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Strengthening a theorem of L. G. Kovacs and B. H. Neumann on embeddings
of countable SN*- and SI*-groups into two-generated SN*- and SI*-groups, we
establish embeddability of fully ordered countable SN-, SN*-, SI-, and SI*- groups
into appropriate fully ordered two-generated groups of the same type. Moreover,
for an arbitrary non-trivial word set IV C F_ the mentioned two-generated group
can be chosen such that the verbal V'-subgroup of the latter contains the order
isomorphic copy of an initial countable group. These embeddings are subnormal
but not, in general, normal. 0 2002 Elsevier Science (USA)
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1. INTRODUCTION

The starting point of this paper is the theorem of L. G. Kovacs and
B. H. Neumann on generalized soluble groups establishing the embeddabil-
ity of an arbitrary countable SI*-group (SN*-group) into a two-generated
SI*-group (SN*-group) [KNgs] (see Section 2, Notations and Conventions).

The importance of embeddings of countable soluble, generalized soluble
groups into two-generated soluble, generalized soluble groups is explained
not only by the attractivity of the theorem of G. Higman, B. H. Neumann,
and Hanna Neumann [HNN,;] on the embeddability of an arbitrary
countable group into an appropriate two-generated group (“Probably most
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famous of all embedding theorems” [Ryg]), but also by the fact that abelian
and nilpotent groups are not, in general, embeddable into two-generated
abelian and, respectively, nilpotent groups [NNsg, N¢g]-

In 1959 Hanna Neumann and B. H. Neumann showed that every count-
able soluble group G is embeddable into a soluble two-generated group
H [NNs]. In 1960 B. H. Neumann, solving a problem he posed himself,
showed that if the (soluble) group G is fully ordered, the two-generated
(soluble) group H can be chosen fully ordered such that G is order
isomorphic to its image in H [Ng]. (And, moreover, the image of G lies
in the second derived subgroup of H.)

In 1964 L. G. Kovédcs and B. H. Neumann extended the result of 1959
for the case of generalized soluble groups: each countable SI*-group
(SN*-group) G is embeddable into a two-generated SI*-group (SN*-
group) H.

It is very natural to ask whether one can “add full order” to this embed-
ding as well, that is, whether the given countable fully ordered SI*-group (or
SN*-group) G is embeddable into a two-generated fully ordered SI*-group
(SN*-group) H such that the initial group G is order isomorphic to its image
in H.

Our first aim here is to give a positive answer to this question: every
countable fully ordered SI*-group (or SN*-group) G possesses a subnor-
mal embedding of the type mentioned. Moreover, the analog of this holds
for the case where the soluble normal (or subnormal) series of G is not
ascending but descending; then the corresponding two-generated group H
can be chosen to have a descending normal (subnormal) series. In fact we
will prove something more general: each countable fully ordered group G
with a soluble normal (subnormal) system (that is a SI/- or SN-group) is
subnormally embeddable into a two-generated fully ordered SI-group (or,
respectively, into a two-generated fully ordered SN-group) H, such that G
is order isomorphic to its image in H. These embeddings are presented by
statements (i), (ii), and (iii) of Theorem 1 (Section 3).

Thorem 2 (Section 3) adds “verbality” to the embedding obtained. The
embeddings of [NNsg, N¢,] embed the given countable group not only into
a two-generated group, but also into the second derived subgroup of the lat-
ter. Taking into account the intensive development of the theory of varieties
of groups after the 1960s, it is a question of independent interest whether
for an arbitrary non-trivial word set 1 € F, the given countable group is
embeddable into a two-generated group H, such that the image G of G
under this embedding lies in V' (H) (that is, whether the image of G can
occupy an “arbitrarily little part of H”). These questions are solved posi-
tively in [My], and in the current investigation we prove that the require-
ment G C V' (H) can be combined with requirements of statements (i), (ii),
and (iii) of Theorem 1. In fact the method of our embedding was originally
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developed for purposes of verbal subnormal and normal embeddings [M,,
M,,, HM,], and the current paper is an adaptation of our construction to
the elegant method of L. G. Kovacs and B. H. Neumann.

