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Introduction

The study of conformal automorphism groups of Riemann surfaces started at the
of the nineteenth century with the works of Schwarz, Hurwitz, Harnack, Klein, Riem
and others. Wiman [21] showed that the maximum order of a cyclic group acting
Riemann surface of genusg � 2 is 4g + 2. Using Fuchsian groups, this was also proved
Harvey [14] later on. A surface for which this bound is attained, which exists for eachg, is
unique within its genus, and admits no more automorphisms.

It is natural to ask analogous questions concerning cyclic groups of automorphis
Klein surfaces. AKlein surfaceis the quotient space of a Riemann surfaceS under the
action of an anticonformal involutionτ : S → S. The Riemann surfaceS is called theRie-
mann double coverof the Klein surface, and the isomorphism class of the Klein surface
real formof S. The maximum order of a cyclic group acting on a Klein surface of algeb
genusg � 2 is 2g+2 if g is even and 2g if g is odd, see [5,17]. The corresponding boun
attained in every genus, although not in every topological type. In this paper we dete
all Klein surfaces having a maximal cyclicautomorphism group. The topological types o
such surfaces are also given. We show that, unlike the case of Riemann surfaces,
surface attaining this bound is not unique within its genus and, in addition, italwaysadmits
more automorphisms. In fact, we show that the moduli space of Riemann surfaces hav
a real form with maximal cyclic symmetry depends on a real parameter. This param
tion is explicitly described. We also prove that, except for a finite number of excep
the full automorphism group of the real form coincides with that of its Riemann do
cover, both being dihedral.

As with Riemann surfaces, Klein surfaces havean interesting algebraic counterpa
Alling and Greenleaf showed in [2] that the algebraic objects naturally associat
Klein surfaces are algebraic function fields in one variable overR, that is, real al-
gebraic curves.The explicit computation of the algebraic curve associated to the
face is a subject of increasing research. In this paper we exhibit algebraic equatio
of the surfaces we deal with and also the formulae of their real forms and automo
phisms.

1. Preliminaries

A compact Klein surface is the quotient space of a compact Riemann surfaceS under the
action of an anticonformal involutionτ : S → S. Thealgebraic genusof the Klein surface
S/〈τ 〉 is defined to be the genus of its Riemann double cover. In the same way as Ri
surfaces of genusg � 2 are uniformized by Fuchsian groups, Klein surfaces of algeb
genusg � 2 are uniformized bynon-euclidean crystallographic groups, NEC groups for
short. These are the discrete subgroupsΛ of the group PGL(2,R) of orientation preserving
or reversing isometries of the hyperbolic planeU such that the quotient spaceU/Λ is
compact. The first presentations for NEC groups appeared in [20] and their structu
clarified by the introduction of signatures in [15].
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Thesignatureof an NEC groupΓ is a collection of non-negative integers and symb
represented byσ(Γ ), which collects algebraic and topological features ofΓ . In this paper
we deal mainly with NEC groups whose signature is of the form

(
0;+; [m1, . . . ,mr ];

{
(n1, . . . , ns)

})
.

A presentation for an NEC group having this signature is the following: it hasgener-
ators x1, . . . , xr (elliptic isometries) andc0, . . . , cs (reflections), anddefining relations
x

mi

i = 1 for i = 1, . . . , r, c2
i = (cj−1cj )

nj = 1 for i = 0, . . . , s and j = 1, . . . , s, and
x1x2 · · ·xrc0(x1 · · ·xr)

−1 = cs . A set of generators like this will be called aset of canonica
generators.

An NEC groupΛ is asurface groupif its non-identity orientation preserving element
act fixed point free. Its name comes from the fact that each compact Klein surfaceX of
algebraic genusg � 2 can be written as the quotientU/Λ for some surface groupΛ.
The topological features ofX are reflected in the signature ofΛ in the following way: if
X = U/Λ has topological genusγ andk boundary components, then

σ(Λ) = (
γ ;±; [−]; {

(−), k. . . , (−)
})

,

where a “+” appears ifX is orientable and a “−” if it is non-orientable. Recall that th
algebraic genusg of X equalsαγ +k−1 with α = 2 if X is orientable andα = 1 otherwise.
For a fixedg, thetopological typeor thespeciesspc(X) of X is defined to be

spc(X) =
{0, if X has empty boundary (and is non-orientable);

k, if X hask > 0 boundary components and is orientable;
−k, if X hask > 0 boundary components and is non-orientable.

