Let F : B → C � End(M) be a surjective (= dominant) functor such that 
A = Ker (F ) (= the subcategory of X ∈ B such that F (X) ∈ End(M)). Recall [7] that 
F defines an exact sequence

A ι−→ B F−→ C � End(M) (2)

with respect to M (= F is normal), if for every object X ∈ B there exists a subobject 
X0 ⊆ X such that F (X0) is the largest subobject of F (X) contained in End(M) ⊆
C � End(M). In this case we will also say that B is an extension of C by A with respect 
to M [7].

Note that if M = Vec, this definition coincides with that of [4]. In particular, if H ⊆ G

are finite groups, B := Rep(G), C := Rep(H), F is the restriction functor, A := Ker(F ), 
and M := Vec, then F is normal if and only if H is a normal subgroup of G, which 
motivates the terminology. Also, it is clear that if B = C � A and F is the obvious 
functor, then F defines an exact sequence with respect to M. So C � A is an extension 
of C by A with respect to any indecomposable A-module category M (e.g., M = A).
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By [7, Theorem 3.4], (2) defines an exact sequence of fusion categories if and only if 
FPdim(B) = FPdim(A)FPdim(C).

Now let N be an indecomposable module category over C. Then the multifusion cate-
gory C�End(M) acts on N �M componentwiselly, and we have natural isomorphisms

(C � End(M))∗N�M
∼= C∗

N � End(M)∗M ∼= C∗
N � Vec ∼= C∗

N .

By [7, Theorem 4.1], the dual sequence to (2) with respect to N � M:

A∗
M � End(N ) ι∗←− B∗

N�M
F∗
←−− C∗

N (3)

is exact with respect to N .

2.3. Group-theoretical fusion categories

Let G be a finite group, and let ω ∈ Z3(G, k×) be a 3-cocycle. Let Vec(G, ω) be the 
fusion category of finite dimensional G-graded vector spaces with associativity defined 
by ω. The simple objects of Vec(G, ω) are invertible and are in correspondence with 
elements g of G.

Let L ⊆ G be a subgroup, and let ψ ∈ C2(L, k×) be a 2-cochain such that dψ =
ω|L. Let M(L, ψ) be the corresponding indecomposable module category over Rep(G), 
and let M̃(L, ψ) be the corresponding indecomposable module category over Vec(G, ω)
(see [9, Subsection 8.8]). Namely, M(L, ψ) is the category of representations of the 
twisted group algebra kψ[L], while M̃(L, ψ) = ModVec(G,ω)(kψ[L]) is the category of 
right kψ[L]-modules in Vec(G, ω). The simple objects of M̃(L, ψ) are in correspondence 
with cosets gL in G/L.

Recall [16] that the group-theoretical fusion category C(G, ω, L, ψ) is the dual category 
Vec(G, ω)∗M̃(L,ψ) = BimodVec(G,ω)(kψ[L]). For example, C(G, ω, 1, 1) = Vec(G, ω) and 

C(G, 1, G, 1) = Rep(G). By [16, Theorem 3.1], the indecomposable module categories 
over C(G, ω, L, ψ) are parametrized by the conjugacy classes of pairs (L1, ψ1) where 
L1 ⊆ G is a subgroup such that ω|L1 = 1 and ψ1 ∈ H2(L1, k×) is a cohomology class. 
Namely, the module category corresponding to a pair (L1, ψ1) is the category

M(L1, ψ1) := BimodVec(G,ω)(kψ[L], kψ1 [L1]).

We have,

C(G,ω, L, ψ)∗M(L1,ψ1) = C(G,ω, L1, ψ1). (4)

For example, Rep(G)∗ = C(G, 1, L1, ψ1).
M(L1,ψ1)
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3. Exact factorizations of fusion categories

Let B be a fusion category, and let A, C ⊆ B be fusion subcategories of B. Let AC be 
the full abelian (not necessarily tensor) subcategory of B spanned by direct summands 
in X ⊗ Y , where X ∈ A and Y ∈ C. Observe that since AC contains the unit object 1 it 
follows that AC is an indecomposable semisimple A � Cop-submodule category of B.

Definition 3.1. We say that B factorizes into a product of A and C if B = AC. (Equiva-
lently, if B is an indecomposable module category over A � Cop.)

