
Journal of Algebra 569 (2021) 568–594
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

An extension of U(gln) related to the alternating 

group and Galois orders

Erich C. Jauch
Department of Mathematics, University of Wisconsin - Eau Claire, Eau Claire, WI 
54701, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 August 2019
Available online 4 November 2020
Communicated by Volodymyr 
Mazorchuk

MSC:
16G99
17B10

Keywords:
Alternating group
Enveloping algebra
Gelfand-Kirillov Conjecture
Gelfand-Tsetlin modules
Weight modules

In 2010, V. Futorny and S. Ovsienko gave a realization 
of U(gln) as a subalgebra of the ring of invariants of a 
certain noncommutative ring with respect to the action of 
S1 × S2 × · · · × Sn, where Sj is the symmetric group on j
variables. An interesting question is what a similar algebra 
would be in the invariant ring with respect to a product of 
alternating groups. In this paper we define such an algebra, 
denoted A (gln), and show that it is a Galois ring. For n = 2, 
we show that it is a generalized Weyl algebra, and for n = 3
provide generators and a list of verified relations. We also 
discuss some techniques to construct Galois orders from Galois 
rings. Additionally, we study categories of finite-dimensional 
modules and generic Gelfand-Tsetlin modules over A (gln). 
Finally, we discuss connections between the Gelfand-Kirillov 
Conjecture, A (gln), and the positive solution to Noether’s 
problem for the alternating group.

© 2020 Elsevier Inc. All rights reserved.

E-mail address: jauchec@uwec.edu.
URL: http://ecjauch.com.
https://doi.org/10.1016/j.jalgebra.2020.10.017
0021-8693/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2020.10.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2020.10.017&domain=pdf
mailto:jauchec@uwec.edu
http://ecjauch.com
https://doi.org/10.1016/j.jalgebra.2020.10.017


E.C. Jauch / Journal of Algebra 569 (2021) 568–594 569
1. Introduction

The study of algebra-subalgebra pairs is an important technique used in the represen-
tation theory of Lie algebras [16], [2]. In 2010, Futorny and Ovsienko focused on so called 
semicommutative pairs Γ ⊂ U , where U is an associative (noncommutative) C-algebra 
and Γ is an integral domain [7]. This situation generalizes the pair (Γ, U(gln)) where Γ is 
the Gelfand-Tsetlin subalgebra Γ = C〈∪n

k=1Z(U(glk))〉 [12], [2]. Galois rings and Galois 
orders were originally defined and studied by Futorny and Ovsienko in [7] and [8]. They 
form a collection of algebras that contains many important examples including: general-
ized Weyl algebras defined by independently by Bavula [1] and Rosenberg [19] in the early 
nineties, the universal enveloping algebra of gln, shifted Yangians and finite W -algebras 
[6], Coulomb branches [21], and Uq(gln) [5]. Their structures and representations have 
been studied in [4], [9], [14], and [18].

In [7], Futorny and Ovsienko described U(gln) as the subalgebra of the ring of invari-
ants of a certain noncommutative ring with respect to the action of S1 × S2 × · · · × Sn, 
where Sj is the symmetric group on j variables such that U(gln) was a Galois order with 
respect to its Gelfand-Tsetlin subalgebra Γ.

We recall in Galois theory, given a Galois extension L/K with Gal(L/K) = G the 
subgroups G̃ of G correspond to intermediate fields K̃ with Gal(L/K̃) = G̃ with normal 
subgroups of particular interest. Since Sn has only one normal subgroup for n ≥ 5, one 
might wonder what the object similar to U(gln) would be if we considered the invariants 
with respect to the normal subgroup A1 × A2 × · · · × An, where Aj is the alternating 
group on j variables. This paper describes such an algebra, denoted by A (gln) (see 
Definition 2.1). This provides the first natural example of a Galois ring whose ring Γ is 
not a semi-Laurent polynomial ring, that is, a tensor product of polynomial rings and 
Laurent polynomial rings. Additionally, our symmetry group A1×A2 ×· · ·×An is not a 
complex reflection group. Our algebra A (gln) is an extension of U(gln) by n −1 elements 
V2, . . . , Vn. In Proposition 2.2, we prove some properties of A (gln) that are quite similar 
to U(gln). For example, it is shown that the “Weyl Group” of A (gln) is the alternating 
group An, in the sense that there is a natural extension ϕ̃HC of the Harish-Chandra 
homomorphism ϕHC : Z(U(gln)) → S(h) ∼= C[x1, . . . , xn], such that

ϕ̃HC : Z(A (gln))
∼=−→ C[x1, . . . , xn]An .

Moreover, there is a chain of subalgebras A (gl1) ⊂ A (gl2) ⊂ · · · ⊂ A (gln). In Section 3, 
we give multiple descriptions of A (gl2) and prove it is realizable as a Galois order. 
Example 4.2 shows that A (gln) is not a Galois order for n ≥ 3. The rest of Section 4
lists a set of generators and some verified relations for A (gl3), but this list may be 
incomplete. In Section 5, we show that the category of finite-dimensional modules in 
not semi-simple, that is we show the existence of non-simple irreducible module, and 
classify simple finite-dimensional weight modules. In Section 6, we provide a technique 
to turn a general Galois ring into a Galois order that is related to localization (see 
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Theorem 6.2). We use this to prove that a family of simple examples are Galois orders 
(see Corollary 6.8) and that a localization of A (gln) is a (co-)principal Galois order 
over the localized Γ̃ (see Definition 1.13 and Corollary 6.11). We use this localization 
to construct canonical Gelfand-Tsetlin modules over A (gln) in Section 7. Finally, in 
Section 8, we compute the division ring of fractions and prove, that for n ≤ 5, A (gln)
satisfies the Gelfand-Kirillov conjecture (see [13]). For the latter, we use Maeda’s positive 
solution to Noether’s problem for the alternating group A5 [17], and Futorny-Schwarz’s 
Theorem 1.1 in [10].

1.1. Galois orders

Galois orders were introduced in [7]. We will be following the set up from [14]. Let Λ
be an integrally closed domain, G a finite subgroup of Aut(Λ), and M a submonoid of 
Aut(Λ). We will adhere to the following assumptions for the entire paper:

(A1) (MM−1) ∩G = 1Aut Λ (separation)

(A2) ∀g ∈ G,∀μ ∈ M : gμ = g ◦ μ ◦ g−1 ∈ M (invariance)

(A3) Λ is Noetherian as a module over ΛG (finiteness)

Let L = Frac(Λ) and L = L#M , the skew monoid ring, which is defined as the 
free left L-module on M with multiplication given by a1μ1 · a2μ2 = (a1μ1(a2))(μ1μ2)
for ai ∈ L and μi ∈ M . As G acts on Λ by automorphisms, we can easily extend this 
action to L, and by (A2), G acts on L . So we consider the following G-invariant subrings 
Γ = ΛG, K = LG, and K = L G.

A benefit of these assumptions is the following lemma.

Lemma 1.1 ([14], Lemma 2.1 (ii), (iv) & (v)).

(i) K = Frac(Γ).
(ii) Λ is the integral closure of Γ in L.
(iii) Λ is a finitely generated Γ-module and a Noetherian ring.

What follows are some definitions and propositions from [7].

Definition 1.2 ([7]). A finitely generated Γ-subring U ⊆ K is called a Galois Γ-ring (or 
Galois ring with respect to Γ) if KU = U K = K .