Let us note that subnormal embeddability of countable groups into two-
generated groups (without requirements of full order, solubility, or verbal-
ity) was first established by R. Dark in [Dgg] (see also [Hy4]).

Since all embeddings we construct here are subnormal, we consider the
question whether the embeddings we discuss can be normal or not. This
question in general has a negative answer (Theorem 3, Examples 1, 2, and
3 in Section 5).

Examples 4 and 5 (Section 6) closing the paper are of a different nature.
They show that analogs of results obtained are not, in general, true for
some other classes of generalized soluble and generalized nilpotent groups
(N-groups, ZA-groups).

We would like to announce here our recent result concerning non-locally
soluble SI*-groups [Mg,,,]. An example of a group of such type is con-
structed by P. Hall [Hg;] and, independently, by L. G. Kovacs and B. H.
Neumann [KNgs]. And this seems to be the only example of such a group
in the literature. The verbal embedding construction of the current paper
together with ideas from [O-,, Hg;, KNgs] enables us to constuct countably
and, even, continuously infinite sets of SI*-groups which are not locally
soluble. Further applications of the method provide us with continuously
infinite sets of, say, SN*-groups which are not SI*-groups, etc. (see [M,p,]
for details).

2. NOTATIONS AND CONVENTIONS

Since the terms we use have no standard notation in the literature (fully
ordered groups are sometimes called O-groups; SN-, SI-groups are called
RN-, RI-groups in some texts'; normal series are sometimes called invari-
ant series (reserving the word “normal” for what we mean by “subnormal”),
etc.), let us begin with a list of main notations and definitions, referring the
reader to the basic literature for details.

The set {Gs;6 € A} of subgroups of G is a soluble subnormal system if
(1) it contains {1} and G; (2) it is linearly ordered by inclusion; (3) it is
closed (that is, contains unions and intersections of its elements); (4) it sat-
isfies the condition G5 < G5, where G is the intersection of all elements

'In particular in those authored by A. G. Kuro§ and S. N. Cernikov (see, for instance, in
[Krg])- The role of these authors is in this area so important that the classes of generalized
soluble groups are sometimes called Kuro§-Cernikov classes.
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of {Gs; 6 € A} greater than Gg; and (5) every factor G /Gy is abelian. If,
moreover, all of the subgroups G are normal in G, {Gj; 8 € A} is said to be
a soluble normal system of G. The group G is an SI-group (SN-group) if it
possesses a soluble normal (subnormal) system. The condition G5 # G is
equivalent to the fact that the elements of {Gg4; 6 € A} can be well ordered;
that is, G is an SI*-group (or a SN*-group) and possesses a soluble normal
(or subnormal) ascending series {Gg; 6 € A} of some ordinal length «. If,
to the contrary, G5 # G§ holds, where Gj is the union of all elements of
{Gs; 6 € A} less than G, then G possesses a soluble normal (or subnormal)
descending series {Gg; 6 € A} of some length B, where B is some inverse
ordinal.? All systems and series constructed in this paper are soluble; so this
fact is always assumed, even if it is not specially mentioned. Further infor-
mation on generalized soluble groups can be found in [Ktg, Rpc, KM1g].

We reserve the German letters 2 and 2%, for varieties of all abelian
groups and of all nilpotent groups of class at most c, respectively. For each
non-trivial word set V' there exist nilpotent groups N which are not con-
tained in the variety ¥ corresponding to the word set V. Let us denote
by w(V) the least possible class of nilpotency of such nilpotent groups N.
For information on varieties of groups we refer to the book of Hanna
Neumann [Nyg]-

Since we use wreath products repeatedly, let us reserve Greek lower-
case letters for elements of the base group, and Roman lowercase letters
for elements of the operating (“active”) group. Information on the wreath
product can be found in [Ng4, KMyg].

