
Journal of Algebra 322 (2009) 4382–4407
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Homomorphisms of local algebras in positive characteristic ✩

Guillaume Rond

IML, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2008
Available online 25 September 2009
Communicated by Steven Dale Cutkosky

Dedicated to Professor Shuzo Izumi

Keywords:
Local algebra
Henselian local rings
Monomialization of a homomorphism

We study some properties of regularity of homomorphisms of
local rings of positive equicharacteristic. In particular we extend
a theorem of Izumi about the linear equivalence of topologies in
this case. The main tool we use is a monomialization theorem for
homomorphisms of power series in positive characteristic.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to study some properties of regularity of homomorphisms of local
k-algebras, in particular when k is a field of positive characteristic. In characteristic zero, the geomet-
ric rank of a homomorphism of local algebras ϕ : A −→ B (denoted by grk(ϕ)) is a nice invariant that
gives information about the structure of this homomorphism. In particular, a result due to P.M. Eakin
and G.A. Harris [E-H] asserts that a homomorphism between rings of formal power series (or conver-
gent power series) over a field of characteristic zero can be monomialized, and after monomialization
the geometric rank is equal to the dimension of the image of the monomial homomorphism. Ho-
momorphisms with maximal geometric rank have nice properties that we can summarize in the
following theorem:

Theorem 1.1. (See [Ga2,E-H,Mi,Be-Za,Iz3].) Let ϕ : A −→ B be a homomorphism of analytic C-algebras where
B is an integral domain. Then the following properties are equivalent:

(i) grk(ϕ) = dim( Â/Ker(ϕ̂ )).
(ii) grk(ϕ) = dim( Â/Ker(ϕ̂ )) = dim(A/Ker(ϕ)).
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(iii) ∃a � 1, b � 0 such that ϕ̂−1(man+b
B ) ⊂ K er(ϕ̂) + mn

A ∀n ∈ N.

(iv) ϕ̂( Â) ∩ B = ϕ(A).

Moreover S. Izumi proved (ii) ⇐⇒ (iii) for any homomorphism of local rings of equicharacteristic
zero [Iz4].

In characteristic zero, the geometric rank of ϕ : A −→ B is equal to the rank of the B-module
generated by Ω1

k
(A)/

⋂
mn

A in Ω1
k
(B)/

⋂
mn

B . Unfortunately this definition does not extend well
to positive characteristic for some obvious reasons (for instance look at the k-homomorphism
ϕ : k�x� −→ k�x� defined by ϕ(x) = xp where char(k) = p: this homomorphism obviously satisfies
a linear Chevalley estimate).

In this paper we extend the definition of geometric rank in positive characteristic, using the tran-
scendence degree of the mB -adic valuation restricted to A (cf. Section 2). This last definition was first
given by M. Spivakovsky in [Sp1]. In Section 3 we prove a result (cf. Theorem 3.4) about the structure
of k-homomorphisms between rings of power series over an infinite field of positive characteristic
(similar to the result of P.M. Eakin and G.A. Harris [E-H] valid in characteristic zero). This result in-
volves our definition of geometric rank and shows that it is the right analogue of the geometric rank
defined usually in characteristic zero. This result is very close to a monomialization result of domi-
nant homomorphisms in positive characteristic. Moreover the proof of it is algorithmic and allows us
to compute the geometric rank.

In Section 4 we can deduce our first main result which is the positive characteristic analogue of
the main result of [Iz3], i.e. (ii) ⇐⇒ (iii) of Theorem 1.1 (Linear Chevalley’s Lemma):

Theorem 4.2. Let ϕ : A −→ B be a homomorphism of local k-algebras where k is a field of positive character-
istic. Assume that Â is an integral domain and B is regular. Then the following conditions are equivalent:

(i) grk(ϕ) = dim(A).
(ii) There exist a,b ∈ R such that aνmA ( f ) + b � νmB (ϕ( f )) for any f ∈ A.

Homomorphisms satisfying these equivalent conditions are called regular homomorphisms.
We would like to mention the work of R. Hübl [Hu] who gave sufficient conditions for general

homomorphisms of local rings to satisfy condition (ii). He uses a deep result of S. Izumi and D. Rees
about the so-called Rees valuations. Unfortunately these conditions are difficult to check in practice
and we do not know if they are necessary conditions.

In characteristic zero, the result of Izumi is important in subanalytic geometry, since Bierstone and
Milman showed the paramount importance of the dependence of linearity of the Chevalley function
on parameters for the composite function property (cf. [B-M1,B-M2] or see [B-M3] for a general survey
about the importance of the Gabrielov’s Theorem and the Izumi’s Theorem in subanalytic geometry).

The end of the paper is devoted to show how we can use the monomialization theorem (The-
orem 3.4) in any characteristic in order to obtain new results or generalizations of known results
about regular homomorphisms of local k-algebras in any characteristic. For example in the second
part of Section 4 we give an interpretation in terms of diophantine approximation of the fact that the
Chevalley function of a homomorphism that is not regular is not bounded by an affine function.

In Section 5 we study homomorphisms of Henselian k-algebras, where k is a field of any char-
acteristic (for definitions, see Section 5), which are generalizations of homomorphisms of convergent
or formal power series rings, and we give some cases where such a homomorphism ϕ : A −→ B sat-
isfies ϕ̂ −1(B) = A or Ker(ϕ̂ ) = Ker(ϕ) Â. For this we first state a preparation theorem for Henselian
k-algebras (cf. Proposition 5.10). Indeed the Weierstrass Preparation Theorem is essentially the only
tool that we need for this study. Then we give a Henselian version of Theorem 3.4 in any charac-
teristic (cf. Theorem 5.19). We deduce from it a weak version of a theorem of A.M. Gabrielov [Ga2]
(the analogue of (ii) 
⇒ (iv) of Theorem 1.1) for good Henselian k-algebras in any characteristic (cf.
Definition 5.14 for the definition of a good Henselian k-algebra). This is our second main result:

Theorem 5.21. Let k be a field of any characteristic. Let ϕ : A −→ B be a homomorphism of good Henselian
k-algebras, where A and B are regular. If grk(ϕ) = dim(A) then ϕ is strongly injective (i.e. ϕ̂ −1(B) = A).
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In Section 6 we study two particular cases of homomorphisms of local rings that are regular. First,
using the algorithmic proof of Theorem 5.19, we prove that ϕ is injective if and only grk(ϕ) = 2,
when A is a two-dimensional integral k-algebra with respect to a W-system (cf. Theorem 6.1). We
deduce from this a generalization of a theorem due to S.S. Abhyankar and M. van der Put [Ab-vdP]
(who studied the case when A is an analytic regular k-algebra in any characteristic):

Theorem 6.3. Let k be a field of any characteristic. Let ϕ : A −→ B be a homomorphism of good Henselian
k-algebras where A is regular and dim(A) = 2. If ϕ is injective then it is strongly injective.

