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1. Introduction

This article develops some basic properties of a congruence lattice operation, called 
the higher commutator, for varieties of algebras that are congruence modular. The higher 
commutator is a higher arity generalization of the binary commutator, which was first 
defined in full generality in the seventies. While the binary commutator has a rich theory 
for congruence modular varieties, the theory of the higher arity commutator was poorly 
understood outside of the context of congruence permutability.

We begin by discussing the evolution of centrality in Universal Algebra. Centrality 
is easily understood in groups as the commutativity of multiplication. Here, it plays an 
essential role in defining important group-theoretic notions such as abelianness, solvabil-
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ity, nilpotence, etc. Naturally, a systematic calculus to study centrality was developed. 
For a group G and a, b ∈ G, the group commutator of a and b is defined to be

[a, b] = a−1b−1ab.

Actually, one can go further and use group commutators to define a very useful oper-
ation on the lattice of normal subgroups of G.

Definition 1.1. Suppose that G is a group and M and N are normal subgroups of G. The 
group commutator of M and N is defined to be

[M,N ] = SgG({[m,n] : m ∈ M,n ∈ N}),

where SgG(S) denotes the subgroup generated by the elements belonging to S. It is easily 
checked that [M, N ] is a normal subgroup of G.

Suppose that f : G → H is a surjective homomorphism and {Ni : i ∈ I} are normal 
subgroups of G. The following properties are easy consequences of Definition 1.1, where 
∧ and ∨ denote the operations of meet and join in the lattice of normal subgroups of G:

1. [M, N ] ⊆ M ∧N ,
2. [f(M), f(N)] = f([M, N ]),
3. [M, N ] = [N, M ],
4. [M, 

∨
i∈I Ni] =

∨
i∈I [M, Ni],

5. For any normal subgroup K of G contained in M∧N , the elements of M/K commute 
with N/K if and only if [M, N ] ⊆ K.

Rings have an analogous commutator theory. For two ideals I, J of a ring R the com-
mutator is [I, J ] = IJ − JI. This operation satisfies the same basic properties as the 
commutator for groups and allows one to analogously define abelian, solvable and nilpo-
tent rings. As it turns out, the notion of centrality and the existence of a well-behaved 
commutator operation is not an idiosyncrasy of groups or rings. In [13], J.D.H. Smith 
defined a language-independent type of centrality that generalized the known examples. 
He then used this definition to show that any algebra belonging to a Mal’cev variety 
came equipped with a commutator as powerful as the commutator for groups or rings.

Joachim Hagemann and Christian Herrmann later extended the results of Smith to 
congruence modular varieties in [8]. The language-independent definition of centrality 
allows for language-independent definitions of abelianness and related notions such solv-
ability and nilpotence. The existence of a robust commutator for a congruence modular 
variety means that these definitions are powerful and well-behaved, and provide an im-
portant tool to study the consequences of congruence modularity. For example, quotients 
of abelian algebras that belong to a modular variety are abelian, but this need not be 
true in general.
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The importance of these investigations was immediately apparent and the theory was 
rapidly developed, see [6] and [7]. While the entirety of the theory is too broad for this 
introduction, we do mention an aspect related to nilpotence, because it is a prelude to 
the higher arity commutator.

Roger Lyndon showed in [11] that the equational theory of a nilpotent group is finitely 
based. Now, finite nilpotent groups are the product of their Sylow subgroups, so for finite 
groups Lyndon’s result states that a group that is a product of p-groups has a finite basis 
for its equational theory. A result of Michael Vaughan-Lee, with an improvement due to 
Ralph Freese and Ralph McKenzie, generalizes this finite basis result to finite algebras 
generating a modular variety that are a product of prime power order nilpotent algebras, 
see [6]. Keith Kearnes showed in [9] that for a modular variety the algebras that are the 
product of prime power order nilpotent algebras are exactly the algebras that generate 
a variety with a small growth rate of the size of free algebras.

Note that while for the variety of groups the condition of being a product of prime 
power order nilpotent algebras is equivalent to being nilpotent, this condition is in general 
stronger than nilpotence. This stronger condition is now known as supernilpotence, which 
is definable from the higher arity commutator that is the subject of our work, see [2].

The definition of higher centrality was first introduced formally by Andrei Bulatov, 
see [4]. Bulatov was interested in counting the number of distinct polynomial clones 
on a finite set that contain a Mal’cev operation. Although this problem was solved in 
[1] using other methods, higher commutators have found other important uses. In [3], 
supernilpotence is shown to be an obstacle to a Mal’cev algebra having a natural duality. 
Also, as noted earlier, finite supernilpotent algebras that generate congruence permutable 
varieties must have a finitely based equational theory.

Erhard Aichinger and Nebojša Mudrinski developed the basic properties of the higher 
commutator for congruence permutable varieties, see [2]. In [12], Jakub Opršal con-
tributed to the properties of the higher commutator for Mal’cev varieties by developing 
a relational description that is similar to the original definition of centrality used by 
J.D.H. Smith, Hagemann and Hermann.

The structure of this article is as follows: In Section 2 we introduce higher centrality, 
recall some important characterizations of congruence modularity and develop some 
notation. The main properties of the higher commutator are shown in Sections 3–5. 
In Section 6 we prove that for congruence modular varieties the higher commutator is 
equivalent to a higher commutator defined with a two term condition.

2. Preliminaries

2.1. Background

We begin with the term condition definition of the k-ary commutator as introduced 
by Bulatov in [4]. The following notation is used. Let A be an algebra with δ ∈ Con(A). 
A tuple will be written in bold: x = (x0, ..., xn−1). The length of this tuple is denoted 
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by |x|. For two tuples x, y such that |x| = |y| we write x ≡δ y to indicate that xi ≡δ yi
for 0 ≤ i < |x|, where xi ≡δ yi indicates that 〈x, y〉 ∈ δ.

Definition 2.1.
Let A be an algebra, k ∈ N≥2, and choose α0, . . . , αk−1, δ ∈ Con(A). We 

say that α0, . . . , αk−2 centralize αk−1 modulo δ if for all f ∈ Pol(A) and tuples 
a0, b0, . . . , ak−1, bk−1 from A such that

1. ai ≡αi
bi and ai �= bi for each i ∈ k

2. If f(z0, . . . , zk−2, ak−1) ≡δ f(z0, . . . , zk−2, bk−1) for all (z0, . . . , zk−2) ∈ {a0, b0} ×
· · · × {ak−2, bk−2} \ {(b0, . . . , bk−2)}

we have that

f(b0, . . . ,bk−2, ak−1) ≡δ f(b0, . . . ,bk−2, bk−1).