The number of boundary components satisfiesk � g + 1 with k ≡ g + 1 mod 2 if X is
orientable, andk � g otherwise. The surfaces we deal with in this paper turn out to h
an “extremal” number of boundary components, as we shall see.

If a compact Klein surfaceX is written asU/Λ, then a finite groupG is a group of
automorphisms ofX if and only if there exists an NEC groupΓ containingΛ as a norma
subgroup such thatG ∼= Γ/Λ. Conversely, if there exists an epimorphismθ : Γ → G from
an NEC groupΓ onto a finite groupG such that its kernel is a surface NEC group, th
the quotientX = U/kerθ has the structure of a compact Klein surface, andG acts as a
group of automorphisms on it. Such an epimorphism is calledsmooth.In this situation,G
is the full automorphism group AutX of X if and only if Γ is the normalizer in PGL(2,R)

of the surface groupΛ, and henceG fails to be the full automorphism group ofX if and
only if Γ is properly contained with finite index in another NEC groupΓ ′ which also
normalisesΛ.

A monomorphismr :Γ → PGL(2,R) is said to betype-preservingif it maps re-
flections and glide reflections to reflectionsand glide reflections respectively, and if
maps elliptic and hyperbolic elements to elliptic and hyperbolic elements, respectively
Given an NEC groupΓ , we letR(Γ ) denote the set of type-preserving monomorphis
r :Γ → PGL(2,R) such thatr(Γ ) is also an NEC group.
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A normal pair is a pair(σ,σ ′) of NEC signatures such that for each NEC groupΓ

with signatureσ there exists an NEC groupΓ ′ with signatureσ ′ which containsΓ as a
proper normal subgroup, and such that each monomorphismr ∈ R(Γ ) is the restriction of
a monomorphismr ′ ∈ R(Γ ′). Such a signatureσ is said to benon-maximal. The complete
list of normal pairs of NEC signatures is given in [4], and it relies upon the list of no
pairs of Fuchsian signatures given by Singerman in [19]. Normal pairs play a key r
the problem of deciding whether a given group of automorphisms of a Klein surface
full automorphism group.

Instead of viewing a Klein surface as the quotient spaceS/〈τ 〉 of a Riemann surfaceS
under an anticonformal involutionτ , it is often more convenient to see it as a pair(S, τ ).
This way, the automorphisms of the Klein surface are identified with the conformal
morphisms ofS which are compatible withτ , see [2]:

Aut(S, τ ) = {
f ∈ Aut(S): f τ = τf

}
.

We shall call this group, with an abuse of language, thecentralizerof τ in Aut(S). A real
form of a given Riemann surfaceS may be viewed as the conjugacy class of an anticon
mal involutionτ : S → S within the full group Aut±(S) of conformal and anticonforma
automorphisms ofS. The speciesof a real form is the species of any of its represen
tives τ , which, in turn is defined to be the species of the Klein surface(S, τ ). The real
forms correspond to the non-isomorphic Klein surfaces whose double cover is the
Riemann surfaceS. In algebraic terms, they correspond to non-birationally equivalent
algebraic curves with isomorphic complexification.

Throughout this paperCn, Dm, An, andSn will denote the cyclic group of ordern,
the dihedral group of order 2m, and the alternating and symmetric groups onn letters
respectively. All surfaces to be consideredhere are compact with (algebraic) genusg � 2.

We begin by studying the Klein surfaces withan automorphism of the maximum pos
ble order, which is 2g + 2 or 2g depending on the parity ofg. We show that they alway
admit more automorphisms, computing explicitly their full automorphism groups. We als
determine their Riemann double covers. It turns out that all such Klein surfaces are d
ferent real forms of the same family of Riemann surfaces, namely, the family of Riema
surfaces with maximal dihedral symmetry.