The second particular case is the case of homomorphisms of analytic algebras defined by algebraic
power series over any valued field. This case has been previously studied for k = C in [To2,Be,Mi]
using transcendental methods. We show here how to prove that such homomorphisms are regular
using the monomialization theorem (cf. Corollary 6.8).

Finally, there are still remaining open problems. One of them is to know if the Gabrielov’s Theorem
(that asserts the following: if ϕ : A −→ B , a homomorphism of analytic C-algebras, satisfies grk(ϕ) =
dim( Â/Ker(ϕ̂ )) then Ker(ϕ̂ ) = Ker(ϕ) Â) extends to positive characteristic for analytic k-algebras (and
even for good Henselian k-algebras in any characteristic). The proof of A. Gabrielov is quite difficult
and the attempts to give a simpler proof (even over the field of complex number numbers C) have
not been successful. An other one is to extend these results in mixed characteristic.

1.1. Terminology

In this paper, rings are always assumed to be commutative Noetherian rings with unity. In any
case k denotes a field. A local k-algebra will be a local ring A, with maximal ideal mA , along with
an injective homomorphism k −→ A such that the induced homomorphism k −→ A/mA is a finite
field extension. A homomorphism of local rings ϕ : A −→ B means a ring homomorphism such that
ϕ(mA) ⊂ mB and the induced homomorphism A/mA −→ B/mB is a finite extension of fields. The
mA -adic order νmA is defined by νmA ( f ) := max{n ∈ N | f ∈ mn

A} for any f ∈ A. For any f ∈ A, where
A is a local ring, in( f ) will denote the image of f in GrmA A.

2. The geometric rank

Let ϕ : A −→ B be a homomorphism of local k-algebras and let us assume that A is an integral
domain and B is regular. Consider the valuation ν = νB ◦ ϕ defined on Frac(A/Ker(ϕ)), the quotient
field of the domain A/Ker(ϕ). We denote by Aν the valuation ring associated to ν and by mν its
maximal ideal. We denote by tr.degkν the transcendence degree of the field extension k −→ Aν

mν
.

The Abhyankar’s Inequality says in our context that

tr.degkν + 1 � dim
(

A/Ker(ϕ)
) (

� dim(A)
)
.

Definition 2.1. (See [Sp1].) If Ker(ϕ) �= mA , the integer tr.degkν + 1 is called the geometric rank of ϕ
and denoted grk(ϕ). If Ker(ϕ) = mA , then grk(ϕ) := 0.

Lemma 2.2. Let ϕ , A and B as above. Assume moreover that Â is an integral domain. Then grk(ϕ) = grk(ϕ̂ ).

Proof. We denote by Aν (resp. Âν̂ ) the valuation ring associated to ν = νB ◦ ϕ (resp. to ν̂ = νB ◦ ϕ̂)
and mν (resp. m̂ν̂ ) its maximal ideal. We have m̂ν̂ ∩ Aν = mν thus the quotient homomorphism
Aν
mν

−→ Âν̂
m̂ν̂

is injective, hence grk(ϕ̂ ) � grk(ϕ).

On the other hand, if the images of f1, . . . , fq ∈ Âν̂ in the field kν̂ = Âν̂
m̂ν̂

are algebraically indepen-
dent over k, then we can consider elements f ′

1, . . . , f ′
q ∈ Aν such that f ′

i − f i ∈ m̂ν̂ . Thus the images of
f ′
1, . . . , f ′

q in kν̂ are algebraically independent over k because their images coincide with the images
of f1, . . . , fq . Hence grk(ϕ) = grk(ϕ̂ ). �
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Lemma 2.3. Let ϕ : A −→ B be a homomorphism of local k-algebras where Â is an integral domain and B is
regular. If grk(ϕ) = dim(A) then ϕ and ϕ̂ are both injective.

Proof. Since dim(A) = dim( Â) and Ker(ϕ) and Ker(ϕ̂ ) are prime ideals, the assertion follows from
the Abhyankar’s Inequality. �
Lemma 2.4. Let ϕ : A −→ B and σ : A′ −→ A be homomorphisms of local k-algebras, where A and A′ are
integral domains and B is regular. If σ is finite and injective then grk(ϕ ◦ σ) = grk(ϕ).

Proof. We may assume that ϕ is injective by replacing the local k-algebras A and A′ by A/Ker(ϕ)

and A′/σ−1(Ker(ϕ)) respectively. We denote by ν and ν ′ the valuations induced by ϕ and ϕ ◦ σ
respectively. Let f ∈ Aν . Then there are ai ∈ A′

ν ′ and k ∈ N such that

a0 f k + a1 f k−1 + · · · + ak = 0

because Frac(A′) ⊂ Frac(A) is finite. We can assume that at least one of the ai ’s satisfies ν ′(ai) = 0 by
dividing the last relation by an element ai0 satisfying ν ′(ai0 ) = mini ν

′(ai). Then, if ν( f ) = 0, we see
that the image of f in kν satisfies a non-trivial integral equation over kν ′ . Then the field extension
kν ′ −→ kν is algebraic and grk(ϕ) = grk(ϕ ◦ σ). �
Lemma 2.5. Let ϕ : k�x1, . . . , xn � −→ k

′� y1, . . . , ym � be a homomorphism of formal power series rings
where k −→ k

′ is finite. Let ϕk′ denote the induced homomorphism k
′�x1, . . . , xn � −→ k

′� y1, . . . , ym �. Then
grk(ϕ) = grk(ϕk′ ).

Proof. The homomorphism k�x1, . . . , xn � −→ k
′�x1, . . . , xn � is finite and injective. Thus the result fol-

lows from Lemma 2.4. �
Finally we give a combinatorial characterization of the geometric rank. For any f ∈ k� y1, . . . , ym �,

we denote by in( f ) the form of lowest degree in the power series expansion of f . We define a total
ordering < on N

m in the following way: for any α,β ∈ N
m , we say that α < β if (|α|,α1, . . . ,αm) <

(|β|, β1, . . . ,bm) for the left-lexicographic ordering, where |α| := α1 + · · · + αm . This ordering induces
a monomial ordering on k� y1, . . . , ym �. If M = aα yα is a monomial, we define exp(M) := α. For any
f ∈ k� y1, . . . , ym �, we define in<( f ) to be the monomial of least order in the power series expansion
of f and exp( f ) := exp(in<( f )).

Proposition 2.6. Let ϕ : A := k�x1, . . . , xn � −→ B := k� y1, . . . , ym � be a homomorphism of formal power
series rings. Let C be the minimal cone of R

m containing exp(ϕ( f )) for any f ∈ k�x1, . . . , xn �. Then grk(ϕ) =
dim(C).