The group G is fully ordered if a transitive binary relation < on G is
defined such that for each a, b € G one and only one of the alternatives
a<b,a=>,and b < a holds, and if a < b then ac < bc and ca < ¢b hold
for arbitrary ¢ € G. The groups A and B are order isomorphic if there exists
an order-preserving isomorphism f: 4 — B. For an ordered group G we
denote by G and G~ the sets of “positive” and “negative” elements: an
element x is positive if 1 < x, and x is negative if x < 1. For information
on ordered groups we refer to the papers of B. H. Neumann [N, ] and Levi
[Lyy, L4s] or to the book of Fuchs [Fyg].

If we have an isomorphic embedding 8: G — H, we avoid details imma-
terial to our purposes and use in proofs the same notation for the group
G and its image in H. And if in the same situation the group G is ordered
and if we have built an order relation on H such that its reduction on B(G)

2Some authors use “symmetric” notations: SN’ for SN*, and SN" for the class of SN-
groups with well-ordered soluble descending subnormal series (in analogy, SI’ and SI” for the
cases of ascending and descending normal series; see for, example, [Sga]). Adoption of such
a notation would shorten our theorems slightly. We, nevertheless, use here the most common
notation and terms.
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makes the latter order isomorphic to G, we will use the same sign < for
the orders on G and on H.

3. THE MAIN RESULTS

The analog of the following theorem is also true for general groups (with-
out requirements of full order or of solubility or generalized solubility on G
or on H) and is presented in [My, M, ]. To avoid repetitions, we formulate
our main result for the case of generalized soluble groups.

THEOREM 1. (i) Every countable SI-group (SN-group) G is subnormally
embeddable into a two-generated SI-group (SN-group) H.

(ii) If, moreover, G possesses a soluble ascending normal (subnormal)
series of length «a, that is, if G is an SI*-group (SN*-group), then H can be
chosen to have an ascending normal (subnormal) series of length at most
AM=a+2.

And if G possesses a soluble descending normal (subnormal) series of length
B (where B is an inverse ordinal number), then H can be chosen to have a
descending normal (subnormal) series of length at most A, = 8+ 2.

In general the values of A, and A, are the best possible.

(iii) If, moreover, G is a fully ordered group, the group H of statements (i)
and (ii) can be chosen fully ordered in such a way that G is order isomorphic
to its image G in H.

The embeddings mentioned in statements (i), (ii), and (iii) of Theorem
1 are in fact not only into H but also into the second derived subgroup of
the latter. Moreover:

THEOREM 2. Let G be as in Theorem 1. Then for an arbitrary non-trivial
word set V' C F, the group H of statements (i) and (iii) of Theorem 1 can be
constructed in such a way that the isomorphic copy G of G lies in the verbal
subgroup V (H).

This is, in general, not true for statement (ii) of Theorem 1. Nevertheless the
condition G C V(H) can be satisfied by an embedding in the sense of (ii) if
Ay and A, are replaced by My = o+ 2+ u(V) and Ay = B+ 2+ (V).

Remark 1. It follows from (ii) that every soluble countable (fully
ordered) group of length, say, / is subnormally embeddable into a soluble
two-generated (fully ordered) group of length at most / + 2 [NNsg, Neol;
and, moreover, for an arbitrary but fixed non-trivial word set I the corre-
sponding two-generated group H (of length at most / + 2 + u(}')) can be
chosen such that the image G of G lies in VV(H) and is of order isomorphic
to G [Mp]-
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Remark 2. Since B+ j = B for an arbitrary infinite inverse ordinal num-
ber B and for an arbitrary integer j, we obtain that the two-generated group
H of the statements (ii) and (iii) of Theorem 1 has a descending series of
the same length B as that of G, if G possesses a descending series of infinite
inverse ordinal type .

Remark 3. Note that the value of w(}') does not depend on the initial
group G. Once found for the given word set V/, it can be used in construc-
tions for all countable (fully ordered, generalized soluble) groups G.

