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Abstract

We will show on the flag variety of the symplectic group of degree 4 over a field of positive characteristic
p =5 that the direct image under the Frobenius morphism of any invertible sheaf defined by a p-regular
weight is tilting. In particular, the derived localization theorem holds on the flag variety for the modules of
finite type over the endomorphism ring of the direct image under the Frobenius morphism of the structure
sheaf, which is locally a central reduction of the ring of crystalline differential operators.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

After the spectacular success of Bezrukavnikov, Mirkovic and Rumynin [9] in establishing the
derived localization theorem for the sheaf D of algebras of crystalline differential operators on
the flag variety in positive characteristic, we started in [16] an investigation into such for a central
reduction D of D to find it to hold on the projective spaces and on the flag variety of SL3. The
present work tests and verifies the derived localization theorem for D on the flag variety of Spy.
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For a reductive algebraic group G in positive characteristic p the representation theory
of G1T, G the Frobenius kernel of G and T a maximal torus of G, carries much information
on the representation theory of G itself and is often more accessible. In turn, a G| T -module is
the same as a T -equivariant Dist(G1)-module with Dist(G1) the algebra of distributions on G,
which is a central reduction of the universal enveloping algebra U of the Lie algebra of G. On
the flag variety B = G/B of G, B a Borel subgroup of G, the ideal of the Frobenius center
of U to obtain Dist(G1) also centrally reduces D to yield D= Modga) (Op, Op) the sheaf
of endomorphism algebras of the structure sheaf of 3 over the structure sheaf of the Frobe-
nius twist B of B. The derived localization theorem for D follows from Beilinson’s lemma
[5,6] if the dual (F,Op)Y of the direct image of the structure sheaf of B under the absolute
Frobenius endomorphism F on B is tilting. In this paper we will describe for the invertible
sheaf £(w) on B associated to any p-regular weight p of the Borel subgroup B how the direct
image F.L(p) of L(n) under the Frobenius endomorphism decomposes on the flag variety of
G =SL,, SL3, Spy, and show that such F, L(u) is tilting iff p > h the Coxeter number of G, to
obtain the localization theorem for D(u) = Modgay (L(w), L()); (FL(w))Y is isomorphic to
FxL2(p — 1)p — w), p ahalf sum of the positive roots of G. The decomposition of F,L(w) is
obtained by the determination of the structure on the associated Humphreys—Verma G| B-module
of highest weight p, building on [4].

Throughout the paper k will denote an algebraically closed field of positive characteristic p.
The sheaf of crystalline differential operators on a smooth variety X over k coincides with Berth-

elot’s sheaf Dg?/)k of the k-algebras of arithmetic differential operators of level 0 on X over k. Let
Dg("}ﬁ& be the sheaf of k-algebras of arithmetic differential operators on X over k of level m [7]. We

let Fx be the absolute Frobenius endomorphism of X and F ;’/‘E 1 X — X™+D pe the (m + 1)st
Frobenius morphism relative to k. Then

A (m)
Dx/k = Modox(,,,ﬂ) (Ox, Ox)
is a central reduction of Dg’}ﬁ(. One has
lim D) ~ lim DY) ~ Diff
= Pxk— 2 Xk — X/k
m—0o0 m-—0o0

the sheaf of k-algebras of classical differential operators on X over k, so we will denote Diff x

by D%z or Z_)gfo/oﬂz. For a k-linear space V we let V* denote the k-dual of V while on a variety
X if V is an Ox-module, VY will denote the Ox-dual of V. Unless otherwise specified, ® will
denote the tensor product over k. We let ® x denote the tensor product over the structure sheaf
of X. For short we will write “iff”” to mean “if and only if.”

In application to the representation theory it will be desirable to have the localization theorem
for ﬁg}k to be T -equivariant. To this end, we will first write down some details on the formalities

of equivariant D™ - and D" -modules.
1. Arithmetic enveloping algebras

1.1. Let C be a commutative ring and G an affine group scheme over C. Put A = C[G],
mg = ker(eg) < A with g the counit of G, Dist,(G) = {u € Mod¢ (A, C) | /L(m’grl) = 0},
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neN, Iy = ker(diagII =mult: A ®c A — A), and P} = Pg/c = (A ®c A)/IX'H, Diff. =
Mod, (P2, A). Let Dist(G) = UneN Dist,(G) be the algebra of distributions over C and
Diff 6 = Diff g;c = U, en Diff; the C-algebra of differential operators of A over C.

Let n € Sche (G x¢ G, G x¢ G)* be an automorphism of C-schemes on G x¢ G such that
(x,y) > (x,yx). If AG:A — A ®c A is the comultiplication on A, the comorphism 7* of 7
may be described by

nﬁ:a®b+—>a2b;®b,~ withAG(b):Zbi(X)bl’-. (1)
i i

It induces a commutative diagram of A-linear bijections [23, 4.4.2]

AQc A nj A®c A
]
A®cmg =~~~ ~ Iy,
and hence also an A-linear bijection for each n ¢ N
M Pi— A®c (A/mi). (3)

In turn, dualizing 5, yields

Proposition. Assume G is infinitesimally flat over C [19,1.7.9]. Vn € N, n,, induces an A-linear
bijection

A ®c Dist,(G) — Diff;, viaa @ p— a(luQc A) o Ag.

1.2. Let G be a linear algebraic group over k. For a smooth variety X over k we observed
in [16] that each Dg’;)k, m € N, admits a presentation

DY) =T (D) (h— Moy 888 — 8 @6 —[5,61,606" 88" |
ep" =1 "
rek, 8" e€Diffy, ;8.8 € Diffy ),

after which we introduce the mth arithmetic enveloping algebra of G to be

U™ = Ty (Distypm—1(G))/ (A —reg. p@p — W @ u—[u, ' ' @pu—p'1

Viek, Yu, ,LL/ € DiStpm (G), V,LLN € DiStpm_l(G)).
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As G is always infinitesimally flat over k, the presentation of Dg") =TI(G, D(Gn}ﬁ() yields a

commutative diagram of k[G]-modules

k[G] ® Dist(G) Diff s

| |

k[G] ® UM ——— Dg")

with lim U ~ Dist(G) and the bottom horizontal map surjective.
m

1.3.  Assume now that G is a Chevalley Z-group scheme. Thus Z[G] is free over Z [19,
II.1.1], and G is infinitesimally flat over Z [19, 1I.1.12.1]. In particular [19, 1.7.4], for each
commutative ring C

Dist(G) ®, C ~Dist(G¢) with Gc =G ®;, C.

In the notation of [19, II.1.12] with a Chevalley system (X4q, H; |@ € R, i € [1,rk G]) one
has from [19, 1.7.8 and 7.4.2] that

. . ek £t
Dist, (G) is free over Z of basis E( )F, k| + || + €] < n, (D)
IAVA i
where
k ka kG 4 Ka
e Xa h Hl‘ f X—a
P ) = ) —_— = ) k = k )
k! [ k! (r) : (n) 14 [l £y k=D ka
a€eRt i=1 a€eRt aeRT
kG
r=>ri. =Y Lo
i=1 aeRt

Let gz,,, = Lie(G) ®z Z(p), U(gz,,,) the universal enveloping algebra of gz, over Z), and
U(Z"( ’Z) the mth arithmetic enveloping algebra of Gz, , m € N.

Lemma. There are natural imbeddings of Zp)-algebras

~ O (m) :
U(gz,) = UZ(W < Uz(m < Dist(Gz ).

Proof. Let us first check the isomorphism U(gz(m) ~ U(ZO( )p>. As

DiStl (GZ(p)) = Z(P)SGZ(I,) @ ‘gZ(P) ’

there is a homomorphism of Zy)-algebras ¢:U(gz, ) — U(ZO(),,) such that x - x, Vx € gz, .

)
Y i Zp)
Yy € Zpy, x> x, Vx € 92, which is an inverse of ¢.

There is also a homomorphism of Zp)-algebras ¢ : Uy " — U(gz,, ) such that V€Gy, PV
P
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To see that the natural Z,)-homomorphisms U(ZO( ) , = U(Zr?)) — Dist(Gz,,, ) are both injective,
P P
we have only to verify the injectivity of the latter. By (1)

. fl
Distypm-1(Gz,)) = ]_[ Z(p) k! ( ) e

[kl+Ir+1e1<2p™ -1

Ifnelp™, 2p™ — 1], write n = p™ +n’. Then Vo € R, Vi € [1,1k G],

x2" xn X" H;\ [ H; A
= ()t =0 () () () () = 22(7)
pmlon'! p™) n! p n —~

with

n n
(p’") € (Zp))™ as <pm> =1 mod p.

For the latter see [18, 26.1]. It follows from the commutator relations in [18, §26] that U(Z'Z’;) is a
Z(py-span of elements of the form

s GE e N e GR))

eRt eRt

where kg, r; ,62 [0, p™ —11; k1 ST ,ﬁé € N. As those elements remain linearly independent

over Zp) in Dist(Gz, ) ~ Uz, the Kostant Zp)-form of U over Z,), the natural map UZ( ,
Dlst(GZm) is injective. O

1.4. Keep the assumptions of 1.3. Berthelot’s ring of arithmetic differential operators can be
defined over Z(,) when the variety is defined over Z,), and admits a presentation of the same

type. Thus let D(m) =TI (X, D(m) ) As Zp)[Gz,, 1 is free over Zp), one obtains from 1.1
Zipy

a commutative diagram of Z p)[GZ(p)] -linear maps

Z(p) [GZ(],)] ®Z(p) DiSt(GZ(p)) Dl:[fGZ(p)

!

(m)

(m)
Lp)| Gz, @z, UZ(,,) - DGZ(p)'

It follows that the bottom horizontal map is injective. It is also surjective by the presentation

of D( ™ and by 1.1. We have thus obtained
Z(p)
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Proposition. Vi € N, there is a commutative diagram of natural Zp)| Gz, |-linear maps

~

LGz, ®z, Dist(Gz ) DiﬁCGZ@)
(m) ()
LZp|Gz,) 1@z, UZY?,,) ~ DGZ(p)

such that

. m) e
h_r)nUZ(p) ~ Dist(Gz,))-
m

1.5. Let G be a reductive algebraic group over k. As G carries a structure split over Z, we
obtain

Corollary. Vim € N, there is a commutative diagram of k[G]-modules

k[G] ®k Dist(G) Diff
k[G] & U™ by

with

lim U™ ~ Dist(G).

—
m

2. Equivariant D-modules

Let G be a linear algebraic group over k, X a smooth variety over k with G-action a: G X
X — X,and Dy € {D;"/ﬂ&, @%ﬁ( | m € [0, c0]}. Put Dy = I'(X, Dx). We will suppress k in xj
and ®y. For a morphism f : X — Y of smooth varieties we will write D s_, for the inverse image
[*Dy =Ox ® -1, f~'Dy under f of Dy and put Dy, = I'(X, D). The sheaf Dy, is
equipped with a structure of (Dy, f ~1Dy)-bimodule [8, 2.1.1], [20, 2.4], so that D - forms a
(Dx, Dy)-bimodule.

2.1.  'We begin with a few preliminary lemmas; most of them are straightforward and we will
omit the proofs. If Y is another smooth variety over k, one has an isomorphism of sheaves of
k-algebras

Dxxy > Dx XDy vial—>1Q®1, (D)

taking the global sections of which yields an isomorphism of k-algebras

Dxxy ~Dx ® Dy.
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2.2. LetneSchy(X,Y)* be an invertible morphism of k-schemes from X to Y. A system-
atic use of Dj,_,, suggested by Tanisaki, is a key throughout this section.