Proof. Let us denote by ord the (y1, . . . , ym)-adic valuation on B and ν the valuation on A equal to
ord ◦ ϕ .

Let f ∈ kν being the image of f ∈ Aν . We may write f = g
h where g,h ∈ k�x1, . . . , xn � and ν(g) =

ν(h). The homomorphism ϕ induces an injection kν −→ kord = k(
y1
ym

, . . . ,
ym−1

ym
), and the image of f

under this injection is just in(ϕ(g))
in(ϕ(h))

.

Let us denote B ′ := k[in(ϕ( f ))] f ∈k�x1,...,xn � and K
′ := Frac(B ′). First we will prove that grk(ϕ) =

dim(B ′).
We have dim(B ′) = dim(Spec(B ′)). But we can look at B ′ as a graded ring because any homo-

geneous component of any element of B ′ is in B ′ . If we consider Proj(B ′), we see that dim(B ′) =
dim(Proj(B ′))+1. So we have to prove that tr.degkkν is equal to the maximal number of algebraically
independent elements of K

′ of the form g/h where g and h are homogeneous of same degree.
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Let us choose f ′
1, . . . , f ′

r ∈ K
′ algebraically independent over k, such that f ′

i = g′
i

h′
i

for any i, where

g′
i,h′

i ∈ B ′ are homogeneous of same degree. By definition there exist gi and hi ∈ k�x1, . . . , xn � such
that in(ϕ(gi)) = g′

i and in(ϕ(hi)) = h′
i for any i. Let us denote f i := gi

hi
for any i. Then f i ∈ Aν for all i

and their images in kν are algebraically independent over k. Then we see that grk(ϕ) � dim(B ′).
On the other hand, let f 1, . . . , f s ∈ kν be algebraically independent over k. Let f i ∈ Aν be a lifting

of f i for 1 � i � s. For any i we may write f i = gi
hi

where gi,hi ∈ k�x1, . . . , xn � and ν(gi) = ν(hi).

Let f ′
i denote in(ϕ(gi))

in(ϕ(hi))
for 1 � i � s. Then f ′

1, . . . , f ′
s ∈ K

′ are algebraically independent over k. Thus

grk(ϕ) = dim(B ′).
Now let us denote by B ′′ the sub-k-algebra of k[y1, . . . , ym] generated by the in>( f ) where f ∈ B ′ .

Then, because B ′ is a k-subalgebra of k[y1, . . . , ym] generated by homogeneous polynomials, the
Hilbert function of B ′ is the same as the Hilbert function of B ′′ (for instance look at Proposition 6.6.1
of [K-R]). It implies that dim(B ′) = dim(B ′′). But dim(B ′′) is exactly the dimension of C . Thus we have
proved the proposition. �
Corollary 2.7. Let ϕ : A := k�x1, . . . , xn � −→ B := k� y1, . . . , ym � be a homomorphism of formal power series
rings. Let t be a variable over k and let K := k(t). Let ϕK : A′ := K�x1, . . . , xn � −→ B ′ := K� y1, . . . , ym � be
the homomorphism of formal power series rings induced by ϕ . Then grk(ϕK) = grk(ϕ).

Proof. According to the proof of Proposition 2.6, grk(ϕ) = dim(k[in( f ), f ∈ A]) and grk(ϕK) =
dim(K[in( f ), f ∈ A′]). If g = in( f ) with f ∈ A′ then g = in(λ1 f1 + · · · + λs f s) with λi ∈ K and f i ∈ A
for 1 � i � s. We may assume that λi ∈ k[t] for 1 � i � s by multiplying g by a non-zero element of K.
We write λi = ∑r

j=0 λi, jt j with λi, j ∈ k for 1 � i � s and 0 � j � r. Then we get g = ∑r
j=0 g jt j with

g j = in(
∑s

i=1 λi, j f i) for 0 � j � r because t is transcendent over k. It follows that K[in( f ), f ∈ A′]
and K ⊗k k[in( f ), f ∈ A] are k-isomorphic, hence grk(ϕ) = grk(ϕK). �
Proposition 2.8. Let ϕ : A −→ B, σ1 : A −→ A and σ2 : B −→ B be homomorphisms of local k-algebras.
Let us assume that there exist a1,a2 > 0 such that m

a1n
A ⊂ σ1(m

n
A) and m

a2n
B ⊂ σ2(m

n
B) for any n ∈ N. Then

grk(σ1) = dim(A), grk(σ2) = dim(B) and grk(ϕ) = grk(ϕ ◦ σ1) = grk(σ2 ◦ ϕ).

Proof. We will prove the result for σ2, the proof for σ1 being similar. Using the notation used in
the proof of Proposition 2.6, grk(ϕ) = dim(B ′) is the degree of the Samuel polynomial P (n) equal
to dimk(

ϕ(A)

ϕ(A)∩mn
B
) for n � 0. In the same way grk(σ2 ◦ ϕ) is equal to the degree of the Samuel

polynomial Q (n) equal to dimk(
σ2(ϕ(A))

σ2(ϕ(A))∩mn
B
) for n � 0. By assumption we have m

a2n
B ⊂ σ2(m

n
B) ⊂ mn

B

for any n ∈ N. Thus we get the following k-linear maps:

σ2(ϕ(A))

σ2(ϕ(A)) ∩ m
a2n
B

σ2(ϕ(A))

σ2(ϕ(A)) ∩ σ2(m
n
B)

ϕ(A)

ϕ(A) ∩ mn
B

σ2(ϕ(A))

σ2(ϕ(A)) ∩ mn
B

where the first and last arrows are obvious quotient homomorphisms (thus they are k-linear) and
where the second arrow is a surjective k-linear map defined by choosing a lifting in ϕ(A)

ϕ(A)∩mn
B

of any

element of σ2(ϕ(A))

σ2(ϕ(A))∩σ2(mn
B )

.

Hence we have Q (a2n) � P (n) � Q (n) for n � 0. Thus we see that deg(P ) = deg(Q ), hence
grk(σ2 ◦ ϕ) = grk(ϕ). We get grk(σ2) = dim(B) by choosing ϕ = idB . �
3. Algorithm for modifying a homomorphism of a given rank

We give here a positive characteristic version of a theorem proved by Eakin and Harris [E-H] in
characteristic zero. This result is about the structure of homomorphisms of rings of formal power
series over an infinite field of positive characteristic. First we give the following definition:
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Definition 3.1. Let ϕ : k�x1, . . . , xn � −→ k� y1, . . . , ym � be a homomorphism of formal power series
rings. An admissible transformation of ϕ is a homomorphism ϕ related to ϕ in one of the following
ways:

(1) Modification by automorphisms: There exist a k-automorphism τ of k�x1, . . . , xn � and a k-auto-
morphism σ of k� y1, . . . , ym � such that ϕ = σ ◦ ϕ ◦ τ .