4. THE MAIN EMBEDDING CONSTRUCTION

To avoid consideration of many situations similar to each other, it is more
convenient to build the main subnormal verbal embedding construction
described in Theorem 2 for a given non-trivial word set V' and for a fully
ordered countable group G possessing a soluble system. Statements (ii)
and (iii) of Theorem 1 will be obtained then as simplifications of the main
construction. This will bring our proof closer to that of [My,] and will enable
us to refer to that paper and to avoid superfluous repetitions of details of
proof. Nevertheless, the proof here will be detailed enough, and we will
be able to see the group H, the structure of its full order, as well as the
normal or subnormal system of H in explicit form.

First, for the non-trivial word set V', we have to find a fully ordered
torsion free nilpotent group S with a non-trivial positive element a € V'(S)
(see Lemma 2 in [My,] for details). We take § = F;(9t,) to be a free
nilpotent group of some class ¢ = u(}’) and some rank k such that S ¢ G,
where ¥ = var(F, /V(Fy)) is the variety corresponding to V. First we
order the factors §;/S;,; of the lower central series

§=8128%= =84 ={1}
of § lexicographically as direct powers of finitely many copies of infinite
cycles. Next we continue this full order on the whole group S by defining
the sets ST and S~ of positive and negative elements of S.

We use a useful criterion of E W. Levi [L,,] for fully ordered groups.
The group A is fully ordered if and only if it can be presented as a union

A=A u{lyu 4t
such that A~ and A" are semigroups, and for arbitrary a € 4
al - At.ac At

holds. If the given group A is presented in the form mentioned one can set
fora,be A

a<b ifandonlyif a'be AT
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In our situation if
Sii={x €S |1 <x(modS._;,,)}
and
Sc_i={xeS.;|x <1(modS._; )},

we set

c—i>

c—1 c—1
St=JS, and S ={JS.
i=0 i=0

and define for x,y € §
x <y ifandonlyif x7'yeS*.

Finally we take an arbitrary non-trivial element a € V(S) # {1}. In any case
we can assume a to be positive, for we are always in position to replace our
order relation < by the inverse relation <~!.

As an element of V(S) our element a has the presentation

a=(v(ay, > a1,))" - (valag, - -5 ag,)),

where ¢; = £1,v;, € Va; € S (i=1,...,d;j=1,...,1;). Now let us take
a (not necessarily countable, ordered, or generalized soluble group) G and
consider the complete wreath product

GWrS
with the base group G5. The latter contains elements y, defined as

(S)_ 8, ifs:ai’i;O,l,Z,...,
XN, ifsesS\a|i=0,1,2,... )

(Here a is that found above.) Denote by T = T(G, V') the following sub-
group of G Wr §:

(1) T=(xga;lgeGi=1,....,d;j=1,...,1).

LEMMA 1. Let V' be an arbitrary non-trivial word set:

1. If G is a fully ordered SI-group (SN-group) and T = T(G, V) is that
constructed above, then T is an SI-group (SN-group) of the same cardinality
as G, the group G can be subnormally embedded in T such that its image lies
in V(T), and T can be fully ordered in such a way that G is order isomorphic
to its image in T.
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2. If, moreover, G possesses an ascending normal (subnormal) series of
length «, the group T possesses an ascending normal (subnormal) series of
length at most o + u(V).

And if G possesses a descending normal (subnormal) series of length B, the
group T possesses a descending normal (subnormal) series of length at most

B+ un(V).

Proof. Clearly V(T) is non-trivial, for it contains the element a (and all
of its powers). First let us show that V/(T') contains the first copy of G in
G Wr S. We have

a¥e = xglax, = a(x;") x, € V(T).
But as computations show,

g ifs=1=a"
((Xgl)a)(g)(s) =11, ifs=a,dd,...,
1, ifseS\{a|i=01,2. 1%

Thus ()(gl)”)(g = ¢4 € Gy, where ¢, is the element of the first copy of G
in G¥ corresponding to g € G. Thus ¢, = a~'aXs € V(T).

Clearly card(T) = card(G).

Now let us take an appropriate soluble normal or subnormal system
{Gy; 8 € A} of G and construct a system of the same type for 7.

