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Endo-permutation modules
Nilpotent blocks

1. Introduction

Let G be a finite group, let p be a prime number such that p | |G|, and let k be an 
algebraically closed field of characteristic p ≥ 3. Moreover, assume that we are given 
a p-modular system (K, O, k) which is large enough for G and all of its subgroups and 
quotients. The main aim of this article is to provide a complete description of the ordinary 
characters of the trivial source modules lying in a p-block B with a non-trivial cyclic 
defect group D.

First of all, it is well-known that trivial source kG-modules are liftable to OG-lattices, 
and moreover that they lift in a unique way to a trivial source OG-lattice. Therefore it 
is natural to consider the K-character afforded by this trivial source lift and consider 
the following problem.

Problem A. Given a p-block B of kG with non-trivial cyclic defect groups, describe all 
the irreducible constituents of the ordinary characters afforded by the trivial source lift 
to O of all trivial source B-modules.

Of course a solution to Problem A should be given in terms of certain block invariants, 
which we will determine in due course. To begin with, trivial source modules in blocks 
with cyclic defect groups are classified by [8] using the much older classification of the 
indecomposable modules in such blocks by Janusz [10] through a so-called path on the 
Brauer tree of B. See §2.4. However, as trivial source modules are not invariants of the 
Morita equivalence class of the block B, the data of the Brauer tree is not sufficient 
in general. However, they are invariants of the source-algebra-equivalence class of B. 
Hence the classification of [8] also makes use of further parameters parametrising the 
source algebra of B according to [15, Theorem 2.7]. Namely a certain endo-permutation 
kD-module, which we will denote W , and a sign function that can be determined from 
the values of the ordinary irreducible characters of B at certain elements of D.

Our main result is Theorem 7.1, which provides us with a solution to Problem A, and 
indeed describes the K-character afforded by the trivial source lift of all trivial source 
B-modules with arbitrary non-trivial vertices in terms of the above parameters, that 
is the Brauer tree of B, the kD-module W and the sign function. We postpone the 
precise statement of our main result to Section 7 because it requires introducing a lot of 
notation and concepts. However, more accurately, the irreducible constituents of these 
characters which are non-exceptional characters of B can easily be determined from the 
aforementioned path associated to the module. On the other hand, the constituents of 
these characters which are exceptional characters of B are much more difficult to describe 
and all our results in this article focus on this problem. Also notice that trivial source 
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B-modules with trivial vertices are just the projective indecomposable modules and their 
characters are well-known. See §2.5.

Theorem 7.1 generalises on the one hand results on characters of trivial source modules 
in cyclic blocks obtained by the first author and N. Kunugi in [11], and on the other 
hand results of M. Takahashi [17] describing the characters of Scott modules for finite 
groups with cyclic Sylow p-subgroups (see Remark 7.3).

The paper is organised as follows. In Section 2, we introduce our notation and recall 
the necessary background results on blocks with cyclic defect groups. In Section 3, we 
point out some general results about characters of trivial source modules in blocks with 
cyclic defect groups. In Sections 4, 5, and 6, we describe a reduction procedure in three 
steps bringing us back to computing certain distinguished K-characters of the defect 
group D of the block B. Finally, in Section 7, we recover all characters of all trivial 
source B-modules from those of the trivial source b-modules, where b is the Brauer 
correspondent of B in NG(D1) and D1 denotes the unique cyclic subgroup of order p

of D. This is achieved using a perfect isometry between b and B induced by a Rickard 
complex from Rickard’s and Rouquier’s work on blocks with cyclic defect groups. (See 
[16, Theorem 11.12.1].)

Finally, we note that we leave the case p = 2 for a further piece of work as it requires 
further technical computations on characters afforded by endo-permutation lattices with 
determinant one.

2. Notation and quoted results

2.1. General notation

Throughout, we let p be an odd prime number and G a finite group of order divisible 
by p. We let (K, O, k) be a p-modular system, where O denotes a complete discrete 
valuation ring of characteristic zero with unique maximal ideal p := J(O), algebraically 
closed residue field k := O/p of characteristic p, and field of fractions K = Frac(O), which 
we assume to be large enough for G and its subgroups in the sense that K contains a 
root of unity of order exp(G), the exponent of G.

Unless otherwise stated, for R ∈ {O, k}, RG-modules are assumed to be finitely 
generated left RG-lattices, that is, free as R-modules, and by a block B of G, we mean a 
block of kG. Given a subgroup H ≤ G, we let R denote the trivial RG-lattice, we write 
ResGH(M) for the restriction of the RG-lattice M to H, and IndG

H(N) for the induction 
of the RH-lattice N to G. Given a normal subgroup U of G, we write InfGG/U (M) for the 
inflation of the R[G/U ]-module M to G. If M is a uniserial kG-module, then we denote 
by �(M) its composition length. If P is a p-group and Q ≤ P , then ΩP/Q denotes the 
relative Heller operator with respect to Q. In other words, if M is an RP -lattice, then 
ΩP/Q(M) is the kernel of a Q-relative projective cover PP/Q(M) of M . (See [19,21] for 
this less standard notion.) In particular Ω := ΩP/{1} is the usual Heller operator. We 
denote by Irr(G) (resp. Irr(B)) the set of irreducible K-characters of G (resp. of the 
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block B of kG). In general, we continue using the notation of [8] inasmuch as it was 
introduced therein and we refer the reader to [16,20] for further standard notation.

2.2. Trivial source and cotrivial source lattices

An indecomposable RG-lattice M with vertex Q ≤ G is called a trivial source RG-
lattice if the trivial RQ-lattice R is a source of M . We adopt the convention that trivial 
source RG-lattices are indecomposable by definition.

It is well-known that any trivial source kG-module M is liftable to an OG-lattice. In 
other words, there exists an OG-lattice M̃ such that M ∼= M̃/pM̃ (see e.g. [2, Corol-
lary 3.11.4]). More accurately, in general, such modules afford several lifts, but, up to 
isomorphism, there is a unique one amongst these which is a trivial source OG-lattice. 
We denote this trivial source lift by M̂ and simply by χM the K-character afforded by 
M̂ , that is the character of K ⊗O M̂ . Character values of trivial source lattices have the 
following properties.

Lemma 2.1 ([13, Lemma II.12.6]). Let M be a trivial source kG-module and let x be a
p-element of G. Then:

(a) χM (x) equals the number of indecomposable direct summands of ResG〈x〉(M) isomor-
phic to the trivial k〈x〉-module. In particular, χM (x) is a non-negative integer.

(b) χM (x) 	= 0 if and only if x belongs to some vertex of M .

Following the terminology of [9, Definition 4.1.10], an indecomposable RG-lattice M with 
vertex Q ≤ G is called a cotrivial source RG-lattice if the RQ-lattice Ω(R) is a source 
of M . It follows that any cotrivial source kG-module M is liftable to an OG-lattice and 
affords a unique lift M̂ which is a cotrivial source OG-lattice. We denote by χM the 
character afforded by K ⊗O M̂ .

2.3. Blocks with cyclic defect groups

From now on, unless otherwise stated, we let B denote a block of kG with cyclic defect 
group D ∼= Cpn with n ≥ 1. For 0 ≤ i ≤ n, we denote by Di the unique cyclic subgroup 
of order pi and we set Ni := NG(Di). We let e denote the inertial index of B and set 
m := |D|−1

e , which we call the exceptional multiplicity of B. Then e | p − 1. There are e
simple B-modules S1, . . . , Se and e + m ordinary irreducible characters. We write

Irr(B) = {χ1, . . . , χe} 
 {χλ | λ ∈ Λ} ,

where Λ is an index set with |Λ| := m (we will give a precise definition of Λ in Section 7). 
If m > 1, the characters {χλ | λ ∈ Λ} denote the exceptional characters of B, which 
all restrict in the same way to the p-regular conjugacy classes of G and the characters 
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χ1, . . . , χe denote the non-exceptional characters of B, which are p-rational. For Λ′ ⊆ Λ, 
we set

χΛ′ :=
∑
λ∈Λ′

χλ .

We write Irr◦(B) := {χ1, . . . , χe, χΛ}, Irr
′(B) := {χ1, . . . , χe} and IrrEx(B) := {χλ | λ ∈

Λ}. We let σ(B) denote the Brauer tree of B. The vertices of σ(B) are labelled by the or-
dinary characters in Irr◦(B) and the edges of σ(B) are labelled by the simple B-modules 
S1, . . . , Se. If m > 1 the vertex corresponding to χΛ is called the exceptional vertex and 
is indicated with a black circle in the drawings of σ(B). Furthermore, we assume that 
σ(B) is given with a planar embedding, determined by specifying, for each vertex of 
σ(B), a cyclic ordering of the edges adjacent to this vertex. We use the convention that 
in a drawing of σ(B) in the plane, the successor of an edge is the counter-clockwise 
neighbour of this edge. Let now u be a generator of D1. A vertex χ ∈ Irr◦(B) of σ(B)
is said to be positive if χ(u) > 0 and we write χ > 0, whereas it is said to be negative if 
χ(u) < 0 and in this case we write χ < 0. See [8, §4.2]. The character theory of blocks 
with cyclic defect groups is essentially described by Dade’s work [4]. For more detailed 
information relative to Brauer trees we also refer the reader to [1, §17] and [9, Chapters 
1 & 2].