Lemma.

(i) There is a natural isomorphism of right Dy -modules D;_, >~ Dy.
(ii) Let Z be another smooth k-variety. V& € Schy (Y, Z), there is an isomorphism of (Dx, Dz)-
bimodules

D§077~> x~ Dn~> ®DY Dé*}

(iii) There is an isomorphism of functors from the category qc(Dy) of quasi-coherent Dy-
modules to the category DxMod of left Dx-modules

I'(X,”on*~(Dy— ®p, N o I'(Y,?:qc(Dy) — DxMod.

2.3. Let Y’ be another smooth k-variety and let p: Y x X — X, po3: V' x ¥ x X > ¥ x X
be the projections.

Lemma. Let 1 € Schy (Y x X, Y x X)* and np € Sch (Y x Y x X, Y x Y x X)*.
(1) There are an isomorphism of right Dx-modules
Dypsoni— = T'(Y,Oy) ® Dx >~ Dy,
and an isomorphism of (Dy x x, Dx)-bimodules
Dyson— = Dyy— ®py,x Dpy—-

(ii) If Z is another smooth k-variety, V& € Schi (X, Z) and V&, € Schi(Y x X, Z), there are
an isomorphism of (Dx, Dz)-bimodules

Dgjopy— = Dp,— ®@py Dg -
and an isomorphism of (Dy'xy «x, Dz)-bimodules
Dysys0m— @Dy x Dey— = Diyoprzony—-
(iii) There are isomorphisms of functors qc(Dyx) — Dy xxMod

LY x X, ops > (Dp,—s ®@py Do I'(X,?),
I x X, o@20n)" = (Dpyon— ®py Do I'(X,?),

and of functors qc(Dy xx) — Dy'xyxxMod

FY' XY XX, o0p5 > (Dpys ®pyry Do T(Y x X, ),
FY' XY x X, 012 0m1)" =~ (Dyyopys @pyy Do LY x X, ).
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2.4.
Lemma. Let n € Schi (X, X)*. There are an isomorphism of left Dx-modules
D, ~ Dy,
and an isomorphism of (Dx, Dx)-bimodules
Dy =Dx ®py Dy

Proof. V§ € Dy, define §7 € Dy to be

. (nﬁ)—l 0507]jj if Dy :@%ﬁ(» 0
()M oso(x P if Dx =DY),

where (n x n)j:Px/k,(m) — Px/k,m) 18 a natural morphism induced by n [7, 2.1.1, Re-
mark 2.1.3, 2.1.4.3]. Then V8§’ € Dy,

88T =48"8"". (2)

In the case of Dg("}ﬁ{ one may write 8" = (n) "' 08 o % on Diﬁ‘iﬁ_l, which can be extended

to the whole of Dg("}l)k using the presentation [16]. But both sides are computed inside Diff x .
and hence agree by (2).

Identifying D,_, with Dy as right Dx-modules, the structure of (Dy, Dx)-bimodule on D,,_,
reads as

81 -8~82=8'17882. 3)
In particular, there is an isomorphism of left Dx-modules
D, — Dy viad> 8", 4)
and hence the first assertion. Sheafifying (3) yields the second. O

2.5.

Lemma. Assume Y is affine and let py:Y x X — X be the projection. Vn € Schy (Y x X,
Y x X)*, there is a functorial isomorphism

(p20m)* o (Dx ®py 7 = (Dyxx @py.x D © (Dpron— @py 1) : DxMod — qc(Dy x x).
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2.6. Back now to the G-variety X let

P23 P13
GXxXX<=—(GxGxX ———Gx X

X

be the projections, and let a € Schy (G x X, G x X)* such that (g, x) — (g, gx). By the preced-
ing we have the following isomorphisms:

Dg s ~k[G]® Dx ~ Dy, asright Dy-modules, D
Dy, ~ Dgxx asright Dy x-modules, 2)
Dg s >~ Di, ®pg,.x Dp as (Dgxx, Dx)-bimodules, 3)

Diulexx— =~ Dgxa—s = Dpyy—s =~ Dyp3s ~k[G] ® Dgxx  asright Dgx x-modules, (4)

Diultx x— ®@Dgxx Pas = DaomulixX)— = Do xas @Dy Da—,
DG xa—s ®Dgyx PDp— = Dpo(Gxay— = Dpys— ®pgyx Da—ss

Dmuitx x— ®Dcxx Dp—> = Dpo(multxX)—> = Dp23—> ®DG><X Dp—n 5

all as (DgxGxx, Dx)-bimodules,

NGxX,Noa*">(Ds_, Qps.x Nol'(GxX,?

as functors qc(Dgxx) — DgxxMod, (6)
I'GxX,Nop*~Dyp_, ®py, I'(X,?), TI'(GxX,Noa*~Du, ®py '(X,?)

both as functors qc(Dyx) — DgxxMod, @)
I'(GxGxX,No0p33>(Dpyy— Qpgx Do I'(GxX,?),
IF'(GxGxX,? o@mult x X)* 2 (Dmultx X ®pgyx Do l'(G x X,?),
IFNGxGxX,M0(Gxa)">(Dgxas ®pgx Nol'(GxX,?) )

all as functors qc(Dgxx) — DgxgxxMod,

Di_, ~ Dgxx asleft Dgxx-modules, ©)]

Do 2Dixx ®pgyx Pas as (Dgxx, DGxx)-bimodules, (10)
p*(Dx ®py N = (DGxx ®pgex Do (Dp— Qpy ),

a*(Dx ®py 1)~ (Dgxx ®pg.x D o (Dass ®py 1) (11)

both as functors DxyMod — qc(Dg«x), and
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p;f} o (DGXX ®DG><X ?) jad (DGXGXX ®DG><G><X ?) o (Dp23~> ®DG><X {7)7
(mult X X)* o (Dgxx ®ngux D = (D6 x6xx @Dgrgrx D © (Dmultxx— @Dgyx Do

(G x a)*o (D xx QDgxx N >~ (Dexoxx QDGxGxx N o (Dgxas ®Dgyx ?) 12)
all as functors Dgx xMod — qc(DgxGx x)-

2.7.

Definition. We say M € qc(Dx) is G-equivariant iff M is equipped with a D¢« x-linear iso-
morphism A aq: a* M — p* M verifying the cocycle condition

.o (multx X)* A g -
(©) (mult x X)*a* M (mult x X)*p* M

{ao (mult x X)}" M

I
{ao(Gxa)}'M

| .

(G x a)*a* M

(Gxa)* Az l

(G x a)*p*M
(po (G x )M {p o (mult x X)}* M

(aop3)* M (pop3)*M

Ni TN
pr3a* M pr3p M.

p§3AM

We will denote the category of G-equivariant quasi-coherent Dx-modules by qcg (X).

V¢ € Schx (X, Y), there is an isomorphism of Dy-modules ¢*Oy = Ox ®y-10, ¢ 10y ~
Ox via f ® 1 — f, and hence Oy is naturally equipped with a structure of G-equivariant
Dx-module. For each u € Distypm_1(G) let §,, = (u ® k[G]) o Ag be the image of 1 in Dg

under 1.2, and let §,, x be the image of w in D(ﬁi%:_l < Dy induced by the structure of G-
equivariant Ox-module on Oy, see 2.9 (4). Then we have in Dy, ~k[G]® Dx

(3,4'(1@1):1@5”,)(. (1

2.8. We say M € qc(Dx) is quasi-G-equivariant iff M is equipped with an Og X Dx-
linear isomorphism a* M — p* M verifying the cocycle condition (c). E.g., Dy itself is naturally
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quasi-G-equivariant, but that structure is not G-equivariant in general; define an Og x x-linear
morphism 6 : a*Dyx — p*Dy via

OGxx ®q-10, 0 ' Dx 3 f@8> fFARSY - (1K1) € Og KDy = Dy, (1

regarding 1 X1 § as an element of Dg WDy >~ Dgx x. For each g € G(k) let iy € Sch(X, G x X)
be the closed immersion x — (g, x), and let 1 : p*Dx — ig*i;p*Dx >~ ig+Dx be the adjunction.
Then at each point (g, x) € (G x X)(k) Vf € Ogxx,(g.x) and V6 € Dx g,

1g00(f ®8) =i(f)Adx ()8, @)

where Ady ()8 = 8°¢ " with a(g~!, ?) € Sehy (X, X)* such that x — a(g~', x) = g~ x; for
81,82 € G one has Adx(g1£2)6 = Adx(g2)Adx(g1)§. Likewise

(18 (1 1)=Adx(g")s. 3)

Using these identities, one checks that 6 equips Dy with a structure of quasi-G-equivariant Dx-
module.

2.9. Let M €qc(Dy). Put

DY (M) =lim Modx (Py .,y ®x M, M) if Dy = DY)},

Px(M)= DY (M) = Mod (M, M) if Dy =D
X/k X(m+1) 5 X X/]k

In the case Dy = Dg(”;)k let (g,), be the associated stratification on M, and 6,, € Modx (M, M ®Qx
Py /k m)) corresponding to &, under the Frobenius reciprocity. By [7, 2.3.2] one has a commu-

tative diagram of Oy -rings

O | (M ®x 8,) o &y
(m) (m)
DX/Ik DX/k(M) 1)

l

Modiy(M, M) (M ®x8,) 086,

V6, € DY), = (Pl )"~ Let Diff’y (M) = Modx (P}, . ®x M, M), n €N, be the

sheaf of differential operators of M of order < n. As 73}2(1/7’]]2 ?n]” ~ 73)2(1;;: ZOIo)’ one has under (1)

D DM
J ° J
D’ﬁi’;u«_l ***** g Diﬁci’;k_l(M)

S S M-
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Thus, if we put
DY (M) = Tu(Diff .~ (M) /(A = Aidpg. 6 @8 —8' ® 5 —[6.8'.8" ®5—38"5 |
i ek, 8,8 € Diffy (M), 8" € Diffy . (M),

using the presentation of Dy yields a commutative diagram

(m) Hm)
Dyp ——— — — = Dy (M)

X/k

D%(M).

Assume now that M is G-equivariant with the structure morphism Ap,. If Dx(M) =
I’ (X, Dx(M)), taking the global sections of the morphism of Ox-rings Dy — Dx (M) yields

a homomorphism of k-algebras

Dy Dx(M)
j © j 2)
i~ === - - Dif i (M),

On the other hand, A, defines as in [12, 11.4.5, 4.6] a commutative diagram of k-algebras,
except for the ones involving the 3rd row which are only k-linear:

Dist(D) Diff x j (M)

Dist(Gp )P~ D&"}L(M)
(3)

Dlﬁ‘x/k_l(M)

Distyn_1(G)

~

(Um)or Dy (M),
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where the second (respectively the fourth) row is relevant according to the case Dy = @%)k

(respectively Dg(”;)]k). In particular, one has a commutative diagram

Dist(Gyi)® —— D™

X/k
Disty 1 (G) Dlﬁif}’ﬂ’;‘ )
Umyop pim
U) X/k*

Put M = I' (X, M). Taking the global sections of A x4 equips M with a structure of G°P-module,
i.e., of left k[G]-comodule Ay, via

T(GxX,Ar)

G x X,a*M) G x X, p*M)
Dqs ®@py M o Dy, ®py M
k[Gl® M k[Gl® M.