(2) Modification by blowing-up: There is k ∈ {1, . . . ,m − 1} such that ϕ = ψ ◦ ϕ where ψ is defined by

ψ(yi) = yi for i � k,

ψ(yi) = yk yi for i > k.

(3) Modification by ramification: There is d ∈ N
∗ such that ϕ = ϕ ◦ ψd where ψd is defined by

ψd(x1) = xd
1, and ψd(xi) = xi ∀i �= 1.

(4) Modification by contraction: There is k ∈ {1, . . . ,n − 1} such that ϕ = ϕ ◦ ψ where ψ is defined by

ψ(xi) = xi for i � k,

ψ(xi) = xi xk for i > k.

Remark 3.2. We define the local k-homomorphism q : k�x1, . . . , xn � −→ k�x1, . . . , xn � by q(x1) = x1x2
and q(xi) = xi for i > 1. It is clear that the homomorphisms ψ defined in (4) of Definition 3.1 are
compositions of q with permutations of the xi ’s. Thus we may use q instead of ψ in modification (4)
of Definition 3.1. The same remark remains true for modifications by blowing-up.

Lemma 3.3. Let ϕ : A := k�x1, . . . , xn � −→ B := k� y1, . . . , ym � be a homomorphism of formal power series
rings. Let us consider a modification ϕ of ϕ . Then grk(ϕ) = grk(ϕ). Moreover if there exist a and b such that

aνmA ( f ) + b � νmB

(
ϕ( f )

)
for any f ∈ A, then there exist a′ and b′ such that

a′νmA ( f ) + b′ � νmB

(
ϕ( f )

)
for any f ∈ A.

Proof. The lemma is obvious for modifications of type (1).
The second statement is a consequence of the following inequalities:

νB( f ) � νB
(
ψ( f )

)
� 2νB( f ) ∀ f ∈ B, for modifications of type (2),

νA( f ) � νA
(
ψd( f )

)
� dνA( f ) ∀ f ∈ A, for modifications of type (3),

νA( f ) � νA
(
ψ( f )

)
� 2νA( f ) ∀ f ∈ A, for modifications of type (4).

Finally Proposition 2.8 gives us grk(ϕ) = grk(ϕ) in any cases. �
Now we can state the key result of this article. The proof of this theorem is inspired by the proof

of a similar result in characteristic zero proved by Eakin and Harris [E-H].
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Theorem 3.4. Let k be an infinite field of characteristic p > 0 and consider a homomorphism ϕ : A :=
k�x1, . . . , xn � −→ B := k� y1, . . . , ym � of power series rings. Then there exists a finite sequence of admissible
homomorphisms of formal power series rings (ϕi)

k
i=0 : k�x1, . . . , xn � −→ k� y1, . . . , ym � such that ϕ0 = ϕ

and ϕk(xi) = ypαi

i ui , for some units ui , for i � grk(ϕ), and ϕk(xi) = 0 for i > grk(ϕ). Moreover, for any i,
ui = 1 if αi = 0, and in(ui) = 1 and ui /∈ B p if αi > 0.

Proof. If grk(ϕ) = 0, then ϕ( f ) = 0 for all f ∈ mA . So we have the result.
We assume now that grk(ϕ) > 0.
We will proceed by induction on the q-tuple μ = (μ1, . . . ,μq) ∈ (N ∪ {+∞})q , defined later,

ordered with the lexicographic order where q � n. At the beginning, q = n and this q-tuple is
(+∞, . . . ,+∞).

Step 0. If ϕ(x1) = 0 we exchange xn and x1. Then we define q = n − 1 and μ := (μ1, . . . ,μn−1) =
(+∞, . . . ,+∞).

Step 1. If ϕ(x1) �= 0, then we denote d := ord(ϕ(x1)) ∈ N
∗ . We denote by gd(y1, . . . , ym) the

initial term of ϕ(x1). Let (ai, j)i, j=1,...,m be a non-singular matrix with entries in k such that
gd(a1,1, . . . ,am,1) �= 0 (k is infinite). We define an automorphism ψ of k� y1, . . . , ym � by

ψ(y j) :=
m∑

k=1

a j,k yk ∀ j = 1, . . . ,m.

So we get

ψ ◦ ϕ(x1) = gd(a1,1, . . . ,am,1)yd
1 + {

terms of degree d not divisible by yd
1

}
+ {terms of degree > d}.

By composing ψ ◦ ϕ on the right by the automorphism of k�x1, . . . , xn � consisting in dividing x1 by
gd(a1,1, . . . ,am,1), we may assume that

ϕ(x1) = yd
1 + {

terms of degree d not divisible by yd
1

} + {terms of degree > d}.

Now we define the homomorphism ψ by

ψ(y1) := y1,

ψ(yi) := y1 yi, for i > 1.

We have ψ ◦ ϕ(x1) = uyd
1, u being a unit of k� y1, . . . , ym � with in(u) = 1.

Step 2. If d = epα with gcd(e, p) = 1, then we see that ψ ◦ϕ = ϕ′ ◦τ ′ where τ ′(x1) = xe
1 and τ ′(xi) = xi

for i �= 1, and ϕ′(x1) = u′ ypα

1 , ϕ′(xi) = ψ ◦ ϕ(xi) for i �= 1 and in(u′) = 1. So we can replace ϕ by ϕ′ .
In particular, if gcd(d, p) = 1, then we may assume ϕ(x1) = y1.

Then, if u ∈ B pβ
, with β � α, then we have ϕ(x1) = u′pβ

(ypα−β

1 )pβ
. So we see that ψ ◦ ϕ = ϕ′ ◦ τ ′

where τ ′(x1) = xpβ

1 and τ ′(xi) = xi for i �= 1, and ϕ′(x1) = u′ ypα−β

1 , ϕ′(xi) = ψ ◦ ϕ(xi) for i �= 1 and
in(u′) = 1.

So we may assume that ϕ(x1) = uypα1

1 , in(u) = 1 and u /∈ B p if α1 �= 0. At this step, the q-tuple
(μ1, . . . ,μq) = (α1,+∞, . . . ,+∞).
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Step 3. We assume that ϕ(xi) = ypαi

i ui , for i < j, with in(ui) = 1 and ui /∈ B p if αi �= 0,
and ϕ(xi) = 0 for i > q. Moreover we assume that α1 � α2 � · · · � α j−1. We denote μ =
(α1, . . . ,α j−1,+∞, . . . ,+∞) ∈ (N ∪ {+∞})q .