This condition is abbreviated as C(α0, . . . , αk−1; δ).

It is easy to see that if for some collection {δi : i ∈ I} ⊆ Con(A) we have 
C(α0, . . . , αk−1; δi), then C(α0, . . . , αk−1; 

∧
i∈I δi). We therefore make the following

Definition 2.2. Let A be an algebra, and let α0, . . . , αk−1 ∈ Con(A) for k ≥ 2. The k-ary 
commutator of α0, . . . , αk−1 is defined to be

[α0, . . . , αk−1] =
∧

{δ : C(α0, . . . , αk−1; δ)}

The following properties are immediate consequences of the definition:

1. [α0, . . . , αk−1] ≤
∧

0≤i≤k−1 αi,
2. For α0 ≤ β0, . . . , αk−1 ≤ βk−1 in Con(A), we have [α0, . . . , αk−1] ≤ [β0, . . . , βk−1]

(Monotonicity),
3. [α0, . . . , αk−1] ≤ [α1, . . . , αk−1].

We will demonstrate the following additional properties of the higher commutator for a 
congruence modular variety V, which are developed for the binary commutator in [6]:

(4) [α0, ..., αk−1] = [ασ(0), ..., ασ(k−1)] for any permutation of σ of the congruences 
α0, ..., αk−1 (Symmetry),

(5) [
∨

i∈I γi, α1, ..., αk−1] =
∨

i∈I [γi, α1, ..., αk−1] (Additivity),
(6) [α0, ..., αk−1] ∨π = f−1([f(α0∨π), ..., f(αk−1∨π))]), where f : A → B is a surjective 

homomorphism with kernel π (Homomorphism property),
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(9) Kiss showed in [10] that for congruence modular varieties the binary commutator is 
equivalent to a binary commutator defined with a two term condition. This is true 
for the higher commutator also.

2.2. Day terms

The classical development of the binary commutator for congruence modular varieties 
relies on the relationship between the modularity of congruences for a variety and its
equational theory. The first equational description of a modular variety is due to Alan 
Day, see [5]. The identities he discovered are listed below. We refer the reader to [5], [6]
and [7] for the full details of this characterization of congruence modularity.

Proposition 2.3 (Day terms). A variety V is congruence modular if and only if there exist 
term operations me(x, y, z, u) for e ∈ n + 1 satisfying the following identities:

1. me(x, y, y, x) ≈ x for each 0 ≤ e ≤ n,
2. m0(x, y, z, u) ≈ x,
3. mn(x, y, z, u) ≈ u,
4. me(x, x, u, u) ≈ me+1(x, x, u, u) for even e, and
5. me(x, y, y, u) ≈ me+1(x, y, y, u) for odd e.

Actually, the treatment of the higher commutator presented in this paper relies only 
on the following description of congruences of algebras belonging to a modular variety.

Proposition 2.4 (Lemma 2.3 of [6]). Let V be a variety with Day terms me for e ∈ n +1. 
Take δ ∈ Con(A) and assume 〈b, d〉 ∈ δ. For a tuple 〈a, c〉 ∈ A2 the following are 
equivalent:

1. 〈a, c〉 ∈ δ,
2. 〈me(a, a, c, c), me(a, b, d, c)〉 ∈ δ for all e ∈ n + 1.

2.3. Matrices and centralization

Take A ∈ V and θ0, θ1 ∈ Con(A). The development of the binary commutator in [6]
relies on a so-called term condition that can be defined with respect to a subalgebra of 
A

4, the subalgebra of (θ0, θ1)-matrices. We will now generalize these ideas to the higher 
commutator. To motivate the definitions, we state them for the binary commutator.

Definition 2.5 (Binary). Take A ∈ V, and θ0, θ1, ∈ Con(A). Define

M(θ0, θ1) =
{[

t(a0, a1) t(a0, b1)
t(b0, a1) t(b0, b1)

]
: t ∈ Pol(A), a0 ≡θ0 b0, a1 ≡θ1 b1

}
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Fig. 1. Binary centrality.

It is readily seen that M(θ0, θ1) is a subalgebra of A4, with a generating set of the 
form

{[
x x

y y

]
: x ≡θ0 y

}⋃{[
x y

x y

]
: x ≡θ1 y

}
.

The notion of centrality given in Definition 2.1 with congruences θ0, θ1, δ is expressible 
as a condition on (θ0, θ1)-matrices. This is shown in Fig. 1, where for δ ∈ Con(A) the 
implications depicted hold for all

[
t(a0, a1) t(a0, b1)
t(b0, a1) t(b0, b1)

]
∈ M(θ0, θ1).

It is easy to generalize the idea of matrices to three dimensions. For congruences 
θ0, θ1, θ2, δ of an algebra A, the condition C(θ1, θ2, θ0; δ) is equivalent to the implication 
depicted in Fig. 2 for all t ∈ Pol(A) and a0 ≡θ0 b0, a1 ≡θ1 b1, a2 ≡θ2 b2.

The main arguments in this paper are essentially combinatorial and rely on isolating 
certain squares and lines in matrices. In the case of the matrix shown in Fig. 2, we distin-
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Fig. 2. Ternary centrality.

guish the squares shown in Fig. 3, which we label as (0, 1)-supporting and pivot squares 
(see Definition 2.9). Notice that both squares are (θ0, θ1)-matrices, where the supporting 
square corresponds to the polynomial t(z0, z1, a2) and the pivot square corresponds to 
the polynomial t(z0, z1, b2).

We also distinguish the lines shown in Fig. 3, which are labeled as either a 
(0)-supporting line or a (0)-pivot line (see Definition 2.9). Notice that each line cor-
responds to a polynomial s(z0) = t(z0, x1, x2), where x1 ∈ {a1, b1} and x2 ∈ {a2, b2}. 
Notice that C(θ1, θ2, θ0; δ) is equivalent to the statement that if every (0)-supporting line 
of such a matrix is a δ-pair, then the (0)-pivot line is a δ-pair.

We therefore require for a sequence of congruences (θ0, . . . , θk−1) the notion of a 
matrix, as well as notation to distinguish a matrice’s supporting or pivot squares and 
lines.