2. Case g even

The maximal order of a cyclic group of automorphisms that a Klein surface of
algebraic genusg may admit is 2g + 2, see [5,17]. In addition,C2g+2 = Γ/Λ whereΓ

has either signatureσ1 = (0;+; [2, g + 1]; {(−)}) or σ2 = (0;+; [g + 1]; {(2,2)}). Writ-
ing C2g+2 = 〈A,B | Ag+1 = B2 = [A,B] = 1〉, we see that the unique smooth epim
phismsθi : Γ → C2g+2 are the following: ifΓ has signatureσ1, then eitherθ1(x1) = B,
θ1(x2) = A and θ1(c) = B, or θ2(x1) = B, θ2(x2) = A, andθ2(c) = 1. If Γ has signa-
ture σ2, thenθ3(x1) = A, θ3(c0) = B, θ3(c1) = 1, andθ3(c2) = B. It is easy to see tha
kerθ1 has signature(g + 1;−; [−]; {−}), kerθ2 has signature(g/2;+; [−]; {(−)}), and
kerθ3 has signature(0;+; [−]; {(−), g+1. . . , (−)}) (see [9,10]). Hence, the Klein surfaces
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are dealing with have topological types 0, 1, org + 1. Observe that these are extrem
values of the number of boundary components.

We claim that in all casesθi always extends to a smooth epimorphismθ ′ : Γ ′ → G′
whereΓ ′ has signatureσ ′ = (0;+; [−]; {(2,2,2, g + 1)}) and G′ ∼= D2g+2. In such
a case, observe that kerθi = kerθ ′ since |Γ ′ : Γ | = |D2g+2 : C2g+2|, and soD2g+2 =
Γ ′/kerθi is a group of automorphisms of the Klein surfaceX = U/kerθi larger than
C2g+2 = Γ/kerθi .

To show the claim, we consider first the case ofθ1. Observe that the pair(σ1, σ
′) is a

normal pair,see [4], so we may choose a groupΓ ′ and a set of generators{c′
0, c

′
1, c

′
2, c

′
3, c

′
4}

for it such that the expression of the generatorsx1, x2 andc of Γ in terms of thec′
i is the

following: x1 = c′
2c

′
3, x2 = c′

3c
′
4, c = c′

1. Let us write

G′ := 〈
A,B,C

∣∣ Ag+1 = B2 = C2 = [A,B] = [B,C] = (CA)2 = 1
〉
.

Clearly,

G′ = 〈A,C〉 × 〈B〉 = Dg+1 × C2 = D2g+2.

It is then easy to prove that the assignmentc′
0 	→ CA, c′

1 	→ B, c′
2 	→ BC, c′

3 	→ C, and
c′

4 	→ CA is a well-defined smooth epimorphismθ ′ : Γ ′ → D2g+2 which extendsθ1. This
proves our claim for the epimorphismθ1. A similar proof also works forθ2 andθ3.

We have shown that ifX admits a cyclic group of automorphisms of order 2g + 2,
then it has species 0, 1, org + 1 and actually admitsD2g+2 as an automorphism grou
In the next theorem we prove thatD2g+2 is the full automorphism group AutX of X,
and also that, except for the Accola–Maclachlan curve (whose full automorphism gr
well-known to have order 8g + 8, see [1,16]) AutX coincides with the full group AutS
of conformal automorphisms of the Riemann double coverS of X. We also give algebrai
equations for the surfaces and their automorphisms, and determine which real form realiz
each species. Observe that, in algebraic terms, the equality AutX = Aut S means that the
maximal cyclic symmetry of the real algebraic curveX implies that its complexificationS
admits no more automorphisms than the real ones.

The surfaces we are dealing with in this paper turn out to be hyperelliptic. For nota
convenience we denote byρ : (z,w) 	→ (z,−w) the hyperelliptic involution.

Theorem 2.1. Let (S, τ ) be a Klein surface of even algebraic genusg which admits a
cyclic automorphism groupC2g+2 of the maximum possible order. Thenspc(S, τ ) = 0,1,
or g + 1. Assume thatS is not the Accola–Maclachlan curve. Then

Aut(S, τ ) = AutS = D2g+2.

