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Abstract

We determine all the Klein surfaces which have a cyclic automorphism group of the maximum
possible order, and find their topological types. We also compute their full automorphism groups and
show that, except for a finite number of exceptions, they coincide with the full automorphism groups
of their Riemann double covers. Explicit algebraic equations of the surfaces and the formulae of their
real forms and automorphisms are also given.
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Introduction

The study of conformal aamorphism groups of Riemann surfaces started at the end
of the nineteenth century with the works of Schwarz, Hurwitz, Harnack, Klein, Riemann
and others. Wiman [21] showed that the maximum order of a cyclic group acting on a
Riemann surface of gengs> 2 is 4¢ + 2. Using Fuchsian groups, this was also proved by
Harvey [14] later on. A surface for which this bound is attained, which exists for gdsh
unigue within its genus, and admits no more automorphisms.

It is natural to ask analogous questions concerning cyclic groups of automorphisms of
Klein surfaces. AKlein surfaceis the quotient space of a Riemann surfacander the
action of an anticonformal involution: S — S. The Riemann surfacgis called theRie-
mann double covesf the Klein surface, and the isomorphism class of the Klein surface is a
real formof S. The maximum order of a cyclic group acting on a Klein surface of algebraic
genus >2is2¢+2if gisevenand 2 if g isodd, see [5,17]. The corresponding bound is
attained in every genus, although not in every topological type. In this paper we determine
all Klein surfaces having a maximal cyckatomorphism group. Ehtopological types of
such surfaces are also given. We show that, unlike the case of Riemann surfaces, a Klein
surface attaining this bound is not unigue within its genus and, in additialmatysadmits
more automorphisms. In fact, we show tha moduli space of Riemann surfaces having
a real form with maximal cyclic symmetry depends on a real parameter. This parametriza-
tion is explicitly described. We also prove that, except for a finite number of exceptions,
the full automorphism group of the real form coincides with that of its Riemann double
cover, both being dihedral.

As with Riemann surfaces, Klein surfaces hareinteresting algebraic counterpart.
Alling and Greenleaf showed in [2] that the algebraic objects naturally associated to
Klein surfaces are algebraic function fields in one variable dRerthat is, real al-
gebraic curvesThe explicit computation of the algebraic curve associated to the sur-
face is a subject of increasing research. liis tpaper we exhibit algebraic equations
of the surfaces we deal with and also thenfalae of their real forms and automor-
phisms.

1. Preliminaries

A compactKlein surface is the quotiespace of a compact Riemann surf&aender the
action of an anticonformal involution: S — §. Thealgebraic genusf the Klein surface
S/(z) is defined to be the genus of its Riemann double cover. In the same way as Riemann
surfaces of genug > 2 are uniformized by Fuchsian groups, Klein surfaces of algebraic
genusg > 2 are uniformized byon-euclidean crystallographic groupSEC groups for
short. These are the discrete subgropsf the group PGI2, R) of orientation preserving
or reversing isometries of the hyperbolic plabiesuch that the quotient spadé/A is
compact. The first presentations for NEC groups appeared in [20] and their structure was
clarified by the introduction of signatures in [15].
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Thesignatureof an NEC group™ is a collection of non-negative integers and symbols,
represented by (I"), which collects algebraic and topological featureg ofin this paper
we deal mainly with NEC groups whose signature is of the form

(0; +: [m1, ....m,]; {(n1, ..., np)}).

A presentation for an NEC group having this signature is the following: it dexger-
ators x1, ..., x, (elliptic isometries) andy, ..., cs (reflections), andlefining relations
x"=1fori=1,....r, ¢ =(cj_1c;)) =1fori =0,...,s andj =1,...,s, and
x1x2---xpco(x1- - - x) "1 = ¢,. A set of generators like this will be callecgat of canonical
generators.