We assume that in(ϕ(x j)) contains a monomial of the form cyk1
1 · · · y

k j−1
j−1 . If pαi divides ki for

all i � j − 1, then we replace x j by the element x j − cxk1/pα1

1 · · · x
k j−1/pα j−1

j−1 . We can go on and by
induction, there are two cases. In the first case we can replace x j by an element of the form x j −∑

k ckxk1/pα1

1 · · · x
k j−1/pα j−1

j−1 , where the sum is finite, and then we can assume that in(ϕ(x j)) has no

monomial of the form cyk1
1 · · · y

k j−1
j−1 where pαi divides ki for all i. In the second case we can replace

x j by an element of the form x j − ∑
k ckxk1/pα1

1 · · · x
k j−1/pα j−1

j−1 , where the sum is not necessarily finite,
and then we have ϕ(x j) = 0.

If ϕ(x j) = 0, then we exchange xq and x j . Then we replace q by q − 1 and μ := (μ1, . . . ,μq) =
(α1, . . . ,α j−1,+∞, . . . ,+∞).

Step 4. We assume that ϕ(xi) = ypαi

i ui , for i < j, for some units ui with in(ui) = 1 and ui /∈ B p if
αi �= 0, and ϕ(xi) = 0 for i > q. Moreover we assume that α1 � α2 � · · · � α j−1. As before we denote
μ = (α1, . . . ,α j−1,+∞, . . . ,+∞) ∈ (N ∪ {+∞})q .

Let us consider cyk1
1 · · · ykm

m a monomial of in(ϕ(x j)). If one of k j, . . . ,km is different from zero,
then after a permutation of the elements y j, . . . , ym , we can assume that k j �= 0. According to Step 3

we can assume that in(ϕ(x j)) has no monomial of the form cyk1
1 · · · y

k j−1
j−1 where pαi divides ki for

all i, and we assume that ϕ(x j) �= 0.

Assume that for any non-zero monomial M = cyk1
1 · · · y

k j−1
j−1 of in(ϕ(x j)), pαi divides ki for any i < l,

but for at least one such monomial pαl does not divide kl . After a change of variables of the form
σ(yi) = yi for i � l and σ(yi) = yi + yλi

l for i > l and for some λi ∈ N, we may assume that in(ϕ(x j))

contains a non-zero monomial of the form cyk1
1 · · · ykl

l where pαi divides ki for any i < l and pαl does
not divide kl . Then after a composition with a homomorphism of the form ψ(yi) = yi for i � l and
yi = y1 yi for i > l, we may assume that each monomial of in(ϕ(x j)) depends only on y1, . . . , yl . And

by Step 3, we may assume that for any monomial cyk1
1 · · · ykl

l of in(ϕ(x j)), ki is divisible by pαi for
any i < l, and that kl is not divisible by pαl . Finally we can exchange x j and xl and we can apply the
following lemma with α = αl:

Lemma 3.5. Under the hypothesis of Theorem 3.4, we assume that ϕ(xi) = ypαi

i for all i < l and that the

monomials of in(ϕ(xl)) depend only on y1, . . . , yl . We assume moreover that for any monomial cyk1
1 · · · ykl

l
of in(ϕ(xl)), ki is divisible by pαi for any i < l, and that kl is not divisible by pα . Then there exists a finite
sequence of modifications of ϕ , such that ϕ , the last homomorphism of the sequence, satisfies

ϕ(xi) = ypαi

i ui for i < l,

ϕ(xl) = ypα′
l ul

for some units u j and with α′ < α.

Proof. We have ϕ(xl) = M1 v1 + · · · + Mr vr for some units vi and some monomials Mi . We assume
that this expression is minimal: it means that none of these monomials divides another one. The con-
vex hull in N

m of the set of elements (w1, . . . , wm) such that in(ϕ(xl)) contains a non-zero monomial
of the form cyw1

1 · · · ywm
m is a convex polyhedron P of dimension strictly less than l (because all such

elements satisfy wl+1 = · · · = wm = 0). Let (w1, . . . , wl,0, . . . ,0) be a vertex of this polyhedron. In
particular wl is not divisible by α. We may assume that M1 corresponds to this vertex. We denote
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by (w1,k, . . . , wm,k) the element of N
m that corresponds to Mk for k > 1. Because M1 is a vertex of P

the cone defined by the following equations in the variables ei:

l∑
i=1

(wi,k − wi)ei > 0

for all k such that the monomial Mk depends only on y1, . . . , yl , is a non-empty open set of (R�0)
l .

Moreover for any C > 0, using modifications by blowing-up on the variables yl+1, . . . , ym , we may
assume that the monomials Mk depending on at least one of yl+1, . . . , ym satisfy w1,k +· · ·+ wl,k > C .
Hence the cone defined by the equations:

l∑
i=1

(wi,k − wi)ei > 0, k = 2, . . . , r, (1)

is a non-empty open set of (R�0)
l . Let (e1, . . . , el) be l linearly independent vectors of this cone with

coefficients in N: we write ei = (ei,1, . . . , ei,l) for each i. We can choose these vectors such that their
determinant is not divisible by p and such that p does not divide el,l . Next we consider ψ defined
by:

ψ(yi) = y
ei,1
1 · · · y

ei,l
l for 1 � i � l,

ψ(yi) = yi for i > l.

Hence, because the vectors ei satisfy (1), ψ ◦ ϕ(xl) is of the form ψ(M1)ul for some unit ul . More
precisely we have:

ψ ◦ ϕ(xi) = y
pαi ei,1
1 · · · y

pαi ei,l
l ui for i < l,

ψ ◦ ϕ(xl) = y
∑l

i=1 wiei,1
1 · · · y

∑l
i=1 wiei,l

l ul.

Because the vectors are linearly independent and because their determinant is not divisible by p, we
can reduce to the following case by using modifications of type (4):

ψ ◦ ϕ(xi) = ypαi

i ui for i < l,

ψ ◦ ϕ(xl) = y
wlel,l det(ei,k)

l ul

for some units ui . And because el,l and det(ei,k) are not divisible by p, according to the Cramer’s rule
and using Step 2, we may assume that:

ϕ(xl) = ypα′
l u′

l

where α′ < α, because wl is not divisible by pα . �
Finally, using Step 2, we may assume that

ϕ(xi) = ypα′
i

i ui for i � l,

for some units ui , where (α′
1, . . . ,α

′
l ) <lex (α1, . . . ,αl) (this can be achieved by permuting the x′

i s and
the y′

i s). Then, if we denote μ′ = (α′
1, . . . ,α

′
l ,+∞, . . . ,+∞), we have μ >lex μ′ .
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Step 5. We assume that we have ϕ(xi) = ypαi

i ui for some units ui with in(ui) = 1, where ui /∈ B p

whenever αi > 0, for any i < j, and ϕ(xi) = 0 for i > q. We assume that α1 � α2 � · · · � α j−1 and we
denote μ = (α1, . . . ,α j−1,+∞, . . . ,+∞) ∈ (N ∪ {+∞})q .