The surfaceS is given byw2 = (zg+1−λg+1)(zg+1−1/λg+1) where0 < λ < 1 or λ = eiα

with 0< α < π/(2g + 2). Letτ1(z,w) = (1/z,w/zg+1).

(i) If 0 < λ < 1, then eitherτ = τ1, which has species0, or τ = τ1ρ, which has species1.



452 E. Bujalance et al. / Journal of Algebra 283 (2005) 447–456

t
ann

h
finite
nn
in the
emann
ith

d

find

y

m

four

]
e; its
(ii) If λ = eiα with 0 < α < π/(2g + 2), then eitherτ = τ1 or τ = τ1ρ; both real forms
have speciesg + 1.

In either case,Aut(S, τ ) is generated byu : (z,w) 	→ (z ·e2πi/(g+1),−w) andv : (z,w) 	→
(1/z,w/zg+1).

Proof. For the first equalities, sinceD2g+2 ⊂ Aut(S, τ ) ⊂ Aut S, it suffices to show tha
Aut S = D2g+2. The maximum order of a dihedral group of automorphisms of a Riem
surface of even genusg is 4g + 4, and so the Riemann surfaceS attains this bound. Suc
surfaces have been studied in [8, Section 4], and there it is proven that for all but a
number of exceptions,D2g+2 is, indeed, the full automorphism group of the Riema
surface. One of the exceptions is the Accola–Maclachlan curve, which is excluded
statement of the theorem. The other exception occurs in genus 2, namely it is the Ri
surface given by the equationw2 = z(z4 − 1); however, this surface has no real form w
D6 as its automorphism group, see [11, Proposition 7.3].

We now deal with equations. A Riemann surfaceSλ of even genusg which admits a
dihedral group of automorphisms of the maximum order 4g + 4 is of the form describe
in the theorem for some

λ ∈ {|λ| < 1: 0< arg(λ) < π/(g + 1)
} ∪ {Imλ = 0: 0< Reλ < 1}

∪ {
eiθ : 0 < θ � π/(2g + 2)

}
,

and such a dihedral group is generated by the automorphismsu andv described also in
the theorem, see [8, Section 4]. Hence the surfaceS has the above form and AutS the
above generators (ifS is different from the mentioned exceptions). We now have to
out whether it admits a real form with species 0, 1, org + 1 whose centralizer in AutS is
〈u,v〉.

It turns out that ifSλ admits a real form, then either Im(λ) = 0 or |λ| = 1 or arg(λ) =
π/(2g + 2), see [8, Theorem 4.1]. If Im(λ) = 0, thenSλ has four real forms, but onl
τ1 and τ1ρ have non-negative species; indeed, spc(τ1) = 0 and spc(τ1ρ) = 1 [7, Theo-
rem 3.4.7(a)]. In addition, both real forms commute withu andv and so Aut(S, τ1) =
Aut(S, τ1ρ) = D2g+2. If |λ| = 1, thenSλ has also four real forms, and now all of the
have non-negative species [7, Theorem 3.4.7(a)]; however, onlyτ1 and τ1ρ, both with
speciesg + 1, commute withu andv. Finally, if arg(λ) = π/(2g + 2), thenSλ admits a
unique real form but it has negative species, see [7, Theorem 3.3.1].

Remarks 2.2.

(1) The Accola–Maclachlan curvew2 = z2g+2 + 1 corresponds toλ = eπi/(2g+2) and it
also admitsτ1 as a real form (see [7, Theorem 3.4.7(b)]). Moreover, amongst its
real forms,τ1 is the unique one whose centralizer in AutS is dihedral of order 4g + 4
and, in fact, it is generated by the automorphismsu andv of the theorem (see, e.g., [8
for an explicit description of the automorphisms of the Accola–Maclachlan curv
real forms have also been described in [3]). That is, Aut(S, τ1) = D2g+2. However, the
equality AutS = D2g+2 is no longer true since|AutS| = 8g + 8.
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(2) In [8] it is shown that different values ofλ give rise to non-isomorphic Rieman
surfacesSλ. Hence, the assignmentλ 	→ Sλ gives a parametrization between{0 <

λ < 1} ∪ {eiα: 0 < α < π/(2g + 2)} ∪ {eπi/(2g+2)} and the moduli space of Rieman
surfaces of even genus which have a real form with maximal cyclic symmetry. Ob
that this space has two connected components.