2.4. Indecomposable modules in blocks with cyclic defect groups

By results of Janusz [10, §5], each indecomposable B-module X which is neither 
projective nor simple can be encoded using a path on σ(B), which is by definition a 
certain connected subgraph of σ(B). This path may be seen as an ordered sequence 
(E1, . . . , Es) of edges of σ(B), called a top-socle sequence of X, where Ei, Ei+1 have a 
common vertex for every 1 ≤ i ≤ s − 1, where the odd-labelled edges are in the head 
of X and the even-labelled edges are in the socle of X, or conversely, and where some 
edges may be passed twice if necessary. Moreover, [3] associates to each indecomposable 
B-module X two further parameters: a direction ε = (ε1, εs) and a multiplicity μ. For 
i ∈ {1, s} we set εi = 1 if Ei is in the head of X and εi = −1 if Ei is in the socle of 
X. If m = 1, then μ := 0. If m > 1, then μ corresponds to the number of times that 
a simple module Ej connected to the exceptional vertex occurs as a composition factor 
of X (this is independent of the choice of Ej). The module X is entirely parametrised 
by its path, direction and multiplicity. We refer to [10,3,8] for further details. We will 
use this classification in order to state our main result in Section 7.

2.5. PIMs and hooks in blocks with cyclic defect groups

Blocks with cyclic defect groups being Brauer graph algebras (with respect to the 
Brauer tree), the structure of the PIMs of B, can be described as follows (see e.g. [2, 
§4.18]). If S is a simple B-module, then its projective cover PS is of the form
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PS =
S

Qa⊕Qb

S
,

where S = soc(PS) = head(PS) and the heart of PS is rad(PS)/ soc(PS) = Qa ⊕ Qb

for two uniserial (possibly zero) B-modules Qa and Qb. Furthermore, if the end vertices 
of the edge of σ(B) corresponding to S are labelled by the irreducible characters χa

and χb, then the projective indecomposable character corresponding to PS is ΦS =
χa +χb. The PIMs of B are precisely the trivial source B-module with vertex D0 = {1}. 
Furthermore, Green’s walk around the Brauer tree [7] provides us with a description 
of certain distinguished indecomposable B-modules, called hooks in [3]. More precisely, 
following [3, §2.3], the uniserial modules of the form

Ha := S
Qa

and Hb := S
Qb

for a simple B-module S are called the hooks of B. The vertices of such modules are the 
defect groups of B, and if e > 1 any lift of Ha affords the character χa and any lift of 
Hb affords the character χb.

2.6. Trivial source modules in blocks with cyclic defect groups, reduction to kD

We quickly recall the principal steps in the [8] classification of trivial source B-
modules.

First of all, up to isomorphism, the set of trivial source B-modules with a given vertex 
Di ≤ D (1 ≤ i ≤ n) form exactly one Ω2-orbit {Ω2a(M) | 0 ≤ a ≤ e − 1} of B-modules, 
where M is a given trivial source B-module with vertex Di, and the set of cotrivial 
source modules with vertex Di forms the Ω2-orbit {Ω2a+1(M) | 0 ≤ a ≤ e − 1}. This 
follows from the fact that the trivial kDi-module is periodic of period 2. Now, the trivial 
source B-modules are classified by [8, Theorem 5.4] in terms of their path on the Brauer 
tree σ(B). Our aim is to use this classification in order to determine the K-characters of 
their trivial source lift to O. More precisely, we are going to go through the reduction to 
kD used in [8] to recover the trivial source B-modules in order to compute their ordinary 
characters, as well.

Thus, throughout we let b denote the Brauer correspondent of B in N1, we let c be a 
block of CG(D1) covered by b, and we let A denote a source algebra of c. Furthermore, 
we let T (c) be the inertia group of c in N1 and b′ be the unique block of T (c) covering 
c, i.e., b′N1 = b and b′ is the Fong-Reynolds correspondent of b. Then D is a defect 
group of the blocks b, b′ and c. The block c is nilpotent, whereas the blocks b and b′

have inertial index e and exceptional multiplicity m. Furthermore, we let W denote the 
indecomposable capped endo-permutation kD-module parametrising the block B up to 
source-algebra equivalence. (See [15, Theorem 2.7].) Concretely, W may be thought of, 
either as a source of the simple b-modules, or as a source of the unique simple c-module. 
Hence D1 acts trivially on W .
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First, we recall that if P is a finite p-group, then a kP -module M is called endo-
permutation if its k-endomorphism algebra Endk(M) is a permutation kP -module. 
Moreover, an endo-permutation kP -module M is said to be capped if it has an inde-
composable direct summand with vertex P , which is usually denoted by Cap(M). For 
further details, we refer the reader to the survey [21]. Endo-permutation modules over 
abelian p-groups were classified by Dade [5,6]. This classification – see [21] and [8, §4.5]
– allows us to write the module W parametrising the source-algebra of B as follows:

Notation 2.2. The kD-module W has the form

W = Ωa0
D/D0

◦ Ωa1
D/D1

◦ · · · ◦ Ωan−1
D/Dn−1

(k)

with ai ∈ {0, 1} for each 0 ≤ i ≤ n − 1. Moreover, we assume that i0 < i1 < . . . < is are 
the indices such that ai0 = . . . = ais = 1 and ai = 0 if i ∈ {0, . . . , n − 1} \ {i0, . . . , is}, 
and we set s := −1 if W = k. We may in fact also assume that a0 = 0, since D1 acts 
trivially on W . Hence, in the sequel, we will write

W = W (0 < i0 < i1 < . . . < is < n) .

Furthermore, for each 1 ≤ i ≤ n we set �i := dimk

(
Cap(ResDDi

(W ))
)
, which can be 

explicitly computed as �i =
∑

0≤ij<i(−1)jpi−ij + (−1)|{j|0≤ij<i}| (see [8, Theorem 5.1]).

The reduction to kD works as follows. Firstly, the Green correspondence with respect 
to (G, N1; D), which we denote by f−1 (upwards) and f (downwards), commutes with the 
Brauer correspondence and preserves vertices and sources, hence trivial source modules. 
Secondly, the theorem of Fong-Reynolds provides us with a source-algebra equivalence 
between b and b′, which obviously preserve trivial source modules. Thirdly, we can then 
reduce to c, which is a nilpotent block, via induction/restriction using Clifford’s theory, 
which also preserve vertices and sources. We can then further reduce to kD via two 
Morita equivalences (see §2.7 for details):

kD − mod A− mod c − mod∼M

W⊗k−
∼M

If M is an indecomposable c-module, then we simply call Morita correspondent of M , 
the Morita correspondent of M in kD under the composition of these two Morita equiv-
alences. In the sequel, by abuse of notation, we will drop the module category notation 
and we will simply write our equivalences in terms of algebras.

Lemma 2.3 ([8, Lemma 4.6]). Let M be the unique trivial source c-module with vertex 
1 < Di ≤ D. Then the Morita correspondent of M is the kD-module

UDi
(W ) :=

(
IndD

D ◦Cap ◦ResDD
)

(W )

i i
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and satisfies dimk(UDi
(W )) = �i · pn−i.

We emphasise that UDi
(W ) is not a trivial source module any more in general. We refer 

the reader to [8] for proofs and further details on this subsection.

2.7. On Puig’s characterisation of source algebras of nilpotent blocks

The block c lifts uniquely to a block of OCG(D1), say c̃. Then Puig’s theorem on 
nilpotent blocks (see [16, Theorem 8.11.5, Corollary 8.11.11]) states that any source 
algebra Ã of the block c̃ is isomorphic to

S̃ ⊗O OD

as interior D-algebra, where S̃ := EndO(W̃ ) for an indecomposable endo-permutation 
OD-module W̃ with vertex D and of determinant 1. Moreover, if W := k ⊗O W̃ , then 
any source algebra A of the block c is isomorphic to

S ⊗k kD

as interior D-algebra, where S := Endk(W ) and W is also an indecomposable endo-
permutation kD-module with vertex D. Moreover, the module W can be explicitly 
realised as a source of the unique simple c-module V , and hence also as a source of 
the simple b-modules. As D1 � CG(D1) it follows from Clifford’s theory that D1 acts 
trivially on V , hence also on W .

More precisely, we have Morita equivalences:

Φk : kD A c∼M

W⊗k−
∼M

The first one is obtained by tensoring over k with W viewed as an S-module. In other 
words, an arbitrary indecomposable A-module is of the form W ⊗k U , where U is an 
indecomposable kD-module. For the second one let i ∈ cD be a source idempotent of c
such that A = ikGi. Then the (c, A)-bimodule ci and the (A, c)-bimodule ic realise a 
Morita equivalence between A and c, where an indecomposable c-module M corresponds 
to the A-module iM . See [20, (38.2)]. There are also two Morita equivalences analogously 
defined over O:

ΦO : OD Ã c̃∼M

W̃⊗O−
∼M

Tensoring everything with K we write WK := K ⊗O W̃ , SK := K ⊗O S = EndK(WK), 
so that there are Morita equivalences

ΦK : KD K ⊗O Ã ∼= SK ⊗K KD K ⊗O c̃ .∼M ∼M
WK⊗K−
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These in turn induce bijections

ΓK : IrrK(D) IrrK(K ⊗O Ã) IrrK(c)∼ ∼

between the sets of K-characters of D and c, where IrrK(K ⊗O Ã) = {ρ
W̃

· λ | λ ∈
IrrK(D)} (see [20, (52.6)]) and ρ

W̃
is the K-character afforded by W̃ . By abuse of 

notation, we also denote by ΓK its Z-linear extension to Z IrrK(D). Finally, we may use 
these bijections to label the K-characters of c. In other words, we may write

IrrK(c) = {ψλ | λ ∈ IrrK(D)} where ψλ := ΓK(λ) .