Definition 2.6. Let T = (θ0, . . . , θk−1) ∈ Con(A)k be a sequence of congruences of A. 
A pair τ = (t, P) is called a T -matrix label if

1. t = t(z0, . . . , zk−1) ∈ Pol(A)
2. P = (P0, . . . , Pk−1) is a sequence of pairs Pi = (ai, bi) such that ai ≡θi bi

Let τ = (t(z0, . . . , zk−1), P) be a T -matrix label. From the above examples, we see 
that τ can be used to construct a k-dimensional cube whose vertices correspond to 
evaluating each variable tuple zi in t at one of the tuples belonging to Pi. We also need 
to distinguish the squares and lines of this matrix, which are in fact 2 and 1-dimensional 
matrices. As in the above examples, these objects correspond to the evaluation of some of 
the zi at tuples in P. We introduce notation to specify which of the zi in t(z0, . . . , zk−1)
are being evaluated and which variable tuples zi remain free.
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Fig. 3. Squares and lines.

Let S = {i1, . . . , is} ⊆ k. Denote by TS the subsequence (θi1 , . . . , θis) of those con-
gruences from T that are indexed by S. For a function f ∈ 2k\S let τf = (tf , PS) be the 
TS-matrix label such that

1. tf (zi1 , . . . , zis) = t(x1, . . . , xk) with
(a) (zi1 , . . . , zis) is the collection of variable tuples indexed by S
(b) xi = zi if i ∈ S

(c) xi = ai if f(i) = 0
(d) xi = bi if f(i) = 1

2. PS is the subsequence (Pi1 , . . . , Pis) of pairs of those tuples from P that are indexed 
by S.

Notice that if S = ∅ then each τf specifies a way in which to evaluate each tuple zi
at either ai or bi. As we will see, these are vertices of the matrices which we now define.

Definition 2.7. Choose k ≥ 1. Let T = (θ0, . . . , θk−1) be a sequence of congruences of A. 
Let τ = (t, P) be a T -matrix label. The T -matrix labeled by τ is the element
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m ∈
∏
f∈2k

A = A
2k

such that mf = tf for all f ∈ 2k. Denote by M(T ) = M(θ1, . . . , θk) the collection of all 
T -matrices.

If we consider the set k as a set of coordinates, the set of functions 2k can be viewed as 
a k-dimensional cube, where f is connected to g by an edge if f(i) = g(i) for all i ∈ k\{j}
for some coordinate j. Each T -matrix m labeled by τ is therefore a k-dimensional cube, 
with a vertex mf for each f ∈ 2k. Moreover, if mf and mg are connected by an edge 
where f(i) = g(i) for all i ∈ k \ {j} for some coordinate j, then mf ≡θj mg.

As noted in the case of the binary commutator, the collection of (α, β)-matrices is a 
subalgebra of A4 and is generated by those m ∈ M(α, β) that are constant across rows 
or columns. These facts easily generalize to the collection of T -matrices.

Lemma 2.8. Let T = (θ0, . . . , θk−1) be a sequence of congruences of an algebra A. The 
collection M(T ) is a subalgebra of A2k and is generated by those matrices m ∈ M(T )
that are labeled by some τ = (π, P), where π is a projection operation.

We now define the ideas of a cross-section square and a cross-section line. Let T =
(θ0 . . . , θk−1) be a sequence of congruences and m ∈ M(T ) be labeled by τ = (t, P). 
Choose two coordinates j, l ∈ k with j �= l. For f∗ ∈ 2k\{j,l} let mf∗ ∈ M(θj , θl) be 
the (θj , θl)-matrix labeled by τf∗ . We call mf∗ the (j, l)-cross-section square of m at 
f∗. Similarly, for a coordinate j ∈ k and f ∈ 2k\{j} let mf ∈ M(θj) be the (θj)-matrix 
labeled by τf . We call mf in this case the (j)-cross-section line of m at f .

A typical (j, l)-cross-section square mf∗ will be displayed as

mf∗ =
[
tf∗(aj , al) tf∗(aj ,bl)
tf∗(bj , al) tf∗(bj ,bl)

]
=

[
rf∗ sf∗

uf∗ vf∗

]

and a typical (j) or (l)-cross-section line of m is a column or row, respectively, of such a 
square.

We set

S(m; j, l) = {mf∗ : f∗ ∈ 2k\{j,l}} and

L(m; j) = {mf : f ∈ 2k\{j}}

to be the collections of all (j, l)-cross-section squares and (j)-cross-section lines of m, 
respectively.

Definition 2.9. Let T = (θ0, . . . , θk−1) ∈ Con(A)k, and take m ∈ M(T ). Choose j, l ∈ k

such that j �= l. Let jl ∈ 2k\{j,l}, j ∈ 2k\{j} and 1 ∈ 2k be the constant functions 
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that take value 1 on their respective domains. We call the (j, l)-cross-section square 
of m at jl the (j, l)-pivot square. All other (j, l) cross-section squares of m will be 
called (j, l)-supporting squares. Similarly, we call the (j) cross-section square of m at 
j the (j)-pivot line, and all other (j) cross-section lines will be called (j)-supporting 
lines.

We now reformulate Definition 2.1 with respect to these definitions.

Definition 2.10. We say that T is centralized at j modulo δ if the following property 
holds for all T -matrices m ∈ M(T ):

(*) If every (j)-supporting line of m is a δ-pair, then the (j)-pivot line of m is a δ-pair.

We abbreviate this property C(T ; j; δ).

Definition 2.11. We define [T ]j =
∧
{δ : C(T ; j; δ)}.

Remark 2.12. Notice that [T ]j = [θi0 , . . . , θik−2 , θj ] for any permutation of the k − 1
congruences that are not θj , where the left side is given by Definition 2.11 and the right 
is given by Definition 2.2.

We conclude this section with a general picture of the (j, l)-supporting and pivot 
squares of a T -matrix m labeled by some τ = (t, P), a T -matrix label for a sequence 
of congruences T = (θ0, . . . , θk−1). The conditions C(T ; j; δ) and C(T ; l; δ) are shown in 
Fig. 4, respectively.

3. Symmetry of higher commutator

For the remainder of this document a variety V is assumed to be congruence modular. 
In this section we will show that the commutator of Definition 2.2 is symmetric.