An NEC groupA is asurface groupf its non-identity orientatio preserving elements
act fixed point free. Its name comes frohetfact that each compact Klein surfakeof
algebraic genug > 2 can be written as the quotiebt/A for some surface group.
The topological features of are reflected in the signature df in the following way: if
X = U/A has topological genug andk boundary components, then

a(A) = (v; £ [-1:{(2), 5., (),

where a %" appears ifX is orientable and a—=" if it is non-orientable. Recall that the
algebraic genug of X equalsxy +k — 1 witha = 2 if X is orientable and = 1 otherwise.
For a fixedg, thetopological typeor thespeciespa X) of X is defined to be

0, if X has empty boundary (and is non-orientable);
spaX) =1 k, if X hask > 0 boundary components and is orientable;
—k, if X hask > 0 boundary components and is non-orientable.

The number of boundary components satisties g + 1 withk =g+ 1 mod 2 if X is
orientable, and < g otherwise. The surfaces we deal with in this paper turn out to have
an “extremal” number of boundary components, as we shall see.

If a compact Klein surfac& is written asU/A, then a finite grougs is a group of
automorphisms oX if and only if there exists an NEC group containingA as a normal
subgroup such that = I'/A. Conversely, if there exists an epimorphiém/” — G from
an NEC groupl” onto a finite groups such that its kernel is a surface NEC group, then
the quotientX = U/ ker6 has the structure of a compact Klein surface, ghects as a
group of automorphisms on it. Such an epimorphism is calledothln this situation,G
is the full automorphism group A of X if and only if I is the normalizer in PG({2, R)
of the surface groupt, and hencés fails to be the full automorphism group &f if and
only if I is properly contained with finite index in another NEC gralipwhich also
normalisesA.

A monomorphismr: I — PGL(2,R) is said to betype-preservingf it maps re-
flections and glide reflections to reflectioasd glide reflections respectively, and if it
maps elliptic and hyperbolic ements to elliptic and hyperbo elements, respectively.
Given an NEC groug™, we let R(I") denote the set of type-preserving monomorphisms
r:I" — PGL(2, R) such that(I") is also an NEC group.
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A normal pairis a pair (o, c’) of NEC signatures such that for each NEC grdtp
with signatures there exists an NEC group’ with signatures’ which containgl™ as a
proper normal subgroup, and such that each monomorphés®R(I") is the restriction of
a monomorphism’ € R(I"'). Such a signature is said to benon-maximalThe complete
list of normal pairs of NEC signatures is given in [4], and it relies upon the list of normal
pairs of Fuchsian signatures given by Singerman in [19]. Normal pairs play a key role in
the problem of deciding whether a given group of automorphisms of a Klein surface is its
full automorphism group.

Instead of viewing a Klein surface as the quotient spgtie’) of a Riemann surfacg
under an anticonformal involution, it is often more convenient to see it as a p@ire).
This way, the automorphisms of the Klein surface are identified with the conformal auto-
morphisms ofS which are compatible with, see [2]:

Aut(S,7) = { f e Aut(S): fr=tf}.

We shall call this group, with an abuse of language diatralizerof ¢ in Aut(S). A real
form of a given Riemann surfacemay be viewed as the conjugacy class of an anticonfor-
mal involutionz : S — § within the full group Aut(S) of conformal and anticonformal
automorphisms of. The speciesof a real form is the species of any of its representa-
tives T, which, in turn is defined to be the species of the Klein surfgte). The real
forms correspond to the non-isomorphic Klein surfaces whose double cover is the given
Riemann surfacé. In algebraic terms, they correspond to non-birationally equivalent real
algebraic curves with isomorphic complexification.

Throughout this pape€,, D,,, A,, andS, will denote the cyclic group of order,
the dihedral group of ordern2, and the alternating and symmetric groupsrofetters
respectively. All surfaces to be considefeste are compact with (algebraic) genus 2.