3. Case g odd

The maximal order of a cyclic group of automorphisms that a Klein surface of odd
braic genus may admit is 2g, see [5,17]. In this caseC2g = Γ/Λ whereΓ has signature ei
therσ1 = (1;−; [2,2g]; {−}) or σ2 = (0;+; [2,2g]; {(−)}) or σ3 = (0;+; [2g]; {(2,2)}).
(A presentation of an NEC group with signatureσ1 is 〈d, x1, x2 | x1x2d

2 = x2
1 = x

2g

2 = 1〉.)
By analyzing the smooth epimorphismsθi : Γ → C2g which an NEC groupΓ may ad-
mit, it is easy to see that their kernels have signatures(g + 1;−; [−]; {−}), ((g − 1)/2;
+; [−]; {(−), (−)}), or (1;−; [−]; {(−), g. . . , (−)}). Hence, the species of the Klein su
faces we are dealing with in this case are 0, 2, or−g. Observe that 0 andg are extrema
values of the number of boundary components within the non-orientable surfaces.

It can be shown that in all casesθi always extends to a smooth epimorphismθ ′ :Γ ′ →
D2g where|Γ ′ : Γ | = |D2g : C2g| = 2. Therefore,D2g is a group of automorphisms o
the Klein surfaceU/kerθi larger thanC2g . The proof of this fact is similar to that in th
case of even genus, and it relies upon the existence, for eachi = 1,2,3 of a normal pair
(σi , σ

′). Indeed, fori = 1 takeσ ′ = (0;+; [2]; {(2,2g)}), while for i = 2,3 takeσ ′ =
(0;+; [−]; {(2,2,2,2g)}) [4].

Remark 3.1. The above shows, together with the results in the even genus, that the
mum order of a dihedral group acting on a compact Klein surface of algebraic genusg � 2
is 2g + 2 if g is even and 2g if g is odd. Both bounds are attained, by Klein surfaces with
species 0, 1, org + 1 in the case of even genus, and by Klein surfaces with species
or −g in the case of odd genus. These bounds coincide with those obtained in [13] f
case of Klein surfaces with species 0.

Equations for the surfaces of odd genus which attain these bounds appear in th
theorem, where we show that, except for a finite number of exceptions,D2g is also the full
automorphism group of both the Klein surface and its Riemann double cover. Recall t
ρ : (z,w) 	→ (z,−w) denotes the hyperelliptic involution.

Theorem 3.2. Let (S, τ ) be a Klein surface of odd algebraic genusg which admits a
cyclic automorphism groupC2g of the maximum possible order. Thenspc(S, τ ) = 0,2, or
−g. Assume thatS is not any of the following surfaces: w2 = z(z2g + 1), w2 = z(z10 +
11z5 − 1), w2 = z8 + 14z4 + 1. Then

Aut(S, τ ) = AutS = D2g.
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The surfaceS is given byw2 = z(zg −λg)(zg −1/λg) where0< λ < 1, or λ = eiα with 0 <

α < π/(2g), or λ = reπi/2g with 0 < r < 1. Letτ1(z,w) = (1/z,w/zg+1) andτ2(z,w) =
(−1/z, iw/zg+1).

(i) If 0 < λ < 1, then eitherτ = τ1, which has species2, or τ = τ1ρ, which has species0.
(ii) If λ = eiα with 0 < α < π/(2g), then eitherτ = τ1 or τ = τ1ρ; both real forms have

species−g.
(iii) If λ = reπi/2g with 0 < r < 1, then eitherτ = τ2 or τ = τ2ρ; both real forms have

species0.

In any case,Aut(S, τ ) is generated byu : (z,w) 	→ (z · e2πi/g,w · eπi/g) andv : (z,w) 	→
(1/z,w/zg+1).