For a full abelian subcategory E ⊆ A, let

FPdim(E) :=
∑

X∈Irr(E)

FPdim(X)2,

and let RE :=
∑

X∈Irr(E) FPdim(X)X.

Lemma 3.2. Let B be a fusion category, let A, C ⊆ B be fusion subcategories of B, and 
let D := A ∩ C. Then

FPdim(A)FPdim(C) = FPdim(AC)FPdim(D).

Proof. Since AC is an indecomposable module category over A � Cop, we have

RARC = λRAC ,

since both RAC and RARC are positive eigenvectors for actions of A and C, and such a 
vector is unique up to scaling (see Subsection 2.1). To find λ, let us use the inner product 
given by (X, Y ) := dim Hom(X, Y ). We have

(RAC ,1) = 1,

and

(RARC ,1) = (RA, RC) =
∑

X∈Irr(D)

FPdim(X)2 = FPdim(D).

So λ = FPdim(D), and RARC = FPdim(D)RAC . Taking FPdim of both sides, we get 
the statement. �
Corollary 3.3. Let B be a fusion category, let A, C ⊆ B be fusion subcategories of B, and 
let D := A ∩ C. We have

FPdim(B) ≥ FPdim(A)FPdim(C)
FPdim(D) ,

and we have a factorization B = AC if and only if this inequality is an equality. �
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Definition 3.4. A factorization B = AC of a fusion category B into a product of two 
fusion subcategories A, C ⊆ B of B is called exact if A ∩ C = Vec, and is denoted by 
B = A • C.

Remark 3.5. Note that since (AC)∗ = CA, if B = AC then B = CA and if B = A •C then 
B = C • A.

Example 3.6. Exact factorizations C = C1 • C2, where Ci = Vec(Gi, ωi) are arbitrary 
pointed fusion categories (i = 1, 2), are classified by groups G with exact factorization 
G = G1G2 and ω ∈ H3(G, k×) which restricts to ω1 on G1 and to ω2 on G2.

Lemma 3.7. Let B be a fusion category, and let A, C ⊆ B be fusion subcategories of B
such that A ∩ C = Vec. Then for any simple objects X ∈ A and Y ∈ C, X ⊗ Y is simple 
in B and it determines X, Y .

Proof. For any simple objects X ′ ∈ A and Y ′ ∈ C, we have

Hom(X ⊗ Y,X ′ ⊗ Y ′) = Hom(X ′ ∗ ⊗X,Y ′ ⊗ Y ∗).

Note that X ′ ∗⊗X ∈ A and Y ′⊗Y ∗ ∈ C. So if the unit object 1 is not contained in both 
X ′ ∗⊗X and Y ′⊗Y ∗, then Hom(X ′ ∗⊗X, Y ′⊗Y ∗) = 0. Thus Hom(X ′ ∗⊗X, Y ′⊗Y ∗) = 0
unless X = X ′ and Y = Y ′. If so, then there is a single copy of 1 on each side, so 
Hom(X ′ ∗⊗X, Y ′⊗Y ∗) is 1-dimensional. Thus X⊗Y is simple, and it determines X, Y , 
as claimed. �
Theorem 3.8. Let B be a fusion category, and let A, C ⊆ B be fusion subcategories of B. 
The following are equivalent:

(i) Every simple object of B can be uniquely expressed in the form X ⊗ Y , where 
X ∈ A and Y ∈ C are simple objects.

(ii) B = A • C is an exact factorization in the sense of Definition 3.4.

Proof. Suppose that (i) holds. Clearly, A ∩ C = Vec, so by Lemma 3.7, for any simple 
objects X ∈ A and Y ∈ C, X ⊗ Y is simple in B. We therefore have,

FPdim(B) =
∑

X∈Irr(A), Y ∈Irr(C)

FPdim(X ⊗ Y )2 = FPdim(A)FPdim(C),

so by Corollary 3.3, (ii) holds.
Conversely, suppose that (ii) holds. Then by Lemma 3.7, for any simple objects X ∈ A

and Y ∈ C, X ⊗ Y is simple in B and it determines X, Y . Thus,
∑

X∈Irr(A), Y ∈Irr(C)

FPdim(X ⊗ Y )2 = FPdim(A)FPdim(C) = FPdim(B),

and we see that (i) holds. �
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Corollary 3.9. Suppose B is a braided fusion category with an exact factorization
B = A • C. Then B = A � C is a Deligne tensor product, and A and C projectively 
centralize each other in the sense of [8, Section 8.22].