Definition 1.3. Let u ∈ L such that u =
∑

μ∈M aμμ. The support of u over M is the 
following:

suppu =
{
μ ∈ M

∣∣∣ aμ �= 0 for u =
∑

aμμ

}

μ∈M
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Proposition 1.4 ([7], Proposition 4.1). Assume a Γ-ring U ⊆ K is generated by 
u1, . . . , uk ∈ U .

(1) If 
⋃k

i=1 suppui generate M as a monoid, then U is a Galois ring.
(2) If LU = L#M , then U is a Galois ring.

Theorem 1.5 ([7], Theorem 4.1 (4)). Let U be a Galois Γ-ring. Then the center Z(U )
of the algebra U equals U ∩KM , where KM = {k ∈ K | μ(k) = k ∀μ ∈ M }

Definition 1.6 ([7]). A Galois Γ-ring U in K is a left (respectively right) Galois Γ-order 
in K if for any finite-dimensional left (respectively right) K-subspace W ⊆ K , W ∩U

is a finitely generated left (respectively right) Γ-module. A Galois Γ-ring U in K is a 
Galois Γ-order in K if U is a left and right Galois Γ-order in K .

Definition 1.7 ([2]). Let Γ ⊂ U be a commutative subalgebra. Γ is called a Harish-
Chandra subalgebra in U if for any u ∈ U , ΓuΓ is finitely generated as both a left and 
as a right Γ-module.

Let U be a Galois ring and e ∈ M the unit element. We denote Ue = U ∩ Le.

Theorem 1.8 ([7], Theorem 5.2). Assume that U is a Galois ring, Γ is finitely generated 
and M is a group.

(1) Let m ∈ M . Assume m−1(Γ) ⊆ Λ (respectively m(Γ) ⊆ Λ). Then U is right (re-
spectively left) Galois order if and only if Ue is an integral extension of Γ.

(2) Assume that Γ is a Harish-Chandra subalgebra in U . Then U is a Galois order if 
and only if Ue is an integral extension of Γ.

The following are some useful results from [14].

Proposition 1.9 ([14], Proposition 2.14). Γ is maximal commutative in any left or right 
Galois Γ-order U in K .

Lemma 1.10 ([14], Lemma 2.16). Let U1 and U2 be two Galois Γ-rings in K such that 
U1 ⊆ U2. If U2 is a Galois Γ-order, then so too is U1.

It is common to write elements of L on the right side of elements of M .

Definition 1.11. For X =
∑

μ∈M μαμ ∈ L and a ∈ L defines the evaluation of X at a
to be

X(a) =
∑

μ(αμ · a) ∈ L.

μ∈M
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Similarly defined is co-evaluation by

X†(a) =
∑
μ∈M

αμ · (μ−1(a)) ∈ L

The following was independently defined by [20] called the universal ring.

Definition 1.12. The standard Galois Γ-order is as follows:

KΓ := {X ∈ K | X(γ) ∈ Γ ∀γ ∈ Γ}.

Similarly we define the co-standard Galois Γ-order by

ΓK := {X ∈ K | X†(γ) ∈ Γ ∀γ ∈ Γ}.

Definition 1.13. Let U be a Galois Γ-ring in K . If U ⊆ KΓ (resp. U ⊆ ΓK ), then U
is called a principal (resp. co-principal) Galois Γ-order.

In [14] it was shown that any (co-)principal Galois Γ-order is a Galois order in the 
sense of Definition 1.6.

2. Defining the extension

2.1. Galois order realization of U(gln)

We first recall the realization of U(gln) as a Galois Γ-order from [7]. Let Λ = C[xki |
1 ≤ i ≤ k ≤ n] the polynomial algebra in indeterminates xki, Sn = S1 × S2 × · · · × Sn, 
and Γ = ΛSn = C[eki | 1 ≤ i ≤ k ≤ n]. Here

eki = eki(xk1, . . . , xkk) =
∑

1≤j1<···<ji≤k

xkj1 · · ·xkji (1)

are the elementary symmetric polynomials. Also, let L = Frac(Λ) and K = Frac(Γ). 
Now, we construct a skew monoid ring. Let M be the subgroup of Aut(Λ) generated by 
{δki}1≤i≤k≤n−1, where δki is defined by

δki(x�j) = x�j − δ�kδij . (2)

We observe that M ∼= Zn(n−1)/2. Let L = L#M and K = (L#M )Sn . In [7], the 
authors describe an embedding ϕ : U(gln) → K defined by

ϕ(E±
k ) =

k∑
(δki)±1a±ki, ϕ(Ekk) =

k∑
(xkj + j − 1) −

k−1∑
(xk−1,i + i− 1), (3)
i=1 j=1 i=1
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where

a±ki = ∓
∏k±1

j=1 (xk±1,j − xki)∏
j �=i(xkj − xki)

, (4)

and E+
k = Ek,k+1, E−

k = Ek+1,k where Eij denotes the matrix units. Let Un = ϕ(U(gln)). 
The algebra Un is a Galois Γ-order.

2.2. Defining A (gln)

Let An = A1 ×A2 × · · · ×An and

Γ̃ = ΛAn = C[eki,V� | 1 ≤ i ≤ k ≤ n, 2 ≤ � ≤ n]. (5)

Here

V� = V�(x�1, . . . , x��) =
∏
i<j

(x�i − x�j) (6)

denotes the Vandermonde polynomial in the � variables x�1, . . . , x��. Abstractly, Γ̃ is 
isomorphic to the following quotient

C[Tki, V� | 1 ≤ i ≤ k ≤ n, 2 ≤ � ≤ n]/(V 2
� −D�(T�1, . . . , T��) | 2 ≤ � ≤ n),

where Tki, V� are indeterminates and D�(T�1, . . . , T��) is the Vandermonde discriminant. 
Also, let K̃ = Frac(Γ̃) and K̃ = (L#M )An .

Definition 2.1. Consider the following extension of U(gln), denoted A (gln), defined as the 
subalgebra of K̃ generated by Un∪{V2, V3, · · · , Vn}. Explicitly, A (gln) is the subalgebra 
of L generated by

X±
k =

∑k
i=1(δki)±1a±ki for k = 1, . . . , n− 1,

Xkk =
∑k

j=1(xkj + j − 1) −
∑k−1

i=1 (xk−1,i + i− 1) for k = 1, . . . , n,
Vk = Vk(xk1, . . . , xkk) =

∏
i<j(xki − xkj) for k = 1, . . . , n− 1,

where a±ki are defined in (4).

The following proposition lists some basic properties of A (gln).

Proposition 2.2.

(i) U(gln) ∼= Un ⊂ A (gln).
(ii) A (gln) is a Galois Γ̃-ring.
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(iii) Vn is central in A (gln).
(iv) Z(A (gln)) ∼= C[x1, . . . , xn]An .
(v) There is a chain of subalgebras A (gl1) ⊂ A (gl2) ⊂ · · · ⊂ A (gln).
(vi) A (gln) is the minimal extension of U(gln) with properties (iv) and (v).

Proof. (i) Clear because ϕ is injective and A (gln) contains ϕ(E±
k ), ϕ(Ekk).

(ii) Define X as follows:

X = {X±
i , Xii,Vj | 1 ≤ i ≤ n, 2 ≤ j ≤ n}.