We begin with the following

Lemma 3.1. Let V be a congruence modular variety with Day terms me for e ∈ n + 1, 
and let A ∈ V. Let T = (θ0, . . . θk−1) ∈ Con(A)k. Fix j, l ∈ k such that j �= l and fix 
e ∈ n + 1. There is a map Re

j,l : M(T ) → M(T ) with the following properties:

1. If h ∈ M(T ) has the set of (j, l)-cross-section squares

S(h; j, l) =
{
hf∗ =

[
rf∗ wf∗

uf∗ vf∗

]
: f∗ ∈ 2k\{j,l}

}
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Fig. 4. Higher centrality, squares and lines.

then Re
j,l(h) has the set of (j, l)-cross-section squares S(Re

j,l(h); j, l) =

{
Re

j,l(m)f∗ =
[

wf∗ wf∗

me(wf∗ , rf∗ , uf∗ , vf∗) me(wf∗ , wf∗ , vf∗ , vf∗)

]
: f∗ ∈ 2k\{j,l}

}
.

2. If every (j)-supporting line of h is a δ-pair, then every (l)-supporting line of Re
j,l(h)

is a δ-pair.
3. Suppose the (j)-supporting line belonging to the (j, l)-pivot square of h is a δ-pair. 

The (j)-pivot line of h is a δ-pair if and only if the (l)-pivot line of Re
j,l(h) is a δ-pair 

for all e ∈ n + 1.

The map Re
j,l will be called the eth shift rotation at (j, l).

Proof. Let h ∈ M(T ) be labeled by τ = (t, P), where t = t(z0, . . . , zk−1) and P =
(P0, . . . , Pk−1) with Pi = (ai, bi). Let
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s(y0, ..., yk−1) = me(t0, t1, t2, t3)

where

t0 =t(y0, . . . , y0
j , . . . , y0

l , . . . , yk−1)

t1 =t(y0, . . . , y1
j , . . . , y1

l , . . . , yk−1)

t2 =t(y0, . . . , y2
j , . . . , y2

l , . . . , yk−1)

t3 =t(y0, . . . , y3
j , . . . , y3

l , . . . , yk−1)

and yj = y0
j
�y1

j
�y2

j
�y3

j , yl = y0
l
�y1

l
�y2

l
�y3

l are concatenations.
For each i ∈ k, define a pair of tuples Qi = (a′i, b

′
i) as follows:

1. Qi = Pi if i �= j, l
2. Qj = (a′j , b

′
j) = ((aj�bj

�bj
�aj), (aj�aj�bj

�bj))
3. Ql = (a′l, b

′
l) = ((bl

�al�al�bl), (bl
�bl

�bl
�bl))

Let Q = (Q0, . . . , Qk−1), and set τ ′ = (s, Q). Define Re
j,l(h) ∈ M(T ) to be the 

T -matrix labeled by τ ′.
We now compute S(Re

j,l(h); j, l), the set of (j, l) cross-section squares of Re
j,l(h). Take 

f∗ ∈ 2k\{j,l}. Consider the (j, l) cross-section square of h at f∗:

hf∗ =
[
rf∗ wf∗

uf∗ vf∗

]

By the definitions given above we therefore compute

Re
j,l(h)f∗ =

[
sf∗(a′j , a′l) sf∗(a′j , b

′
l)

sf∗(b′
j , a′l) sf∗(b′

j , b
′
l)

]

=
[
me(wf∗ , uf∗ , uf∗ , wf∗) me(wf∗ , vf∗ , vf∗ , wf∗)
me(wf∗ , rf∗ , uf∗ , vf∗) me(wf∗ , wf∗ , vf∗ , vf∗)

]

=
[

wf∗ wf∗

me(wf∗ , rf∗ , uf∗ , vf∗) me(wf∗ , wf∗ , vf∗ , vf∗)

]

where the final equality follows from identity (1) in Proposition 2.3. This proves (1) of 
the lemma.

We now prove (2) and (3). A picture is given in Fig. 5, where a typical (j, l)-supporting 
square and the (j, l)-pivot square are shown for both h and Re

j,l(h). Supporting lines are 
drawn in bold.

Indeed, any constant pair 〈s, s〉 is a δ-pair, so the top row of any (j, l)-cross-section 
square of Re

j,l(h) is a δ-pair. That the other (l)-supporting lines of Re
j,l(h) are δ-pairs 
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Fig. 5. Shift rotations.

follows from Proposition 2.4. Finally, Proposition 2.4 shows that the (j)-pivot line of h
is a δ-pair if and only if for every e ∈ n + 1 the (l)-pivot line of Re

j,l(h) is a δ-pair, which 
is indicated in the picture with dashed curved lines. This proves (3). �
Proposition 3.2. Let T = (θ0, . . . , θk−1) ∈ Con(A)k. Suppose for δ ∈ Con(A) that 
C(T ; l; δ) holds for some l ∈ k. Then C(T ; i; δ) holds for all i ∈ k.

Proof. Choose j �= l. By Definition 2.10, it suffices to show that for each h ∈ M(T )
that if each (j)-supporting line of h is a δ-pair then the (j)-pivot line of h is a δ-pair. 
For e ∈ n + 1 consider the eth shift rotation at (j, l) of h. By (2) of Lemma 3.1, each 
(l)-supporting line of Re

j,l(h) is a δ-pair. We assume that C(T ; l; δ) holds, therefore the 
(l)-pivot line of Re

j,l is a δ-pair. Because this is true for every e ∈ n +1, (3) of Lemma 3.1
shows that the (j)-pivot line of h is a δ-pair. We therefore conclude that C(T ; j; δ)
holds. �
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Fig. 6. Ternary generators.

Theorem 3.3 (Symmetry). Let V be a congruence modular variety and let A ∈ V. For 
k ≥ 2 let T = (θ0, . . . , θk−1) ∈ Con(A)k be a sequence of congruences of A. Then, 
[θ0, ..., θk−1] = [θσ(0), ..., θσ(k−1)] for any permutation of σ of the elements of k.

Proof. Our aim is to show that [θ0, . . . , θk−1] = [θσ(0), . . . , θσ(k−1)]. By Remark 2.12 it 
will suffice to see that [T ]j = [T ]l for all j, l ∈ k. Applications of Definition 2.11 and 
Proposition 3.2 show that

[T ]j =
∧

{δ : C(T ; j; δ)} =
∧

{δ : C(T ; l; δ)} = [T ]l,

and the proof is finished. �
A consequence of symmetry is that we may unambiguously write C(T ; δ) in place of 

C(T ; j; δ) and unambiguously write [T ] instead of [T ]j . We shall take advantage of this 
simpler notation from now on.