Proof. The proof is similar to that of Theorem 2.1. The Riemann surfaceS attains the
bound of the maximum order of a dihedral group acting on odd genusg, namely 4g. Ex-
cluding the three exceptions mentioned in the theorem, all such surfaces haveD2g as their
full automorphism group. In addition, they are of the formSλ described in the theorem an
AutSλ is generated byu andv, see [8].

If Sλ admits a real form, then either Im(λ) = 0 or |λ| = 1 or arg(λ) = π/(2g). If
Im(λ) = 0, thenSλ has four real forms, but onlyτ1, which has species 2, andτ1ρ, which
has species 0, commute withu andv [7, Theorem 3.4.7(d)]. If|λ| = 1, thenSλ also has
four real forms, and againτ1 andτ1ρ, both with species−g, are the unique ones whic
commute withu andv [7, Theorem 3.4.7(d)]. Finally, if arg(λ) = π/(2g), thenSλ admits
four real forms, but onlyτ2 andτ2ρ have allowable species, see [7, Theorem 3.3.2],
commute withu andv. �
Remarks 3.3.

(1) The curveS : w2 = z(z2g + 1), which corresponds toλ = eπi/2g , has four real forms
but only τ1, which has species−g, and τ2, which has species 0, have allowab
species [7, Theorem 3.4.7(e)]. In addition, their centralizer in AutS is precisely the
group generated byu andv. Hence Aut(S, τi) = D2g for i = 1,2; however, the equa
ity Aut S = D2g is no longer true since this curve satisfies|AutS| = 8g.

(2) The curveS : w2 = z(z10 + 11z5 − 1) (of genus 5) have four real forms, but on
τ : (z,w) 	→ (−1/z,w/z6) andτρ have allowable species; indeed, both have spec
[7, Theorem 3.8.9(b)]. It turns out that both real forms commute with the full auto
phism group of the curve, which isA5 × C2 (see [12] for an explicit description of th
automorphisms of this curve). That is, Aut(S, τ ) = Aut(S, τρ) = AutS = A5 × C2.

(3) The curveS : w2 = z8 + 14z4 + 1 (of genus 3) has six real forms, four of them w
allowable species [7, Theorem 3.7.9(b)]. The centralizer of two of these real f
is D4 × C2, so the corresponding Klein surfacesdo not have a cyclic automorphis
group of the maximum order. The other two areτ : (z,w) 	→ (−1/z,w/z4) andτρ,
both with species 0; it turns out that both commute with the full automorphism gro
the curve, which isS4 × C2 (see [12] for an explicit description of the automorphis
of this curve). Therefore, Aut(S, τ ) = Aut(S, τρ) = AutS = S4 × C2.
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(4) In [8] it is shown that different values ofλ give rise to non-isomorphic Rieman
surfacesSλ. Hence, the assignmentλ 	→ Sλ gives a parametrization between{0 <

λ < 1} ∪ {eiα: 0 < α � π/(2g)} ∪ {reπi/2g: 0 < r < 1} and the moduli space o
Riemann surfaces of odd genus> 5 which have a real form with maximal cyclic sym
metry. Observe that this space has two connected components.

Remark 3.4. For eachg � 2 let ν(g) denote the order of the largest group of autom
phisms of a Riemann surface of genusg. The existence of the Accola–Maclachlan cu
shows thatν(g) � 8g + 8 for all g. In fact, this is the best bound which holds for allg.
The computation ofν(g) for the case of Klein surfaces of algebraic genusg has also been
studied. For eachg � 2 May in [18] gave examples of surfaces with speciesg + 1 and−g

with 4g +4 and 4g automorphisms respectively, see also [6] (compare this with (ii) in T
orems 2.1 and 3.2). Hence, in the case of bordered Klein surfaces, we haveν(g) � 4g + 4
if the surfaces are orientable andν(g) � 4g if they are non-orientable. He also show
that these are the best bounds which hold for allg. The surfaces(Sλ, τ1ρ) occurring in (i)
in Theorem 2.1 are examples of surfaces with species 1 which also guarantee the bo
ν(g) � 4g+4 in the case of even genus, while the surfaces(Sλ, τ1) occurring in (i) in Theo-
rem 3.2 are examples of surfaces withspecies 2 which also guarantee the boundν(g) � 4g