Since X±
i ∈ X , it is clear that 

⋃
u∈X suppu generates M . Thus, A (gln) is a Galois 

Γ̃-ring for every n ≥ 1 by Proposition 1.4.
(iii) As δki fixes x�j iff � �= k and k �= n, it follows that Vn is central in A (gln).
(iv) We first show that Z(A (gln) = C〈Z(Un), Vn〉. C〈Z(Un), Vn)〉 ⊆ Z(A (gln)) is clear. 
Next, we observe that A (gln) ⊂ (L′#M )An , where L′ = C(xki | 1 ≤ i ≤ k ≤ n −
1)[xn1, . . . , xnn]. By Theorem 1.5, we have

Z(A (gln)) = A (gln) ∩ K̃M ⊆ (L′#M )An ∩ K̃M ⊆ C〈Z(Un),Vn〉.

Consider the Harish-Chandra homomorphism ϕHC : Z(U(gln)) → C[x1, . . . , xn]Sn . We 
can define an extension of this map ϕ̃HC : Z(A (gln)) → C[x1, . . . , xn] as follows:

ϕ̃HC(X) =

⎧⎪⎨
⎪⎩
ϕHC(ϕ−1(X)), X ∈ Z(Un),∏
1=i<j=n

(xi − xj), X = Vn.
(7)

In conjunction with Chevalley’s Theorem (see [15]), ϕHC provides an isomorphism with 
C[x1, . . . , xn]Sn . The claim follows by recalling that C[x1, . . . , xn]An is generated by the 
symmetric polynomials and the Vandermonde polynomial.
(v) Follows from the definition.
(vi) We prove this result by induction on n. Since A (gl1) = U(gl1), the base step is 
clear. Assuming the claim holds for A (gln−1), now consider an extension A of U(gln)
satisfying (iv) and (v). By (v), A contains V� for � = 1, . . . , n − 1, and it contains 
U(gln) by definition. From (iv) we get an element V that is central in A that maps 
to 
∏

i<j(xi − xj) ∈ C[x1, . . . , xn]An . This allows us to define an isomorphism τ : A →
A (gln) by sending {U(gln), V� | � = 1, . . . , n − 1} to themselves and V �→ Vn. �
Remark 1. In [11] another Galois algebra is described in the invariants of a Weyl algebra 
with respect to a single alternating group in Corollary 24 in [11].
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3. The structure of A (gl2)

In this section, we find a presentation for A (gl2) as an extension of U(gl2) and as a 
generalized Weyl algebra as well as prove that it is a Galois Γ̃-order.

Lemma 3.1.

(i) V2 commutes with every element of U2.
(ii) A (gl2) = U2 ⊕ (U2 · V2)

Proof. (i) Follows by Proposition 2.2 (iii).
(ii) Since V2 commutes with everything in U2,

A (gl2) =

⎧⎨
⎩

∞∑
j=0

ujVj
2 | uj ∈ U2, at most finitely many uj �= 0

⎫⎬
⎭ .

Since V2
2 ∈ U2, A (gl2) = U2 + U2 · V2. Now consider (12)2 := ((1), (12)) ∈ S2 acting on 

L by automorphisms. We have,

(12)2|U2 = Id |U2 , (12)2|U2·V2 = (−1) · Id |U2·V2 .

This implies that A (gl2) = U2 ⊕ (U2 · V2). �
Definition 3.2. The k-th Gelfand invariant for gln is defined as follows

cnk =
∑

(i1,i2,...,id)∈[n]d
Ei1,i2Ei2,i3 · · ·Eid−1,idEid,i1 .

There are n such Gelfand invariants for gln, and they generate the center of U(gln).

We now give a presentation for A (gl2) in terms of U(gl2).

Proposition 3.3. There is an isomorphism

ϕ̃ : U(gl2)[T2]
(T 2

2 − (−c221 + 2c22 + 1)) → A (gl2), (8)

where T2 is an indeterminate and c2i are the Gelfand invariants for gl2. Explicitly

ϕ̃|U(gl2) = ϕ, ϕ̃(T2) = V2, (9)

where ϕ is the embedding from (3).
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Proof. Let p(T2) = T 2
2 − (−c221 + 2c22 − 1) ∈ U(gl2)[T2]. Since p(T2) is degree two, 

U(gl2)[T2]/(p(T2)) is free of rank 2 as a left U(gl2)-module with basis {1, T2} where T2 =
T2+(p(T2)). It follows Lemma 3.1 (ii) that A (gl2) is also free of rank 2 with basis {1, V2}
via the isomorphism ϕ in (3). Therefore there is an isomorphism ϕ̃ : U(gl2)[T2]/(p(T2)) →
A (gl2) as U(gl2)-modules sending 1 to 1 and T2 to V2. Thus, it suffices to show that 
ϕ̃(T2

2) = V2
2 .

To show this, we calculate the images of c2i under ϕ:

ϕ(c21) = ϕ
(
E11 + E22

)
= (x11) + (x21 + x22 − x11 + 1) = x21 + x22 + 1,

ϕ(c22) = ϕ
(
E2

11 + E+
1 E−

1 + E−
1 E+

1 + E2
22
)

= x2
21 + x2

22 + x21 + x22.

As such,

ϕ̃(T2
2) = ϕ̃(−c221 + 2c22 + 1) = −ϕ(c21)2 + 2ϕ(c22) + 1

= −(x21 + x22 + 1)2 + 2(x2
21 + x2

22 + x21 + x22) + 1

= (x21 − x22)2 = V2
2 .

Therefore, ϕ̃ is an algebra isomorphism. �
Theorem 3.4. A (gl2) is a Galois Γ̃-order.

Proof. We first observe that A (gl2) is a Galois Γ̃-ring by Proposition 2.2 (ii). To prove 
that A (gl2) is a Galois Γ̃-order, we will use Theorem 1.8. Since Γ is a Harish-Chandra 
subalgebra of U(gl2), Γ̃ is a Harish-Chandra subalgebra of A (gl2). Since A2 is a group, 
all we need to show is that Γ̃ is maximal commutative in A (gl2). This is clear because 
Γ is maximal commutative in U2, and Γ̃ is just an extension by a central element by 
Proposition 3.3. Γ̃ is maximal commutative in A (gl2); therefore, A (gl2) is a Galois 
Γ̃-order. �

The following shows that A (gl2) is a generalized Weyl algebra [1], which gives another 
way to show it is a Galois order [7]. First we recall the definition of a generalized Weyl 
algebra.

Definition 3.5 ([1]). Let D be a ring, σ a ring automorphism of D, and t a central element 
of D. The generalized Weyl algebra of rank 1, D(σ, t) is a ring generated by the ring D
and two elements x and y subject to the following relations:

xd = σ(d)x and yd = σ−1(d)y for all d ∈ D; (10)

yx = t and xy = σ(t). (11)

Proposition 3.6. A (gl2) is isomorphic to the generalized Weyl algebra Γ̃(σ, t), where σ =
δ11, t = −e22 + e11e21 − e2

11, and Γ̃ is defined in (5).
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Proof. Recall that A (gl2) is the subalgebra generated by Γ̃, X±
1 (see Definition 2.1). We 

define ψ : Γ̃(σ, t) → A (gl2) by

x �→ X+
1 , y �→ X−

1 , and γ �→ γ for all γ ∈ Γ̃.