4. Generators of higher commutator

In this section we construct for a sequence of congruences T = (θ0, . . . , θk−1) ∈
Con(A)k a set of generators X(T ) for [T ]. The idea of the construction is to consider all 
possible sequences of consecutive shift rotations for an arbitrary T -matrix h. Each such 
sequence will produce a T -matrix that is constant on all (k − 1)-supporting lines. The 
(k− 1)-pivot line of such a T -matrix must belong to any δ such that C(T ; δ) holds. This 
is illustrated for 3-dimensional matrices in Fig. 6, where constant pairs are indicated 
with bold.

As usual, let V be a congruence modular variety with Day terms me for e ∈ n + 1, 
and let T = (θ0, . . . , θk−1) ∈ Con(A)k for A ∈ V. For a T -matrix h we will apply 
a composition of k − 1 many shift rotations, first at (0, 1), then at (1, 2), ending at 
(k − 2, k − 1). For each stage there are n + 1 many choices of Day terms, each giving 
a different shift rotation. It is therefore quite natural to label these sequences of shift 
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rotations with branches belonging to the tree of height k with n + 1 many successors of 
each vertex. Set

Dk = 〈(n + 1)<k;<〉,

where (n + 1)<k =
⋃
{(n + 1)i : i ∈ k} and d1 < d2 indicates that d1 ⊂ d2 for sequences 

d1, d2 ∈ (n + 1)<k. Note that Dk has the empty sequence ∅ as a root.

Lemma 4.1. Let V be a variety with Day terms me for e ∈ n +1. Let T = (θ0, . . . , θk−1) ∈
Con(A)k. Let h ∈ M(T ) be labeled by τ = (t, P). Set h∅ = h. For each non-empty 
d = (d0, . . . , di) ∈ Dk there is a T -matrix hd ∈ M(T ) labeled by some τd = (td; Pd) such 
that

1. hd = R
d(i)
i,i+1(hc), where c is the predecessor of d.

2. Let f ∈ 2k\{i+1} be such that f(j) = 0 for some j ∈ i +1. Then the (i +1)-supporting 
line of hd at f :

(hd)f =
[

(td)f (adi+1) (td)f (bd
i+1)

]

is a constant pair.

Proof. The lemma is trivially true for h∅ = h. Suppose it holds for c and let d be a 
successor of c. Let f ∈ 2k\{i+1} be such that f(j) = 0 for some j ∈ i + 1. We need to 
establish that the supporting line

(hd)f =
[

(td)f (adi+1) (td)f (bd
i+1)

]

is a constant pair. Let f∗ = f |2k\{i,i+1} be the restriction of f to k \ {i, i + 1}. We treat 
two cases:

1. Suppose j = i, and for no other j ∈ i + 1 does f(j) = 0. Consider the (i, i + 1)-
cross-section square of hc at f∗:

(hc)f∗ =
[
rf∗ sf∗

uf∗ vf∗

]

By Lemma 3.1, the (i, i + 1)-cross-section of md at f∗ is:

(hd)f∗ =
[

sf∗ sf∗

md(i)(sf∗ , rf∗ , uf∗ , vf∗) md(i)(sf∗ , sf∗ , vf∗ , vf∗)

]
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Fig. 7. Tree.

The (i + 1)-supporting line of hd at f is the top row of the above square, that is,

(hd)f =
[
sf∗ sf∗

]
.

2. Suppose that f(j) = 0 for some j ∈ i. In this case the inductive assumption applies 
to hc, so columns of the (i, i + 1)-cross-section of hc at f∗ are therefore constant:

(hc)f∗ =
[
rf∗ sf∗

rf∗ sf∗

]

We therefore compute the (i, i + 1)-cross-section of hd
i+1 at f∗ as:

(hd)f∗ =
[

sf∗ sf∗

md(i)(sf∗ , rf∗ , rf∗ , sf∗) md(i)(sf∗ , sf∗ , sf∗ , sf∗)

]
=

[
sf∗ sf∗

sf∗ sf∗

]
.

The (i + 1)-cross-section line of hd at f is either the top or bottom row of the above 
square, if f(i) = 0 or f(i) = 1 respectively. Therefore

(hd)f =
[
sf∗ sf∗

]
. �

Let d = (d0, . . . , dk−2) be a leaf of Dk. By 4.1, all (k − 1)-supporting lines of hd are 
constant pairs 〈s, s〉. If we assume that C(T ; δ) holds then the (k − 1)-pivot line of hd

must belong to δ. That is, (hd)k-1 ∈ δ for any h ∈ M(T ) and any leaf d ∈ Dk (recall that 
k-1 : 2k\{k−1} → 2 is the constant function with value 1, see Definition 2.9). Set

X(T ) = {(hd)k-1 : h ∈ M(T ), d ∈ Dk a leaf },

see Fig. 7 for a picture.
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Fig. 8. Ternary generator tree.

We have just observed that

Lemma 4.2. Let T = (θ0, . . . , θk−1) ∈ Con(A)k for A ∈ V, where V is congruence modu-
lar. Suppose that δ ∈ Con(A) is such that C(T ; δ) holds. Then X(T ) ⊆ δ. In particular, 
Cg(X(T )) ≤ [T ].

By induction over Dk we now demonstrate the following

Lemma 4.3. Let δ = Cg(X(T )). Then C(T ; δ) holds. In particular, [T ] ≤ Cg(X(T )).

Proof. Our aim is to show that C(T ; δ) holds. By Proposition 3.2, it suffices to show 
that C(T ; 0; δ) holds. So, take h ∈ M(T ) so that all (0)-supporting lines of h are δ-pairs. 
We need to show that the (0)-pivot line of h is also a δ-pair.

The proof proceeds by two inductions over the tree Dk. The first induction proceeds 
from the root to the leaves and will demonstrate that some particular supporting lines 
of the T -matrix hd are δ-pairs, for every d ∈ Dk. The second induction proceeds from 
the leaves to the root and will demonstrate that a particular pivot line of hd is a δ-pair 
as well, for every d ∈ Dk. See Fig. 8.