in the case of odd genus.
Some results concerningν(g) in the case of Klein surfaces with species 0 have b

obtained by Conder, Maclachlan, Todorovic Vasiljevic, and Wilson in [13]. They s
that for eachg odd there exists such a Klein surface with a dihedral groupD2g of automor-
phisms, and soν(g) � 4g for g odd. These surfaces are therefore those(Sλ, τ1ρ) appearing
in (i) in Theorem 3.2 or those(Sλ, τ2) or (Sλ, τ2ρ) appearing in (ii) in the same theorem

References

[1] R.D.M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. S
(1968) 398–408.

[2] N.L. Alling, N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Math., vol.
Springer-Verlag, Berlin, 1971.

[3] S.A. Broughton, E. Bujalance, A.F. Costa, J.M. Gamboa, G. Gromadzki, Symmetries of Accola–Maclach
and Kulkarni surfaces, Proc. Amer. Math. Soc. 127 (1999) 637–646.

[4] E. Bujalance, Normal NEC signatures, Illinois J. Math. 26 (1982) 519–530.
[5] E. Bujalance, Cyclic groups of automorphisms of compact non-orientable Klein surfaces without bounda

Pacific J. Math. 109 (2) (1983) 279–289.
[6] E. Bujalance, On compact Klein surfaces with a special automorphism group, Ann. Acad. Sci. Fen

Math. 22 (1997) 15–20.
[7] E. Bujalance, F.J. Cirre, J.M. Gamboa, G. Gromadzki, Symmetry types of hyperelliptic Riemann surface

Mém. Soc. Math. Fr. 86 (2001) vi+122 pp.
[8] E. Bujalance, F.J. Cirre, J.M. Gamboa, G. Gromadzki, On compact Riemann surfaces with dihedral grou

of automorphisms, Math. Proc. Cambridge Philos. Soc. 134 (2003) 465–477.
[9] E. Bujalance, G. Gromadzki, P. Turbek, On non-orientable Riemann surfaces with 2p or 2p + 2 automor-

phisms, Pacific J. Math. 201 (2) (2001) 267–288.
[10] E. Bujalance, P. Turbek, On Klein surfaces with 2p or 2p + 2 automorphisms, J. Algebra 235 (2001) 55

588.
[11] F.J. Cirre, Complex automorphism groups of real algebraic curves of genus 2, J. Pure Appl. Algebra 157

3) (2001) 157–181.



456 E. Bujalance et al. / Journal of Algebra 283 (2005) 447–456

tive

mor-

66)

67)

n Math.

(1977)

oc.

(1)
[12] F.J. Cirre, Automorphism groups of real algebraic curves which are double covers of the real projec
plane, Manuscripta Math. 101 (2000) 495–512.

[13] M.D.E. Conder, C. Maclachlan, S. Todorovic Vasiljevic, S. Wilson, Bounds for the number of auto
phisms of a compact non-orientable surface, J. London Math. Soc. (2) 68 (1) (2003) 65–82.

[14] W.J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. 17 (19
86–97.

[15] A.M. Macbeath, The classification of non-euclidean crystallographic groups, Canad. J. Math. 19 (19
1192–1205.

[16] C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. Londo
Soc. 44 (1969) 265–272.

[17] C.L. May, Cyclic automorphism groups of compact bordered Klein surfaces, Houston J. Math. 3
395–405.

[18] C.L. May, A bound for the number of automorphisms of a compact Klein surface with boundary, Pr
Amer. Math. Soc. 63 (2) (1977) 273–280.

[19] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972) 29–38.
[20] H.C. Wilkie, On non-euclidean crystallographic groups, Math. Z. 91 (1966) 87–102.
[21] A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlechtp = 3, welche eindeutige

Transformationen in sich zulassen, Bihang Till. Kungl. Svenska Vetenskaps-Akademiens Handlingar 21
(1895) 23.