>
v -7 - /A]‘/’[
Pk

Proposition. The structure of G°P-module on M is such that

(i) The actions of Dist(G,;+1)°? if Dx = ﬁg”/ﬁ( (respectively (U™)P if Dy = Dg"/ﬂ&), on M

restricting (3) and (4) to Distypm _1(G) coincide

DiStzpm _1(G)

L o

Dy

Dx(M).

(ii) Ifwe let GP act on Dy via Adyx from 2.8, then the action of Dx on M is G-linear:

2(8v) = (Adx(g)8)(gv) Vg€G, se Dy, veM.



M. Kaneda, J. Ye / Journal of Algebra 309 (2007) 236-281 249

2.10.

Definition. A G-equivariant Dy-module, or a (G, Dx)-module for short, is a Dy-module M
equipped with a structure of G°P-module such that:

(EQ1) the actions of Disty,m _1(G) on M induced by the structure of G°P-module and by the
k-algebra homomorphism Dist(G,,4+1)°? — Dy if Dy = @%ﬁg (respectively (U"))P —

Dx if Dy = Dg(";)k) coincide: the commutative diagram of 2.9 (i) holds;
(EQ2) the action of Dy is G-linear in the sense of 2.9 (ii).

We will denote the category of (G, Dx)-modules by (G, Dx)Mod.
2.11. A converse of 2.9 holds. For that, however, we first need a lemma.

Lemma. Let M € (G, Dx)Mod with Ay : M — k[G] ® M the left comodule map making M
into a G°P-module. Define a k[G]-linear map Ay by commutative diagram

K[G]®@ M — (kK[G]® Dx) ®py M — > Das ®py M

kIG1®An i L Ay

k[G]1® M — (k[G]1® Dx) ®py M ——= Dy ®py M.

Then Ay is a Dg « x-linear bijection verifying the cocycle condition:

DmullxX%®DG><XAM
(©)  Dmulixx— ®Dgrx Das @Dy M Duttxx— ®Dgyx Pp— ®py M

~

Dao(multxX)% ®Dx M

~

DGxa—> ®DG><X Da—> ®DX M

DG><a~>®DGXXAM O

DGxu% ®DG><X Dp% ®DX M

Daopy;— ®py M Dypo(multxx)— ®py M

~ ~

Dyys— ®Dgrx Das Qpy M

Dypy3— ®pgrx Dp— Qpy M.

Dyy3>®pgyx A
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Proof. The bijectivity of Ay follows from two identities
(kK[G1® 06 ® M) o (k[G]® Ay) o (K[G]® An)
=idyclom = (KIG1® Ay) o (KIG1® 06 ® M) o (KIG]1® A),

where o is the antipode on k[G]. .
We check next the Dgxx >~ Dg ® Dx-linearity of Ay;. By 1.2 the k[G]-algebra Dg is gen-
erated by Distypm 1 (G) through

Distypm1(G) - D¢ via u (/L ® k[G]) o Ag,

where Ag is the comultiplication on k[G]. By definition A um is already k[ G]-linear; note that the
structure of k[G]-module on both Dy, ® py M and Dy, ® p, M is given by the multiplication
to the left. Denoting the image of u € Disto,m _1(G) in Dg by §,,, one has

Au(8,-1®v) =Au(1®8, xv) by2.7(1)
=Au(1®uv) by (EQD).

If Ay(v)=)"; fi ®v;, fi €k[G], v; € M, on the other hand,

8uAm(1®@v) =8, An(w) =Y 8.(f) ®vi.

1

Vg € G(k), one has

(8 ® M)Ay (pv) = g(uv) = g(u @ M)Ay (v) =g Y u(fi)vi =Y _ pu(fi)gui

1

while
(8 ®M) ) 8, (f) ®v;
= Zg((SM(f,-))v,- = Zg((u QKIG]) AG(f))vi
- Z(“ ®8)Ac(fi)vi=(L®g® M)ZAG(fi) ®vi

=U®L®M)Y _ fi® Au) as(Ag ®M)o Ay = (KIG]1® Ay)o Ay

1

= u(fgvi,

and hence AM(I ® uv) = Ay (uv) = SMAAM(I ® v), as desired.
We examine next the Dx-linearity of AAM. Let§ € Dy and write § - (1 ® 1) = Zj aj®4;in
k[G1® Dx >~ Dq_,. Thenink[G]® M =~ Dy_, @p, M
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AAM(S -(1 ®v)) =AAM<Zaj ®8jv> ZZajAM((SjU)
j J

J

while
SAu(1®@v=8) fi®vi=) 8fi - (1®w)
i i
= Z fio- (1®v;) ask[G]and Dx commute in Dgxx >~ Dg ® Dx
i
:Zf’ ® Sv;.
i
Then Vg € G (k),

@M Au(S-1®v)=> aj(g)g®,v) =8<Zaj(8)3jv)
j j

=g(Adx(g7")sv) by2.8(3)

while
(€®M)SAN(1®v) =) fi(@)dv; =8 fi()dv; =5gv

=g(Adx(g7")8)v by (EQ2),
and hence AM(S -(1®v)) = SAAM(I ® v), as desired. We have now verified that AM is Dgxx-

linear.
Finally, to check the cocyclicity, if we write Apr(v;) = j fij ®@myj,

D Ac(f)®vi=(Ag ® M) o Ay(v) = (KIG1® Ay) 0 An(v) =) fi ® fij ® vij,

i i,j
and hence the diagram (C) commutes, as desired. O
2.12.  'We have thus obtained

Proposition. VM € DxMod, a k-linear map Ay : M — k[G] ® M makes M into a (G, Dyx)-
module iff Ay is a D x x-linear bijection verifying the cocycle condition.

2.13.

Corollary. The functor Dx ®p, ?: DxMod — qc(Dy) restricts to a functor (G, Dx)Mod —
qcg (Dx).
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2.14. Finally, let us formulate a derived version of 2.9 and 2.13. Recall first from [11, VI.2.1]
that any M € qc(Dyx) admits a mono M — 7 in qc(Dyx) with 7 injective in DxMod. In par-
ticular, any injective in qc(Dy) remains injective in DyMod. As qc(Dy) is thick in DxMod by
[13, 2.2.2], one obtains

D" (qe(Dx)) = DE(Dx). (1)
Also,

2dimX if Dx = DY), o

3dimX if Dy =Dy}

hd(qe(Dy)) <

For the projection py: Y x X — X with any Y the functor p; :qc(Dyx) — qc(Dy« x) is exact,
so therefore is (p o n)* >~ n* o p* for each n € Schi (Y x X, Y x X)*. As the cohomological
dimension of I'(Y x X, ?) is < dim(Y x X) by the Grothendieck vanishing, the functor

RI(Y x X,?) o (p201)*:D”(qe(Dx)) — D’ (Dyxx)
makes sense [21, Ex. 1.23].
Lemma. Assume Y is affine. Vi € Schi (Y x X, Y x X)*, there is a functorial isomorphism
RI(Y x X,?) 0 (p201)* = (Dp,on— @py 2) o RI(X,?):D’(qe(Dy)) — D’ (Dyxx).
Proof. If 7 is an injective Dy-module, Vi € N,
H (Y x X, (p2on)*T) > H' (Y x X, n*p3T) ~H' (Y x X, (n") p37)
~H (Y x X,p3Z) by the degeneracy of the Leray spectral sequence as ('), is exact
~H (Y x X, Oy KT)
~Kk[Y]® H! (X,Z) by the Kiinneth formula as Y is affine
=0 ifi >1asZisflasque [21, I1.2.4.6].

Then
RI(Y x X, Do (pron* ~R{I'(Y x X, 7)o (p20n)*}

~R{(Dpyon— ®py Do F(X, N} by 2.3 i)
~ (Dpyoys ®py D) oRI(X,?) s Dp,oy ~k[Y]® Dx by 2.3 (i) is flat over Dx. O

2.15.

Remark. (i) As Dy is Noetherian for each affine open Ll of X by [7, 2.2.5], Dy is a sheaf
of coherent rings [7, 3.1]. Then by [17, 1.4.4.4] and a result of Kleiman [15, Ex. I11.6.8]
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D?(coh(Dy)) ~ Dcoh(DX) the full subcategory of the bounded derived category D?(Dy) of
Dx-modules consisting of the complexes whose cohomologies are all coherent. One can thus
define

P(coh(Dx)) — - — - - = D?(Dy).
DY(Dy)

(i1) In case X is projective, as l_);";ﬁg is finite-dimensional, one has

RI'(X,?)

D’ (coh(DY)})) Df, (DY)
~ o . .
N
D (Dg’}ﬁ{mod)

where Dgn(ijﬁ{) is the full subcategory of D? (l_)g("}ﬁ{) consisting of the complexes whose coho-

mologies are all of finite type over D; /ﬁ(

(iii) Assume X = B = G/B a flag variety with G a semisimple group and B a Borel subgroup
of G, and that D = DB/k According to [9, 3.1.8], for p > h the Coxeter number of G,

RI'(B, M®) e D’(Dgmod) VM® € D?(coh(Dp)).
2.16.

Definition. For * € {—, b} we say M € D*(qc(Dyx)) is G-equivariant iff there is Apq €
D*(qc(Dgxx))(a* M, p* M)* verifying the cocycle condition in D*(qc(Dgxgxx)). If V €
D*(qc(Dy)) is another G-equivariant object, we say ¢ € D*(qc(Dx))(M, V) is G-equivariant
iff in D*(qe(Dg x x))

*

a* M a*y
Apm O Ay
p*M a*V.

p*e

We will denote the category of G-equivariant objects and morphisms of D*(qc(Dyx))
by D;(qe(Dx)).
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We say M € D*(Dy) is G-equivariant iff M is equipped with Ay € D¥(Dgxx)(Daos ®Dy
M, Dy, ®p, M)* verifying the cocycle condition in D*(Dgxgxx). If V € D*(Dy) is also
G-equivariant, we say f € D*(Dx)(M, V) is G-equivariant iff in D*(Dgx x)

Da®py f
Da—> ®Dx M Da—> ®DX Vv
W o |a
Dy Qpy M Dy, ®py V.
p— Dy Dp*)@)l_)xf p— Dy

We will denote the category of G-equivariant objects and morphisms of D*(Dy) by D, (Dx).
2.17.
Proposition. The functor RI'(X, ?) : D? (qc(Dyx)) — D?(Dy) restricts to a functor
D% (qe(Dx)) — D% (Dx).
Proof. By 2.14
Arrx.my ' =R(G x X, Apg): Da—s ®py RI(X, M) — Dy, ®py RI'(X, M)
defines a structure morphism on RI" (X, M). O
2.18.
Remark. (i) If X is projective, one obtains likewise
RI'(X, ?): D (coh(DY),)) — DY (DY), mod).
(ii) In case X = B3, the main theorem of [9] implies for p > A that
RI(X, ?):Df(coh(Dg), ) — D (Djg),mod)
is a triangulated equivalence.
2.19.

Lemma. Assume Y is affine. For each n € Schi (Y x X, Y x X)* there is a functorial isomor-
phism

(p20m)* o (Dx ®p, ?) =~ (Dyxx ®p,_, ?) 0 (Dpyoy— ®py 1):D™(Dx) = D™ (qe(Dyxx)).