We begin by studying the Klein surfaces with automorphism of the maximum possi-
ble order, which is 2 + 2 or 2¢ depending on the parity ¢f. We show that they always
admit more automorphisms, computing exjtlictheir full automorphism groups. We also
determine their Riemann double covers. Itnsiout that all such Klein surfaces are dif-
ferent real forms of the same family of Riamn surfaces, namely, the family of Riemann
surfaces with maximal dihedral symmetry.

2. Case g even

The maximal order of a cyclic group of automorphisms that a Klein surface of even

algebraic genug may admit is 2 + 2, see [5,17]. In additionC2,42> = I'/A wherel”

has either signature; = (0; +; [2, g + 1]; {(—)}) or o2 = (0; +; [g + 1]; {(2,2)}). Writ-

ing Cog42= (A, B | Ast1 = B2 —[A, B] = 1), we see that the unique smooth epimor-
phismsy; : I' — Co.2 are the following: ifI" has signatures, then eithe®1(x1) = B,
01(x2) = A andf1(c) = B, or 62(x1) = B, 62(x2) = A, and02(c) = 1. If I' has signha-
ture oo, thenfz(x1) = A, 63(co) = B, 93(c1) = 1, andfs(c2) = B. It is easy to see that
kerf; has signaturgg + 1; —; [—1; {—}), kerd, has signaturég/2; +; [—1; {(—)}), and
kerfs has signatur€0; +; [—1; {(—), ¢T1 (—)}) (see [9,10]). Hence, the Klein surfaces we
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are dealing with have topological types 0, 1,0# 1. Observe that these are extremal
values of the number of boundary components.

We claim that in all caseg; always extends to a smooth epimorphgm I’ — G’
where I’ has signatures” = (0; +; [—1:{(2,2,2, g + 1)}) and G’ = Dy442. In such
a case, observe that kr= ker6’ since|I"" : I'| = |Dag12 : Cog42|, and s0Dzy 42 =
I’/ kerd; is a group of automorphisms of the Klein surfake= U/ ker6; larger than
Coet2=T"/Kerb;.

To show the claim, we consider first the case&9afObserve that the paip1, o) is a
normal pair,see [4], so we may choose a gralipand a set of generatof,, c7, ¢5, c3. ¢4}
for it such that the expression of the generatarsr; andc of I' in terms of theclf is the
following: x1 = c5c, x2 = c5cy, ¢ = ¢ Let us write

G':=(A,B,C| A" =B2=C2=[A,B]=[B,C]=(CA)?=1).
Clearly,
G’ =(A,C) x (B) = Dg41 x C2 = Dg2.

It is then easy to prove that the assignmept> CA, ¢} — B, ¢, — BC, c3+— C, and
cy = CA is a well-defined smooth epimorphigih: I'" — D¢ which extend®;. This
proves our claim for the epimorphisfa. A similar proof also works foé, andés.

We have shown that ik admits a cyclic group of automorphisms of order 2 2,
then it has species 0, 1, gr+ 1 and actually admit®,,,» as an automorphism group.
In the next theorem we prove thditye . is the full automorphism group AU of X,
and also that, except for the Accola—Maclachlan curve (whose full automorphism group is
well-known to have order 8+ 8, see [1,16]) AutX coincides with the full group Au§
of conformal automorphisms of the Riemann double cdvef X. We also give algebraic
equations for the surfaces and their automapts, and determine which real form realizes
each species. Observe that, in algebraic terms, the equalit¥ AuAut S means that the
maximal cyclic symmetry of the real algebraic cut¢emplies that its complexificatio§
admits no more automorphisms than the real ones.

The surfaces we are dealing with in this paper turn out to be hyperelliptic. For notational
convenience we denote by: (z, w) — (z, —w) the hyperelliptic involution.

Theorem 2.1. Let (S, ) be a Klein surface of even algebraic gengisvhich admits a
cyclic automorphism groug’ze 12 of the maximum possible order. Thepd S, 7) =0, 1,
or g + 1. Assume tha$ is not the Accola—Maclachlan curve. Then

AUL(S, T) = AULS = Dag12.