One can verify that the defining relations (10) and (11) are preserved by ψ, making it 
well-defined. Clearly ψ is surjective. For injectivity, we note ψ is graded, when Γ̃(σ, t)
and A (gl2) are equipped with the Z-gradations determined by

degX±
1 = ±1, deg γ = 0 ∀γ ∈ Γ̃, deg x = 1, deg y = −1. (12)

As such, kerψ is a graded ideal. But Γ̃ ∩ (kerψ) = 0. Since the only graded ideal I in a 
generalized Weyl algebra D(σ, t), where D is a domain, with D ∩ I = 0 is I = 0, we get 
kerψ = 0. �

We observe the following interesting property of A (gl2) that we prove does not hold 
for general n (see Proposition 4.3).

Proposition 3.7. A (gl2) has the property that (A (gl2))S2 = U2.

Proof. This becomes clear when we consider the direct sum decomposition shown in 
Lemma 3.1 (ii). Consider a + bV2 ∈ A (gl2):

a + bV2 ∈ (A (gl2))S2 ⇐⇒ (12)2(a + bV2) = a + bV2

⇐⇒ a− bV2 = a + bV2

⇐⇒ b = 0

⇐⇒ a + bV2 = a ∈ U2.

Therefore, (A (gl2))S2 = U2. �
4. The structure of A (gl3)

Based on the result of the previous section, the next logical step is to see if similar 
results hold for gln with n ≥ 3. We will continue using the notation of the images of the 
generators of the U(gln) as before. As such:

X±
i := ϕ(E±

i ) and Xii := ϕ(Eii).

4.1. Non-polynomial rational functions in A (gl3)

Unlike in U(gl3) and A (gl2), we can construct non-polynomial rational functions in 
A (gl3). It follows that for n ≥ 3, A (gln) is not a Galois Γ̃-order, and the invariant 
property of A (gl2) does not hold.
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Lemma 4.1. The following identity holds in A (gl3):

±[X±
2 ,V2] = (δ21)±1a±21 − (δ22)±1a±22. (13)

Proof. To show this, consider V2X
±
2 :

V2X
±
2 = (x21 − x22)((δ21)±1a±21 + (δ22)±1a±22)

= (δ21)±1a±21(x21 ± 1 − x22) + (δ22)±1a±22(x21 − x22 ∓ 1)

= X±
2 V2 ± ((δ21)±1a±21 − (δ22)±1a±22).

Therefore, ±[X±
2 , V2] = (δ21)±1a±21 − (δ22)±1a±22. �

Let us denote the element described in (13) by X̃±
2 . We define the following:

A+
21 := 1

2 (X+
2 + X̃+

2 ) = δ21a+
21 A−

21 := 1
2(X−

2 + X̃−
2 ) = (δ21)−1a−21

A+
22 := 1

2 (X+
2 − X̃+

2 ) = δ22a+
22 A−

22 := 1
2(X−

2 − X̃−
2 ) = (δ22)−1a−22

By their definition, it is clear that they are in A (gl3).
The following example shows that if n ≥ 3, then Γ̃ is not maximal commutative; 

hence, A (gln) is not a Galois Γ̃-order by Proposition 1.9.

Example 4.2. The following element belongs to A (gln) for n ≥ 3:

A+
21A

−
21 = −

∏3
i=1(x3i − x21 + 1)
(x22 − x21 + 1) · x11 − x21

x22 − x21
.

This is a rational function; hence, it lies in CentA (gl3)(Γ̃).

The following rather surprising fact shows that the property in Proposition 3.7 does 
not hold for larger n.

Proposition 4.3. For n ≥ 3, A (gln)Sn � Un.

Proof. The fact that Un ⊂ A (gln)Sn is obvious by definition. To show the containment 
is strict, we recall that because Un is a Galois Γ-order, it is known that Un ∩ K = Γ. 
Therefore, we consider A (gln)Sn ∩K. Since U3 ⊆ Un for every n ≥ 3, it suffices to show 
that A (gl3)S3 ∩K � Γ.

The object to prove this claim is constructed in the same way as in Example 4.2. It 
is quickly observed that

A+
21A

−
21A

+
22A

−
22 =

∏3
i=1(x3i − x21 + 1)
(x22 − x21 + 1) · x11 − x21

x22 − x21
·
∏3

i=1(x3i − x22 + 1)
(x21 − x22 + 1) · x11 − x22

x21 − x22

is invariant under the action of S3. This element is clearly not in Γ, so this element is in 
A (gl3)S3 ∩K \ Γ, thereby proving the claim. �
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4.2. Generators and relations for n = 3

Based on the previous subsection, we determine a set of generators and some verified 
relations for A (gl3). However, we do not know if this constitutes a presentation, that is, 
this may be an incomplete list.

Proposition 4.4. The algebra A (gl3) is generated by {X11, X22, X33, A
±
11, A

±
21, A

±
22, V2,

V3}, where A±
ij := (δij)±1a±ij, V2 = x21 − x22, and V3 =

∏
i<j(x3i − x3j). What follows 

is a list of known relations:

(i) [V3, X] = 0 for all X ∈ A (gl3) (i.e. V3 is central in A (gl3)),
(ii) [X, Y ] = 0 for all X, Y ∈ h = SpanC{X11, X22, X33, V2, V3},
(iii) [h, A±

ij ] = ±αij(h)A±
ij for all h ∈ h and 1 ≤ j ≤ i ≤ 2, where αij(h) are given by 

the following matrix:

X11 X22 X33 V2 V3⎡
⎣

⎤
⎦α11 1 −1 0 0 0

α21 0 1 −1 1 0
α22 0 1 −1 −1 0

,

(iv) [A±
21, A

∓
22] = 0,

(v) [A±
11, A

∓
2i] = 0 for i = 1, 2,

(vi) [A+
11, A

−
11] = X11 −X22,

(vii) [A+
21, A

−
21] + [A+

22, A
−
22] = X22 −X33,

(viii) [A±
11, [A

±
11, A

±
2i]] = 0 for i = 1, 2,

(ix) A±
22V2A

±
21 = A±

21V2A
±
22.

Proof. Any of the relations involving only elements from U(gl3) (such as (vi)) follow 
from U(gl3) relations by recalling that {X11, X22, X33, A

+
11, A

−
11} ∈ A (gl3) correspond to 

{E11, E22, E33, E12, E21} ∈ U(gl3). All that remains is to prove the relations involving 
new elements.
(i) This follows from Proposition 2.2 (iii).
(ii) This follows by observing that each is an element of Γ̃ which is a commutative ring.
(iii) By the statement at the beginning of this proof and (i), we only need to check the 
second two rows and the second to last column. Each is proved in an identical manner, 
we provide one below:

V2 ·A+
21 = (x21 − x22) · −δ21

∏3
i=1 x3i − x21

x22 − x21

= −δ21
∏3

i=1 x3i − x21 · (x21 − x22 + 1)

x22 − x21
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= A+
21V2 + A+

21.

Thus, [V2, A
+
21] = A+

21 = α21(V2)A+
21.

(iv) Consider the following calculation:

A+
21A

−
22 = −δ21

∏3
i=1 x3i − x21

x22 − x21
· (δ22)−1x11 − x22

x21 − x22

= −δ21(δ22)−1
∏3

i=1 x3i − x21

x22 − x21 − 1 · x11 − x22

x21 − x22

= −δ21(δ22)−1
∏3

i=1 x3i − x21

x22 − x21
· x11 − x22

x21 − x22 + 1

= (δ22)−1x11 − x22

x21 − x22
· −δ21

∏3
i=1 x3i − x21

x22 − x21

= A−
22A

+
21.