See [20, (52.8)(a) and its proof].

3. Ordinary characters of trivial source modules: general results

3.1. PIMs and hooks

We start with two elementary cases, which already let us rule out the case in which 
the exceptional multiplicity is one.

Lemma 3.1.

(a) If M is a trivial source B-module with vertex D0 = {1}, then M is a PIM. In other 
words, there exists a simple B-module S such that M = PS and

χM = χa + χb ,

where χa and χb label the vertices of σ(B) adjacent to the edge labelled by S.
(b) If a hook M of B is a trivial source module, then χM ∈ Irr◦(B) and χM (x) > 0 for 

each x ∈ D.

Proof. (a) Well-known. See §2.5.
(b) See §2.5 and Lemma 2.1. �
Corollary 3.2 (The case m = 1). If m = 1, then the trivial source B-modules are precisely 
the PIMs and the hooks of B whose Green correspondents in b are simple. Their K-
characters are described by Lemma 3.1(a) and (b).

Proof. If m = 1, then e = |D| − 1, hence D = D1 is cyclic of order p. The trivial 
source B-modules with vertex D0 are the PIMs of B. Now as D = D1, and hence 
NG(D) = NG(D1), the simple b-modules, which all have vertex D, are trivial source 
modules by Clifford theory. These are then all the trivial source b-modules with vertex 
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D and their Green correspondents in B must be exactly the trivial source B-modules 
with vertex D. The claim follows. �

Thus, henceforth, we may assume that m > 1.

3.2. Arbitrary vertices

Next we state some general facts about characters of trivial source modules with 
arbitrary vertices.

Notation 3.3. If M is a trivial source B-module (with an arbitrary vertex), then the 
K-character χM afforded by M̂ , the trivial source lift of M , satisfies

〈χM , χ〉G ∈ {0, 1} for all χ ∈ Irr(B)

e.g. by [8, Theorem A.1(d)] if e > 1, whereas it is obvious if e = 1. Therefore, throughout 
we shall write

χM = ΨM + ΞM

where ΨM is a sum (possibly empty) of pairwise distinct non-exceptional irreducible char-
acters in Irr′(B) and ΞM is a sum (possibly empty) of pairwise distinct non-exceptional 
irreducible characters in IrrEx(B). We call ΨM the non-exceptional part of χM and ΞM

the exceptional part of χM . By the above ΞM is of the form ΞM = χΛ′ for sum Λ′ ⊆ Λ
and |Λ′| = 〈ΞM , ΞM 〉G.

The irreducible constituents of the character ΨM are entirely determined by [8, The-
orem 5.4] together with [8, Theorem A.1]. Hence our main task is to determine the 
constituents of ΞM in the general case.

We start by proving that for a non-projective trivial source module M which is not a 
hook, ΞM is invariant under Ω2, hence depends only on the order of the vertices.

Lemma 3.4. Assume e > 1 and m > 1. Let M be a non-projective trivial source B-module 
which is not a hook. Then

ΞΩ2a+1(M) = χΛ − ΞM and ΞΩ2a(M) = ΞM

for each 0 ≤ a < e. In particular, if M and N are two non-isomorphic trivial source 
B-modules with a common vertex Di (where 1 ≤ i ≤ n) and which are not hooks, then 
ΞM = ΞN .

Proof. As recalled at the beginning of the section Ω2a+1(M) is a cotrivial source B-
module for each 0 ≤ a < e and Ω2a(M) is a trivial source B-module for each 0 ≤
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a < e. Since M is not a hook, by [8, Theorem A.1], the head of M has exactly one 
constituent corresponding to a simple B-module E labelling an edge of σ(B) adjacent 
to the exceptional vertex. Therefore the multiplicity of P (E) as a direct summand of 
P (M) is one and

χP (M) = Θ + χΛ ,

where by Lemma 3.1 all the irreducible constituents of Θ are in Irr′(B).
Now if Ω(M) P (M) M is a projective cover of M , then Ω̂(M) P (M̂) M̂

is a projective cover of M̂ . It follows that in the Grothendieck group of KG we have

χΩ(M) = χP (M) − χM = Θ + χΛ − ΨM − ΞM ,

hence ΞΩ(M) = χΛ−ΞM . The same argument applied to Ω(M) yields ΞΩ2(M) = χΛ+ΞM

and the first claim follows by iteration of this argument.
The second claim is then straightforward, because Di is a common vertex of M and 

N , there exists an integer 1 ≤ a < e such that N ∼= Ω2a(M). �
With these general results, we can proceed in the next four sections in four successive 

steps to recover the characters of the trivial source B-modules in the general case.

4. Step 1: characters of the Morita correspondents in kD

In this section, we compute the K-characters of the Morita correspondents in kD of 
the trivial source c-modules, that is of the modules UQ(W ) (1 < Q ≤ D). To achieve this 
aim, in an intermediary step, we describe the character of the capped endo-permutation 
kD-module W .

4.1. Representation theory of D

The representation theory of kD is well-known. In particular, kD has finite repre-
sentation type. Letting u denote a generator of D, there is a k-algebra isomorphism 
kD ∼= k[X]/(X − 1)pn mapping u �→ X := X + (X − 1)pn , and for 1 ≤ r ≤ pn the 
module Mr := k[X]/(X − 1)r is the unique indecomposable kD-module of k-dimension 
r. In fact, these form a complete set of representatives of the isomorphism classes of 
indecomposable kD-modules, and are all uniserial. We refer the reader to [20, Exercises 
17.2 and 28.3] for further details.

Similarly all indecomposable modules over all subgroups and quotients of D are 
parametrised by their k-dimension. Thus, when the module structure is clear from the 
context, we use the same notational conventions for quotients and subgroups of D as 
for D itself. [20, Exercises 17.2 and 28.3] in particular tell us that (endo-permutation) 
kD-modules can be understood inductively from proper subgroups making repetitive use 
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of the Heller operator and inflation. Now, it follows directly from the definition of Mr

that if 0 ≤ i ≤ n − 1 and 1 ≤ r ≤ pn−i − 1, then Di = 〈upn−i〉 acts trivially on Mr, so 
that Mr may be considered as k[D/Di]-module, namely by abuse of notation we may 
write Mr = InfDD/Di

(Mr).

Notation 4.1. We let ζ ∈ K× denote a primitive pn-th root of unity in K. Then

IrrK(D) = {λD
κ : D = 〈u〉 −→ K×, u �→ ζκ | κ ∈ Z and 0 ≤ κ ≤ pn − 1} .

Then λD
0 = 1D is the unique non-exceptional K-character of D and

{λD
κ | 1 ≤ κ ≤ pn − 1} = IrrEx(kD)

(see e.g. [4]). Clearly (see e.g. Lemma 3.1(a)) the projective indecomposable module kD
affords the K-character

χkD =
pn−1∑
κ=0

λD
κ .

Remark 4.2. Given 0 ≤ i ≤ n − 1, the character λD
κ may be seen as inflated from a 

character of D/Di if and only if Di ≤ kerλD
κ . Thus,

InfDD/Di
(IrrK(D/Di)) = {InfDD/Di

(λD/Di
ν ) | 0 ≤ ν ≤ pn−i − 1}

= {λD
κ | 0 ≤ κ ≤ pn − 1 and pi|κ} .

4.2. Character of the endo-permutation kD-module W

In view of §2.6 and §2.7, we first need to describe the K-characters of the capped endo-
permutation OD-lattices of determinant 1 lifting a module of the form WD(a0, . . . , an−1)
with a0 = 0. We recall that given an OD-lattice L, we may consider the compo-
sition of the underlying representation of D with the determinant homomorphism 
det : GL(L) −→ O×. This is a linear character of D, called the determinant of L. If 
this character is the trivial character, then it is said that L is an OD-lattice of determi-
nant 1.

Lemma 4.3.

(a) Any permutation OD-lattice has determinant 1.
(b) If N is an indecomposable capped endo-permutation kD-module, then N is liftable 

to an OD-lattice, and amongst all possible lifts of N there is a unique lift Ñ with 
determinant 1.

Proof. (a) This holds because p is odd. See [14, Lemma 3.3(a)].



S. Koshitani, C. Lassueur / Journal of Algebra 574 (2021) 375–408 387
(b) It is well-known that all modules belonging to a cyclic block with inertial index 1 
are liftable. The claim about the determinant holds by [20, (28.1)]. �

Notation 4.4. If N is an indecomposable capped endo-permutation kD-module, then we 
denote by χN the K-character of its unique lift of determinant 1. Notice that the unique 
indecomposable capped endo-permutation kD-module which is also a trivial source mod-
ule is the trivial module k. Its trivial source lift is the trivial OD-lattice O, which 
obviously has determinant 1, hence the above notation agrees with the notation chosen 
for the character of the trivial source lift.

Lemma 4.5. If B = kD, then there is a unique trivial source module with vertex Di for 
each 1 ≤ i ≤ n, namely IndD

Di
(k) = InfDD/Di

(k[D/Di]) = M|D/Di|, which we may also 
see as the permutation kD-module k[D/Di] with stabiliser Di.