According to Step 4, we may assume that none of the monomials of in(ϕ(x j)) depends only on
y1, . . . , y j−1. After a change of variables in y j, . . . , ym we may assume that one of the monomials of
in(ϕ(x j)) depends only on y1, . . . , y j . By composing with the homomorphism ψ defined by

ψ(yi) = yi, for i � j,

ψ(yi) = yi y j, for i > j

we can assume that in(ϕ(x j)) depends only on y1, . . . , y j , but any of its monomials depends on y j .
So we have in(ϕ(x j)) = yk

j Pd−k(y1, . . . , y j) where Pd−k is a homogeneous polynomial of degree k not
divisible by y j .

Thus, we may use Lemma 3.5 and assume that

ϕ(xi) = yαi
i ui for i < j,

ϕ(x j) = yα
j u j

for some units ui and some integer α. Finally, using Step 2, we may assume that ϕ(xi) = ypα′
i

i u j
for some units ui with in(ui) = 1 and ui /∈ B p if α′

i �= 0. Moreover we see that (α′
1, . . . ,α

′
j−1) �lex

(α1, . . . ,α j−1). Hence after permutation of the variables we may assume that α′
1 � · · · � α′

j and μ′ =
(α′

1, . . . ,α
′
j,+∞, . . . ,+∞) < μ.

Step 6. Eventually, we have ϕ(xi) = ypαi

i ui , for i � q and ϕ(xi) = 0 for i > q, where α1 � α2 � · · · � αq

and ui are units. In this case one checks that

Aν

mν
= k

(
xq

xpαq−αq−1

q−1

, . . . ,
x2

xpα2−α1

1

)
,

and we have grk(ϕ) = q. Because the geometric rank is invariant under modifications, we get the
result. �
Remark 3.6. If char(k) = 0, the proof of the result of Eakin and Harris is similar. Namely, at Step 2
we get ϕ(x1) = y1 because any unit u with in(u) = 1 is a d-power for any d ∈ N

∗ . Then we can
skip Steps 3 and 4 because if g(y1, . . . , y j−1) := ϕ(x j)(y1, . . . , y j−1,0, . . . ,0), then we replace x j by

x′
j = x j − g(x1, . . . , x j−1) and ϕ(x′

j) has no monomial of the form cyk1
1 · · · y

k j−1
j−1 .

4. Linear Chevalley’s Lemma

The aim of this section (and originally of the present paper) is to give an answer to a question that
S. Izumi asked the author. This question is related to the following result of C. Chevalley on complete
local rings:

Theorem 4.1. (See [Ch].) Let A be a complete local ring with maximal ideal m. Let (an) be a decreasing sequence
of ideals of A such that

⋂
n an = {0}. Then there exists a function β : N −→ N such that aβ(n) ⊂ mn for any

positive integer n.
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In particular, if we consider an injective homomorphism of local rings ϕ : A −→ B where A is
complete, then there exists a function β : N −→ N such that ϕ−1(m

β(n)
B ) ⊂ mn

A for any natural num-
ber n. This can be restated by saying that β(νmA ( f )) � νmB (ϕ( f )) for any f ∈ A. The least function β

satisfying this inequality is called the Chevalley function of ϕ . If β is bounded from above by a linear
function we say that ϕ has a linear Chevalley estimate.

S. Izumi (in [Iz3] and [Iz5]), in the case of equicharacteristic zero local rings, proved that ϕ has
a linear Chevalley estimate if and only if grk(ϕ) = dim(A). The question asked by S. Izumi was the
following: is it possible to extend this result for local k-algebras with char(k) > 0? We can state such
an analogue of the main result of [Iz3] in positive characteristic:

Theorem 4.2. Let ϕ : A −→ B be a homomorphism of local k-algebras where k is a field of positive character-

istic. Assume that Â is an integral domain and B is regular. Then the following conditions are equivalent:

(i) grk(ϕ) = dim(A).
(ii) There is a,b ∈ R such that aνmA ( f ) + b � νmB (ϕ( f )) for any f ∈ A.

Definition 4.3. A homomorphism of k-algebras ϕ : A −→ such that grk(ϕ) = dim(A/Ker(ϕ)) is called
a regular homomorphism of k-algebras.

4.1. Proof of Theorem 4.2

In order to give a proof of this theorem, we first state the following two lemmas:

Lemma 4.4. Let σ : A −→ B be a finite and injective homomorphism of complete local rings (we do not assume
that the rings are local rings of equal characteristic). Then σ satisfies property (ii) of Theorem 4.2.

Proof. By induction we only need to prove the lemma when B is generated by a single element
over A. We denote by z this element which is integral over A. If z /∈ mB , then mB = mA B , thus,
for any n ∈ N

∗ , mn
B ∩ A = mn

A B ∩ A ⊂ m
n−C
A for some C ∈ N not depending on n (by the Artin–Rees

Lemma).
Let us assume from now on that z ∈ mB . The k-algebra B/mA B is a finite k-module generated by

1, . . . , zd−1 modulo mA for some d ∈ N
∗ . Let us assume that 1, . . . , zd−1 is a k-basis of this k-algebra.

Thus, by Theorem 30.6 [Na], we see that 1, z, . . . , zd−1 generate B as an A-module. It means that there
exists an irreducible polynomial P (Z) := Zd + ad−1 Zd−1 + · · · + a0 ∈ A[Z ] such that B is isomorphic
to A[Z ]/(P (Z)). Moreover ai ∈ mA , for 0 � i � d − 1, because 1, . . . , zd−1 is a k-basis of B/mA B . Let
α := min0�i�d−1{ordA(ai)} (in particular α > 0). Then zd ∈ mα

A B . By induction, zdn ∈ mαn
A B for any

n ∈ N. Hence, for any n ∈ N:

m
(α+d)n+1
B = (

mA B + (z)
)(α+d)n+1 ⊂ m

(α+d)n+1
A B + (z)m(α+d)n

A B + · · · + (
zdn+1)mαn

A B + (
zdn)

⊂ mαn
A B + (

zdn) ⊂ mαn
A B.

Thus m
(α+d)n+1
B ∩ A ⊂ mαn

A B ∩ A ⊂ m
αn−C
A for some C ∈ N not depending on n. This proves the lemma

because α > 0. �
Lemma 4.5. (See [Iz1].) Let ϕ : A −→ B and σ : A′ −→ A be two homomorphisms of local rings where σ is
finite and injective and Â is an integral domain. Then ϕ satisfies (ii) if and only if ϕ ◦ σ satisfies (ii).

Proof. Because σ is finite and injective, if ϕ satisfies (ii) then ϕ ◦ σ satisfies (ii) by Lemma 4.4. In
order to prove the “if”-part we follow the proof of Theorem 1.2 (1) 
⇒ (2) of [Iz1] using the fact that
there exist two positive constants c, d such that νA( f g) � c(νA( f )+νA(g))+d ∀ f , g ∈ A (cf. [Re]). �
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Now we can begin the proof of Theorem 4.2. We will first reduce to the case where A and B are
complete. We remark that for any f ∈ A we have νmA ( f ) = νm Â

( f ) because Â is flat over A. So the
order is invariant under completion. The Krull dimension and the geometric rank are also invariant
under completion. Moreover, the inequality (ii) of Theorem 4.2 is equivalent to a similar estimate for
ϕ̂ : Â −→ B̂ following remark 4.4 of [Iz1].