The other relation is proved similarly.
(v) Consider the following calculation:

A+
11A

−
22 = −δ11(x21 − x11)(x22 − x11) · (δ22)−1x11 − x22

x21 − x22

= −δ11(δ22)−1(x21 − x11)(x22 − x11 − 1) · x11 − x22

x21 − x22

= −δ11(δ22)−1(x21 − x11)(x22 − x11) ·
x11 − x22 + 1
x21 − x22

= (δ22)−1x11 − x22

x21 − x22
· −δ11(x21 − x11)(x22 − x11)

= A−
22A

+
11.

The other relations are proved similarly.
(vii) We consider the relation [E23, E32] = E22 − E33 mapped under ϕ from (3):

X22 −X33 = [X+
2 , X−

2 ]

= [A+
21 + A+

22, A
−
21 + A−

22]

= [A+
21, A

−
21] + [A+

21, A
−
22] + [A+

22, A
−
21] + [A+

22, A
−
22]

= [A+
21, A

−
21] + [A+

22, A
−
22] by (iv).

This demonstrates that (vii) holds.
(viii) We observe that
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A−
11A

−
22 = (δ11)−1 · (δ22)−1x11 − x22

x21 − x22

= (δ11δ22)−1x11 − x22

x21 − x22

= (δ22)−1x11 − x22 + 1
x21 − x22

· (δ11)−1

= A−
22A

−
11 − (δ11δ22)−1 1

x21 − x22

[A−
11, A

−
22] = −(δ11δ22)−1 1

x21 − x22
,

which has no x11’s and as such commutes with A−
11. Thus, [A−

11, [A
−
11, A

−
22]] = 0. The 

others are proved identically.
(ix) We prove this by direct computation as follows:

A±
22V2A

±
21 = (δ21δ22)±1

∏2±1
i=1 (x2±1,i − x21)(x2±1,i − x22)

x21 − x22

= −(δ21)±1
2±1∏
i=1

x2±1,i − x21 · (δ22)±1
∏2±1

i=1 x2±1,i − x22

x21 − x22

= (δ21)±1
2±1∏
i=1

x2±1,i − x21 ·
V2

−V2
(δ22)±1

∏2±1
i=1 x2±1,i − x22

x21 − x22

= A±
21V2A

±
22.

This verifies that relation (ix) holds. �
Open Problem 1. Determine whether the relations in Proposition 4.4 constitute a pre-
sentation for the algebra A (gl3).

5. Finite-dimensional modules over A (gln)

Since, as was shown in Section 4, A (gln) is not a Galois Γ̃-order, techniques different 
from [8] are required to study representations of A (gln).

If we consider the case of n = 2, we recall that A (gl2) ∼= U(gl2)[T2]/(T 2
2 − (−c221 +

2c22 + 1)). As such, it makes sense to consider the induction and restriction functors 
between the categories of A (gl2)-modules and U(gl2)-modules.

By applying the restriction functor to a given finite-dimensional simple module, we 
see that it decomposes to a direct sum of finite-dimensional simple U(gl2)-modules, so 
the induction functor should help us to construct all of the possible finite-dimensional 
simple A (gl2)-modules.
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Proposition 5.1. The finite-dimensional simple A (gl2)-modules are characterized by or-
dered pairs (λ2, ε2), where λ2 := (λ21, λ22) ∈ C2 is a dominant integral weight for U(gl2)
(i.e. λ21 − λ22 ∈ Z≥0) and ε2 ∈ {1, −1}.

Proof. Recall that every finite-dimensional simple U(gl2)-module is characterized by a 
weight denoted by a pair of complex numbers λ2 = (λ21, λ22) with λ21 − λ22 ∈ Z≥0; 
we will denote this module by V (λ2). We can induce such a module V (λ2) to a A (gl2)-
module as follows,

A (gl2) ⊗U(gl2) V (λ2).

So, it is important to describe A (gl2) as a right U(gl2)-module. By Proposition 3.3:

A (gl2) ∼=
U(gl2)[T2]

(T 2
2 − (−c221 + 2c22 + 1))

∼= U(gl2) ⊕ T2U(gl2)

as right U(gl2)-modules. Thus:

A (gl2) ⊗U(gl2) V (λ2) ∼=
(
U(gl2) ⊕ T2U(gl2)

)
⊗U(gl2) V (λ2)

∼=
(
U(gl2) ⊗U(gl2) V (λ2)

)
⊕
(
T2U(gl2) ⊗U(gl2) V (λ2)

)
∼=
(
1 ⊗U(gl2) V (λ2)

)
⊕
(
T2 ⊗U(gl2) V (λ2)

)
.

As such, we can determine the action of T2 on this modules now. For v ∈ V (λ2), we have 
that T2.(1 ⊗ v) = T2 ⊗ v, and T2.(T2 ⊗ v) = T 2

2 ⊗ v = 1 ⊗ T 2
2 .v = (λ21 − λ22)2(1 ⊗ v). 

Thus, T2 can be characterized by the following matrix:

[
0 (λ21 − λ22)2I
I 0

]
∼=
[
(λ21 − λ22)I 0

0 −(λ21 − λ22)I

]
,

so we can see that A (gl2) ⊗U(gl2) V (λ2) decomposes into the two eigenspaces of the 
action of T2: V (λ2, +1) := 〈(λ21 − λ22)(1 ⊗ v) + T2 ⊗ v | v ∈ V (λ2)〉 and V (λ2, −1) :=
〈−(λ21 − λ22)(1 ⊗ v) + T2 ⊗ v | v ∈ V (λ2)〉 both of which are clearly simple. It is also 
clear that as vector spaces V (λ2, ±1) ∼= V (λ2).

Conversely, if we have a finite-dimensional simple A (gl2)-module V restricted to a 
U(gl2)-module, it must remain simple, as T2 is a central element. As such, V ∼= V (λ2)
for some weight λ2. Thus, V ∼= V (λ2, ε2) for some ε2 ∈ {±1}. �

Next, we classify a collection of finite-dimensional simple weight modules over A (gln).

Definition 5.2. Let V (λn) be a weight module of U(gln), we extend it to a module for 
A (gln), denoted V (λn, εn, εn−1, . . . , ε2), by describing the actions of each Vk for k =
2, 3, . . . , n as follows:
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Vn.v = εn
∏
i≤j

(λni − λnj + j − i)v,

with εn = ±1. Recall that when we restrict V (λn) to a U(glk) module, the number of 
simple U(glk) modules it decomposes into is the same as the number of ways to fill in 
the k-th row of a Gelfand-Tsetlin pattern with top row λn. Denote this number by rλn,k. 
Then let Vk act diagonallizably on a v = (v1, . . . , vrλn,k

) ∈ V (λn, εn, εn−1, . . . , ε2) by the 
following rλn,k × rλn,k matrix,

⎛
⎜⎝

εk,1
∏

i≤j(λ
1
ki − λ1

kj + j − i) 0 · · · 0
0 εk,2

∏
i≤j(λ

2
ki − λ2

kj + j − i) · · · 0
. . .