The surfaces is given byw? = (z871 — 281 (z811 —1/1811) whereO < A < 1 or A = i@
withO<a <7/(2g + 2). Lett1(z, w) = (1/Z, w/gs”rl)_

(i) If 0 < A < 1, then eitherr = 71, which has specidgd, or t = 710, which has speciek.
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(ii) If A =e'® with 0 < < 1/(2g + 2), then eitherr = 7 or T = 11p; both real forms
have specieg + 1.

In either caseAut(S, 7) is generated by : (z, w) — (z-¢2/@*+D _w)yandv: (z, w) —>
(1/z, w/z8TL).

Proof. For the first equalities, sincBzg42 C Aut(S, v) C Aut S, it suffices to show that
Aut S = De2. The maximum order of a dihedral group of automorphisms of a Riemann
surface of even genusis 4¢ + 4, and so the Riemann surfaSettains this bound. Such
surfaces have been studied in [8, Section 4], and there it is proven that for all but a finite
number of exceptionsDye,» is, indeed, the full automorphism group of the Riemann
surface. One of the exceptions is the Accola—Maclachlan curve, which is excluded in the
statement of the theorem. The other exception occurs in genus 2, namely it is the Riemann
surface given by the equatian? = z(z* — 1); however, this surface has no real form with
Dg as its automorphism group, see [11, Proposition 7.3].

We now deal with equations. A Riemann surfateof even genug which admits a
dihedral group of automorphisms of the maximum ordgr44 is of the form described
in the theorem for some

A E {|A| <1: 0O<argh) <n/(g+1)}U{|mk=0: O<Reir <1}
U{eie: O<9<n/(2g+2)},

and such a dihedral group is generated by the automorphisamsl v described also in
the theorem, see [8, Section 4]. Hence the surfadmms the above form and AStthe
above generators (i is different from the mentioned exceptions). We now have to find
out whether it admits a real form with species 0, 1gar 1 whose centralizer in At is

(u, v).

It turns out that ifS; admits a real form, then either [tn) =0 or |A| =1 or argi) =
w/(2g + 2), see [8, Theorem 4.1]. If IM) = 0, then S, has four real forms, but only
71 and t1p have non-negative species; indeed,(spc= 0 and sp¢rip) = 1 [7, Theo-
rem 3.4.7(a)]. In addition, both real forms commute wittand v and so AutS, t1) =
AUt(S, 110) = Dog42. If [A] = 1, thenS; has also four real forms, and now all of them
have non-negative species [7, Theorem 3.4.7(a)]; however, an&nd r10, both with
speciesg + 1, commute withu andv. Finally, if arg(d) = 7/(2g + 2), then S, admits a
unique real form but it has negative species, see [7, Theorem 3.3.1].

Remarks2.2.

(1) The Accola—Maclachlan curve? = z2¢+2 + 1 corresponds ta = ¢™/(2¢+2) and it
also admitsr; as a real form (see [7, Theorem 3.4.7(b)]). Moreover, amongst its four
real forms,r; is the unique one whose centralizer in Aus dihedral of order 4 + 4
and, in fact, it is generated by the automorphisnasdv of the theorem (see, e.g., [8]
for an explicit description of the automorphisms of the Accola—Maclachlan curve; its
real forms have also been described in [3]). That is(Aut1) = D2e42. However, the
equality AutS = D, is no longer true sinceAut S| = 8g + 8.
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(2) In [8] it is shown that different values of give rise to non-isomorphic Riemann
surfacessS, . Hence, the assignment— S, gives a parametrization betwe¢d <
r<1}U{e®: 0<a <m/(2g + 2)} U {7/28+2} and the moduli space of Riemann
surfaces of even genus which have a real form with maximal cyclic symmetry. Observe
that this space has two connected components.

3. Case g odd

The maximal order of a cyclic group of automorphisms that a Klein surface of odd alge-
braic genus may admit isg2see [5,17]. In this cas€y, = I"/A wherel” has signature ei-
theroy = (1; —; [2, 2g]; {—}) or o2 = (0; +; [2, 2g]; {(—)}) or o3 = (0; +; [2g]; {(2, 2)}).