From now on we assume that A and B are complete and ϕ = ϕ̂ . Then we show that (i) and (ii)
are always true if dim(A) = 0: grk(ϕ) = dim(A) is trivially true because grk(ϕ) � dim(A) = 0. So (i)
is true. In particular, using Lemma 2.3, ϕ is injective. On the other hand A is Artinian and so the
following descending chain of ideals stabilizes: A ⊃ ϕ−1(mB) ⊃ · · · ⊃ ϕ−1(mn

B) ⊃ · · · . So there exists b
such that νmB (ϕ( f )) � b for any f ∈ A\Kerϕ = A\{0}, and (ii) is true.

From now on we assume that A and B are complete, B is regular and dim(A) � 1. In particular
B = k

′� y1, . . . , ym � where k −→ k
′ is finite (it follows from the definition of a homomorphism of

local k-algebras).

Step 1. Assume that k = k
′ and k is an infinite field.

(I) Implication (ii) 
⇒ (i). We may reduce to the case A is regular by using Lemma 2.4, i.e. A =
k�x1, . . . , xn �. Moreover we have B = k� y1, . . . , ym �. We need to prove that grk(ϕ) = n.

Using Theorem 3.4, we get a commutative diagram as follows:

k�x1, . . . , xn �
ϕ

σ1

k� y1, . . . , ym �

σ2

k�x1, . . . , xn �
ϕ

k� y1, . . . , ym �

where σ1 and σ2 are compositions of homomorphisms defined in Definition 3.1 and ϕ(xi) = ypαi

i ui
for 1 � i � grk(ϕ) and ϕ(xi) = 0 if i > grk(ϕ). Let us denote r := grk(ϕ). In particular we have n � r.
By Lemma 3.3, we see that σ2 ◦ϕ satisfies property (ii). If f ∈ k�x1, . . . , xn � then σ2 ◦ϕ( f ) = ϕ ◦σ1( f ),
thus the homogeneous component of minimal degree in the Taylor expansion of σ2 ◦ ϕ( f ) de-
pends only on y1, . . . , yr . Thus, if we denote by π : k� y1, . . . , ym � −→ k� y1, . . . , yr � the canonical
projection, we see that the order of σ2 ◦ ϕ( f ) is the same as the order of π ◦ σ2 ◦ ϕ( f ) for any
f ∈ k�x1, . . . , xn �. Thus π ◦ σ2 ◦ ϕ satisfies property (ii). Moreover grk(π ◦ σ2 ◦ ϕ) = grk(π ◦ ϕ ◦ σ1) =
r = grk(ϕ). Thus we may assume that A = k�x1, . . . , xn �, B = k� y1, . . . , ym � and grk(ϕ) = m � n.

By assumption there exist a and b such that ϕ−1(mak+b
B ) ⊂ mk

A for any k ∈ N. So, for any k ∈ N, we
may define surjective k-linear maps

ϕ(A)/
(
m

ak+b
B ∩ ϕ(A)

) −→ A/mk
A

by choosing a lifting in A/mk
A of any element of ϕ(A)/(mak+b

B ∩ ϕ(A)).

Because ϕ(A)/(mak+b
B ∩ ϕ(A)) is a k-subspace of B/mak+b

B , we have the following equalities and
inequalities for any k ∈ N:

(ak + b + m − 1)!/((ak + b − 1)!m!) = dimk B/mak+b
B � dimkϕ(A)/

(
m

ak+b
B ∩ ϕ(A)

)
� dimk A/mk

A = (n + k − 1)!/((k − 1)!n!).
Hence, by comparing the degree in k of these two polynomials, we get m � n. Thus n = grk(ϕ).

(II) Implication (i) 
⇒ (ii). First of all we may assume that A is regular by using Lemmas 2.4
and 4.5.

Using Theorem 3.4, we may assume that ϕ(xi) = ypαi

i ui for 1 � i � grk(ϕ) and ϕ(xi) = 0 if i >

grk(ϕ). In this case (ii) is satisfied by taking a = maxi pαi and b = 0.
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Step 2. Assume that k = k
′ and k is a finite field.

As before we may reduce to the case A = k�x1, . . . , xn � and B = k� y1, . . . , ym �. Let t be a variable
over k and let K := k(t). Let A′ := K�x1, . . . , xn � and B ′ := K� y1, . . . , ym �. The homomorphism ϕ
extends to a homomorphism ϕK : A′ −→ B ′ in an obvious way. According to Corollary 2.7 grk(ϕ) =
grk(ϕK).

On the other hand let us denote by ϕ̃ the homomorphism k�x1, . . . , xn �[K] −→ k� y1, . . . , ym �[K]
induced by ϕ (where k�x1, . . . , xn �[K] is the image of K ⊗k k�x1, . . . , xn � −→ K�x1, . . . , xn � defined
by λ ⊗ f �−→ λ f ). Let f ∈ k�x1, . . . , xn �[K]. By multiplying f by an element of K we may assume
that f = ∑r

i=0 f iti with f i ∈ k�x1, . . . , xn �. Then ϕ̃( f ) ∈ (y)k (resp. f ∈ (x)k) if and only if ϕ( f i) ∈ (y)k

(resp. f i ∈ (x)k) for 1 � i � r and any k ∈ N. Thus ϕ satisfies (ii) if and only if ϕ̃ satisfies (ii). It is clear
that ϕK satisfies (ii) if and only if ϕ̃ satisfies (ii), ϕK being the completion of ϕ̃ .

Thus we use Step 1 to conclude.

Step 3. Assume that k �= k
′ . Using Lemma 2.4 and Cohen’s Theorem (for example Corollary 31.6

of [Na]), we may find an injective finite homomorphism of k-algebras σ : A′ −→ A such that grk(ϕ) =
grk(ϕ ◦ σ) and such that A′ is regular. By Lemma 4.5 we can replace A by A′ . So we assume that
A = k�x1, . . . , xn � and B = k

′� y1, . . . , ym �. We denote by Ak′ the k
′-algebra A ⊗̂k k

′ = k
′�x1, . . . , xn �.

We denote by ϕk′ the homomorphism Ak′ −→ B induced by ϕ . Because k −→ k
′ is finite, then

grk(ϕ) = grk(ϕk′ ) by Lemma 2.5. Using Lemma 5.4 [Iz3], we see that ϕ satisfies (ii) if and only if
ϕk′ satisfies (ii). Then the result follows from Step 2.