0 · · · εk,rλn,k

∏
i≤j(λ

rλn,k

ki − λ
rλn,k

kj + j − i)

⎞
⎟⎠ ,

where λ�
ki denotes the ki entry from the �-th pattern in the decomposition of v as a 

U(glk)-module, and εk = (εk,1, εk,2, . . . , εk,rλn,k
) ∈ {±1}rλn,k .

Theorem 5.3. Every finite-dimensional simple module over A (gln), on which V2, . . . ,
Vn−1 act diagonallizably, is of the form V (λn, εn, εn−1, . . . , ε2) (see Definition 5.2), where 
λn = (λn1, λn2, . . . , λnn) is a dominant integral weight of U(gln), εj ∈ {±1}rλn,j , with 
rλn,j denoting the number of ways to fill the j-th row of Gelfand-Tsetlin pattern with 
fixed top row λn, and j = 2, 3, . . . , n.

Proof. We prove this by induction on n. For the base case, n = 3, we have the following 
commutative diagram:

A (gl3) -Modf.d. A (gl2) -Modf.d.

U(gl3) -Modf.d. U(gl2) -Modf.d.

,

where each arrow is the restriction functor. If we consider a simple V ∈ A (gl3) -Modf.d.

and its image in the bottom right corner, we see that V ∼=
⊕

λ3

⊕
λ2

V (λ2)λ3 ∈
U(gl2) -Modf.d., where λ3 and λ2 are weights for U(gl3) and U(gl2), respectively, by 
the semi-simplicity of U(gl3) and U(gl2). Moreover, V (λ2)λ3 ’s are the components of 
the restriction of V (λ3) to U(gl2). We know that V2 must have a diagonal action by 
assumption. As such, we have V ∼=

⊕
λ3

⊕
λ2

V (λ2, ε2)λ3 in the upper right corner by 
Proposition 5.1, where ε2 = ε2(λ2) depends λ2. This is because otherwise the dimensions 
of the λ2 weight spaces would not match. Since V2 acts diagonally, V3 is central, and 
the diagram commutes, it follows that V ∼= V (λ3, ε3, ε2) ∈ A (gl3) -Modf.d., where ε3 is 
determined as in Proposition 5.1, and ε2 = {ε2(λ2)}λ2 is indexed by the number rλ3,2.

To finish the induction we look at a similar diagram:
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A (gln) -Modf.d. A (gln−1) -Modf.d. · · · A (gl2) -Modf.d.

U(gln) -Modf.d. U(gln−1) -Modf.d. · · · U(gl2) -Modf.d.

Following the image of a simple V ∈ A (gln) -Modf.d. and using identical arguments, 
we observe that:

V ∼=
⊕
λn

⊕
λn−1

V (λn−1)λn
∈ U(gln−1) -Modf.d. .

By the induction hypothesis,

V ∼=
⊕
λn

⊕
λn−1

V (λn−1, εn−1, εn−2, . . . , ε2)λn
∈ A (gln−1) -Modf.d. .

Finally by Vn central, Vj acting diagonally for j = 2, . . . , n − 1, and the diagram com-
muting, it follows that V ∼= V (λn, εn, εn−1, . . . , ε2). �

The following example demonstrates that A (gln) -Modf.d. is not semi-simple for every 
n ≥ 2.

Example 5.4. We recall that V2
2 must act diagonally on any A (gl2)-module V because 

ResA (gl2)
U(gl2)

V can be viewed as a direct sum of irreducible U(gl2)-modules and V2
2 is a 

quadratic polynomial of Gelfand invariants in U(gl2). Let V = V (0) ⊕ V (0), where 
U(gl2) acts trivially. This means that V2

2 must act as IdV . We define the following action 
of V2

V2.

(
v1
v2

)
=
(

1 α
0 −1

)(
v1
v2

)

with 0 �= α ∈ C. It is clear then that V2
2 acts as the identity on V , but the subrepresen-

tation W = {(v1, 0) | v1 ∈ V (0)} is not a direct summand of V as a A (gl2)-module.

6. A technique for creating Galois orders from Galois rings via localization

In this section, we describe a technique that allows us to turn a Galois ring into 
a Galois order involving localization. We use this technique on a toy example and a 
localized version of A (gln) denoted Ã (gln) (see Definition 6.10).

6.1. The general result

We recall that Proposition 1.9 states that Γ is maximal commutative in a Galois Γ-
order. We observe that for a general Galois Γ-ring U , while Γ might not be maximal 
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commutative, its centralizer CU (Γ) in U will be [7]. This can be seen from the following 
remark:

Remark 2. For Galois Γ-ring U , the centralizer of Γ in U , denoted CU (Γ), is equal to 
U ∩K.

First we define a subring of L that is needed in our result.

Definition 6.1. Let U be a subalgebra of L . We define the ring of coefficients of U :

DU := 〈α ∈ L | ∃X ∈ U such that α is a left coefficient of some μ ∈ suppM X〉ring.

Similarly, we define the opposite ring of coefficients of U , denoted Dop
U , using right 

coefficients.

Now for the result.

Theorem 6.2. Let G be arbitrary and U be a Galois Γ-ring in (L#M )G. If C = CU (Γ)
is the G invariants of the localization of Λ with respect to a set that is M -invariant, 
that is C = (S−1Λ)G, where S is M -invariant, and DU is a finitely generated module 
over C, then U is a Galois C-order in (L#M )G. Moreover, if DU ⊆ S−1Λ (resp. 
Dop

U ⊂ S−1Λ), then U is a (co-)principal Galois C-order.

Proof. First, we find a Λ′ such that (Λ′, G, M ) satisfies the assumptions in Section 1.1. 
We define Λ′ = C, the integral closure of C in L. We observe that C = (SG)−1Γ. As 
such, C is a localization, and it follows that:

C = (SG)−1Γ = S−1Λ. (14)

Since S is M -invariant and C is integral over C, it follows that M and G are subgroups 
of Aut(Λ′). The first two assumptions clearly hold, and the third follows by Λ′ = S−1Λ.

We have that U is a Galois C-ring since it is a Galois Γ-ring and Frac(C) = Frac(Γ) =
K. All that remains is to show that U is a Galois C-order. We consider W ⊂ L a finite-
dimensional left L-subspace and aim to show that W ∩ U is finitely generated as a left 
C-module. W has a finite basis w1, . . . , wn such that:

W = {
∑

αiwi | αi ∈ L}.

Note that for each i, wi =
∑

μ∈M βi,μμ; as such, since C is a localization of a Noetherian 
ring and therefore Noetherian, WLOG we can assume wi = μi for some μi ∈ M . Hence:

W =
∑

Lμi.

i
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So, W ∩U ⊂
∑

i DU μi, and is therefore finitely generated. A similar argument justifies 
the claim if W is instead a right L-module. Therefore, U is a Galois C-order.

If additionally we assume DU ⊂ S−1Λ, we need to show that X(c) ∈ C for all X ∈ U

and c ∈ C. So, we consider an arbitrary c ∈ C and X ∈ U . By Lemma 2.19 in [14], it 
follows that X(c) ∈ K. Since C = (SG)−1Γ, it follows that X(c) ∈ S−1Λ. As such:

X(c) ∈ S−1Λ ∩K = (S−1Λ)G = C. (15)

Thus X(c) ∈ C. If instead Dop
U ⊂ S−1Λ, a similar argument shows that X†(c) ∈ C, 

thereby proving the claim. �
The above theorem also gives an alternate proof to one direction of Corollary 2.15 in 

[14].