(a) The trivial source lift of k[D/Di] is O[D/Di] and has determinant 1.
(b) We have

χM|D/Di|
=

∑
0≤κ≤pn−1

pi|κ

λD
κ .

Proof. The module IndD
Di

(k) is indecomposable, hence is the unique trivial source kD-
module with vertex Di and has dimension |D/Di|. It is also clear that IndD

Di
(k) is the 

inflation from D/Di to D of the projective indecomposable k[D/Di]-module k[D/Di]. 
Now the trivial source lift of k[D/Di] is IndD

Di
(O) = O[D/Di], which has determinant 1 

by Lemma 4.3(a). Hence, it follows from the above and Remark 4.2 that

χM|D/Di|
= χInfDD/Di

(k[D/Di]) = InfDD/Di

⎛⎝|D/Di|−1∑
ν=0

λD/Di
ν

⎞⎠ =
∑

0≤κ≤pn−1
pi|κ

λD
κ . �

Now we recall that in all generality, with the notation introduced in Subsection 2.1, 
we have: M is an endo-permutation kP -module if and only if ΩP/Q(M) is an endo-
permutation kP -module (i.e. here P is an arbitrary p-group and Q ≤ P ). This is 
essentially because, by definition, ΩP/Q(M) is the kernel of a Q-projective cover of 
M , so that tensoring it with its dual gives a permutation kP -module if and only if 
Endk(M) = M∗ ⊗k M is a permutation kP -module.

Lemma 4.6. Let 0 ≤ i ≤ n − 1 and 1 ≤ r ≤ pn−i − 1. Then the following holds:

(a) ΩD/Di
(Mr) = InfDD/Di (Ω(Mr)) = M|D/Di|−r;



388 S. Koshitani, C. Lassueur / Journal of Algebra 574 (2021) 375–408
(b) Let N be an indecomposable capped endo-permutation kD-module and let Ñ denote 
its unique lift with determinant 1. If 1 ≤ i ≤ n and dimk(N) ≤ pn−i − 1, then 
ΩD/Di

(Ñ) is the unique lift of determinant 1 of ΩD/Di
(N).

(c) ΩD/Di
(k) = M|D/Di|−1, its lift of determinant 1 is ΩD/Di

(O) and it affords the 
K-character

χΩD/Di
(k) =

( ∑
0≤κ≤pn−1

pi|κ

λD
κ

)
− λD

0 =
∑

1≤κ≤pn−1
pi|κ

λD
κ .

Proof. (a) Let Mr be the unique k[D/Di]-module of dimension r and let

0 Ω(Mr) P (Mr) Mr 0

be a projective cover of Mr. Because D/Di is a p-group and Mr is uniserial, the 
head of Mr is the trivial k[D/Di]-module and it follows that P (Mr) = k[D/Di], 
i.e. the unique projective indecomposable k[D/Di]-module. Moreover, Ω(Mr) is in-
decomposable because Mr is indecomposable. Therefore, taking inflation to D yields 
a Di-relative projective cover of Mr seen as a kD-module

0 InfDD/Di
(Ω(Mr)) InfDD/Di

(P (Mr)) InfDD/Di
(Mr) 0

since InfDD/Di
(Mr) = Mr. Thus, PD/Di

(Mr) = InfDD/Di
(P (Mr)) = k[D/Di], i.e. the 

indecomposable permutation kD-module with stabiliser Di, and

ΩD/Di
(Mr) = InfDD/Di

(Ω(Mr)) .

Moreover,

dimk(ΩD/Di
(Mr)) = dimk k[D/Di] − dimk Mr = |D/Di| − r .

(b) For the second claim, let

0 ΩD/Di
(N) PD/Di

(N) N 0

be a Di-relative projective cover of N . Then, by the arguments of the proof of (a), 
PD/Di

(N) = k[D/Di] is a permutation kD-module and this short exact sequence 
lifts to a Di-relative projective cover of Ñ :

0 ΩD/Di
(Ñ) O[D/Di] Ñ 0

(see e.g. [7, (3.6)]). But then for each g ∈ D, by Lemma 4.5(a) and the assumption 
that Ñ has determinant 1, we have
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det(g,ΩD/Di
(Ñ)) det(g, Ñ)︸ ︷︷ ︸

=1

= det(g,O[D/Di]) = 1 ,

hence det(g, ΩD/Di
(Ñ)) = 1, as required.

(c) The first claim follows from (a) since k = M1. The second claim holds by (b). For 
the third claim, we consider again the Di-relative projective cover of the trivial OD-
lattice

0 ΩD/Di
(O) O[D/Di] O 0 .

Thus, computing in the Grothendieck ring of KD, we obtain that the K-character 
afforded by the lift of determinant 1 of ΩD/Di

(k) is

χΩD/Di
(k) = χk[D/Di] − χk =

( ∑
0≤κ≤pn−1

pi|κ

λD
κ

)
− λD

0 =
∑

1≤κ≤pn−1
pi|κ

λD
κ ,

where the second equality holds by Lemma 4.5(b). �
Proposition 4.7. Let W := ΩD/Di(0) ◦ ΩD/Di(1) ◦ · · · ◦ ΩD/Di(s)(k) be an indecomposable 
capped endo-permutation kD-module, where s ≥ 0, 0 ≤ i(0) < i(1) < · · · < i(s) ≤ n− 1
are integers, and we set s = −1 if W = k. Then, in the Grothendieck ring of KD, the 
ordinary K-character afforded by the lift of determinant 1 of W is

χW =
s∑

j=0
(−1)j

( ∑
0≤κ≤pn−1

pi(j)|κ

λD
κ

)
+ (−1)s+1λD

0 .

Proof. We proceed by induction on s. If s = −1, then W = k = M1 = MD/Dn
, hence 

χW = λD
0 by Lemma 4.5. If s = 0, then W = ΩD/Di(0)(k) and by Lemma 4.6 we have

χW =
∑

1≤κ≤pn−1
pi(0)|κ

λD
κ =

( ∑
0≤κ≤pn−1

pi(0)|κ

λD
κ

)
− λD

0 .

Hence the formula holds for s = −1 and s = 0. So let us assume that s ≥ 1 and set

W ′ := ΩD/Di(1) ◦ · · · ◦ ΩD/Di(s)(k)

r(W ′) = dimk(W ′). Because i(0) < i(1) < · · · < i(s) ≤ n − 1, we have 
1 ≤ r(W ′) ≤ pn−i(0) − 1, hence

W = ΩD/Di(0)(W ′) = M|D/Di(0)|−r(W′)

by Lemma 4.6(a). Now, by Lemma 4.6(c) and (b) (applied inductively), we obtain that
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ΩD/Di(1) ◦ · · · ◦ ΩD/Di(s)(O) =: W̃ ′

is the unique lift of determinant 1 of W ′ and by the induction hypothesis

χW′ =
s∑

j=1
(−1)j+1

( ∑
0≤κ≤pn−1

pi(j)|κ

λD
κ

)
+ (−1)sλD

0 .

Again, by Lemma 4.6(b), the module ΩD/Di(0)(W̃ ′) is the unique lift of determinant 1 
of ΩD/Di(0)(W ′) = W. Hence in the Grothendieck ring of KD, we have

χW = χM|D/Di(0)|
− χW′ =

∑
0≤κ≤pn−1

pi(0)|κ

λD
κ −

( s∑
j=1

(−1)j
( ∑

0≤κ≤pn−1
pi(j)|κ

λD
κ

)
+ (−1)sλD

0

)

=
s∑

j=0
(−1)j

( ∑
0≤κ≤pn−1

pi(j)|κ

λD
κ

)
+ (−1)s+1λD

0 . �

4.3. Characters of the Morita correspondents

We can now proceed to describe the K-characters of the Morita correspondents of the 
trivial source c-modules under the character bijection ΓK of §2.7.

Throughout this subsection we fix a vertex Di ≤ D with 1 ≤ i ≤ n and we de-
note by ρ(i,W ) for the K-character afforded by the unique lift of determinant 1 of the 
indecomposable capped endo-permutation kDi-module Cap ◦ ResDDi

(W ).

Lemma 4.8. Let M be the unique trivial source c-module with vertex 1 < Di ≤ D and let 
ψM denote the K-character afforded by its trivial source lift. Then

Γ−1
K (ψM ) = IndD

Di
(ρ(i,W )) .

Proof. Follows directly from Lemma 2.3 and the definition of the character bijection ΓK

of §2.7. �
Lemma 4.9. Let 1 ≤ i ≤ n and let W := ΩDi/Di(0) ◦ · · · ◦ ΩDi/Di(t)(k), where t ≥ 0 and 
0 ≤ i(0) < i(1) < · · · < i(t) ≤ i − 1 are integers. Then:

(a) W =
∑t

j=0(−1)j IndDi

Di(j)
(k) + (−1)t+1k in the Grothendieck ring of kDi; and

(b) IndD
Di

(W) =
∑t

j=0(−1)j IndD
Di(j)

(k) + (−1)t+1 IndD
Di

(k) in the Grothendieck ring 
of kD.



S. Koshitani, C. Lassueur / Journal of Algebra 574 (2021) 375–408 391
Moreover, in the Grothendieck ring of KD,

IndD
Di

(χW) =
t∑

j=0
(−1)j

( ∑
0≤κ≤pn−1

pi(j)|κ

λD
κ

)
+ (−1)t+1

( ∑
0≤κ≤pn−1

pi|κ

λD
κ

)
.