Proof. Recall from 2.3 (i) that Dy,0,;— ~Kk[Y] ® Dy is flat over Dy.

ifp L k[Y] (respectively Q B M ) is a flat resolution of k[Y] (respectively M) in DyMod
(respectively DxMod), then
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Dyxx ®p,,, (Dpys ®py M)~ (Dy BDx) ® op, (KIY]® M)
~ (Dy ®Dx) ®p, gp, (P ® Q)
>~ (Dy ®p, P)X(Dx ®py Q)
~ ((Oy ®k[y] Dy) ®py P) X (Dx ®py Q) asY is affine
>~ (Oy Qxy] P) X (Dx ®py 0)
~ Oy X (Dx ®py Q) as Dy islocally free, hence flat over k[ Y]

~p*(Dx ®py Q) = p*(Dx ®p, M).
Thus
(Dyxx ®p, ., ?) © (Dp,s ®py D~ p} o (Dx ®p, 7). )

Then

Dyxx ®p,., (Dpron—s ®py M) ~Dyxx ®p  (Dy—s ®py,x Dpy> ®py M) by 2.3 (i)
>~ (Dyxx ®@py,x Dy—) ®H5YXx (Dy,— Qpy M)
as Dy, is flat as left Dy« x-module by 2.4
~Dy, ®]1be>( (Dp,— ®py M) by 2.4 again
>~ (n*Dyxx) ®H5YX)( Dp,— ®py M ~n*(Dyxx ®H5YXX Dy, ®py M)
~n*p3(Dx ®p, M) by (1)
~ (pyom)*(Dx ®p, M),
hence the assertion. O

2.20.

Proposition. The functor Dx ®]1D‘X ?:D™(Dx) — D7 (qc(Dy)) induces a functor Dg(Dx) —
D (qe(Dx)).

Proof. If Ay € D™ (Dgxx)(Da—s ®py M, Dy, ®py M) is the structure morphism of M e
D (Dx), Doxx ®H56Xx Ay equips Dy ®H5X M with a structure of D;(qe(Dx)) by 2.18:
L L
a*(DX ®DX M) ************** >;3*(DX®DX M)
~ O ~

Dixx ®p,, (Dams Opy M) Dgxx ®p,,, (Pp— @py M),

D L A
G><X®DGXX M

verifying the cocycle condition by 2.6 (12). O
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2.21.
Remark. If gldim Dy < oo, Dy ®%X ? restricts to
DZ(Dx) — Df;(qe(Dx)).
If, moreover, Dy is coherent, it further restricts to
D% (Dxmod) — D% (coh(Dx)).

To see that the structure morphism Dgx x ®H50xx AM stays in D?(qc(Dgxx)), as Dy, >~
k[G]X Dy as left Dg X Dx-module, it is enough to have pdDG (k[G]) < o0; k[G] is projective

over D)) by [14, 1.8.1] while gldim D¢/}, =2dim G by [7, Remark, p. 221].
2.22.

Corollary. When there holds a derived localization theorem, if Dy is coherent, the localization
induces G-equivariant equivalences

DX®%X?

D2 (Dxmod) D% (coh(Dy))
RI(X,?)

quasi-inverse to each other.
Proof. When the derived localization theorem holds, one will have
Igl dim(Dx) =hd(Dx) <2dim X
by [21, Ex. .17] and [15, Ex. [11.6.4, 6.5]. O
3. Decomposition of the direct images of invertible sheaves under the Frobenius morphism

3.1. Let G be a simply connected simple algebraic group over an algebraically closed field k
of characteristic p > 0, B a Borel subgroup of G, T a maximal torus of B, A = Grpy (B, GL)
the weight group of B, R the root system of G relative to T, R™ the positive system of R such
that the roots of B are —R™, R® the set of simple roots of RT, A™ the set of dominant weights
of A,and Ay ={Ae AT | (A, aV) <pVaeR). Let B=G/B and F = Fg:B — B be the
absolute Frobenius endomorphism on B. If Fp:B — BW is the Frobenius morphism on B
relative to k, G the Frobenius kernel of G, and if ¢ : G/B — G /G B is the natural morphism,
one has a commutative diagram of schemes

Fp structure

B B Spec(k)

G/GB — BM Spec(k),
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where ¢ is an isomorphism of schemes. Put for simplicity B = G/ G B. If M (respectively M)
is a G-(respectively B-)module,

¢ Lig(My @1 ML) > My @ LB(My). (1)

Let V = indg’ % be the Humphreys—Verma induction functor from the category of B-modules
to the category of G| B-modules. Vit € A, one has an isomorphism of Og-modules

FL() = ¢uL g (V).
We will denote the G| T -socle series on @(u) by 0= soco(@(,u)) < soc! (@(u)) < soc? (ﬁ(u)) <

-+, and put soc;(@(u)) = soci(@(u))/soci_l(@(u)). Then each socle layer soc; (V(w)) is
equipped with a structure of G| B-module to admit a decomposition

soc; (V(w) > | [ L&) @k GiMed(L (%), soc; (V(w)))
reAy

as G| B-modules. Put soc; 5 (V (1)) = L(1) @ G1Mod(L()), soc; (V(11))) and soc; ; (V ()} =
G1Mod(L (1), soc; (V())[71. Recall that we say u € A is p-regular iff p t{n+p,av)
Ya € R. We will show in this section

Proposition. Let G € {SLy(k), SL3(k), Spy(k)} and assume p > h the Coxeter number of G.
Then for any p-regular | € A one has a decomposition

FeLp(w =] [ oLg(soci (V) = [ ] [ £a(socin(¥V(w)") @k L)

ieN i AEA]

with Modg (L3 (soc; 5 V)b, Eg(soci,;h(ﬁ(u))l)) ~ Kk for each nonzero EB(SOCL;L(@(/L))I).
In particular, all nonzero Lg(soc;, A(V(,u))l) are indecomposable, and by Krull-Schmidt—
Azumaya the decomposition of F.Lg () into indecomposables is unique up to isomorphism.
3.2.  Let us first make some general preparations. In this subsection G may be any reductive
group over k. In what follows we will often suppress the subscripts from L. Recall first from
[19, I1.4.5 and 5.4] the vanishing theorems of Kempf and Andersen:
H (B,L())=0 ¥YveATandi>1 1)
while
H*(B,L())=0 ifve(—p+Aa%)\ AT, )

and from [19, I1.5.5] the Borel-Weil-Bott theorem for small dominant weights:

H (B, L(w 1)) 2= 8i0uyH (B, L)) Yve—p+ At with (v +p,a”)< pVa e RT. (3)
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To rearrange the structure of F,L(u), the following simple observation is useful. Let M be
an Og-module with filtration M > M! > M2 If M!/M? is a direct summand of M! and also
of M/M?, then M!/M? is a direct summand of M. Precisely, given a diagram

M M/M?
jj ]Ji '
M! M/ M?

i
suchthat 7 o j=jom andrroi:idMl/Mzzn/of,onehas
n/oﬁ'ojoi:n/ojonoizidMl/Mz. 4)

To determine the structure of B-module on each soc;, ,\(@(,u))l, recall from [19, I1.5.20] that
VA, LE A,

k ifA—pu=p'adreN aecR’

Extl A )
5 1) 0 otherwise.

(&)

Let o be a simple root, P, the minimal standard parabolic subgroup of G associated with «,
and w the corresponding fundamental weight.

Lemma. [19, I1.5.2] Assume p > 3.

(i) HO(Py/B, L(w)) is (up to isomorphism) a unique B-extension of @ — a by w.

(i) HY(P,/B, LQw)) is a unique B-extension of 2w — 2a by w ®x HY(P,/B, L(w)), and a
unique B-extension of (w — o) Qk HO(Pa/B, L(w)) by 2w.

Proof. The unicity follows from (5). O

3.3.  We next make some reductions. If A € A and M € BMod, one has an isomorphism of
G1B-modules

(L) ® M)~ Loy* @ (M) ~ Loy* @ (M),
Also MU and hence M is determined uniquely by L(%) @ M as
MW ~ G Mod(L(»), L() @ MM).

Now let i € A be p-regular and assume that the decomposition 3.1 holds:
Ly (@(u)) ~ ]_[ L ;5(soc; (@(,u))).
i

If rad; denotes the ith radical layer of the radical series,
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Lg(V(2(p—Dp—pn))=Lsz(V(w)*) by[19,119.2]
~ L (V(,u) N]_[/SB soc; (V(u) ]_[EB S0C; (V(u)) )

~ | [ £i(radi—1 (V()*) ]_[EB rad;_1 (V(2(p — Dp — 1))
i
o~ ]_[LB(SOCdimeiJrz(v(z(P —Dp-— /L))) by [3, 5.4, 5.6]. (1)
i
Also, by the unicity there is an isomorphism of B-modules
socdimB-i+2,-upr (V(2(p = Do — 1)) = (s0c;,1 (V)" 2)

For each v € A the functor ? Qx pv:GiTMod — G1TMod is an equivalence with quasi-
inverse ? @ p(—v), preserving G; BMod under restriction. Thus for each A € A1 and for each
i € N there is an isomorphism of G| B-modules

S0C; (@(,u + pv)) = soc; (@(M) ® pv) = soc; (@(,u)) ® pv
and an isomorphism of B-modules
G1Mod(L(1), soc; (V (i + pv))) =~ G1Mod (L (%), soc; (V (1)) ® pv,

and hence an isomorphism of B-modules

soci,k(@(u + pu))1 ~ soci,x(@(,u))l ®v. 3)

It will then follow from the decomposition for £;3(i4) that

La(Vn+pv) = Lg(V() @3 L(pv) = | [ La(soci (V(w)) @5 L(pv)
i
~ < (soci (V(u pv) = (soci (V(u + pv))).
=] [ £5(s0ci (V4) ® pv) = [ ] £(s0ci (Vi + pv))) )
i i
Assume now that p and v belong to the same alcove. Then the translation functor
T, :GiTMod — G TMod is an exact equivalence with quasi-inverse T}, preserving G| BMod

under restriction [19, 11.9.19]. Let A € A; with soci,x(@(u)) # 0. Fix a weight n € A of
soci,;L(V(,u))l; in particular, A + pn € W, - u. If n' € A is another weight of soci,;L(V(,u))l,
then

n €n+ZR. 5)

If M € Ay with A +pne W, v, ie, T, (L(x) ® pn) =~ L()) ® pn, one has an isomorphism of
G B-modules

TV (soci 1 (V(10))) = soc; (V) = LA @ (soci 1 (V) ). ©6)
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3.4. Let us first consider the case u = 2(p — 1)p lying in the top alcove of the bottom
dominant box [TT ={£ € A | (£ + p,a") €]0, p[ Ya € R®}. We will show that for each i, j € N
with i > j and for each A, v € A

Extl (L5 (s0ci,, (V(2(p — Dp))'), L5 (s0c 0 (V(2(p — Dp))')) =0. (1)

Then the decomposition 3.1 will follow from 3.2 (4). In turn, by 3.3 (4) and (6) the decomposition
will hold for any u + pé&, & € A, with 1 contained in the top alcove of IT, and hence by 3.3 (1)
and (2) also for any u + pé, & € A, with u in the bottom dominant alcove.

At this moment Proposition 3.1 for G = SLy (k) or SL3 (k) follows from [16]; the assertion (1)
has been proved there. We will thus assume G = Sp, (k) throughout the rest of this section with
the simple roots o1 and oy, v short. Let w; and w; be the corresponding fundamental weights.