6.2. A toy example

In this subsection, we provide a family of simple examples of Galois rings to which 
Theorem 6.2 can be applied.

Let Λ = C[x] the polynomial algebra in one indeterminate x, δ ∈ AutΛ such that 
δ(x) = x − 1, M = 〈δ〉grp, and G the trivial group. Then, let L = L#M be the 
skew-monoid ring and f(x) ∈ C[x] such that f(0) �= 0. We define X, Y ∈ L such that:

X := δ
f(x)
x

and Y := δ−1. (16)

Let Uf = C〈Λ, X, Y 〉alg and CUf
(Λ)(= CUf

) the centralizer of Λ in Uf . We note, as G is 
trivial, that Λ = Γ. First, we will show that Uf is Galois Γ-ring.

Proposition 6.3. The algebra Uf is a Galois Γ-ring in L#M .

Proof. This immediately follows from Proposition 1.4 letting X = {X, Y }. �
In order to apply Theorem 6.2, we need to describe CUf

. The next three lemmas are 
used to do just that.

Lemma 6.4. For any f(x) such that f(0) �= 0, we have 
1
x
, 

1
x− 1 ∈ CUf

.

Proof. First, we show that 1
x
∈ CUf

. Now, f(x) = anx
n + · · ·+ a1x + a0 with a0 �= 0 by 

assumption. As such:

f(x)
x

= anx
n−1 + an−1x

n−2 + · · · a1 + a0

x

⇒ 1
x

= a−1
0

(
f(x)
x

− (anxn−1 + an−1x
n−2 + · · · a1)

)
.
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This shows that 1
x
∈ CUf

. To see that 1
x− 1 ∈ CUf

, we follow a similar division algorithm 

argument with 
f(x− 1)
x− 1 . �

Lemma 6.5. For any f(x) such that f(0) �= 0 and k ≥ 1, we have 
1

x + k
∈ CUf

.

Proof. Let m be the order of (x + k) in 
k−1∏
j=0

f(x + j). Then consider the following:

Y k+1(XY )mXk+1 = δ−k−1
(
f(x− 1)
x− 1

)m

δk+1
k∏

j=0

f(x + j)
x + j

=
(
f(x + k)
x + k

)m k∏
j=0

f(x + j)
x + j

=
(
f(x + j)
x + j

)m+1 k−1∏
j=0

f(x + j)
x + j

As such, there are m factors of (x + k) in the numerator and m + 1 factors in the 

denominator. Thus, multiplying by 
k−1∏
j=0

(x + j) and using a division algorithm argument, 

it follows that 1
x + k

∈ CUf
. �

Lemma 6.6. For any f(x) such that f(0) �= 0 and k ≥ 2, we have 
1

x− k
∈ CUf

.

Proof. Let m be the order of (x − k) in 
k−1∏
j=1

f(x − j). Then consider the following:

Xk(Y X)mY k = δk
k−1∏
j=0

f(x + j)
x + j

(
f(x)
x

)m

δ−k

=
k−1∏
j=0

f(x + j − k)
x + j − k

(
f(x− k)
x− k

)m

=
(
f(x− k)
x− k

)m+1 k−1∏
�=1

f(x− �)
x− �

.
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As such, there are m factors of (x − k) in the numerator and m + 1 factors in the 

denominator. Thus, multiplying by 
k−1∏
j=1

(x − j) and using a division algorithm argument, 

it follows that 1
x− k

∈ CUf
. �

Proposition 6.7. If f(x) is a polynomial such that f(0) �= 0, then CUf
= C[x]

[
1

x+k

∣∣∣∣ k ∈

Z

]
.

Proof. CUf
⊇ C[x]

[
1

x+k

∣∣∣∣ k ∈ Z

]
by Lemmas 6.4, 6.5, and 6.6. To show the reverse 

inclusion, we observe that for Z ∈ CUf
, Z must be of “degree 0” with regards to δ that 

is:

Z =
m∑

k=1

gk(x)
∞∏

n=0
(XnY n)k−n(Y nXn)kn

=
m∑

k=1

gk(x)
∞∏

�=−∞

(
f(x + �)
(x + �)

)k�

=
m∑

k=1

Gk(x)
∞∏

�=−∞

1
(x + �)k�

∈ C[x]
[

1
x + k

∣∣∣∣ k ∈ Z

]
,

where k� �= 0 for at most finitely many terms. Thus CUf
⊆ C[x]

[
1

x+k

∣∣∣∣ k ∈ Z

]
. �

We can now prove that Uf is a Galois CUf
-order using Theorem 6.2.

Corollary 6.8. The algebra Uf is a principal and co-principal Galois CUf
-order in L#M .

Proof. Proposition 6.7 gives us that the main supposition of Theorem 6.2. All that 
remains to show is DUf

, Dop
Uf

⊂ S−1Λ = CUf
in this case. However, this is clear since Uf

is generated by X, Y , and Λ. �
6.3. Localizing A (gln)

In this subsection, we construct a localization of A (gln) denoted Ã (gln), to which 
Theorem 6.2 can be applied.

In order to construct this localization, we describe shifted Vandermonde polynomials 
using the following notation:

Notation. Let Vk be the Vandermonde in the xki variables. Let l := (l1, l2, . . . , lk−1) ∈
Zk−1. We denote the (l-)shifted Vk as follows:
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Vk,l :=
∏
i<j

(xki − xkj +
j−1∑
n=i

ln).

This notation makes sense because for i < j:

xki − xkj = (xki − xk,i+1) + (xk,i+1 − xk,i+2) + · · · + (xk,j−1 − xkj).

Therefore, any shift of Vk is uniquely determined by the shifts of xki − xk,i+1 for i =
1, 2, . . . , k − 1.

Now to construct our localization.

Definition 6.9. Let S := 〈Vk,l | l ∈ Zk−1; k = 2, . . . , n − 1〉monoid. We observe that S is 
a multiplicatively closed set in Λ, and A (gln) ⊂ (S−1Λ#M )An . We also note that S is 
the smallest M -invariant multiplicatively closed set that contains V2, . . . , Vn−1.

As Example 4.2 demonstrates, CA (gln)(Γ̃) ⊂ (S−1Λ)An . It is not known if this con-
tainment is strict, so this motivates the construction of the following localization of 
A (gln).

Definition 6.10. Our new algebra of interest in K̃ is Ã (gln) := C〈Un, (S−1Λ)An〉alg. 
Notice this coincides with the definitions of A (gl2) for n = 2.

Remark 3. It follows from Lemma 2.10 in [14] that Ã (gln) is a Galois Γ̃-ring since it 
contains A (gln). Moreover, C

Ã (gln)(Γ̃) = (S−1Λ)An as well.

Remark 4. In Ã (gln), relation (ix) from Section 4.2 can be rewritten either as

(ix)′ [A±
21, A

±
22] =

±2
V2 ± 1A

±
21A

±
22, or

(ix)′′ A±
22A

±
21 = V2 ∓ 1

V2 ± 1A
±
21A

±
22.

Corollary 6.11. The subalgebra Ã (gln) ⊂ K̃ is both a principal and co-principal Galois 
(S−1Λ)An-order.