Since cartesian powers {[],cs G5; 8 € A} do not in general form a normal
or subnormal system in the cartesian power [[,.¢ G = G° (the condition
G5 = U,es([1ses G5) may fail), we have to chose a “small part” of G5.
Denote

L=TnG5.

Each element y, € G5 has the value g for some s = a°,a', 4%, ... and

has the value 1 for all other elements s of S, in particular, for all s such
that s < 1. Since conjugations of y, by elements from § simply “shift” the
coordinates of y,, and since multiplication of elements of the base group
is “coordinate by coordinate,” we can first assert that for arbitrary v € L
there exists an s” such that for all s < s', 7(s) = 1 holds.

The situation is not so simple for the “right part” of 7. We cannot hope
that all values 7(s) are trivial (or even equal to each other) for all suffi-
ciently large® elements s.

Let us consider an element 7 € L. According to (1) there exist elements

Xgis -2 Xg,

3As in the proof in [KN;].
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of G5 and elements

al‘ljl, ceey al‘qjq

of S such that

).

(2) TG(Xgl,...,Xgp;ailjl,...,aiq]q

Denote by 6(7) an ordinal such that the subgroup Gy, contains all the
finitely many elements g, ..., g, In spite of the fact that the coordinates
of 7 can take unpredictably different values, nevertheless, they all belong
to G4(;). Therefore 7 belongs to M), where the latter is the intersection
of L and Cartesian power [],cs G5, of copies of G,).

It is easy to verify that, if subgroups G form a soluble subnormal system
in G, then subgroups

Mﬁszl_[Gﬁ

seS§

form a soluble subnormal system in L. And if the elements G5 form a
soluble normal system in G, the elements Mg form a soluble normal system
in L (in this case elements My are normal even in 7).

The factor group 7/L is of nilpotency class at most w(}'); so to continue
the normal (subnormal) system {Ms;6 € A} to a system for the whole
group T we simply add to {Ms; 6 € A} the pre-images of any central series
of T/L under the natural endomorphism 7" — T/L. Let us denote the
system obtained by {M;; 6 € A’}

It is clear that if the soluble system {Gg;6 € A} is a soluble ascending
normal (subnormal) series (of length «) or a soluble descending normal
(subnormal) series (of length B, B is an inverse ordinal), then {M; 6 € A’}
will form an ascending or, respectively, descending series of T of the same
type and of length & + w(}V') or, respectively, B + w(V).

Finally we continue the full order of G to a full order of T as follows. If
SiX1>8x2 € T (here 5,8, € {(a;; |i=1,...,d;j=1,...,t)) and s, x; #
5 X2 then

ij |

S1X1 < S2X2

if and only if s; < s, (according to full order defined on §) or if s = s,
and x;(sy) < x2(sy) (according to full order of G), where s, is the least
element of S for which x;(sy) = x»(sy). This relation is a full order on T,
coinciding on the first copy of G in the base group with initial order of G
(see details in Lemma 2 in [M,]). Lemma 1 is proved. 1
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To continue our construction we need a subnormal embedding of T into
the derived subgroup of some group D of the same cardinality as 7, such
that

a. the full order of T can be continued on D;

b. if T is an SI-group (SN-group), D can be chosen to be an SI-group
(SN-group);

c. if T has a soluble ascending normal (subnormal) series of length
a + w(V), then D has a soluble ascending normal (subnormal) series of
length at most o + w(V) + 1;

d. and if T has a soluble descending normal (subnormal) series of
length B8+ w(}), then D has a soluble descending normal (subnormal)
series of length at most 8+ w(V) + 1.

Let us note that if we simply apply Lemma 1 to T for the case where
V' consists of a commutator word w = [x;, x,], we get an embedding with
properties described above with one possible exception. We will get slightly
greater values for lengths of ascending and descending series of the group
constructed,

a+pV)+pw)=a+pV)+2

and

B+ up(V)+pu(w) =B+ ul)+2,

respectively (clearly u(w) = 2). To obtain values o + u(V) +1 and B +
w(V) + 1 for later purposes we have to use another construction frequently
used in the literature.