Then the socle layers of @(2( p — D)p) are given as follows by [3], [4, 3.1], where we abbreviate

SOC; (@(2(1) —1)p)) as soc;, soci,)\(@(2(p —1)p)) as soc; ; and soci,x(@(Z(p — 1),0))1 as soc}’k:

SOC| = SOC]y(p,Z)p,
80C2 = S0C2, (p—2)w;+ws D S0C2, (p—3)w, D SOC2, (p—2)w; 5
80C3 = SOC3 20, +(p—3)wy P S0C3,0 D SOC3, (p—d)w|+w» >
$0C4 = S0C4 20| +(p—2)wp B SOC4, (p—2)w +w2

SOC5 = S0C5 ().
Lemma. Assume p > 5.

(1) There are isomorphisms B-modules

1 ~ o~ 1
SOCY, (p-2)p = P =502 (p-2)w1+wy
1 ~ ol
802, (p=3)an = 503,01

SOC§,2w1+(p—3)w2 o1 ® HO(POCI /B’ ['(a)l))a

1 ~ 1 ~
8O0C4 2001 +(p—2)wp — @25 80C4 (p—2)wi 4wy — P15

|
$0Cs ( = k.

(i) There is an isomorphism socé 0~ soc; (r—3)w of B-modules, which is a unique B-
extension of w; ® HO(Pal/B, L(w1)) by 2w, and also is a unique B-extension of wy by
@2 ® H'(Pay /B, L(@2)).

(iii) SOC%,(p—4)w1+w2 is a unique B-extension of wy ® HO(Pa2/B, L(—w1 + wp)) by p, and is a
unique B-extension of w1 by HO(POC1 /B, L(p)).

@iv) socé’(p_ét)w1 is a unique B-extension of wr» ® HO(POQ/B, L(—w1 + w2)) by 201 ®
HO(Pa] /B, L(w1)), is a unique B-extension of w1 by w1 ® HO(Pa] /B, LQ2wy)), and also is
a unique B-extension ofsoc;(‘n_ét)wl_M2 by 3wi.
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Proof. As the arguments are all similar, let us just explain (iv), assuming the rest.
To see the unicities, it suffices to show

k =~ Ext}y (2w ® H'(Py, /B, L(1)), @ ® H)(Py, /B, L(—o1 + @2)))
=~ Extl (w1 ® H'(Py, /B, LQ2w1)), @1)
= EXt}? (3601 ’ Socé,(p—4)w1+w2)'

Consider three long exact sequences

Exth (3w, w2 ® H(Py, /B, L(~w1 + 2)))
— Exty (201 ® H(Py, /B, L(@1)), w2 @ H'(Po, /B, L(—w1 + a1)))
— Extl(p, w2 @ H'(Po, /B, L(~w1 + an)))
— Ext} (301, w2 @ H(Py, /B, L(—w1 + »2))),

Extly Bw1, w1) — Exty (301, w2 @ HY(Py, /B, L(—w1 + @2))) — Exty (3w, —w1 + 2w2),

i €N, and

Exty (p, 01) — Extl(p, 02 @ H(Py, /B, L(—w1 + @2)))

— Ext}; (p, —w1 4+ 2an) — Ext%(,o, w1).

261

2

3)

“4)

(&)

As p > 5 by the standing hypothesis, H* (B, £L(—2w;)) = 0 by Andersen, 3.2 (2), and hence the

spectral sequence

By = Ext}; (k, H/ (B, £(—2w1))) = Ext; (k, R/ind§ (—2w1)) =  Exty” (k, —2w;)

B

degenerates to yield
0 =Exty(k, —2w1) = Exty (Bw1, w1).
Likewise
Exty (Bwi, —w1 + 2w2) =0 =Exty (o, w1).
It follows from (4) that
Exty (3a)1 , 0 ® HO(PO,Z/B, L(—w + wz))) =0,
and from (5)

Exth (0, w2 @ H'(Pa, /B, L(—w1 + an))) = Exty (p, —w| + 2w2)
~H'(B, —a;) ~k.
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Then by (3)

Extly (2w @ H(Py, /B, L(@1)), 02 @ H'(Pa, /B, L(—w1 + a2)))
~ Exty(p, w2 @ H(Pa, /B, L(~w1 + »2)))
~k,

that is the first isomorphism of (2). Likewise the rest.
Now socé (r—4yo, has a filtration of B-modules

soc) > soc)'! > soc)? > soc)3 >0
2,(p—Hwi 2,(p—Hwi 2,(p—Hw) 2,(p—Hw)
such that

soc) /socl’l ~3w
2.(p=Hr P22, (p—hoy — 71>

11 1.2 N
S0C) (p—dyy /392 (p—dyay = P>

1.2 1.3 o~
SOCZ,(p—4)a)1/SOCZ,(p—4)a)1 ~ —w) + 2wy,

1,3 ~
S92, (p—tr = 1

Just suppose that the short exact sequence of B-modules

1,3 1,2 _
0— S0C) " (p—tyey > SO (p_tyey (—w1 +2w3) — 0

split. Then there would be a G| B-submodule M of soc? containing soc! such that M /soc! ~
L((p —4w1) ® p(—w;1 + 2w»). That would induce an exact sequence of G-modules

indg 5(M ® p(w) —2w2)) = L((p — Hwi) = R'ind g (soc' ® p(w; — 2w2))
with
ind§ 5(M ® p(w1 —2w2)) <ind§ 5(V(2(p — 1)p) ® p(w1 — 2m2))
~H(B, L((3p — 2)wi — 2w))) = 0.

But Rlindgl B(socl ® p(w1 — 2w»)) has no G-composition factor whose G-irreducible part is
L((p —4)w1), absurd. It follows by the unicity 3.2 (i) that

soc;:?p_@wl ~wy ® HO(Paz/B, L(—w) + a)z))
as B-modules. Likewise the short exact sequence of B-modules

1,2 1,1
0— SOC) (h—aywy > SOC) (p_ay, > P = 0
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does not split; L((p — 4)w1) is not a G-composition factor of HO(B, L((p —2)p)) [2]. Then
by (iii) one obtains an isomorphism of B-modules

1,1 US|
8902, (p—y01 = 5993, (p—hwr w2
Also the exact sequence of B-modules
1,1 1
0 = 50C)" (1, 4y, > SOC3 (p—t)r, = 301 =0
does not split, and by (2)
1 1 ~
Extg (3a)1, SOC3,(p—4)w1+w2) ~ k.

1 . . . 1
It f0110w§ that SOC) (,—d)e, 1S @ UNique B-extension of SOC3 (1 )iy -+ by 3w;.
Now just suppose that the exact sequence of B-modules

0—p— SOCE,(psz)wl/{wz ®@H (P, /B, L(~w1 + ®2))} = 301 — 0
split. Then, as Exth 3wy, —w) + 2w)) = 0 = Exth 3wy, 01),
Extl (3w1, w2 ® H(Pa, /B, L(—w1 + »2))) =0,

1 . . 1 .
and hence 3w; < SOC) (h— 4y, which would force the epi SOC) (p—dyw, 3w to split as
socé,( D is multiplicity-free, absurd. Thus one obtains an isomorphism of B-modules

503 (p 4y / {02 @ HY(Pay/ B, L(=w1 + @2)) } ~ 201 @ H'(Py, /B, L(w1))
by 3.2 (i). Moreover, if the exact sequence
0— w2 @ H(Pa,/B, L(=w1 + @2)) = $0¢) (4, = 201 @ H' (P, /B, L(w1)) - 0
were split, then
0 ~ 1 ~ 1
{wz ®H (PD,Z/B, L(—w + wz))} P p> 1<er(socl(P_4)w1 — 3a)1) 2 80C3 ()— 4y +a0o
contradicting (iii), and hence the sequence does not split. It follows from (2) that socé (r—byw; is
aunique B-extension of wy ® H(P,,/B, L(—wi + 7)) by 201 @ HO(Py, /B, L(w))).
Finally, just suppose that the exact sequence of B-modules

0— HO(Pal/B, L(p)) — socé’(p%)wl Jwi = 3w; — 0

split. Then, as Ext}g(3a)1,w1) = 0, one would have 3w; < socé (p—bywy? splitting the epi
SOC;,(p—4)a)1 — 3wy, absurd. Then by 3.2 (ii)

S0C) (p—ay /@1 = H'(Pay /B, LQ2w1)) ® w1
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as B-modules. If socé’({)_“)wI >~ w @ {HO(Pal/B,E(Zwl)) ® w1}, then —w; + 2wy <
soc% (p—Dywy? and hence
w1 ® (—w1 +2wy) ~ ker(socé’(p_ét)w1 — HO(Pal/B, LQ2w))) ® »1)

~wy @ H'(Po, /B, L(—w) + 02)),

contradicting 3.2 (i). As Ext}g (HO(Pal/B, L2w))) ® w1, w1) =~k by (2) again, soc; (r—B)oy is
also a unique B-extension of w| by HO(P(X1 /B, L2w1)) ® wy, as desired. O

3.5.  We now finish the verification of 3.4 (1) for u = 2(p — 1) p. As each argument is straight-
forward, however, let us just explain a most complicated one to show

EXt;j’ (E(SOC;,(p—ét)wl—i-wz)’ ‘C(SOC%,(p—3)w2)) =0.

There is an exact sequence

Extg(ﬁ(soc§’(p_4)wl+w2), L(w1 ® H(Py, /B, L(@1))))
— Ext}g (E(socé’(p%)wﬁwz), £(soc%’(p73)w2)) — Ext}g (,C(soc;@%)wﬁwz), LQ2w)). (1)

On the other hand, one has an exact sequence of G-modules

Mod3(L(S0C3 () 40y 1) £(@1 @ H(Po, /B, L(w1))))
— Modg (L (1), L(w1 ® H(Py, /B, L(w1))))
— Exti(L(H(Py, /B, L(p))). L(w) @ H(Py, /B, L(w1))))
— Ext3(L(S0C} () 4y 10,): £(@1 @ H (P, /B, L(e21))))
— Ext(L(@r). L(o1 @ H(Py, /B, L(1)))) @

with for each j € N
Ext; (L(w1), L(w1 @ HO(Py, /B, L(1)))) = H/ (B, L(H(Py, /B, L(1))))
~ 8, H’(B, L(w1))
and
(H(Py, /B, L(p))). L(w1 ® H'(Py, /B, L()))))

(£
H' (B, L(H*(Pa,/B. L(p))" ® @1 @ H*(Pu,/B. L(w1))))
H'(G/Py,, L(H(Py, /B, L(w1 — 2072)) @ H(Py, /B, L(w1)) @ H(Py, /B, L(w1)))).