Proof. First we note that W is an indecomposable capped endo-permutation kDi-
module.

(a) We proceed by induction on t. If t = 0, then considering a Di(0)-relative projective 
cover of the trivial module

0 ΩD/Di
(k) IndDi

Di(0)
(k) k 0

yields W = IndDi

Di(0)
(k) − k, as required. Now, given t > 1, we may decompose

W = ΩDi/Di(0)

[
ΩDi/Di(1) ◦ · · · ◦ ΩDi/Di(t)(k)

]
= PDi/Di(0)

[
ΩDi/Di(1) ◦ · · · ◦ ΩDi/Di(t)(k)

]
−
[
ΩDi/Di(1) ◦ · · · ◦ ΩDi/Di(t)(k)

]
.

As dimk

(
ΩDi/Di(1) ◦ · · · ◦ ΩDi/Di(t)(k)

)
< |Di/Di(0)|, we have

PDi/Di(0)

[
ΩDi/Di(1) ◦ · · · ◦ ΩDi/Di(t)(k)

]
= PDi/Di(0)(k)

and the induction hypothesis yields

W = PDi/Di(0)(k) −
[ t∑
j=1

(−1)j+1 IndDi

Di(j)
(k) + (−1)tk

]

=
t∑

j=0
(−1)j IndDi

Di(j)
(k) + (−1)t+1k

(b) It follows from (a) that

IndD
Di

(W) = IndD
Di

( t∑
j=0

(−1)j IndDi

Di(j)
(k) + (−1)t+1k

)

=
t∑

j=0
(−1)j

(
IndD

Di
◦ IndDi

Di(j)
(k)

)
+ (−1)t+1 IndD

Di
(k)

=
t∑

(−1)j IndD
Di(j)

(k) + (−1)t+1 IndD
Di

(k)

j=0
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The last claim is now a direct consequence of Lemma 4.5(b). �
Proposition 4.10. Let W = W (0 < i0 < i1 < . . . < is < n) be the indecomposable 
capped endo-permutation module parametrising the source algebra of the block B. Let M
be the unique trivial source c-module with vertex Di and let ψM denote the K-character 
afforded by its trivial source lift to O. Then

Γ−1
K (ψM ) =

t(i)∑
j=0

(−1)j
( ∑

0≤κ≤pn−1
pij |κ

λD
κ

)
+ (−1)t(i)+1

( ∑
0≤κ≤pn−1

pi|κ

λD
κ

)
,

where t(i) := max{0 ≤ j ≤ s | ij ≤ i − 1} if W � k and t(i) := −1 if W = k.

Proof. By Lemma 4.8, Γ−1
K (ψM ) = IndD

Di
(ρ(i,W )), where ρ(i,W ) is the K-character of 

the lift of determinant 1 of the indecomposable capped endo-permutation kDi-module 
Cap ◦ ResDDi

(W ). By [8, §4.5], we have

Cap ◦ResDDi
(W ) = Ωa0

Di/D0
◦ Ωa1

Di/D1
◦ · · · ◦ Ωai−1

Di/Di−1
(k)

= ΩDi/Di0
◦ · · · ◦ ΩDi/Dit

(k) ,

where t := t(i). Therefore it follows from Lemma 4.9(b) that

Γ−1
K (ψM ) = IndD

Di
(ρ(i,W ))

=
t(i)∑
j=0

(−1)j
( ∑

0≤κ≤pn−1
pij |κ

λD
κ

)
+ (−1)t(i)+1

( ∑
0≤κ≤pn−1

pi|κ

λD
κ

)
. �

5. Step 2: characters of the trivial source b-modules

Throughout this section, we assume W = W (0 < i0 < i1 < . . . < is < n) according 
to Notation 2.2 is the indecomposable capped endo-permutation module parametrising 
the source algebra of the block B. We let 1 < Di ≤ D (1 ≤ i ≤ n) be a fixed vertex and 
we set t(i) := max{0 ≤ j ≤ s | ij ≤ i − 1} if W � k and t(i) := −1 when W = k.

First we recover the characters of the trivial source c-modules.

Lemma 5.1. Let M be the unique trivial source c-module with vertex Di and let ψM

denote the K-character afforded by its trivial source lift to O. Then

ψM =
t(i)∑
j=0

(−1)j
( ∑

0≤κ≤pn−1
ij

ψλD
κ

)
+ (−1)t(i)+1

( ∑
0≤κ≤pn−1

i

ψλD
κ

)

p |κ p |κ
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=
t(i)∑
j=0

(−1)j
( ∑

1≤κ≤pn−1
pij |κ

ψλD
κ

)
+ (−1)t(i)+1

( ∑
1≤κ≤pn−1

pi|κ

ψλD
κ

)
+ d(W,Di)ψλD

0
,

where d(W, Di) := 0 if t(i) is even and d(W, Di) := 1 if t(i) is odd.

Proof. Applying ΓK to the formula in Proposition 4.10 yields the first equality. The 
second equality is straightforward, indeed, we only write the unique non-exceptional 
character ψλD

0
in a separate summand. �

Next we need to induce the above characters in turn to the stabiliser T (c) and then 
N1 in order to compute the K-characters of the trivial source b′-modules and b-modules.

Remark 5.2. Recall that we write IrrK(c) = {ψλD
κ
| 1 ≤ κ ≤ pn − 1}. Then the following 

assertions follow from Clifford-theoretic arguments (see [1, §19]):

(1) For ψλD
0

, the unique non-exceptional character of c, we have

IndT (c)
CG(D1)(ψλD

0
) = ψ̃1 + . . . + ψ̃e ,

where {ψ̃1, . . . , ψ̃e} = Irr′(b′) (each ψ̃j extends ψλD
0

);
(2) IndT (c)

CG(D1)(ψλD
κ

) =: ψ̃λD
κ
∈ IrrEx(b′) for each exceptional character ψλD

κ
∈ IrrEx(c);

(3) Irr′(b) = {θ1, . . . , θe} where θj := IndN1
T (c)(ψ̃j) for each 1 ≤ j ≤ e and

IndN1
T (c)(ψ̃λD

κ
) =: θλD

κ
∈ IrrEx(b) for each 1 ≤ κ ≤ pn − 1

as the theorem of Fong-Reynolds gives a source-algebra equivalence between b′ and 
b induced by induction from T (c) to N1. (See [12, 1.5. Theorem].)

(4) Let E be the inertial quotient of B. This is a cyclic subgroup of order e of 
NG(D)/CG(D), hence acts by inner automorphisms on D = 〈u〉 and embeds as 
a subgroup of Aut(D) ∼= (Z/pnZ)×. Hence, writing E = 〈h̄〉 with h ∈ NG(D), there 
exists ā ∈ (Z/pnZ)× of order e such that

h−1uh = ua ,

where 0 ≤ a < pn is coprime to p since e | p − 1, so that the group E acts by 
conjugation on IrrEx(D) via

(λD
κ )h̄(u) = λD

κ (h−1uh) = λD
κ (ua) = ζκa = λD

κa(u) .

Hence (λD
κ )h̄α = λD

κaα and each orbit has length e. Therefore, fixing a set of repre-
sentatives of the orbits of this action, say {λκ(r) | 1 ≤ r ≤ m} =: Λ (where m is the 
exceptional multiplicity of B), we may rewrite
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IrrEx(D) =
m

r=1

{λD
κ(r)aα | 0 ≤ α ≤ e− 1} ,

where λD
κ(r,α) : D −→ K×, u �→ ζκ(r)aα . It follows that

IndT (c)
CG(D1)(ψλD

κ(r)aα
) = IndT (c)

CG(D1)(ψλD

κ(r′)aα′
) ⇐⇒ r = r′ ,

thus we may set

θλκ(r) := IndN1
CG(D1)(ψλD

κ(r)aα
) for each 1 ≤ r ≤ m, 0 ≤ α ≤ e− 1 ,

so that by the above IrrEx(b) = {θλκ(r) | 1 ≤ r ≤ m} = {θλ | λ ∈ Λ}.

Corollary 5.3. Let 1 < Di ≤ D be as above. Let Y1, . . . , Ye be the e pairwise 
non-isomorphic trivial source b-modules with vertex Di. For each 1 ≤ x ≤ e let 
χYx

= ΨYx
+ ΞYx

be the K-character afforded by the trivial source lift of Yx to O (see 
Notation 3.3). Then the following assertions hold:

(a) if t(i) is odd, then without loss of generality we may assume that we have chosen the 
labelling such that ΨYx

= θx, whereas ΨYx
= 0 if t(i) is even; and

(b)

ΞYx
=

t(i)∑
j=0

(−1)j
( ∑

1≤r≤m

pij |κ(r)

θλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi|κ(r)

θλκ(r)

)
.