LeEmMA 2. Every fully ordered group T can be subnormally embedded into
a fully ordered group D of the same cardinality as T, which belongs to variety
var(T) - 2 and which satisfies conditions a, b, ¢, and d listed previously.

Proof. Consider the complete wreath product T Wr C, where C = {(c)
is an infinite cycle and denote by s, the element of the first copy of T in
base group (7)€ corresponding to g. In addition, define

N _ )& 1f120,
”g(c)—{L if i < 0.

Then [7,-1, c] = i, and the first copy of T lies in the derived subgroup of
the group

D= (m,,c|lgeT).
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Embed T into D by the rule g — i, for all g € G. Let us construct the
normal (subnormal) system of D. Elements { of intersection

Y =Dn(T)°
clearly have the following properties:

1. there exists an integer i; such that for arbitrary i < ij, {(c') =1
holds;

2. there exists an integer i, such that for arbitrary ', i > i,, {(c') =
£(c”) holds.

Thus every element ¢ has only finitely many different coordinates from 7.
Therefore intersections K of cartesian powers [[..- M5 (of members M
of a normal (subnormal) system of 7') with Y form a normal (subnormal)
system {Kj5;6 € A’} of Y. (If M; is normal in T, then K is normal even
in D.) To get the corresponding normal (subnormal) system {Ks; 6 € A"}
of D it remains to add one more member, namely D, to the system built
for Y.

Clearly if {M; 6 € A’} is an ascending or descending series for 7, then
the system {K; 6 € A"} also is an ascending or descending series for D.

To continue the full order of T on D we set for two non-equal elements
of D

i J

(here i and j are integers, m; and 7r; are arbitrary elements of Y) if and
only if i < j or if i = j and m(c*) < m;(c*), where c* is the least power
of ¢ for which m;(c*) and m;(c*) are different. (See details in the proof of

Lemma 4 in [M,].) 1

Next we take another infinite cycle Z = (z) and embed D into the com-
plete wreath product D Wr Z, onto the first copy of D in the base group D?Z.
Denote by W the direct power [[,.,D of copies of D. The direct powers

Wy =[]Ks» Sed’
zeZ

of elements K5 do form a normal (subnormal) system for W (each element
of W has only finitely many non-trivial coordinates). This system {Wj; 8 €
A"} is an ascending or descending series, provided that {Ks;6 € A"} is an
ascending or, respectively, descending series.

Now assume the initial group G and, therefore, the group D to be
countable:

Dz{do,dl,...,dn,...; nEN}.
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Define an element w in DZ:

()= | di =2 k=012,
1, ifiez{2*|k=0,1,2,..}

For arbitrary d,, (that is, for every n) w(fzn)(l) = d,, holds. So for each pair
d, and d,, we have

3) [w(zfzn)a w(zfz”’)](l) =[d,, d,).
Furthermore, for arbitrary j # 0,
() [0, o)) = 1

(for details see [My,]). Thus every element of the derived subgroup D’
belongs to the derived subgroup of a two-generated group,

H = (w, z).

Thus H contains as subnormal subgroups isomorphic copies of 7" and,
therefore, of G (and the latter lies in V' (H)).
Consider the intersection B = H N W. Intersections

Bs =W;NH, 8ed”,

form a soluble normal (subnormal) system for B. This system {Bs;6 € A"}
can be continued to a normal (subnormal) system {Bjs;6 € A"} for the
whole group H. We simply add one more member: the group H itself. For,
first, it is clear that Wy are normal in B, and then they are normal in H,
too; and, second, the derived subgroup H’ is contained in W' according to
(3) and (4).

It remains to continue the full order of D on the group H. Assume z'o
to be any element of H (i is an integer and o belongs to H N D?). It is clear
that for each such o there is an integer i3 such that for all i < i3 o(i) =1
holds. Thus for arbitrary non-equal elements z'o; and z/o; we can set

Zoy < 2 aj
if and only if i < j or if i = j and 0,(z%) < 0(z"), where z* is the least
power of z such that o;(z*) # 0;(z*) (see [My,] for verification).