Proof. By Theorem 3.8, we have an equivalence of abelian categories F : A � C
∼=−→ B, 

given by F (X � Y ) = X ⊗ Y for every objects X ∈ A and Y ∈ C. The equivalence 
functor F has a tensor structure J defined by the braiding structure c on B. Namely, for 
every X, X ′ ∈ A and Y, Y ′ ∈ C,

JX�Y,X′�Y ′ : F ((X � Y ) ⊗ (X ′ � Y ′))
∼=−→ F (X � Y ) ⊗ F (X ′ � Y ′)

is given by the isomorphism

idX ⊗ cX′,Y ⊗ idY ′ : (X ⊗X ′) ⊗ (Y ⊗ Y ′)
∼=−→ (X ⊗ Y ) ⊗ (X ′ ⊗ Y ′).

It is straightforward to verify that since c satisfies the braiding axioms, J satisfies the 
tensor functor axioms.

Furthermore, it follows from Theorem 3.8 that for every simple objects X ∈ A and 
Y ∈ C,

cY,X ◦ cX,Y : X ⊗ Y
∼=−→ X ⊗ Y

is an automorphism of the simple object X ⊗ Y in B. We therefore get that

cY,X ◦ cX,Y = λ · idX⊗Y

for some λ ∈ k×, as claimed. �
We conclude this section with a couple of natural questions about the new notion of 

exact factorization of fusion categories.

Question 3.10. (i) Let A, C be fusion categories. What are the fusion categories B admit-
ting an exact factorization B = A • C?

(ii) What can be said about the center Z(B) of a fusion category B with an exact 
factorization B = A • C?

Remark 3.11. At the level of finite dimensional Hopf algebras, Question 3.10 (i) is called 
the “factorization problem” (see, e.g., [1–3] for a systematic study of the factorization 
problem for groups, Hopf algebras and Lie algebras).

4. Extensions of fusion categories

Retain the notation from Subsection 2.2.
We are now ready to state and prove our main result, in which we relate exact fac-

torizations of fusion categories with exact sequences of fusion categories.
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Theorem 4.1. The following hold:
(i) Let

A ι−→ B F−→ C � End(N )

be an exact sequence of fusion categories with respect to the indecomposable A-module 
category N . Then the dual fusion category B∗

C�N admits an exact factorization

B∗
C�N = C • A∗

N .

(ii) Any exact factorization B = C •A of fusion categories defines an exact sequence of 
fusion categories with respect to any indecomposable A-module category N . In particular, 
it defines an exact sequence

A ι−→ B F−→ C � End(A)

with respect to the indecomposable A-module category A.

Proof. (i) Choose a nonzero object N ∈ N , and consider the algebra object
A := EndA(N) in A. Then A is an algebra in B.

Let M := ModB(A) be the category of right A-modules in B, and consider M as a 
left module category over B in the usual way. By [7, Theorem 3.6], M and C � N are 
equivalent as B-module categories.

Since B∗
M can be identified with the fusion category BimodB(A), we see that B∗

M
contains BimodA(A) = A∗

N as a fusion subcategory.
Also, by taking the dual of B F−→ C � End(N ) with respect to the module category 

M = C � N , we get that B∗
M contains C as a fusion subcategory.

Furthermore, by assumption, every object from A∗
N is sent to End(N ) under F , while 

every non-trivial object of C is not. This means that A∗
N ∩C = Vec (inside B∗

M). Hence by 
Lemma 3.7, the objects X⊗Y (X ∈ Irr(A∗

N ) and Y ∈ Irr(C)) are pairwise non-isomorphic 
simple objects in B∗

M.
Finally, we have

∑

X∈Irr(A∗
N ), Y ∈Irr(C)

FPdimB∗
M(X ⊗ Y )2

=
∑

X∈Irr(A∗
N ), Y ∈Irr(C)

FPdimA∗
N (X)2FPdimC(Y )2

= FPdim(A∗
N )FPdim(C) = FPdim(A)FPdim(C).