Proof. First assume that Y1, . . . , Ye are hooks. Then by [8, Corollary 5.2(c)], we must 
have W = k and Di = Dn and Y1, . . . , Ye are precisely the simple b-modules. (This is 
because the simple b-modules are hooks since σ(b) is a star with e edges and exceptional 
vertex at its centre, and moreover D1 acts trivially on them, hence they are trivial source 
modules.) In consequence, we may assume that we have chosen the labelling such that 
χYx

= θx = ΨYx
and ΞYx

= 0 for each 1 ≤ x ≤ e. Hence (a) and (b) hold in this case.
We may now assume that Y1, . . . , Ye are not hooks. If M denotes the unique trivial 

source c-module with vertex Di, then by Clifford theory

IndT (c)
CG(D1)(M) = M1 ⊕ · · · ⊕Me

is the direct sum of the e pairwise non-isomorphic trivial source b′-modules with vertex 
Di and

IndN1 (M) = Y1 ⊕ · · · ⊕ Ye with Yj = IndN1 (Mj) ∀ 1 ≤ j ≤ e (w.l.o.g.)
CG(D1) T (c)
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is the direct sum of the e pairwise non-isomorphic trivial source b-modules with vertex 
Di. At the level of K-characters, we obtain from Lemma 5.1 and Remark 5.2 that

IndN1
CG(D1)(ψM ) =

t(i)∑
j=0

(−1)j
( ∑

1≤κ≤pn−1
pij |κ

IndN1
CG(D1)(ψλD

κ
)
)

+ (−1)t(i)+1
( ∑

1≤κ≤pn−1
pi|κ

IndN1
CG(D1)(ψλD

κ
)
)

+ d(W,Di) IndN1
CG(D1)(ψλD

0
)

=
t(i)∑
j=0

(−1)je
( ∑

1≤r≤m

pij |κ(r)

θλκ(r)

)

+ (−1)t(i)+1e
( ∑

1≤r≤m
pi|κ(r)

θλκ(r)

)
+ d(W,Di)(θ1 + . . . + θe) .

As by Lemma 3.4 we have ΞY1 = . . . = ΞYe
and the multiplicity of each irreducible 

constituent of this character is one, we have

ΞYx
=

t(i)∑
j=0

(−1)j
( ∑

1≤r≤m

pij |κ(r)

θλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi|κ(r)

θλκ(r)

)

for each 1 ≤ x ≤ e. �
Remark 5.4. According to Janusz’ classification of the indecomposable modules in blocks 
with cyclic defect groups [10] a non-simple trivial source b-module Yx (1 ≤ x ≤ e) as in 
Corollary 5.3 can only correspond to paths on the Brauer tree σ(b) of the form

θx θΛ� Sx �
Sx

or of the form

θx1�
Sx1

χΛ

�
Sx2�

θx2
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because σ(b) is a star with exceptional vertex at its centre. Therefore, if e > 1, it is 
a priori clear that any lift of Yx affords a K-character of the form dxθx + θΛ′ for some 
dx ∈ {0, 1} and some Λ′ ⊆ Λ. See [8, Theorem A.1].

Now, if e > 1, then a trivial source b-module Yx with ΨYx
= θx corresponds to a path 

of the first type and if ΨYx
= 0, then Yx corresponds to a path of the second type. See 

[8, Theorem A.1]. If e = 1 only the first type of paths exists. In this case Corollary 5.3
tells us whether θx occurs as a constituent in χYx

or not.

6. Step 3: from b to B, the exceptional constituents

For the passage from b to B, we first need to describe the labelling of the ex-
ceptional K-characters of B which we will use in the sequel. Recall that we write 
Irr′(b) = {θ1, . . . , θe} and IrrEx(b) = {θλ | λ ∈ Λ}, where

Λ = {λκ(r) | 1 ≤ r ≤ m}

is defined in Remark 5.2. Moreover, we write Irr′(B) = {χ1, . . . , χe}, where we may 
assume that for each 1 ≤ x ≤ e, χx is the K-character of the Green correspondent in 
B of the simple b-module Sx affording the K-character θx. Then the standard labelling 
of the exceptional characters of B is achieved as follows: if Δ : Z Irr(b) −→ Z Irr(B)
denotes the homomorphism of abelian groups induced by the functor 1B̃ · IndG

N1
, there 

exists a sign δ ∈ {±1} and {χλ | λ ∈ Λ} such that for all pairs λ, λ′ ∈ Λ, we have

Δ(θλ − θλ′) = δ(χλ − χλ′) .

By [16, Theorems 11.10.2(ii)] this yields the existence of a perfect isometry

I : Z Irr(b) −→ Z Irr(B)

sending each θx ∈ Irr′(b) to I(θx) = δ(θx)χx with δ(θx) ∈ {±1} and each θλ ∈ IrrEx(b)
to I(θλ) = δχλ with δ ∈ {±1} independent of λ ∈ Λ.

Remark 6.1. By results of Rickard and Rouquier, see [16, Theorem 11.12.1], there is a 
2-term splendid Rickard complex

M• : 0 → N → M → 0

of (B, b)-bimodules, where N and M are in degrees −1 and 0 respectively,
M := 1B·kG·1b, and N is a certain direct summand of the projective cover of M as 
(B, b)-bimodule. Thus, by [16, Corollary 9.3.3], the complex M• induces another perfect 
isometry

I : ZIrr(b) → ZIrr(B)



S. Koshitani, C. Lassueur / Journal of Algebra 574 (2021) 375–408 397
such that on the one hand for each θ ∈ Irr(b), we have I(θ) = ε(θ)χ for a certain 
χ ∈ Irr(B) and a sign ε(θ) ∈ {±1}, and on the other hand

I(θ) = (χM − χN ) ⊗Kb θ (1)

for every θ ∈ ZIrr(b). Moreover, because I and I are two perfect isometries, in fact 
it follows from [16, Theorems 11.1.12 and 11.10.2(ii)] that I sends the non-exceptional 
characters θx ∈ Irr′(b) to I(θx) = ε(θx)χx for each 1 ≤ x ≤ e and the exceptional 
characters θλ ∈ IrrEx(b) to

I(θλ) = ε · χλ

where ε := ε(θλ(1)) = . . . = ε(θλ(m)).

Lemma 6.2. Let χ be a K-character of G afforded by an OG-lattice which is a lift of an 
indecomposable B-module X. Furthermore, suppose that there exist a subset Λ′ of Λ, a 
sign ε ∈ {±1} and integers α1, · · · , αe, β ∈ Z such that

χ =
e∑

x=1
αxχx + βχΛ + εχΛ′ .

Then, either

χ =
e∑

x=1
αxχx + χΛ′ or χ =

e∑
x=1

αxχx + χΛ\Λ′ .

(See Notation 3.3.)

Proof. We have

χ =
e∑

x=1
αxχx + βχΛ + εχΛ′ =

e∑
x=1

αxχx +
∑

λ∈Λ\Λ′

βχλ +
∑
λ∈Λ′

(β + ε)χλ.

Since (Λ \Λ′) ∩Λ′ = ∅ and 〈χ, χλ〉G ∈ {0, 1} for each λ ∈ Λ, we have that β, β+ε ∈ {0, 1}
(see Notation 3.3). Hence β = 1 − ε. Therefore, ε = 1 yields χ =

∑e
x=1 αxχx + χΛ′ , 

whereas ε = −1 yields χ =
∑e

x=1 αxχx + χΛ\Λ′ . �
Proposition 6.3. Let Y be a non-projective trivial source b-module and let X := f−1(Y )
be its Green correspondent in B. Write ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part 
of χY . Then the exceptional part of χX is

ΞX = χΛ′ or ΞX = χΛ\Λ′ .
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Proof. According to Remark 5.4, we may write ΨY = d0θx0 for some 1 ≤ x0 ≤ e and 
some d0 ∈ {0, 1}, so that χY = d0θx0 + θΛ′ . Then, it follows from Remark 6.1 that

(χM − χN ) ⊗Kb χY = I(χY ) = I(d0θx0 + θΛ′)

= I
(
d0θx0 +

∑
λ∈Λ′

θλ′

)
= ε(θx0)d0χx0 +

∑
λ∈Λ′

εχλ′

= ε(θx0)d0χx0 + εχΛ′

Now, on the one hand, as M induces a stable equivalence of Morita type between b and 
B, we have

M ⊗b Y = X ⊕ (projective B-module).

Thus χM⊗bY = χX +Φ, where Φ is the character a projective B-module. By Lemma 3.1
we can write

Φ =
e∑

x=1
αxχx + αχΛ

for non-negative integers α1, . . . , αe, α ∈ Z≥0. On the other hand, N is projective as a 
(B, b)-bimodule, hence N ⊗b Y is a projective left B-module. Thus again by Lemma 3.1
we can write

χN =
e∑

x=1
βxχx + βχΛ

for non-negative integers β1, . . . , βe, β ∈ Z≥0. It follows that

(χM − χN ) ⊗Kb χY = (χM ⊗Kb χY ) − (χN ⊗Kb χY ) = χX +
e∑

x=1
γxχx + (α− β)χΛ

for integers γ1, . . . , γe ∈ Z. Hence

χX +
e∑

x=1
γxχx + (α− β)χΛ = ε(θx0)d0χx0 + εχΛ′

so that

χX = ε(θx0)d0χx0 +
n∑

x=1
(−γx)χx + (β − α)χΛ + εχΛ′

and the claim follows from Lemma 6.2. �
Next, we count the number of exceptional constituents of the trivial source b-modules.
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Lemma 6.4. Let Y be a non-projective trivial source b-module with vertex Di (1 ≤ i ≤ n). 
Write ΨY = d0θx0 for some 1 ≤ x0 ≤ e and some d0 ∈ {0, 1} for the non-exceptional 
part of χY and ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part of χY . Then

|Λ′| = �i · pn−i − d0

e
and |Λ \ Λ′| = m− �i · pn−i − d0

e
.

Proof. On the one hand, because the multiplicity of each irreducible constituent of ΞY

is one, we have that

|Λ′| = 〈ΞY ,ΞY 〉G = 〈χY , χY 〉G − d0 .