For the first induction we show that, for d = (d0, . . . , di−1) ∈ Dk, every (i)-supporting 
line of hd is a δ-pair. We assume that every (0)-supporting line of h = h∅ is a δ-pair, 
which is the base case for the induction. Let d′ = (d0, . . . , di−2) be the predecessor of d
and assume that every (i − 1)-supporting line of hd′ is a δ-pair. Now, hd = R

d(i−1)
i−1,i , so it 

follows from (3) of Lemma 3.1 that every (i)-supporting line of hd is a δ-pair, as desired.
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For the second induction we show that, for d = (d0, . . . , di−1) a nonempty tuple, the 
(i)-pivot line of hd is a δ-pair. If d is the empty sequence, then the induction demonstrates 
that the (0)-supporting line of h = h∅ is a δ-pair, which is what we want to show. The 
base case corresponds to the leaves of Dk. Each leaf of Dk is a sequence d = (d0, . . . , dk−2)
and for such a d the (k−1)-pivot line of hd is a generator of δ by the definition of X(T ). 
Now, take c = (c0, . . . , ci−1) ∈ Dk and suppose that all successors d = (c0, . . . , ci−1, di)
of c are such that the (i + 1)-pivot line of hd is a δ-pair. By the first induction, each 
of these hd also has the property that every (i + 1)-supporting line is also a δ-pair. An 
application of (3) of Lemma 3.1 yields that the (i)-pivot line of hc is a δ-pair, and we 
are finished. �
Theorem 4.4. Let V be a congruence modular variety and take A ∈ V. For k ≥ 2, let 
T = (θ0, . . . , θk−1) ∈ Con(A)k. The following hold:

1. [T ] = Cg(X(T ))
2. C(T ; δ) if and only if [T ] ≤ δ

Proof. This follows from Lemmas 4.2 and 4.3. �
5. Additivity and homomorphism property

We are now ready to show that the commutator is additive and is preserved by 
surjections. We begin by example, demonstrating additivity for the 3-ary commuta-
tor. Let θ0, θ1, γi(i ∈ I) be a collection of congruences of A. We want to show that 
[θ0, θ1, 

∨
i∈I γi] =

∨
i∈I [θ0, θ1, γi]. It is immediate that [θ0, θ1, 

∨
i∈I γi] ≥

∨
i∈I [θ0, θ1, γi], 

because of monotonicity. To demonstrate the other direction, it suffices to show that 
C((θ0, θ1, 

∨
i∈I γi); α) holds, where α =

∨
i∈I [θ0, θ1, γi].

Let h ∈ M(θ0, θ1, 
∨

i∈I γi) be labeled by τ = (t(z0, z1, z2), ((a0, b0)), (a1, b1), (a2, b2))). 
Suppose that each (0)-supporting line of h is an α-pair. We need to show that the 
(0)-pivot line of h is also an α-pair.

Because a2 ≡∨
i∈I γi

b2, there exist tuples c0, . . . , cq such that

a2 = c0 ≡γi0
c1 . . . cq−2 ≡γiq−1

cq = b2

This sequence of tuples produces the sequence of cross-section squares shown in Fig. 9. 
Each square is a (θ0, θ1)-matrix labeled by (t(z0, z1, cp), ((a0, b0)), (a1, b1))), for cp a tuple 
from c0, . . . , cq. Each consecutive pair of squares labeled by

(t(z0, z1, cp), ((a0, b0)), (a1, b1))) and (t(z0, z1, cp+1), ((a0, b0)), (a1, b1)))

are the (2)-cross-section squares of a (θ0, θ1, γip)-matrix. As usual, α-pairs are indicated 
with curved lines.
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Fig. 9. Sequence of matrices.

Fig. 10. Rotated sequence.

To show that the (0)-pivot line of h is an α-pair it suffices to show that

〈me(s, s, v, v),me(s, r, u, v)〉 ∈ α

for all e ∈ n +1, where r, s, u, v are the elements shown in Fig. 9. Therefore, we consider 
for each e ∈ n +1 the e-th shift rotation at (0, 1) of the above sequence of matrices. This 
is shown in Fig. 10. Constant pairs are indicated with bold.

Because [θ0, θ1, γi] ≤ α for all i ∈ I, we have that C(θ0, θ1, γi; α) holds. Because each 
cube in the above sequence is a (θ0, θ1, γi)-matrix for some i ∈ I, it follows by induction 
that the (1)-pivot line of Re

0,1(h) is an α-pair, as desired.
To show the additivity of a commutator of any arity, the same argument is used. For 

h ∈ M(T ) we consider all hd for any d ∈ Dk that is a predecessor of a leaf. By 4.1, all 
(k − 2)-supporting lines that do not belong to the (k − 2, k − 1)-pivot square of hd are 
constant pairs. The argument is then essentially the same as the 3-ary example above, 
complicated slightly by an induction over the tree Dk.

Theorem 5.1 (Additivity). Let γi for i ∈ I be a collection of congruences of A. Set 
T = (θ0, ..., θk−1, 

∨
i∈I γi) and Ti = (θ0, ..., θk−1, γi), where θ0, ..., θk−1 ∈ Con(A). Then 

[T ] =
∨

i∈I [Ti].

Proof. By monotonicity, 
∨

i∈I [Ti] ≤ [T ]. Set α =
∨

i∈I [Ti]. We need to show that C(T ; α)
holds. Let h ∈ M(T ) be labeled by τ = (t(z0, . . . , zk), P), where P is a sequence of pairs 
of tuples ((a0, b0), . . . , (ak, bk)). Suppose that every (0)-supporting line of h is a α-pair. 
We will show that the (0)-pivot line of h is an α-pair also.
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Fig. 11. Sequence of matrices and rotations.

Here we have that ak ≡∨
i∈I γi

bk. We illustrate the (k + 1)-dimensional matrix h as 
the product of two k-dimensional matrices in Fig. 11, given by evaluating zk at either 
ak or bk. These two matrices are called η0 and η1 respectively.

Notice that the (0)-pivot line of h is equal to the (0)-pivot line of η1. By an induction 
identical to that given in the proof of Lemma 4.3 it therefore suffices to show that the 
(k − 1)-pivot line of (η1)d is an α-pair, for each d ∈ Dk that is a leaf.

Because ak ≡∨
i∈I γi

bk, there exist tuples c0, . . . , cq such that

ak = c0 ≡γi0
c1 . . . cq−2 ≡γiq−1

cq = bk

Evaluating zk at each of the cs gives the sequence of matrices shown in Fig. 11, where 
each consecutive pair of matrices corresponding to the tuples cs, cs+1 forms a Tis-matrix 
which we call hs.