1

[

AsHO(Py, /B, L(w1)) ®H®(Py, /B, L(w))) has a Py, -filtration with the subquotients H(P,, /B,
L2wy)) atop of wo,
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H’(Pe, /B, L(@1 = 202)) @ H'(Py, /B, L(@1)) @ H'(Pu /B, L(w1))
admits a Py, -filtration of the subquotients
HO(Py, /B, L(w) —2w2)) ® H(Py, /B, LQ2w1))
atop of
H(Py, /B, L(w) — 2w2)) ® wy > H(Py, /B, L(w) — w2)).
In turn,
H(Py, /B, L(w1 — 2w7)) @ H)(Py, /B, L2w1))

has a P, -filtration of the subquotients HO(Pal/B,Li(Sa)l — 2wy)) atop of HO(POl1 /B,
L(w1 — wy)), and hence

HO(Py, /B, L(w) — 2w2)) @ H(Pa, /B, L(w1)) @ H'(Py, /B, L(w1))

has a Py, -filtration of the subquotients
H'(Py, /B, LBwi —2w2)), H’(Py, /B, L(w) — @) and H’(Py, /B, L(w) — w2))
from the top in order. As H*(B, L(w1 — 7)) = 0, one obtains
Exty (L(H(Py, /B, L(p))), L(w1 ® H(Py, /B, L(@1)))) =~ H' (B, LBw; — 2w2))
~H(B, L(w)).
There is also an exact sequence
Modg(L(p), L(w1 @ H(Pa, /B, L(w1))))
— Modg(L(50C3 ()41, 40,)> £(@1 @ H (P, /B, L(w1))))

— ModB(/.’,(a)z ® HO(Paz/B, L(—w; + a)z))), l:(a)1 ® HO(POll/B’ ['(wl))))
— Extg(ﬁ(p), E(a)1 ® HO(Pal/B, L'(a)1))))

with
Ext}(L£(0), £L(w1 @ H(Py, /B, L(w1)))) =~ H*(B, L(w) — w2)) =0,
and hence
Modg (£(5003, () —ayo+r)> £(@1 @ H(Pay /B, L@))))
~Modp(L(wr ® H(Py, /B, L(—w1 + ®2))), L(w1 @ H'(Py, /B, L(w1)))),

which fits in an exact sequence
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Modg (L (w2 ® HY(Py, /B, L(—o1 + a2))), L(w2))
— Modg(L (w2 @ HY(Pa, /B, L(—w1 + @2))), L(w1 @ H(Py, /B, L(@1))))
— Modg (L (w2 @ H(Py, /B, L(—w1 + @2))), LRw1))

with
Modp (E(a)z by HO(Potz/B7 L(—w + 0)2))), E(a)z))
~ HO(B, L(H P,/ B, L(—o1 +©2))"))
= HO(B, (0P B. £ + ) = HO(B, L1 + ) =0
and

MOdB (L:((U2 ® HO(Paz/Bv E(_a)l + wZ)))’ ‘C(zwl))
~HO(B, L((—w2) @ H(Pu, /B, L(p))))
=0 asH*(P,,/B,L(-w)) =

Thus the exact sequence (2) reads as

0— H(B, L(w1)) — H*(B, L(w1))
— Ext}g(ﬁ(soc;(p%)wﬁwz), Lo ® HO(Pal/B, L(w))) =0

and hence
EXt(L(503 oy )+ £(@1 @ H (Pay/ B, L(@1)))) =
by the irreducibility of HO(B, £(w))). Finally, there is an exact sequence
Ext(L(H"(Pay / B. L(p))). £2a2)) = Exs(L(S0C3 (5 10, 1) - £(202)

— Ext(L(w1), L2aw»))

with

Extg(L(H(Pu, /B, L(p))), LQ2w))) ~H' (B, L(H*(Py, /B, L(w1)))) =~ H' (B, L(w1)) =
and
Exty(L(@1), £LQ2w2)) ~H' (B, L(—wi1 + 2w2)) =0,
and hence Ext;(L(50C3 (, 4, 14,)s £(2@2)) = 0. It now follows from (1) that

EXt% (ﬁ(socé,(p—@w] +wz) ’ E(SOC%,(p—_’»)wz)) = 0’

as desired.
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3.6. Dualizing @(2([) — 1)p) one obtains

soc] (@(O)) = socl,o(@(O)),

5062(V(0)) = $0¢2,20; +(p-2)02 (V(0)) @ 50C2, (p-2)00, 40, (V(0)).
50¢3(V(0)) = 50C3 20+ (p—3)n (V(0)) @ 50¢3,0(V(0)) @ 50C3, (p—yny 10 (V(0)),
S0C4 (@(0)) = 50C4, (p—2)o) +n (@(O)) @ 50C4, (p—3)w, (@(O)) @ S0C4, (p—d)a, (@(0)),
socs(V(0)) = 505, (p—2)0(V(0)),

where as B-modules

soct o(V(0)' ~k,
S 1
802,20, +(p—2)w (V(0)) = —wy,
o 1
S0C2, (p—2)w 42 (V(0)) =~ —wy,
o 1
$0C3,20 +(p—3)wn (V(0)) " =~ —(w1) ® HO(Pal /B, L(w) — 7)),
a 1 A 1
S0C4, (p— 2w +an (V(0)) " 505 (5-2),(V(0)) = —p,
SOC3,0(@(O))1 2 50C4, (p—3)an (@(0))1 is a unique nonsplit B-extension of —2w, by (—w1) ®
HO(PO[1 /B, L(w] — w7)) and is a unique nonsplit B-extension of (—w;) ® HO(Paz/B, L(—2w +
@) by —w2, SOC3 (p—4)w; +» (@(O))1 is a unique nonsplit B-extension of HO(Pal/B, L(wy —
2w»)) by —w1 and is a unique nonsplit B-extension of —p by (—w») ®HO(PO,2/B, L(—w1+w2)),
and soc;;,(jl,_é;)wl(@(O))1 is a unique nonsplit B-extension of (—2wi) ® HO(Pal/B,,C(a)l —

@2)) by (—w) ® HO(Paz/B,L',(—a)l + wy)), is a unique nonsplit B-extension of (—wi) ®
HO(Pal/B,LZ(Za)l — 2wy)) by —wi, and is a unique nonsplit B-extension of —3w; by

SOC3, (p—4)w1+w) (%(0)) ! .

3.7. Foru=2(p—Dw;+ (p+ Dwr we omitAthe computations entirely similar to those in
the case of 2(p — 1) p. One has, abbreviating soc; (V(2(p — w1 + (p + 1)w»)) as soc;,

80C1 = SOC1,(p—2)w; +wy»
$0C2 = 80C2,0 D SOC2, (p—4)w| +wr D SOC2, 20 +(p—3)ws »
S0C3 = SOC3 20| +(p—2)wp B SOC3,(p—3)w, D SOC3, (p—2)w; B SOC3, (p—2)w;+w; >
80C4 = 50C4,0 D SOC4 (p—4)w;+w, D 80C4, (p—2)p>

SOC5 = SOC5,(p_3)w2 s

where as B-modules

1 -~ 1 -~
8OCY (p—2)01 4wy = SO, (p—hwi+wy = P>

1 ~ 1 ~ 0
SOC) sy +(p—3yws == 50C3 (p_3yy = @1 ® H'(Py, /B, L(w1)),
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1 ~
8OC3 201 +(p—2)wy — @25

1 ~ 1 ~
SOC3, (p—2)wi+wy = S04, (p—2)p = @1,

Lo 1 ~
$0Cy () X SOCs5 (;—3)0, k,
1 ~ 110
SOCY (p— 4y, +an ~H (Pal/B, E(wl)),

soci0 is a unique nonsplit B-extension of w; ® HO(P(,[I /B, L(w1)) by 2wy and is a unique
nonsplit B-extension of wy by wr ® HO(PO,2 /B, L(w)), and soc%y (r—B)oy is a unique nonsplit
B-extension of w; ® HO(PO,I /B, L(2w1 — w2)) by p and is a unique nonsplit B-extension of
HO(Poy /B, L(@1)) by HO(Poy /B, £(p)), )

Dualizing V2(p — w1 + (p + Dw;y) yields the G1T-socle series of V((p — 3)wy). One
thus obtains for all p-regular u the decomposition

FoLp(u) > | [ oelg(soci (V) = [ | [ £a(s0ci i (V(w)') ®x L.
ieN i AN
Thus, denoting an alcove by A, one may symbolically express the decomposition as
Lz(V(A) > [ £a(s0ci (V(A))). (1)
i

We postpone verification of the assertion that

ModB(ﬁg(soci,k(@(u))l), ,CB(soci,;\(@(y,))l)) ~k
till we see in Section 4
Extls (L5 (s0ci; (V()'), Li(soc; o (V()')) =0 Vk>1, Va,ve 4y,

which helps the computation of the endomorphisms. Then we will obtain the unicity of the
decomposition of F,L(u) into indecomposables by Krull-Schmidt-Azumaya [22, 1.6.1].

4. Localization of D-modules

In this section we will show for G € {SL(k), SL3(k), Sp,(k)} that F,.Lg(u) for € A is
tilting on the flag variety B = G/B only if p > h the Coxeter number of G, and that if p > h,
then all F,L5(w) for p-regular u € A are indeed tilting. It will follow from the Beilinson—-Baer
that for such p and p the derived localization theorem holds on B for Dg) (w)=rI (B, ng,)) (w)),
Dy (1) = Modgay (La(w). La(1); FiLpQ2(p — 1)p — p) 2 (FLp(w))” induces triangu-
lated equivalences

DY we", ?
5 DY ()

D? (DY (nymod) D (coh(Dy (1))
RI(B,?)
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quasi-inverse to each other between the derived category of Dl(go ) (u)-modules of finite type and

the derived category of coherent ﬁg) (u)-modules. In case 1 = 0 by what we have formulated in
Section 2 the equivalence is G-equivariant:

DR'&" ()2
50 - A0
D% (D}5'mod) T D% (coh(Dy)).

4.1. Let us first consider in some general framework. Let thus X be any smooth projective
variety over k. We say a coherent Ox-module M is tilting ift:

(T1) Extly (M, M)=0Vi>1,

(T2) M Karoubian generates D?(coh(X)), i.e., the smallest triangulated subcategory of
D?(coh(X)) containing M and closed under taking a direct summand is the whole
of D?(coh(X)),

(T3) gl dimModyx (M, M) < oo.

Let £ be an invertible Ox-module and set Z_)g(m)(ﬁ) = Modym+) (L, L), Dg(m)(ﬁ) =
(X, Dy (L)) = Modyum+ (L, £), m € N. Let D? (coh(Dy" (L)) be the bounded derived cat-
egory of the category coh(ﬁgfm)(ﬁ)) of coherent @;m)(ﬁ)—modules, and Db(Dg(m)(E)mod) the
bounded derived category of the category D;m)(ﬁ)mod of Dg?l) (L£)-modules of finite type. Let

Fx : X — F be the absolute Frobenius endomorphism of X. One has from Beilinson’s lemma
[5,6].

Lemma. If (F )'?*HL')V is tilting on X, there arise triangulated equivalences

RI(X,?)
D (coh(DY" (£))) D?(DY" (L)mod)
/Dgfm)(‘c)®ﬂ: (m) ?
Dy (L)

quasi-inverse to each other.
Proof. To ease the notation, we will suppress X when appropriate.

Assume (F™+!1L)V is tilting. Put ﬁ;")(ﬁ) = Mody (F"+!1 L, F™+1L). There are natural k-
algebra isomorphisms

DY (L)% ~Mody ((F"' L)Y, (F"'L)") via f > fV (1)
and

DY (L) = Modginin (£, £) "D = D™ (L) via s>, @
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where D™ (L)), r € Z, is the ring D™ (L) with the k-linear structure twisted by & > £7 -,
& e k. By Beilinson—Baer [5,6] one has triangulated equivalences

RMody ((F"t1L)V,?)