The embedding promised in Theorem 2 is built. Moreover, this construc-
tion provides suitable embedding for statements (i) and (iii) of Theorem
1. In fact, to build an embedding for statements (i) and (iii) (without ver-
bality), one could shorten the proof. Nevertheless we will not describe that
version, to avoid unnecessary repetition.

To complete the proof of statement (ii) of Theorem 1 it only remains to
confirm the values @ + 2 and B + 2 promised in (ii). Since for this case we
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are free from the requirement Gc V' (H), we embed the group G directly
into the group D of Lemma 2 in the same way as the group T is embedded
in D. The rest of the proof remains unchanged.

We conclude the proof with an illustration of the assertion of Theorem
2 regarding the impossibility of values Ay = a + 2 and A, = B+ 2 for the
general case of verbal embeddings.

If IV contains the commutator word 68,(x¢, ..., Xy),

50 = X, 3t(x1, ey x2,) = [Stfl(xl, ceey x21—1), 8,71(x2,71+1, ey Xzz)],

t=0,1,2,..., then for ¢ > 2 the two-generated group H (constructed for

this 17 and for a countable soluble group G of length /) cannot be of length

[ + 2 because, if it is the case, the verbal subgroup V(H) of H is of length

at most / + 2 — ¢. But such a group cannot contain a subgroup of length /.
Theorems 1 and 2 are proved. 1

Remark 4. 1t is interesting to note that if the initial group G is torsion
free, the group H constructed is also torsion free. Of course, we cannot
prove the analog of this for the case of embeddings of periodical groups
into periodical groups, for the latter cannot be fully ordered.

5. NORMAL EMBEDDINGS, CONNECTIONS WITH
A PROBLEM OF H. HEINEKEN, EXAMPLES

All embeddings we construct here are subnormal. It is a question of
independent interest whether these embeddings can be normal or not.

An uncomplicated example can show that there are countable (even
finite) groups which cannot be normally embedded into a two-generated

group.

ExamMPLE 1. Assume that the countable group G is the normal subgroup
of the two-generated group H = (x, y). Then each element & € H oper-
ates by conjugation on G as an automorphism f;, of the latter. This defines
an isomorphism of H/C(G) onto some subgroup H* of Aut (G). The iso-
morphism maps GC(G)/Cy(G) onto Inn (G). Thus Inn (G) is contained
in a two-generated subgroup H* = (f,, f,) of Aut(G).

Now let us take G to be an arbitrary complete group which is countable
(or finite) but which cannot be generated by two elements. Since in this
case

G = Inn (G) = Aut (G),

we get a contradiction: G cannot be contained in a two-generated subgroup
of itself.
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As concrete examples of G one can take one of the following: G =
Aut (F), where F is a free countable group of rank greater than 1 [DFs,
Rgo]; one of the complete Mathieu groups [BHgg]; and G = Aut (L), where
L is an arbitrary non-abelian finite simple group, such that Aut (L) cannot
be generated by two elements [Ryg, Ktg, Rgg], etc.

The question of whether the embedding of Theorem 2 can be normal
leads us to another consideration. We advisedly avoided using the fact that
G is a countable group in the first part of the proof of Theorem 1. The
thing is that Lemma 1 for arbitrary non-trivial 1/ establishes a subnormal
embedding (with mentioned properties) of defect 2 of an infinite (fully
ordered, generalized soluble) group G into an appropriate group 7' of the
same cardinality as G, such that the image of G lies in V(7). It is natural
to ask whether this defect can be reduced to 1 or not, that is, whether
this embedding can be normal or not. So this time we stress the verbality of
embedding, not the fact that the embedding is into a two-generated group H.

The problem of normal verbal embeddings has been formulated (and
solved for finite p-groups) by H. Heineken in 1992 (see [Hy,]). B. Eick
has extended the construction of H. Heineken for the case of all finite
groups [Eq;]. The answer for the general case is given by our Main Theorem
in [HMg].