Now, take d ∈ Dk to be a leaf. Notice that d ∈ Dk+1 and that d is a predecessor of a leaf 
in this tree. For each his in the above sequence, consider the Tis-matrix (his)d. This gives 
the final sequence of matrices shown in Fig. 11. By Lemma 4.1, every (k− 1)-supporting 
line that does not belong to a (k− 1, k)-pivot square is a constant pair. These are drawn 
with bold. The sequence of (k − 1, k)-pivot squares is drawn underneath the constant 
supporting lines.
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As in the 3-dimensional example, we observe that C(Ti; α) holds. It follows from 
induction that the (k − 1)-pivot line of (η1)d is an α-pair, as desired. �

Let f : A → B be a surjective homomorphism with kernel π. Abusing notation, we 
denote by T∨π the sequence of congruences (θ1∨π, . . . , θk∨π), and by f(T ) the sequence 
of congruences (f(θ1), . . . , f(θk)). We then have the following

Theorem 5.2 (Homomorphism property). Let f : A → B be a surjective homomorphism 
with kernel π. Then [T ] ∨ π = f−1([f(T ∨ π)]).

Proof. We argue by generators again. By Proposition 5.1 we have that [T ] ∨π = [T∨π] ∨π. 
So, we assume without loss that θi ≥ π for 1 ≤ i ≤ k. Notice that [T ] ∨π = Cg(X(T ) ∪π)
and that f(X(T ) ∪ π) = X(f(T )). But [f(T )] = Cg(X(f(T )), so f carries a set of 
generators for [T ] ∨ π onto a set of generators for [f(T )]. Therefore f([T ] ∨ π) = [f(T )]
as desired. �
6. Two term commutator

Kiss showed in [10] that the term condition definition of the binary commutator is 
equivalent to a commutator defined with a two term condition. The method of proof uses 
a difference term. We begin this section be examining the binary case. The equivalence 
of the commutator defined with the term condition to the commutator defined with a 
two term condition can be shown using Day terms. This approach easily generalizes to 
the higher commutator. Recall that for a matrix h ∈ M(θ0, . . . , θk−1) and f ∈ 2k we 
denote by hf the vertex of h that is indexed by f .

Definition 6.1 (Binary two term centralization). Let V be a congruence modular variety 
and take A ∈ V. For α, β, δ ∈ Con(A) we say that α two term centralizes β modulo 
δ if the following condition holds for all h, g ∈ M(α, β), where we assume h and g are 
respectively labeled by (t(z0, z1), ((a0, b0), (a1, b1))) and (s(x0, x1), ((c0, d0), (c1, d1))):

〈s(c0, c1), t(a0, a1)〉 ∈ δ,
〈s(c0, d1), t(a0, b1)〉 ∈ δ,
〈s(d0, c1), t(b0, a1)〉 ∈ δ imply
〈s(d0, d1), t(b0, b1)〉 ∈ δ.

This condition is abbreviated as Ctt(α, β).

Fig. 12 depicts the condition Ctt(α, β). Curved lines represent δ-pairs. The top matrix 
is labeled by

(t(z0, z1), ((a0, b0), (a1, b1)))
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Fig. 12. Binary two term condition.

Fig. 13. Ctt(α, β; δ) implies C(α, β; δ).

and the bottom matrix is labeled by

(s(x0, x1), ((c0, d0), (c1, d1)))

Proposition 6.2. C(α, β; δ) holds if and only if Ctt(α, β; δ) holds.

Proof. Suppose Ctt(α, β; δ) holds. To show that C(α, β; δ) holds we take 

[
a b

c d

]
∈

M(α, β) such that 〈a, c〉 ∈ δ. Because 〈a, b〉 ∈ δ, it is also the case that 
[
a b

a b

]
∈

M(α, β). These two matrices satisfy the antecedent of the implication that defines the 
condition Ctt(α, β; δ), so we conclude that 〈b, d〉 ∈ δ, see Fig. 13.
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Fig. 14. C(α, β; δ) implies Ctt(α, β; δ).

Suppose now that C(α, β; δ) holds. Let g, h ∈M(α, β) be labeled by (s(z0, z1), ((a0, b0),
(a1, b1))) and (t(x0, x1), ((c0, d0), (c1, d1))) respectively. Suppose that

1. 〈s(a0, a1), t(c0, c1)〉 = 〈a, e〉 ∈ δ

2. 〈s(b0, a1), t(d0, c1)〉 = 〈b, f〉 ∈ δ

3. 〈s(a0, b1), t(c0, d1)〉 = 〈c, g〉 ∈ δ

We need to show that 〈s(d0, d1), t(b0, b1)〉 = 〈d, h〉 ∈ δ.
We construct a matrix that is similar to a shift rotation. For each e ∈ n + 1 consider 

the polynomial

pe(y0, y1) = me(t(y0
0, y0

1), t(y1
0, y0

1), s(y2
0, y1

1), s(y3
0, y1

1))

where y0 = y0
0
�y1

0
�y2

0
�y3

0 and y1 = y0
1
�y1

1.
Set

1. u0 = b0
�b0

�d0
�d0

2. v0 = b0
�a0

�c0
�d0

3. u1 = a1
�c1

4. v1 = b1
�d1

Let qe ∈ M(α, β) be labeled by (pe, ((u0, v0), (u1, v1))). The relationship between h, g
and qe is shown in Fig. 14.

Proposition 2.4 show that 〈me(b, a, e, f), me(b, b, f, f)〉 ∈ δ because 〈a, e〉 and 〈b, f〉
are δ-pairs. We assume that C(α, β; δ) holds, so 〈me(d, c, g, h), me(d, d, g, h)〉 ∈ δ. This 
holds for all e ∈ n + 1 so applying Proposition 2.4 again shows that 〈d, h〉 ∈ δ. �

We now generalize this notion to the higher commutator.
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Fig. 15. Ctt(T ; δ) implies C(T ; δ).

Definition 6.3 (Two term centralization). Let V be a congruence modular variety and 
take A ∈ V. For T = (θ0, . . . , θk−1) ∈ Con(A)k and δ ∈ Con(A) we say that T is two 
term centralized at j modulo δ if the following condition holds for all h, g ∈ M(T ):

1. If hf ≡δ gf for all f ∈ 2k except the function that takes constant value 1 then 
hf ≡ gf for all f ∈ 2k.

This condition is abbreviated as Ctt(T ; δ).

Theorem 6.4 (Two term higher commutator = Bulatov higher commutator). Let V be a 
congruence modular variety and take A ∈ V. For k ≥ 2 let T = (θ0, . . . , θk−1) ∈ Con(A)k. 
For δ ∈ Con(A), C(T ; δ) holds if and only if Ctt(T ; δ) holds.