(A presentation of an NEC group with signatuses (d, x1, x2 | x1x2d% = xf = x22g =1).)
By analyzing the smooth epimorphisfis: I — C», which an NEC groupg™ may ad-
mit, it is easy to see that their kernels have signatgges 1, —; [—1; {—}), ((g¢ — 1)/2;

+; [=L {(=), (=)}, or (L; —; [—1; {(—),.%., (—)}). Hence, the species of the Klein sur-
faces we are dealing with in this case are 0, 2;-gr Observe that O ang are extremal
values of the number of boundary components within the non-orientable surfaces.

It can be shown that in all casésalways extends to a smooth epimorphiéml™’ —
Dy, Where|I' : I'| = |Dpg : Co,| = 2. Therefore,Dy, is a group of automorphisms of
the Klein surface// kerg; larger thanCo,. The proof of this fact is similar to that in the
case of even genus, and it relies upon the existence, forieach 2, 3 of a normal pair
(0i,0"). Indeed, fori = 1 takeo’ = (0; +; [2]; {(2, 2g)}), while for i = 2,3 takeo’ =
O+ [-1:{(2,2,2,29)}) [4].

Remark 3.1. The above shows, together with the results in the even genus, that the maxi-
mum order of a dihedral group acting on amggact Klein surface of algebraic gengs 2
is2¢+2if gisevenand 2if g is odd. Both bounds are attaindsy Klein surfaces with
species 0, 1, og + 1 in the case of even genus, and by Klein surfaces with species 0, 2,
or —g in the case of odd genus. These bounds coincide with those obtained in [13] for the
case of Klein surfaces with species 0.

Equations for the surfaces of odd genus which attain these bounds appear in the next
theorem, where we show that, except for a finite number of excepiipds also the full
automorphism group of both the Klein sack and its Riemann double cover. Recall that
o (z, w) — (z, —w) denotes the hyperelliptic involution.

Theorem 3.2. Let (S, 7) be a Klein surface of odd algebraic gengswhich admits a
cyclic automorphism groug, of the maximum possible order. Thgpa(S, 7) =0, 2, or
—g. Assume thas is not any of the following surfaces? = z(z%¢ + 1), w2 = z(z19 +
11z° — 1), w? =728+ 14z* + 1. Then

AUt(S, 7) = AutS = Do,.



454 E. Bujalance et al. / Journal of Algebra 283 (2005) 447-456

The surfaces is given byw2 =z(z8—A8)(z8 —1/A8) whereO < A < 1, 0r 1 = ¢!* with 0 <
o <7/(2g),0r A =re™ /28 with0 < r < 1. Letti(z, w) = (1/Z, w/z5+Y) and1o(z, w) =
(—1/z,iw/z8T1).

(i) If 0 < A <1, then eitherr = t1, which has specie?, or T = 71 p, which has specied

(ii) If » = e/ with 0 <« < /(2g), then eitherr = 71 or T = 11p; both real forms have
species-g.

(iii) If A = re™/28 with 0 < r < 1, then eitherr = 7> or T = 12p; both real forms have
specied.

In any caseAut(S, 7) is generated byt : (z, w) — (z - eZ7/8 w - e™/8) andv: (z, w) —
(1/z, w/z8%h).

Proof. The proof is similar to that of Theorem 2.1. The Riemann surfaedtains the
bound of the maximum order of a dihedral group acting on odd ggnanamely 4. Ex-
cluding the three exceptions mentionedfie theorem, all such surfaces hdyg, as their
full automorphism group. In addition, they are of the fag§indescribed in the theorem and
Aut S, is generated by andv, see [8].