D?(coh(X))

D’ (mod D" (£)°P) 3)
9L m—+1 \%
.®i)§m o L)

quasi-inverse to each other. On the other hand, recall from [14, 3.4.2] Morita-equivalence

L& ym+1)?
coh(x " +D) coh(DY”(L)). e
Modym1) (L. Oy (m+1)Bpm+1) 1y ?
One has also an isomorphism of sheaves of rings on X
Oxm+1y 2Ox viaa <a. 5)

Thus putting (1)—(5) together yields a triangulated equivalence

Db (coh(ﬁ(’”) ([l))) \%

~

Db (COh(X(m+l))) Mde(m+l) (E, Ox(/11+l)) ®Hﬁ(m)(£) %

~

Db (COh(X)) MOdX (F;ﬂ+1[’7 OX) ®H{j(m)(£) 1%
~ (6)
D" (mod D™ (£)°") RMody ((F"*1£)", Modx (F"*1L, Ox) Sy V)-
D’ (D™ (£)mod)
D?(D™ (£)mod)

Now if V — £ is an injective resolution of DD (£)-modules,

+1 Vv +1
RMody ((F/'*'L)", Modx (F}" E,OX)(X)@(Bm)(L)V)

m v
~Modx ((F;"*'£)", Modx (F;"*'£, Ox) @ pun , €)
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~Modx (Ox, (F'' L) ®x Modx (F!'"' L, Ox) ®pm 1 €)
~ I'(X, Modx (F'™' L, F)'™"' L) @ g ) &) = T (X, FIHE) ~ 1 (x, &)1
~RIX,V)C"D  as € is flasque by [21, 2.4.6(vii), p. 99],

where I'(X, £)™~1 is the abelian group I"(X, £) with the k-linear structure twisted by &

& P""" and likewise RI" (X, V)="=D_ Thus, coupled with the twist in (2), the equivalence (6)
reads as V+— RI'(X, V).
Likewise in the opposite direction. O

4.2. Let G be any reductive algebraic group over k. If v € A, as Fp/L(n + pv) =
(FB/k«L(1)) ®pW1) L) by the projection formula, one has an isomorphism of Og-rings

Dy (1 + pv) = D’ (). (M
It also follows, as F, L(u 4+ pv) =~ (FiL(n)) ®p L(v), that
F.L(u+ pv) is tilting iff F,L(w) is tilting. 2)

Note also that

Exty(FL(2(p — Dp — 1), FoL(2(p — Do — 1)) = Exty((FLG) s (F L))
=~ Exty (FeL (1), FL(w)) 3)

and that

DY 2(p— Do —p)*
=Modg) (L(2(p — Do —u), L2(p — Dp — 1))™
~ {Modg(F.L(2(p — p — 1), FL2(p — Dp — 1))V}
~ Modg ((FeL(2(p — Dp — )", (FL(2(p = o — 1))

~ Modss (¢ (L(V (200 = Dp = 1)), 04 (L5(9(2(p = Do = ) ) ™

~ Modg (¢..L3(V(2(p — Dp — 1)), ¢ Lg(V(2(p — Dp — 1))

~ Mods (¢..L3(V (). $:L5(V (1)) "

~ Modg(F.L(1). FeL ()" ~ DY (). @)

If F,LQ(p — )p — ) ~ (FuLp(n))"Y is tilting, then by Beilinson-Baer 4.1 we will have
triangulated equivalences

RI(B,?)
D?(coh(D (1)) D? (DY (nymod) 5

DY W, ?
B0 w
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quasi-inverse to each other.
Not all F,L(w) are tilting, however. For example, if u = (p — 1)p, V((p — 1)p) is the Stein-
berg G-module St, and hence

F.L((p— 1)p) =~ ¢+ (St @k O) ~ St ®x Op.

If F.L((p — 1)p) were tilting, so would be Og, and hence RModg(Op, ?) >~ RI' (B, ?) would
yield a triangulated equivalence D? (coh(B)) — D?(modk); Modz(Og, Op) ~ k. But L(—p) €
coh(B) with RI"(B, L(—p)) =0, absurd.

There is also a restriction on the characteristic of k.

Proposition. Let G € {SLy(k), SLa(k), Spy(k)} and p € A. If F.L(w) is tilting on B, then
p=h

Proof. We may assume G is either SL3 (k) or Sp,(k). If F,.L(uw) is tilting, we will have by (5)
the derived localization theorem holding for L_)g)) 2(p — Dp — n). By (2) we may assume
2(p—Dp—pneA

Assume first G = SL3(k) in characteristic 2. Then 2(p — 1)p — i € {0, w1, w2, p}. One has
L(—2w1) = Op ®pn E(—wl)(l) € COh(Z_)g.))),
L(~w1) = Lp@1) @0 L(~w)V € coh(D (@1)),
L(~2) ~ L) @i L(—w2)D € coh(DF (@2)),

L(—w1 + )~ L(p) @ L(—on)V € coh(@g) ()
with
RI(B, L(—2w1)) =RI(B, L(—w1)) =R (B, L(—w2)) =R (B, L(—w; + w2)) =0

by [19, I1.5.5 and 5.4], 3.2 (2) and (3). It follows that if p = 2, no F,£L(w) can be tilting. Likewise
for Sp, (k) in small characteristic. O

4.3. Assume p > h and that u € A is p-regular. We now verify (T1)—(T3) for F,L(uw).
By 4.2 (2) and by our decomposition of F,L(x) in 3.1 we have only to check for a single u in
each alcove contained in a box. Thus the assertion holds for G = SL, (k) by [16, 4.2]. Also for
G = SL3(k) we know that F, L(2(p — 1)p) >~ (F,Op)" is tilting from [16]. Then (T1) and (T3)
holds for F,Op by 4.2 (3) and (5), and the verification of (T2) for F,Opg is entirely analogous to
the case of (F,Op)". Thus we may assume G = Sp,(k) and have only to check (T1)—(T3) for
FLQ2(p —1)p) and F.L2(p — w1 + (p + Dwy), and to check (T2) for (F.L2(p — 1)p))Y
and (F.L2(p — Dw1 + (p + D))"

4.4. Verification of (T1)

Let G = Sp, (k) and retain the notations from Section 3. One has
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Extyy (Fel (1), FeL(w)) = Exty (6 L3(V (), 9L (V())
~Bxty (L5(V(w), L5(V(w))  as ¢ is an isomorphism of schemes
*(B. Lg(V()* ®k V(w)) by [15,11L6.3,6.7]
5(V(2(p = Dp — 1) @ V(1)) by [19,119.2]
5(V((2(p = Dp — 1) ®x V(1)) by the tensor identity
B, q:L5((2(p = Dp — 1) ® V(w))) by [19,15.18]
*(B,Ls((2(p = Dp — 1) @ V(W)). (1)

Consider first the case = 2(p — 1)p; we are to show H! (B, E(@(Z(p —Dp)))=0Vi>1.
This has been done in [4]. Let us, however, write down a simpler proof readily applica-
ble to other u’s. Recall from 3.4 the structure of G1B-modules on the G17T-socle layers of
@(Z(p — 1)p). As the weights of w1 ® HO(Pa] /B, L(w1)) are all dominant, it suffices to show

H' (B, L(H(Py, /B, L(p))")) =0 Vi >1.

The Py, -irreducible HO(Pa, /B, E(,o))[l] of highest weight pp fits in an exact sequence of Py, -
modules

0— HO(Py,/B. L(s1.1 - pp)) — H' (P, /B. L(s1 - pp)) — H*(Pa, /B. L(p))" > 0
with 51 1- being the reflection on the wall {x e A | (x + p, alv) = p}. Foreachi > 1
H' (B, L(H"(Po, /B, L(s1,1 - pp)))) = H (B, L(s1.1 - pp)) =0,
and hence H (B, L(H(Py, /B, L(p))!")) =~ H*1(B, L(s| - pp)) = 0 by the standard vanishing
for s1 - pp [1], as desired.
Consider next the case u =2(p — Dw; + (p + 1)wz. We must show

H (B, L((p — 3)w2 ®x V(2(p — Dor + (p + Dan))) =0 Vi >1.

In view of the G 1T -socle series of V(2(p — 1)w; + (p + 1)w») in 3.7 it suffices to show for each
i>1

i 1 i 1
HY (B, £((p = 3)02 8k (5064 -ty ) ) =0 =H' (B, L((p = 302 s (5063, pgy) )
Moreover, by the first equality the second equality will follow from
i 1 .
H (B, £((p — 3)w2 @ H(Pay /B, L(p))')) =0 Vi > 1. )
For the first we must show

H (B, £((p — 3)w2 @ H(Py, /B, L)) =0 Vi>1. 3)
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Now HO(Pw1 /B, L(w))M is a simple Py, -module of highest weight pw;, which fits in a short
exact sequence of Py, -modules

0— HO(Pal/B, E((p —3)wr + pw1 — oq)) — Hl(Pal/B, L((p — 3wy + 51 - pa)l))

— (p = 3)an ®H(Py, /B, L(wn)" - 0.

H' (B, ,C(HO(PO,I/B, E((p — 3wy + pw — 011)))) ~H (B, E((p — 2),0)) =0 Vi>1
by Kempf, it follows that
H (B, L((p — 3)w2 @ H(Py, /B, L))
~H (B, L(H' (Pa,/B. L((p = 32 + 51 - p1))))
~H* (B, L((p — 3w + 51 - por))

~HT! (B, [,(sl . (pa)l +(p— 3)a)2)))
=0 by[l, Fig. 1, p. 255] again.

Turning to (2),
H (B, L((p — 3)w2 @ H(Pa, /B, L))
~H (G/Pay, LIH'(Pay/B, L((p — 3)2)) @ H(Pay /B, L))
with
HO(Py,/B. L((p — 3)an)) ®x H(Pay/B. L(p))"

an irreducible P,,-module of highest weight pw; 4 (2p — 3)w>, which therefore fits in a short
exact sequence of Py,-modules

0— H(Puy,/B, L((3p — D1 + w2)) — H (Po, /B, L(s2 - (pw1 + 2p — 3)w2)))

— H(Pa,/B, L((p — 3)w2)) @ H(Pa, /B, L(p))" = 0.
As
H (G Pas, £(H)(Pas/ B. £(Gp — o1 +2))) = H (B, £(Gp — 4o +02)) =0 ¥i > 1,

by Kempf, it follows that
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H (G Poy, L(H(Pay /B, L((p — 3)2)) &k H*(Pay/B, L(p)'))
~H(G/ Py, LH (Pay /B, L(s52- (po1 + 2p — 3n)))))
~HTY(B, L(s2 - (pw1 + (2p — 3)an)))
=0 by[l, Fig. 1, p. 255].