Now, reduction modulo p of θx0 yields one simple constituent of Y and for each λ ∈ Λ′

reduction modulo p of θλ yields e simple constituents of Y , hence reduction modulo p of 
χY = d0θx0 + θΛ′ yields

�(Y ) = d0 + e|Λ′|

as b is uniserial. On the other hand, as trivial source b-modules and trivial source c-
modules with vertex Di have the same length (see [8, Corollary 4.5]) and c is Morita 
equivalent to kD, it follows from Lemma 2.3 that the length of Y is

�(Y ) = �(UDi
(W )) = dimk(UDi

(W )) .

Therefore

|Λ′| = dimk(UDi
(W )) − d0

e
and |Λ \ Λ′| = m− dimk(UDi

(W )) − d0

e

and the claim follows from the fact that dimk(UDi
(W )) = �i · pn−i. �

7. Step 4: characters of the trivial source modules at the level of G

We can now state our main result. Note that in this section the indecomposable B-
modules are expressed in terms of their path, direction and multiplicity, as introduced 
in §2.4.

Theorem 7.1. Let B be a block with non-trivial cyclic defect group D, inertial index e, 
and exceptional multiplicity m > 1. Let W = W (0 < i0 < i1 < . . . < is < n) be the 
endo-permutation kD-module parametrising the source algebra of B. Let X be a trivial 
source B-module with vertex Di (1 ≤ i ≤ n). Set

Ξ(W, i) :=
t(i)∑
j=0

(−1)j
( ∑

1≤r≤m
ij

χλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m

i

χλκ(r)

)

p |κ(r) p |κ(r)
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and

Ξ(W, i) :=
t(i)∑
j=0

(−1)j
( ∑

1≤r≤m

pij �κ(r)

χλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi�κ(r)

χλκ(r)

)
,

where t(i) := max{0 ≤ j ≤ s | ij ≤ i − 1} if W � k and t(i) := −1 if W = k.

(a) If e = 1 and the Brauer tree of B is σ(B) =
χ1� χΛ�S1 , then the following 

assertions hold:
(i) χX = d0χ1 + Ξ(W, i) in case χ1 > 0, and
(ii) χX = (1 − d0)χ1 + Ξ(W, i) in case χ1 < 0,
where d0 = 1 if t(i) is odd and d0 = 0 if t(i) is even.

(b) If e > 1, then the following assertions hold.
(1) If the vertex is Di = D and W = k, then X is a hook and there exists χ ∈ Irr◦(B)

such that χ > 0 and χX = χ.
(2) If X corresponds to the path

χx0
χx1

χx
l

χΛ

� E1 �
Es

� El+1 �
El+2

where the direction is ε = (1, −1), l ≥ 0, and χx0 is a leaf of σ(B), then:
(i) χX =

∑l
z=0 χz + Ξ(W, i) in case l is odd, χx0 > 0, e | (�i · pn−i − 1) and the 

multiplicity 2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0 > 0, e | (�i · pn−i − 1) and 

the multiplicity 2 ≤ μ ≤ m of X is given by μ = �i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = �i·pn−i

e + 1;
(iv) χX =

∑l
z=0 χz +Ξ(W, i) in case l is even, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i

e .
(3) If X corresponds to the path

χx0
χΛ� E1 �

E2

where the direction is ε = (−1, 1) and χΛ is a leaf of σ(B), then:
(i) χX = Ξ(W, i) in case χΛ > 0, e | (�i · pn−i − 1) and the multiplicity 

2 ≤ μ ≤ m− 1 of X is given by μ = m − �i·pn−i−1
e ;

(ii) χX = Ξ(W, i) in case χΛ < 0, e | �i and the multiplicity 2 ≤ μ ≤ m − 1 of X
is given by μ = �i·pn−i

.
e
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(4) If X corresponds to the path

χx0
χx1

χx
l

χΛ

� � E1

Es

�
Es−1

� El+1 �
El+2

where l ≥ 0, the successor of E1 around χx0 is Es, the direction is ε = (1, 1), 
then:
(i) χX =

∑l
z=0 χz + Ξ(W, i) in case l is odd, χx0 > 0, e | (�i · pn−i − 1) and the 

multiplicity 2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0 > 0, e | (�i · pn−i − 1) and 

the multiplicity 2 ≤ μ ≤ m of X is given by μ = �i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = �i·pn−i

e + 1;
(iv) χX =

∑l
z=0 χz +Ξ(W, i) in case l is even, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i

e .
(5) If X corresponds to the path

χx0
χx1

χx
l

χΛ

� E1 � E2 �
Es

� El+2 �
El+3

where l ≥ 0, the successor of E1 around χx0 is Es, the direction is ε = (−1, −1), 
then:
(i) χX =

∑l
z=0 χz + Ξ(W, i) in case l is odd, χx0 > 0, e | (�i · pn−i − 1) and the 

multiplicity 2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0 > 0, e | (�i · pn−i − 1) and 

the multiplicity 2 ≤ μ ≤ m of X is given by μ = �i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = �i·pn−i

e + 1;
(iv) χX =

∑l
z=0 χz +Ξ(W, i) in case l is even, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i

e .
(6) If X corresponds to the path

�
E1

χx0
χx1

χx
l

χΛ

�
Es

E2 �
Es−1

� El+2 �
El+3

�
where l ≥ 0, the successor of E1 around χx0 is Es, the direction is ε = (−1, 1), 
then:
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(i) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0 > 0, e | (�i · pn−i − 1) and the 

multiplicity 2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0 > 0, e | (�i · pn−i − 1) and 

the multiplicity 2 ≤ μ ≤ m of X is given by μ = �i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = �i·pn−i

e + 1;
(iv) χX =

∑l
z=0 χz +Ξ(W, i) in case l is even, χx0 < 0, e | �i and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i

e .
(7) If X corresponds to the path

�
E1

χΛ

�
E2�

where the successor of E1 around χΛ is E2 and the direction is ε = (−1, 1), then:
(i) χX = Ξ(W, i) in case χΛ > 0, e | (�i · pn−i − 1) and the multiplicity 

1 ≤ μ ≤ m− 1 of X is given by μ = m − �i·pn−i−1
e ;

(ii) χX = Ξ(W, i) in case χΛ < 0, e | �i and the multiplicity 1 ≤ μ ≤ m − 1 of X
is given by μ = �i·pn−i

e .
In all drawings of the paths, the vertices χx0 , . . . , χxl

∈ Irr′(B).

Remark 7.2. To simplify, we say that the trivial source module X has type (2) (resp.
(3), (4), (5), (6), (7)) if X corresponds to a path of type (2), (resp. (3), (4), (5), (6),
(7)) in the statement of Theorem 7.1(b). We also note that this labelling agrees with the 
labelling of [8, Theorem 5.3].

Proof. We shall go through the classification of the trivial source B-modules with ver-
tex Di provided by [8, Theorem 5.3]. Let Y := f(X) be the Green correspondent of X
in b. Write ΨY = d0θx0 for some 1 ≤ x0 ≤ e and some d0 ∈ {0, 1} for the non-exceptional 
part of χY and ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part of χY .

For each module occurring in [8, Theorem 5.3], we determine both the non-exceptional 
part ΨX and the exceptional part ΞX of χX from χY as follows.

(a) If e = 1, then B is uniserial and there is a unique trivial source B-module X with 
vertex Di. Also, more precisely, χY = d0θ1 + χΛ′ and χX must also have the form 
χX = d′0χ1 + ΞX for some d′0 ∈ {0, 1}. Hence,

�(Y ) = d0 + |Λ′| and �(X) = d′0 + 〈ΞX ,ΞX〉G .
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By Proposition 6.3, either ΞX = χΛ′ or ΞX = χΛ\Λ′ , hence 〈ΞX , ΞX〉G ∈
{|Λ′|,m− |Λ′|}. Now, by [8, Theorem 5.3(a)] there are two cases to distinguish for X.
· Case 1: χ1 > 0. Then, it follows from [8, Theorem 5.3(a) and its proof] that

�(Y ) = �(X) = �i · pn−i .

By the above, the only possibility is ΞX = χΛ′ and d′0 = d0, i.e. ΨX = d0χ1.
· Case 2: χ1 < 0. Then by [8, Theorem 5.3(a) and its proof],

�(Ω(Y )) = �(X) = pn − �i · pn−i .

Now, as the unique PIM of b affords the character θ1 + θΛ, the cotrivial source 
module Ω(Y ) affords the character

χΩ(Y ) = (1 − d0)θ1 + θΛ\Λ′

and it follows that the only possibility is ΞX = χΛ\Λ′ and d′0 = 1 − d0, i.e. 
ΨX = (d0 − 1)χ1.

Now, by Corollary 5.3(b), χΛ′ = Ξ(W, i), whereas χΛ\Λ′ = Ξ(W, i). By Corol-
lary 5.3(a) yields d0 = 1 if t(i) is odd and d0 = 0 if t(i) is even.

(b) We can now go through the classification of the trivial source B-modules with vertex 
Di provided by [8, Theorem 5.3(b)]. To begin with, if X has vertex D and W = k, 
then X is a hook and the claim follows from Lemma 3.1.
Thus, from now on we assume that X has type (2), (3), (4), (5), (6) or (7). First of 
all, in all cases the non-exceptional part ΨX of χX is given by [8, Theorem A.1(d)], 
namely ΨX =

∑l
z=0 χz if X is of type (2), (4), (5) or (6), whereas ΨX = 0 if X is 

of type (3) or (7). Therefore, it remains to compute the exceptional part ΞX of χX . 
Now, [8, Theorem A.1(d)] also provides us with the number of constituents of ΞX , 
namely

〈ΞX ,ΞX〉G =
{
μ− 1 if X corresponds to a path of type (2), (4), (5) or (6);
μ if X corresponds to a path of type (3) or (7).