Since by [7, Theorem 3.4],

FPdim(A)FPdim(C) = FPdim(B) = FPdim(B∗
M),

we conclude from Theorem 3.8 that B∗
M = A∗

N • C is an exact factorization, as desired.
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(ii) Let N be an indecomposable A-module category, and let A be an algebra in A such 
that N = ModA(A). Since A is an algebra in B, we may consider the B-module category 
M := ModB(A) of right A-modules in B. Observe that since M = B�AN = (C•A) �AN , 
M = C � N as a right C-module category.

Now, let Ā := A∗
N , B̄ := B∗

M be the dual fusion categories of A, B with respect to N , 
M, respectively. Then we have a sequence

Ā ι−→ B̄ F−→ C � End(N ).

Since FPdim(Ā)FPdim(C) = FPdim(B̄), and Ā is in the kernel of F , it follows from 
[7, Theorem 3.4] that this sequence of fusion categories is exact with respect to the 
indecomposable A-module category N , as desired.

The proof of the theorem is complete. �
We can now deduce from Theorem 4.1 and (4) that any extension of a group-

theoretical fusion category by another one is Morita equivalent to a fusion category 
with an exact factorization into a product of two group-theoretical fusion subcategories.

Retain the notation from Subsection 2.3.

Corollary 4.2. Let C(G1, ω1, L1, ψ1) and C(G2, ω2, L2, ψ2) be two group-theoretical fu-
sion categories, and let M = M(L3, ψ3) be an indecomposable module category over 
C(G1, ω1, L1, ψ1). Suppose

C(G1, ω1, L1, ψ1)
ι−→ B F−→ C(G2, ω2, L2, ψ2) � End(M)

is an exact sequence with respect to M. Then the dual fusion category B∗
C(G2,ω2,L2,ψ2)�M

admits an exact factorization

B∗
C(G2,ω2,L2,ψ2)�M = C(G1, ω1, L3, ψ3) • C(G2, ω2, L2, ψ2)

into a product of two group-theoretical fusion subcategories. �
Example 4.3. Let G1, G2 be finite groups.

(i) Let M = M(L3, ψ3) be an indecomposable module category over Rep(G1), and 
suppose

Rep(G1)
ι−→ B F−→ Vec(G2, ω2) � End(M)

is an exact sequence with respect to M. Then the dual fusion category B∗
Vec(G2,ω2)�M

admits an exact factorization

B∗
Vec(G ,ω )�M = C(G1, 1, L3, ψ3) • Vec(G2, ω2).
2 2
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(ii) Let M = M(L3, ψ3) be an indecomposable module category over Vec(G1, ω1), 
and suppose

Vec(G1, ω1)
ι−→ B F−→ Vec(G2, ω2) � End(M)

is an exact sequence with respect to M. Then the dual fusion category B∗
Vec(G2,ω2)�M

admits an exact factorization

B∗
Vec(G2,ω2)�M = C(G1, ω1, L3, ψ3) • Vec(G2, ω2).

Corollary 4.4. Let G1, G2 be finite groups.
(i) Suppose

Rep(G1)
ι−→ B F−→ Vec(G2, ω2)

is an exact sequence with respect to M(1, 1) (= the standard fiber functor on Rep(G1)). 
Then

B = Vec(G,ω)∗Vec(G2,ω2) = C(G,ω,G1, 1)

for some finite group G with an exact factorization G = G1G2, and a 3-cocycle
ω ∈ H3(G, k×) that is trivial on G1 and restricts to ω2 on G2.

(ii) Suppose

Vec(G1, ω1)
ι−→ B F−→ Vec(G2, ω2) � End(M̃(1, 1))

is an exact sequence with respect to M̃(1, 1). Then

B = Vec(G,ω)∗Vec(G2,ω2) = C(G,ω,G1, 1)

for some finite group G with an exact factorization G = G1G2 and a 3-cocycle
ω ∈ H3(G, k×) that restricts to ω1 on G1 and to ω2 on G2.

Proof. (i) By specializing Example 4.3 (i) to M = M(1, 1) we get that

B∗
Vec(G2,ω2) = Vec(G1) • Vec(G2, ω2).