Thus (T1) holds for F,L2(p — Dw; + (p + Dw»).
Let us now complete the proof of 3.1 by verifying

Modp (Cg(soc,-,,\(@(u))l), Ly (soci,,\(@(,u))l)) ~k.
Again, we will only write down an argument for a most complicated case to show
Modgs (£ (503, (p—ayey (V(2(p — Dot + (p + Dan)) ),
5(5003,(1,_4)50l (@(Z(p — Do+ (p+ l)a)z))l)) ~k. 4

We will suppress @(Z(p — w1 + (p + Dwy) for simplicity. One has by (T1) a long exact
sequence

Modlg(ﬁ(p), [,(socéy(p_‘t)wl ))
- Modg(ﬁ(soc;’(p_ét)wl), E(socéy(p_@wl))
— Modg (L(w1 @ H(Pa, /B, L2w1 — ®2))), £(50¢3 (,_4),)) = O-

There is an exact sequence

Modg(L(p), L(H’(Py, /B, L(w1)))) — Modg(L(p), L(50¢3 () 41,))
— Modg(L(p), L(H(Pu,/B, L(p))))

with
Modg(L(p), L(H'(Pyy /B, L(@1)))) = H(B, L((—w1) @ H(Pyy /B, L(w) — »2)))) =0
as H*(P,, /B, L(—w))) =0, and
Modg(L(p), L(H(Pay/B. L(p)))) = H(B, L((=w2) @ H'(Pay /B, L(2)))) =0
as H*(Py, /B, L(—wy)) = 0. Tt follows that
Mods(L(p), £(s0¢3 () 4,,)) =0 S

and
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Modg ([’(Socé,(p—@wl)’ E(SOC%,(p—4)w1))
~ Mod(L (w1 ® H'(Py, /B, LQ2w1 — 7)), L(506} ()40, ))-
which fits in an exact sequence
0 — Modg(L (w1 ® H'(Py, /B, LRw1 — 12))), L(w1 @ HY(Py, /B, L2wi — »2))))

(£(
— Modg(L(w1 ® H(Py, /B, LQRw) — a2))). L(sock ,_4.,))
— Mod(L (w1 @ H(Py, /B, LQ2w1 — »2))), L(p))

— Extg(L(o1 ® H (P, /B, LQ2w1 — a2))), L(w1 @ H(Py, /B, L2w) — »2))))
— Ext(L(w1 ® H'(Py, /B, LRw1 — w2))), L(soc;(p_%)) (6)
with
Extls (£ (w1 @ HY(Po, /B, LQw1 — 7)), L(w1 @ H(Po, /B, LQw1 — a2))))
~H' (B, L(H*(Pa, /B, L2w1 — @2)) @ H*(Py, /B, L2w1 — @2))))
~H (G/Pay, L(H(Pa, /B, L2w1 — ) @ H'(Pyy /B, L2w) — @2))))
and

Modg(L (w1 ® H(Py, /B, LQ2wi — @2))), L(p))
~H"(B, L(w; ® H'(Py, /B, LQw| — »2))))
~H(B, L(H(P,, /B, L2w1)))) =~ H(B, L2w))).

AsH'(Py, /B, LQw) — @) @HO(Py, /B, L(2w] — 7)) has a Py, -filtration of the subquotients
HO(Py, /B, L(4w) — 2w2)), HY(Py, /B, L(2w) — 7)) and k from the top in order,

H (G/Poy, L(H*(Pay /B, L2w1 — 1)) ® H)(Py, /B, LQ2w1 — @2))))

HY(G/P,,, L(k)) =k ifi =0,
~ 1 HI(B, L(4w, — 2w2)) ~HO(B, LQ2w)) ifi=1,
0 elsewhere.

Thus sequence (6) reads as an exact sequence

0 — k — Modg(L (w1 ® H'(Py, /B, LQ2w1 — 7)), L(s0¢3 (,_4),,)) = H (B, L2w1))
— H'(B, LQ2w1)) - Exty(L(w1 @ H(Po, /B, L2w1 — @2))), L£(50¢3 () _4),))- 7
As HO(B,L(2w))) is G-irreducible, it suffices to show that Exty(L(w; ® H(Py, /B,

LRw; — wy))), ﬁ(soc; (r— 4)w1)) does not have HY (B, £L(2w)) as its composition factor. There
is by (T1) an exact sequence
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Exty(LGBw1 — @2), £(s0¢3 (,_4),,))
— Extg(L(w1 @ H' (P, /B, LQ2w1 — @2))), £(S0C3 () _4),))
— Exti(L(H(Pa, /B, L(@1))), £(50¢3 (,_4),,)) =0
Moreover,
Exty(LBw1 — 1), L(s0¢3 (,_4,,)) = H (B, L((=301 + @2) ®s0¢3 (,_4,,))
fits in an exact sequence
H' (B, £L((—3w1 + @2) @ w1 @ H(Py, /B, L2w| — 02))))
— H' (B, L((=301 + ®2) ®50¢3 (,_4),))
— H' (B, L((—3w1 + @) ® p))
with
H' (B, L((=3w1 + w2) ® p)) = H' (B, L((—2w1 +2w2))) = H’(B, L(w2))

while

H' (B, L((—3w1 + 2) ® 01 @ H(Pu, / B, L2w1 — a2))))
~H' (B, L((—201) ® H(Py, /B, L(21))))
~H(G/ Py, LH (G/ Pay, L(—2w1)) ® H(Py, /B, L2w1))))
~H(G/ Py, LH(G/ Pay, L2w1 — 1)) @ H'(Py, /B, L(2w1)))) by the Serre duality
~H(G/ Py, L((—w2) ® H(Py, /B, LQ2w1)))) = H)(B, L2w; — 7)) = 0.

Thus
H' (B, £L((—301 + w2) ® soc;’(p%)wl)) <H(B, L(wn)).
It follows that there is an epi
HY(B, L(w2)) = Exty(L(w1 @ H(Py, /B, LRw1 — 7)), L(50¢3 () _4)0,))-
and hence
Mod;s(£(s0¢3 (_4y,,,)- £(50€3 () 4)0,)) = .
as desired.
4.5.

Remark. (T1) holds for (F,,Op)" in characteristic 2 and 3 also.
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4.6. Verification of (T2)

Let G = Sp4 (k). Consider first the case u = 2(p—1)p. Let A9 = {0, w1, 2w1, 3w1, w2, 2w, —w1 +
2wy, p} be the set of weights of all soc,-,;h(@(2(p — 1),0))1, i €[1,5], A € Ay. By our decom-
position of F,L(2(p — 1)p) we have all L(v), v € Ag, contained in the triangulated subcat-
egory of D?(coh(BB)) Karoubian generated by F,L(2(p — 1)p). It thus suffices to show that
{L(v) | v e Ag} Karoubian generates D?(coh(13)).

Let (Ap) be the triangulated subcategory of D?(coh(B)) Karoubian generated by L(v),

v € Ag. By [16, 5.1] one has only to check L(§) € (Ag) VE € A. VA € AT, put V(L) =
' (B, L())). Recall

chV(w)) =e® + e 72 4 e @ 4o 12, (1
Then there is an exact sequence of Og-modules [16, 5.1.1]
0= 0p — L@)® > £2w)?C) - LB3w)®D - LEdw)) — 0. @)
As all but the last term belong to (Ag),
L(nwy) € (Ag) VnelZ. 3)

Next, (Ag) 2 L(2) ® V(w1) ~ L(w2 ® V(w)) with L(w2 ® V(w1)) having by (1) a filtration
of the subquotients L(p), L(w1), L(—w| + wy), and L(—w) + 2w>). As all but L(—w; + w2)
belong to (Ag), so does L(—w1 + wy). Likewise (Ag) 2 L(p) ® V(w1) ~ L(p ® V(w1)) with
L(p ® V(w)) having a filtration of the subquotients L(2w; + w3), L2w1), L(w3), and L2w>),
and hence L(2w| + wy) € (Ap) also. Thus L(kw| + wy) € (Ag) Vk € [—1, 2]. Then by (2)

L(nwy + wy) € (Ag) VneZ. 4)

In turn, (Ag) 3 Liw1 + w) @ V(wy) >~ L((nw1 + @2) ® V(wy)) with L((nw1 + w2) @ V(wy))
having a filtration of the subquotients L((n + 1)w| +wy), L((n 4+ Dw1), L((n — 1)w + w2), and
L((n — Dw; + 2w»). It follows from (3) and (4) that L((n — 1)w; + 2w3) € {Ap), and hence

Lnwy +2w)) € (Ag) VneZ. ®)

Repeat the argument with nw; + w; replaced by nw; + 2w, to obtain all L(nw| + 3w;) € (Ap),
n € Z, and then all L(nw| + mw;) € (Ag), m € N.

Finally, (Ag) 2 L(nw1) ® V(w)) >~ L(nw; @ V(w})) with L(nw; ® V(w;)) having a filtration
of the subquotients L((n + 1)w1), L((n + 1w — wy), L((n — 1)w1), and L((n — 1)w| + w»).
It follows that £L((n + 1)@ — wn) € (Ap), and hence L(nw; — wy) € (Ag) Vn € Z. Repeat the
argument replacing nw| by nw; — w; to obtain all L(nw; — 2w;) € (Ap), and then all L(nw; —
mwy) € (Ag), m € Z. Thus L(nw| + mwy) € (Ag), Vi, m € Z, as desired.
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Likewise {L(—v) | v € Ag} Karoubian generates D?(coh(B)), and hence F,Op =~
(F«L2(p —1)p))Y Karoubian generates Db (coh(B)). The same arguments apply to F, L(2(p —
D1 + (p+ Dawy) and to Fo L((p — 3)wy) == (FL2(p — Dwi + (p + Dwy))Y, and hence (T2)
holds for all F,L(u), u € A p-regular, by 4.3.

4.7. Verification of (T3)

Let G = Sp, (k). To see that (T3) is holding for F,L(w), we have only to show that its dis-
tinct indecomposable direct summands form a strong exceptional collection [10], [16, 3.3], i.e.,
that the Og-endomorphism ring of each of these sheaves is isomorphic to k, and that the graph
of these sheaves as the vertices with an arrow from one to another iff there is a nonzero mor-
phism of O-modules from the one to the other does not contain a circuit. We will abbreviate
(soc,-,;ﬁ(u))1 as socil’,\.

Consider first the case u = 2(p — 1) p. One first checks that all nonzero summands £(soc;, !
have 1-dimensional endomorphism algebra over Og. Thus the distinct indecomposable direct
summands of F,LR2(p — 1)p) are Op, L(w)), L(w), L(p), L(w] ® HO(Pal/B, L(wy))),
E(socé’o), E(SOC%,(p—4)w1+w2)’ and L(soci(p_é‘)wI ). Using the characterizations of socé’o,
socé, (p—Dywor+an and socé’( —do in 3.5 and using (T1) that those sheaves have no mutual Op-
extensions, one finds the graph to be

E(SOC;, (p—dw; +a)2)

verifying (T3).

Likewise if u =2(p — w1 + (p + 1)wo, the distinct indecomposable direct summands of
F.LQ2(p — Do1 + (p + Dan) are Op, L(w1), L(@2), L(p), LH(Py, /B, L(w1))), L(w] ®
HO(POt1 /B, L(w1))), E(soc;,o), and E(socé’(pfé‘)wl), the graph of which is given by
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L(H°(Py, /B, L(»1)))

L(wy)

without circuits.
4.8. This completes the proof of the first statement of
Proposition. Let G € {SLy(k), SLa(k), Sp,(k)} and p € A. If F.L(w) is tilting on B, then

p = h, in which case for u p-regular, F,L(w) is tilting and hence the derived localization theo-

rem holds for l_)g)) (). In particular, for p > h and v p-regular all Dg)) () are derived Morita
equivalent.

Proof. The last assertion follows from the Morita equivalence of @g) (n) and Ogwy. O
4.9. By what we have formulated in Section 2 we obtain

Corollary. For G € {SLy(k), SL3(k), Sp4(K)} if p > h, the derived localization theorem for DYy’
is G-equivalent; there are equivalences

DY el ©?
n(0) ’ ~(0)
Dlé; (D' mod) e DIZ; (coh(Dy"))

quasi-inverse to each other.
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