Let Y := f(X) be the Green correspondent of X in b. Write ΨY = d0θx0 for 
some 1 ≤ x0 ≤ e and some d0 ∈ {0, 1} for the non-exceptional part of χY and 
ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part of χY . By Lemma 6.4, the number of 
constituents of ΞY is

|Λ′| = �i · pn−i − d0

e
.

Now, by Proposition 6.3 there are two possibilities for ΞX . First, ΞX = χΛ′ if and 
only if 〈ΞX , ΞX〉G = |Λ′|. Hence by the above
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ΞX = χΛ′ ⇔ μ =
{

�i·pn−i−d0
e + 1 if X is of type (2), (4), (5) or (6);

�i·pn−i−d0
e if X is of type (3) or (7).

Second, ΞX = χΛ\Λ′ if and only if 〈ΞX , ΞX〉G = |Λ \ Λ′| = m − |Λ′|. Hence by the 
above

ΞX = χΛ\Λ′ ⇔ μ =
{
m + 1 − �i·pn−i−d0

e if X is of type (2), (4), (5) or (6);
m− �i·pn−i−d0

e if X is of type (3) or (7).

In addition, by Corollary 5.3(b), χΛ′ = Ξ(W, i), whereas χΛ\Λ′ = Ξ(W, i). Finally, 
we note that by Corollary 5.3(a), we have d0 = 1 if and only if t(i) is even, which by 
construction happens if and only if e | (�i · pn−i − d0) and d0 = 0 if and only if t(i)
is odd, which by construction happens if and only if e | �i.
This data together with the classification theorem [8, Theorem 5.3(b)] yields the 
following form for ΞX .
1. Types (2), (4), (5) and (6) all work identically. By [8, Theorem 5.3(b)] there are 

four cases to distinguish.
Case 1: X is such that l is odd, χx0 > 0, e | (�i · pn−i − 1) and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = m + 1 − �i·pn−i−1
e .

In this case it follows from the above that d0 = 1 and

ΞX = χΛ\Λ′ = Ξ(W, i).

Case 2: X is such that l is even, χx0 > 0, e | (�i · pn−i − 1) and the multiplicity 

2 ≤ μ ≤ m of X is given by μ = �i·pn−i−1
e + 1.

In this case it follows from the above that d0 = 1 and ΞX = χΛ′ = Ξ(W, i).
Case 3: X is such that l is odd, χx0 < 0, e | �i and the multiplicity 2 ≤ μ ≤ m of 

X is given by μ = �i·pn−i

e + 1.
In this case it follows from the above that d0 = 0 and ΞX = χΛ′ = Ξ(W, i).

Case 4: X is such that l is odd, χx0 < 0, e | �i and the multiplicity 2 ≤ μ ≤ m of 
X is given by μ = m + 1 − �i·pn−i

e .
In this case it follows from the above that d0 = 0 and

ΞX = χΛ\Λ′ = Ξ(W, i).

2. Type (3): By [8, Theorem 5.3(b)] there are two cases to distinguish.
Case 1: X is such that χΛ > 0, e | (�i ·pn−i−1) and the multiplicity 2 ≤ μ ≤ m −1

of X is given by μ = m − �i·pn−i−1
e .

In this case it follows from the above that d0 = 1 and

ΞX = χΛ\Λ′ = Ξ(W, i).
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Case 2: X is such that χΛ < 0, e | �i and the multiplicity 2 ≤ μ ≤ m − 1 of X is 
given by μ = �i·pn−i

e .
In this case it follows from the above that d0 = 0 and ΞX = χΛ′ = Ξ(W, i).

3. Type (7): By [8, Theorem 5.3(b)] there are two cases to distinguish.
Case 1: X is such that χΛ > 0, e | (�i ·pn−i−1) and the multiplicity 1 ≤ μ ≤ m −1

of X is given by μ = m − �i·pn−i−1
e .

In this case it follows from the above that d0 = 1 and

ΞX = χΛ\Λ′ = Ξ(W, i).

Case 2: X is such that χΛ < 0, e | �i and the multiplicity 1 ≤ μ ≤ m − 1 of X is 
given by μ = �i·pn−i

e .
In this case it follows from the above that d0 = 0 and

ΞX = χΛ′ = Ξ(W, i).

�
Remark 7.3. In [17] M. Takahashi computed the ordinary characters afforded by Scott 
modules in groups with cyclic Sylow p-subgroups, where the inertial index of the principal 
block is greater than one. Scott modules all belong to the principal block and correspond 
to paths of the form

χx0 χx1 χxl
χΛ� k �

k
� El+1 �

El+2

with χx0 = 1G > 0 and E1 = Es = k. For the principal block, W = k, because it is 
isomorphic to a source of the trivial kG-module. Hence �i = 1 and e | (pn−i− 1) for each 
1 ≤ i ≤ n. Thus the Scott module with vertex Di correspond to a module of type (2) in 
Theorem 7.1(b) with χx0 > 0 and e | (pn−i − 1).

8. An example à la dade

Dade [4, §9] proves that all isomorphism classes of capped endo-permutation kD-
module on which D1 acts trivially arise for the module W parametrising the source 
algebra of the block B. We also note that all examples given by Dade in [4, §9] are in the 
setting of nilpotent blocks. Here we give such an example, where W � k. In such a case 
NG(D) 	=NG(D1) and such examples are of particular interest because the two Brauer 
corresponding blocks of B in NG(D1) and in NG(D) are not source algebra equivalent, 
although they are Morita equivalent.

Example 8.1 (See [4, §9]). Let p := 3, let D := 〈u〉 be the cyclic group of order 32, and 
let Q := 171+2

+ be the extra-special group of order 173 of exponent 17. Let G := Q � D
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be a semi-direct product of Q by D, where D acts on Q in such a way that CD(Q) = D1. 
Then [Z(Q), D] = 1 and Aut(Q) ∼= (C17 × C17) � GL2(17). Thus,

NG(D) = CG(D) = Z(Q) ×D ∼= C17 ×D ,

while G = NG(D1) = CG(D1) = Q � D, so that B = b = c.
Computing in GAP4 [18], we see that this group has ninety-six 3-blocks of defect D1

and seventeen 3-blocks of defect D. We let B be a non-principal 3-block of G with the 
defect group D and

Irr(B) = {χ298, χ314, χ315, χ346, χ347, χ348, χ394, χ395, χ396} .

The values of these characters at 3-elements are given in the following table: 

Degree Character 1a 3a 9a
17 χ1 := χ298 17 17 −1
17 χλ1

:= χ396 17 17ω −ζ

17 χλ2
:= χ348 17 17ω2 −ζ2

17 χλ3
:= χ315 17 17 −ζ3 = −ω

17 χλ4
:= χ395 17 17ω −ζ4

17 χλ5
:= χ347 17 17ω2 −ζ5

17 χλ6
:= χ314 17 17 −ζ6 = −ω2

17 χλ7
:= χ394 17 17ω −ζ7

17 χλ8
:= χ346 17 17ω2 −ζ8

where ζ ∈ K× is a primitive 9th root of unity and ω := ζ3 and χ1 is the unique 
non-exceptional character. Furthermore, the labelling of the exceptional characters is 
obtained via the bijection ΓK of §2.7 using the generalised decomposition numbers of 
B = c according to [20, (52.8)(a)].

Now, we compute the trivial source modules of B and their characters as follows. 
First, the unique PIM of B is the projective cover P (S) of the simple module S, has 
length 9, and affords the character χ1 + χΛ by Lemma 3.1(a).

Next we recall that the simple module S must be a hook of B, which affords the 
character χ1. As χ1(3a) = 17 > 0, we have that χ1 > 0. Therefore, it follows from [8, 
Corollary 5.2(a)] that the unique trivial source B-module with vertex D1 has length 
32−1 = 3. Thus it must be PD/D1(S), the relative D1-projective cover of S.

Therefore, it remains to find the unique trivial source B-module X with vertex D. By 
[8, Corollary 5.2(a)](b) we know that X has length dimk(W ) (where as usual W denotes 
the endo-permutation kD-module parametrising the source algebra of the block B). Since 
D is cyclic of oder 9 and D1 acts trivially on W , there are in fact only two possibilities: 
W = k or W = ΩD/D1(k). As W is by definition a source of S, Lemma 2.1 excludes 
the case W = k, because otherwise S would be a trivial source module contradicting the 
fact that χ1(9a) = −1 < 0. Hence W = ΩD/D1(k) and dimk(W ) = 2. It follows that 
X = ΩD/D1(S) and has length 2.
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Finally using the formulae of Theorem 7.1(a), we obtain that the trivial source B-
modules and their characters are given by the following table:

Length Module Vertex Character 1a 3a 9a
9 P (S) {1} χ1 + χΛ 9 × 17 0 0
3 PD/D1 (S) D1 χ1 + χλ3

+ χλ6
3 × 17 3 × 17 0

2 ΩD/D1 (S) D2 = D χλ3
+ χλ6

2 × 17 2 × 17 1
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