The following result, which is based on Lemma 1 of the current paper
and on the Main Theorem mentioned, answers the question set above and
strengthens Theorem 3 in [My,] (see also [Mgg]).

THEOREM 3. (i) For an arbitrary fully ordered SI-group (SN-group) G
there exists a fully ordered SI-group (SN-group) F of the same cardinality as
G with a subnormal subgroup G of defect 2, which is order-isomorphic to G
and lies in V (F).

(ii) If G possesses a soluble ascending or descending normal (subnor-
mal) series of length «, F can be chosen to have a series of the same type of
length at most a + p(V).

(iii)  The defect of embeddings mentioned in (i) and (ii) cannot in general
be made smaller: the embedding mentioned cannot in general be normal.

Proof. The embeddings of (i) and (ii) are constructed in Lemma 1. The
statement (iii) can be illustrated by Examples 2 and 3.

Remark 5. Note that statement (iii) of Theorem 3 is enough to assert
that the subnormal embedding of Theorem 2 cannot in general be normal.

EXAMPLE 2. Set G = F, to be an arbitrary free group of rank n > 1,
and set I to be an identity satisfied in the group

Aut (F, (%)),
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where W is an arbitrary locally finite variety. Then G can be fully ordered
and is an SN-group (and an SI-group), but it does not have a normal
embedding of the mentioned type for the word set V' (see [My,]).

ExXAMPLE 3. We can build even an example of a nilpotent group G
which does not possess a normal embedding of the mentioned type. Set
G = F,(9t.) to be the nilpotent free group of rank n» > 1 and of class
¢; then the group Aut(F,(Yt.)) has a non-trivial identity w = 1. Thus it
suffices to take V' = {w} (see [My,] for details).

Concerning the problem of normal verbal embeddings, we restrict our-
selves by Theorem 3 and these examples. We would like to announce here
our recent paper [Mg,,;] which gives a criterion under which there exist nor-
mal embeddings of the mentioned type for soluble and generalized soluble
groups (even without the requirement of verbality of embedding).

6. EXAMPLES OF GROUPS WHICH ARE NOT
EMBEDDABLE INTO TWO-GENERATED GROUPS

The analog of Theorem 1 does not exist for some other classes of general-
ized soluble and generalized nilpotent groups. Let us consider two examples
of it.

ExampLE 4. Consider N-groups (each subgroup of which can be
included in an ascending subnormal series). N-groups are locally nilpotent
[P5;]. Thus a two-generated N-group has to be nilpotent and, therefore,
cannot contain an infinitely generated countable nilpotent (or even abelian)
subgroup G.

ExaMPLE 5. For the very same reason the analog of Theorem 1 does
not hold for ZA-groups (for groups with a central ascending series). These
groups are also locally nilpotent; let us transform the proof of this statement
(due to A. I. Mal’cev [My]) for our case of two-generated ZA-groups.

Let us take an arbitrary infinitely generated ZA-group G and assume that
G is embedded into a two-generated ZA4-group H. The latter possesses an
ascending central series

§)) {1}=HycH, S---CH,=H=(x,y).

That H is nilpotent is clear for y = 1. Assume, furthermore, that we have
proved the nilpotency of H for all v < vy. Certainly v is not a limit ordinal,
for there is a « such that x, y € H,. Thus there exist a limit ordinal 6 and
an integer i such that y = 6 + i. Consider all possible commutator words

of type
(0) [ ([, Ao, 3]s i,
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where each of the elements 4, ..., h;; takes one of the values x or y. All
possible values of words (6) belong to H, and their number is finite. Thus
there exists a H, properly contained in H, and containing all values of (6).
It is possible to build an ascending central series of length 6’ +i < 6 + i of
the group H in the following way. We take all members of central series
(5) from {1} to Hy and define new members

/ !/
H07+1,H6r+2,...,

such that H/6,+j+1/H/9,+j is the center of H/.H,'ﬂ" ji=0,1,2,... (Hy =
Hy). The process will terminate in, at most, i steps.
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