If S, admits a real form, then either [tn) =0 or |A] = 1 or argr) = 7/(2g). If
Im(1) = 0, thensS,, has four real forms, but onhy, which has species 2, angp, which
has species 0, commute withandv [7, Theorem 3.4.7(d)]. IfA| = 1, thensS, also has
four real forms, and agaim andzip, both with species-g, are the unique ones which
commute withu andv [7, Theorem 3.4.7(d)]. Finally, if a@) = = /(2g), thensS, admits
four real forms, but onlyt; andzp have allowable species, see [7, Theorem 3.3.2], and
commute withu andv. O

Remarks3.3.

(1) The curves : w? = z(z%¢ + 1), which corresponds td = ¢™/2¢, has four real forms,
but only 71, which has species-g, and 2, which has species 0, have allowable
species [7, Theorem 3.4.7(e)]. lddition, their centralizer in AU is precisely the
group generated by andv. Hence AuUES, t;) = Dy for i =1, 2; however, the equal-
ity Aut S = Dy, is no longer true since this curve satisfiégut S| = 8g.

(2) The curves : w? = z(z1° + 11z° — 1) (of genus 5) have four real forms, but only
T:(z, w) — (—1/Z, w/z®) andrp have allowable species; indeed, both have species 0
[7, Theorem 3.8.9(b)]. It turns out that both real forms commute with the full automor-
phism group of the curve, which 65 x C2 (see [12] for an explicit description of the
automorphisms of this curve). That is, At 7) = Aut(S, tp) = AutS = As x Co.

(3) The curves : w? = z8 4+ 14z* + 1 (of genus 3) has six real forms, four of them with
allowable species [7, Theorem 3.7.9(b)]. The centralizer of two of these real forms
is D4 x C2, so the corresponding Klein surfac#s not have a cyclic automorphism
group of the maximum order. The other two are(z, w) — (—1/z, w/z% andzp,
both with species 0; it turns out that both commute with the full automorphism group of
the curve, which iS4 x C> (see [12] for an explicit description of the automorphisms
of this curve). Therefore, Ad§, t) = Aut(S, tp) = AutS = S4 x Ca.
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(4) In [8] it is shown that different values of give rise to non-isomorphic Riemann
surfacessS, . Hence, the assignment— S, gives a parametrization betwe¢d <
A <1 U{e® 0<a<m/(29)) U {re™/28: 0 < r <1} and the moduli space of
Riemann surfaces of odd genus$ which have a real form with maximal cyclic sym-
metry. Observe that this space has two connected components.

Remark 3.4. For eachg > 2 let v(g) denote the order of the largest group of automor-
phisms of a Riemann surface of gergsThe existence of the Accola—Maclachlan curve
shows thatv(g) > 8¢ + 8 for all g. In fact, this is the best bound which holds for all
The computation of (g) for the case of Klein surfaces of algebraic gegusas also been
studied. For each > 2 May in [18] gave examples of surfaces with speges1 and—g
with 4¢ + 4 and 4 automorphisms respectively, see also [6] (compare this with (ii) in The-
orems 2.1 and 3.2). Hence, in the case of bordered Klein surfaces, we(gave 4¢g + 4

if the surfaces are orientable amdg) > 4g if they are non-orientable. He also showed
that these are the best bounds which hold fogallhe surfacess;, 710) occurring in (i)

in Theorem 2.1 are examples of surfacdthvgpecies 1 which also guarantee the bound
v(g) > 4g +4inthe case of even genus, while the surfadgsti) occurring in (i) in Theo-
rem 3.2 are examples of surfaces waftecies 2 which also guarantee the boufg > 4g

in the case of odd genus.

Some results concerningg) in the case of Klein surfaces with species 0 have been
obtained by Conder, Maclachlan, Todorovic Vasiljevic, and Wilson in [13]. They show
that for eacly odd there exists such a Klein surface with a dihedral glbppof automor-
phisms, and so(g) > 4¢ for g odd. These surfaces are therefore thd&er10) appearing
in (i) in Theorem 3.2 or thoseS), t2) or (S, t20) appearing in (ii) in the same theorem.
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