Proof. Suppose Ctt(T ; δ) holds. To show that C(T ; δ) holds, take h ∈ M(T ) with 
0-supporting lines 〈ai, bi〉 for i ∈ 2k−1 − 1 and 0-pivot line 〈c, d〉. Suppose that each 
0-supporting line 〈ai, bi〉 is a δ-pair. There is a g ∈ M(T ) with 0-supporting lines 〈ai, ai〉
for i ∈ 2k−1 − 1 and 0-pivot line 〈c, c〉. We have that hf ≡δ gf for all f ∈ 2k except 
possibly the constant function with value 1. The assumption that Ctt(T ; δ) implies that 
hf ≡δ gf for all f ∈ 2k. In particular, 〈c, d〉 ∈ δ. This is shown in Fig. 15.

Suppose now that C(T ; δ) holds. Take h, g ∈ M(T ) such that hf ≡δ gf for all f ∈ 2k
except the function that takes constant value 1. We want to show that hf ≡ gf for all 
f ∈ 2k.

Suppose that h and g are labeled by

(t(z0, . . . , zk−1), ((a0, b0), . . . , (ak−1, bk−1))) and

(s(x0, . . . , xk−1), ((c0, d0), . . . (ck−1, dk−1)))

respectively. Choose i ∈ k. Fig. 16 shows the i-cross-section lines of h and g, with vertices 
that are δ-pairs connected by curved lines.

We label the i-pivot line of h as the pair 〈a, c〉 and the i-pivot line of g as the pair 
〈b, d〉. For a function f ∈ 2k\{i} the supporting lines hf and gf are named 〈af , cf 〉 and 
〈bf , df 〉 respectively. We want to show that 〈c, d〉 ∈ δ. By Proposition 2.4, it suffices to 
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Fig. 16. C(T ; δ) implies Ctt(T ; δ).

Fig. 17. Supporting and pivot lines.

show that 〈me(c, a, b, d), me(c, c, d, d)〉 ∈ δ for all e ∈ n + 1. This will follow from the 
assumption that C(T ; δ) holds and the existence of a T -matrix qe with the i-cross-section 
lines shown in Fig. 17.

Indeed, for each e ∈ n + 1 consider the polynomial pe(y0, . . . , yk−1) =

me

(
t(y0

0, . . . , y0
i , . . . y0

k−1), t(y0
0, . . . , y1

i , . . . y0
k−1),

s(y1
0, . . . , y2

i , . . . y1
k−1), s(y1

0, . . . , y3
i , . . . y1

k−1)
)

where yi = y0
i
�y1

i
�y2

i
�y3

i and yj = y0
j
�y1

j for j �= i. We now define the following pairs 
of tuples:

1. (ui, vi) = ((bi
�bi

�di
�di), (bi

�ai�ci�di))
2. (uj , vj) = ((aj�cj), (bj

�dj)) if j �= i.
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Let qe ∈ M(T ) be labeled by (pe, ((u0, v0), . . . , (uk−1, vk−1))). By Proposition 2.4, 
every i-supporting line of qe is a δ-pair. We assume that C(T ; δ) holds, so the i-pivot 
line of qe is a δ-pair. This holds for all e ∈ n + 1, so 〈c, d〉 ∈ δ as desired. �
Acknowledgment

The author wishes to thank his advisor Keith Kearnes.

References

[1] Erhard Aichinger, Peter Mayr, Ralph McKenzie, On the number of finite algebraic structures, J. Eur. 
Math. Soc. (JEMS) 16 (8) (2014) 1673–1686.

[2] Erhard Aichinger, Nebojša Mudrinski, Some applications of higher commutators in Mal’cev algebras, 
Algebra Universalis 63 (4) (2010) 367–403.

[3] Wolfram Bentz, Peter Mayr, Supernilpotence prevents dualizability, J. Aust. Math. Soc. 96 (1) 
(2014) 1–24.

[4] Andrei Bulatov, On the number of finite Mal’tsev algebras, in: Contributions to General Algebra, 
13, Velké Karlovice, 1999/Dresden, 2000, Heyn, Klagenfurt, 2001, pp. 41–54.

[5] Alan Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 
12 (1969) 167–173.

[6] Ralph Freese, Ralph McKenzie, Commutator Theory for Congruence Modular Varieties, London 
Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987.

[7] H. Peter Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 
45 (286) (1983), viii+79.

[8] Joachim Hagemann, Christian Herrmann, A concrete ideal multiplication for algebraic systems and 
its relation to congruence distributivity, Arch. Math. (Basel) 32 (3) (1979) 234–245.

[9] Keith A. Kearnes, Congruence modular varieties with small free spectra, Algebra Universalis 42 (3) 
(1999) 165–181.

[10] Emil W. Kiss, Three remarks on the modular commutator, Algebra Universalis 29 (4) (1992) 
455–476.

[11] R.C. Lyndon, Two notes on nilpotent groups, Proc. Amer. Math. Soc. 3 (1952) 579–583.
[12] Jakub Opršal, A relational description of higher commutators in Mal’cev varieties, Algebra Univer-

salis 76 (3) (2016) 367–383.
[13] Jonathan D.H. Smith, Mal’cev Varieties, Lecture Notes in Mathematics, vol. 554, Springer-Verlag, 

Berlin–New York, 1976.

http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6E756D66696E616C67s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6E756D66696E616C67s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib616963686D7564s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib616963686D7564s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6D61797262656E7As1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6D61797262656E7As1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib62756C646566s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib62756C646566s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6461797465726D73s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6461797465726D73s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib666Ds1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib666Ds1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib67756D6Ds1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib67756D6Ds1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6868s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6868s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib736D616C6C6672656573706563s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib736D616C6C6672656573706563s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib746872656572656D61726B73s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib746872656572656D61726B73s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6C796E646F6E6E696C67726F7570s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6F7273616C72656Cs1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6F7273616C72656Cs1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6A6468736D697468s1
http://refhub.elsevier.com/S0021-8693(18)30438-1/bib6A6468736D697468s1

	Higher commutator theory for congruence modular varieties
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Day terms
	2.3 Matrices and centralization

	3 Symmetry of higher commutator
	4 Generators of higher commutator
	5 Additivity and homomorphism property
	6 Two term commutator
	Acknowledgment
	References