Since Vec(G1) • Vec(G2, ω2) is pointed, it is equal to Vec(G, ω) for some finite group G
with an exact factorization G = G1G2, and a 3-cocycle ω ∈ H3(G, k×) that is trivial on 
G1 and restricts to ω2 on G2. Thus,

B = Vec(G,ω)∗Vec(G2,ω2) = C(G,ω,G1, 1),

as claimed.
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(ii) By specializing Example 4.3 (ii) to M = M̃(1, 1) we get that

B∗
Vec(G2,ω2) = Vec(G1, ω1) • Vec(G2, ω2).

Since Vec(G1, ω1) •Vec(G2, ω2) is pointed, it is equal to Vec(G, ω) for some finite group 
G with an exact factorization G = G1G2, and a 3-cocycle ω ∈ H3(G, k×) that restricts 
to ω1 on G1 and to ω2 on G2. Thus,

B = Vec(G,ω)∗Vec(G2,ω2) = C(G,ω,G1, 1),

as claimed. �
Example 4.5. Let B be a Kac (semisimple) Hopf algebra associated with an exact fac-
torization G = G1G2 of finite groups (see e.g., [11,12,14]). Then B fits into an exact 
sequence of semisimple Hopf algebras

Fun(G2) → B → k[G1].

Let B := Rep(B). We have an exact sequence

Rep(G1)
ι−→ B F−→ Vec(G2)

with respect to the standard fiber functor on Rep(G1). By Corollary 4.4 (i),
B = C(G, ω, G1, 1) for some 3-cocycle ω ∈ H3(G, k×) that is trivial on G1 and G2
(but not necessarily on G). Thus every Kac Hopf algebra is group-theoretical. (This 
result was proved by Natale [14].)

Conversely, Corollary 4.4 (i) says that if B fits into an exact sequence

Rep(G1)
ι−→ B F−→ Vec(G2, ω2)

of fusion categories (with respect to the standard fiber functor on Rep(G1)), then
B = C(G, ω, G1, 1) for some finite group G with an exact factorization G = G1G2, 
and a 3-cocycle ω ∈ H3(G, k×) that is trivial on G1 and restricts to ω2 on G2. Thus 
B is the representation category of a semisimple group-theoretical quasi-Hopf algebra 
(which may be referred to as the Kac quasi-Hopf algebra corresponding to the exact 
factorization G = G1G2 and the 3-cocycle ω ∈ H3(G, k×), see e.g., [17]).

Example 4.6. Let B = CG be a G-equivariantization of a fusion category C. We have an 
exact sequence

Rep(G) ι−→ B F−→ C

with respect to the standard fiber functor on Rep(G) (see e.g., [7, Example 4.4]). Thus, 
B∗
C admits an exact factorization B∗

C = Vec(G) •C. In [8, Example 7.12.25] it is explained 
that Vec(G) • C in this case is the semidirect product discussed in that example.
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Example 4.7. In Theorem 4.3 one does not always get a group-theoretical fusion category. 
In particular, an exact factorization with two group-theoretical factors is not always 
group-theoretical (even when one of the factors is pointed).

For example, consider Nikshych’s example of the representation category B of a non 
group-theoretical semisimple Hopf algebra of dimension 4p2. By [15, Corollary 4.6],
B = CZ/2Z is a Z/2Z-equivariantization of a group-theoretical fusion category C. So 
we have an exact sequence

Rep(Z/2Z) ι−→ B F−→ C

with respect to the standard fiber functor on Rep(Z/2Z). Hence the resulting exact 
factorization fusion category Vec(Z/2Z) • C is not group-theoretical.

Remark 4.8. M. Mombelli and S. Natale obtained some related results for exact sequences 
of finite tensor categories in [13, Section 7.2].

Question 4.9. If B = A • C and A, C are weakly group-theoretical fusion categories, is it 
true that B is weakly group-theoretical? (See [10] for the definition of a weakly group-
theoretical fusion category.) By Theorem 4.1, this question is equivalent to the question 
if an extension of a weakly group-theoretical fusion category by another one is weakly 
group-theoretical. (Example 4.7 shows that the answer is “no” for group-theoretical fu-
sion categories.)
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