Proof. It is clear by construction that Ã (gln) satisfies the main supposition of Theo-
rem 6.2. Also, it follows from the definition of the a±ki’s in (4) that D

Ã (gln), D
op
Ã (gln)

⊆
S−1Λ. We can therefore apply Theorem 6.2. �

In [21], it was shown that every (co-)principal Galois order has a corresponding 
(co-)principal flag order. This leads us to the following:

Open Problem 2. What is the corresponding (co-)principal flag order of Ã (gln)?
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7. (Generic) Gelfand-Tsetlin modules over A (gln)

7.1. Some general results

Following the techniques in [3] and [14], we construct canonical simple Gelfand-Tsetlin 
modules over Ã (gln). We need the following additional assumptions for these next two 
results:

(A4) Λ is finitely generated over an algebraically closed field k of characteristic 0,
(A5) G and M act by k-algebra homomorphisms on Λ.

Let Γ̂ be the set of all Γ-characters (i.e., k-algebra homomorphisms ξ : Γ → k).

Definition 7.1. Let U be a Galois Γ-ring in K . A left U -modules V is said to be a 
Gelfand-Tsetlin module (with respect to Γ) if Γ acts locally finitely on V . Equivalently:

V =
⊕
ξ∈Γ̂

Vξ, Vξ = {v ∈ V | (ker ξ)Nv = 0, N � 0}.

Similarly, one can define a right Gelfand-Tsetlin modules.

The details for the following lemma can be found in [2].

Lemma 7.2. Let U be a Galois Γ-ring in K .

(i) Any submodule and any quotient of a Gelfand-Tsetlin module is a Gelfand-Tsetlin 
module.

(ii) Any U -module generated by generalized weight vectors is a Gelfand-Tsetlin module.

Theorem 7.3 ([14], Theorem 3.3 (ii)). Let ξ ∈ Γ̂ be any character. If U is a co-principal 
Galois Γ-order in K , then the left cyclic U -module U ξ has a unique simple quotient 
V ′(ξ). Moreover, V ′(ξ) is a Gelfand-Tsetlin over U with V ′(ξ)ξ �= 0 and is called the 
canonical simple left Gelfand-Tsetlin U -module associated to ξ.

7.2. The case of A (gln)

We note that for n ≥ 3 that Λ̃ is not finitely generated as a C-algebra. This prevents us 
from using all of the results as is, but all is not lost. The main arguments of Theorem 7.3
rest on:

HomΓ(Γ/m,Γ∗) ∼= Homk(Γ/m⊗Γ Γ,k) ∼= k.



E.C. Jauch / Journal of Algebra 569 (2021) 568–594 591
If we want a similar result for S−1Γ̃ we need to recall that every maximal ideal m of 
S−1Γ̃ is of the form S−1p, where p is a prime (not necessarily maximal) ideal of Γ̃ \ S. 
Therefore we have the following result.

Theorem 7.4. Let ξ be a character of S−1Γ̃ such that ker ξ = S−1m, for some maximal 
ideal m of Γ̃. Then the left cyclic module Ã (gln)ξ has a unique simple quotient V ′(ξ)
which is a Gelfand-Tsetlin module over Ã (gln) with V ′(ξ)ξ �= 0.

Proof. The key difference in this proof compared to Theorem 7.3 is observing that

S−1Γ̃/S−1m ∼= S−1(Γ̃/m) ∼= k.

Otherwise, the proof follows the same structure. �
Since Ã (gln) is created by localizing Γ̃ and Λ, we can view any Ã (gln)-module V as 

a A (gln)-module by precomposing with the embedding ι : A (gln) ↪→ Ã (gln).

8. Gelfand-Kirillov conjecture for A (gln)

In this section we will discuss for which n’s the algebras A (gln) and Ã (gln) satisfy the 
Gelfand-Kirillov Conjecture. This is related to the Noncommutative Noether Problem 
for the alternating group An, as discussed in [10].

An algebra A is said to satisfy Gelfand-Kirillov Conjecture if it is birationally equiv-
alent to a Weyl algebra. That is its skew-field of fractions is isomorphic to a skew Weyl 
field.

Lemma 8.1. Frac(Ã (gln)) = Frac(A (gln)).

Proof. This follows because Ã (gln) is created by localizing Γ̃ and Λ. �
Hence, Ã (gln) and A (gln) either both will or will not satisfy the Gelfand-Kirillov 

Conjecture for each n.

Proposition 8.2. For every n,

Frac(A (gln)) ∼= Frac
(
C(x1, . . . , xn)An ⊗

n−1⊗
k=1

(
Frac(Wk(C))

)Ak
)
,

where Wk(C) is the k-dimensional Weyl algebra over C.

Proof. It is clear by construction that:

Frac(A (gln)) = Frac(L An) = Frac((L#M )An). (17)
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Since L = Frac(Λ):

Frac((L#M )An) ∼= Frac((Λ#M )An). (18)

We now recall that M is generated by δki’s and δki fixes x�j if � �= k. As such, we have:

Frac((Λ#M )An) ∼= Frac((Λn ⊗
n−1⊗
k=1

Λk#Mk)An), (19)

where Λk = C[xk1, . . . , xkk] ⊂ Λ and Mk = 〈δki | 1 ≤ i ≤ k〉grp ≤ M . Now, the k-th 
component of An acts only on the k-th component of the tensor product. Therefore:

Frac((Λn ⊗
n−1⊗
k=1

Λk#Mk)An) ∼= Frac(ΛAn
n ⊗

n−1⊗
k=1

(Λk#Mk)Ak). (20)

Finally, since Ak is finite for each k we have:

Frac(ΛAn
n ⊗

n−1⊗
k=1

(Λk#Mk)Ak) ∼= Frac
(
(Frac(Λn))An ⊗

n−1⊗
k=1

(Frac(Λk#Mk))Ak
)
. (21)

Combining the equations (17)-(21), we have:

Frac(A (gln)) ∼= Frac
(
(Frac(Λn))An ⊗

n−1⊗
k=1

(Frac(Λk#Mk))Ak
)
. (22)

We finish the proof by observing that Frac(Λn) ∼= C(x1, . . . , xn) and Λk#Mk
∼= Wk(C)

by sending δkixki �→ Xi and (δki)−1 �→ Yi. �
We recall for readers both the classical Noether’s problem and the noncommutative 

Noether’s problem as stated in [10]. The classical problem asks, given a finite group G
and a rational function field k(x1, . . . , xn) over a field k such that G acts linearly on 
k(x1, . . . , xn), is k(x1, . . . , xn)G a purely transcendental extension of k. The noncommu-
tative problem exchanges the rational function field with the skew field of fractions of a 
Weyl algebra and asks if the G invariants are the skew field of some purely transcendental 
extension of k.

Theorem 8.3 (Theorem 1.1 in [10]). If G satisfies the Commutative Noether’s problem, 
then G satisfies the Noncommutative Noether’s Problem.

Noether’s problem for An is still open for n ≥ 5. However, we obtain the following 
result:
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Theorem 8.4. If the alternating groups A1, A2, . . . , An provide a positive solution to 
Noether’s problem, then A (gln) satisfies the Gelfand-Kirillov conjecture.

Proof. If Ak satisfies Noether’s problem, then Frac(Wk(C))Ak ∼= Frac(Wk(C)). The rest 
follows from Proposition 8.2. �

Hence, as a corollary to Theorem 8.4 and Maeda’s results in [17], we have:

Corollary 8.5. For n ≤ 5, A (gln) satisfies the Gelfand-Kirillov Conjecture.
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