Finally, following W.F. Osgood [Os], S.S. Abhyankar [Ab1] and A.M. Gabrielov [Ga1], we give an
example of injective homomorphisms of local rings for which the growth of the Chevalley function is
greater than any given increasing function α:

Example 4.6. Let α : N −→ N be an increasing function and let k be a field. Let (ni)i be a sequence
of natural numbers such that ni+1 > α(ni) for any i and such that the element ξ(Y ) := ∑

i�1 Y ni is
transcendental over k(Y ) (such an element exists according to the constructive proof of Lemma 1
in [ML-S]). Let us define the homomorphism ϕ : A := k�x1, x2, x3 � −→ B := k� y1, y2 � by(

ϕ(x1),ϕ(x2),ϕ(x3)
) = (

y1, y1 y2, y1ξ(y2)
)
.

Because 1, y2, ξ(y2) are algebraically independent over k, ϕ is injective (cf. Part 1 of [Ab1]): indeed,
let f ∈ Ker(ϕ). We write f = ∑

d fd , where fd is a homogeneous polynomial of degree d. Then ϕ( f ) =∑
yd

1 fd(1, y2, ξ(y2)) = 0. Hence, we have fd(1, y2, ξ(y2)) = 0 for all d. This implies that fd = 0 for
all d because 1, y2, ξ(y2) are algebraically independent.

For any positive natural number i we define:

f i := xni−1
1 x3 − (

xn1
2 xni−n1

1 + · · · + x
ni−1
2 x

ni−ni−1
1 + xni

2

)
.

Then we get:

ϕ( f i) = yni
1 ξ(y2) − yni

1

i∑
k=1

ynk
2 ∈ m

ni+ni+1
B ⊂ m

α(ni)
B .

But f i /∈ m
ni+1
A thus β(ni + 1) > α(ni) where β is the Chevalley function associated to ϕ . Because

ni −→ +∞ when i −→ +∞, we get lim sup β(n)
α(n)

� 1.

4.2. Chevalley function and diophantine approximation

The aim of this section is to give an interpretation in terms of diophantine approximation of the
fact that the Chevalley function of a homomorphism of complete local rings is not bounded by an
affine function as soon as ϕ is not regular.
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Let ϕ : k�x1, . . . , xn � −→ k� y1, . . . , ym � be a homomorphism of local k-algebras, where k is an
infinite field. Let us assume that grk(ϕ) = n − 1 and that ϕ is injective. Using Theorem 3.4, there
exists a commutative diagram as follows:

k�x�
ϕ

σ1

k� y�

σ2

k�x�
ϕ

k� y�

such that the homomorphism σ1 is a composition of homomorphisms of k�x� defined in Defini-
tion 3.1 and such that the homomorphism ϕ satisfies

ϕ(xi) = ypαi

i ui for some units ui ∈ k� y� and αi ∈ N, for i � n − 1, if char(k) = p > 0, or

ϕ(xi) = yi for i � n − 1, if char(k) = 0, and

ϕ(xn) = 0.

Moreover, if char(k) = p > 0, for any i, ui = 1 whenever αi = 0, and in(ui) = 1 and ui /∈ k� y� p when-
ever αi > 0.

The homomorphism σ2 is injective and grk(ϕ) = grk(σ2 ◦ ϕ), thus grk(σ2 ◦ ϕ) = n − 1. From now
on we will replace ϕ by σ2 ◦ ϕ . Hence we have the following commutative diagram:

k�x�
ϕ0:=ϕ

ψ1

k� y�

k�x�

ϕ1

ψ2

...

ψl

k�x�

ϕl :=ϕ

where ϕl := ϕ , and ψ j , for 1 � j � l, is one of the homomorphisms used in the modifications (1), (3)
and (4) of Definition 3.1 (resp. called homomorphisms of types (1), (3) and (4)).

We can remark that if ϕ j+1 is not injective and ψ j+1 is a homomorphism of type (1) or (3), then
ϕ j is neither injective.

It is trivial for homomorphisms of type (1). If ψ j+1 is a homomorphism of type (3), let f ∈
Ker(ϕ j+1) and let us write d = pre with e ∧ p = 1. Then let us define g := ∏

ε∈Ue
( f (εx1, x2, . . . , xd))

pr

where Ue is the multiplicative group of the e-roots of unity in a finite extension of k. Then
g ∈ Im(ψ j+1). Let g′ ∈ k�x� such that ψ j+1(g′) = g . Then ϕ j(g′) = ϕ j+1(g) = 0. Thus ϕ j is not in-
jective.

Nevertheless, if ψ j+1 is a homomorphism of type (4), ϕ j may be injective while ϕ j+1 is not injec-
tive. Let us assume that ϕ j , for 1 � j < k, is injective and ϕk is not injective. In particular ψk is a ho-
momorphism of type (4). Because ϕk is not injective, we have dim(k�x�/Ker(ϕk)) = n − 1 = grk(ϕk)

thus there exist a, b such that ϕ−1
k ((y)an+b) ⊂ Ker(ϕk) + (x)n for any n ∈ N according to Theorem 4.2.
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Let us remark that, for any j, there exist a j � 1 and b j � 0 such that ψ−1
j ((x)a jn+b j ) ⊂ (x)n for

any n ∈ N. Then there exist a′ � 1 and b′ � 0 such that (ψk−1 ◦ · · · ◦ ψ1)
−1((x)a′n+b′

) ⊂ (x)n for any
n ∈ N. If β0 denotes the Chevalley function of ϕ and βk−1 denotes the Chevalley function of ϕk−1,
then β0(n) � βk−1(a′n + b) for any n ∈ N. Thus β0 is not bounded by an affine function because βk−1
is not bounded by an affine function. We will investigate the reason why βk−1 is not bounded by an
affine function.

We have to consider the following situation (here ϕ represents ϕk−1, ϕ̃ represents ϕk and q rep-
resents ψk): we have the following commutative diagram

k�x�
ϕ

q

k� y�

k�x�

ϕ̃

where ϕ is injective and r1(ϕ) = n − 1; q is the homomorphism defined by q(xi) = xi for i �= 1 and
q(x1) = x1x2. Moreover ϕ̃ is not injective: grk(ϕ̃) = n − 1 = dim(k�x�/Ker(ϕ̃)). From Theorem 4.2,
there exist a � 1, b � 0 such that ϕ̃−1((y)an+b) ⊂ Ker(ϕ̃) + (x)n for any n ∈ N. Let z̃ ∈ k�x� be a gen-
erator of Ker(ϕ̃). Let us denote, for any g ∈ k�x�,

ν z̃(g) := max
{
k ∈ N

∣∣ g ∈ ( z̃ ) + (x)k}
with the assumption ν z̃(g) = +∞ if g ∈ ( z̃ ). In particular ν z̃(g) � ord(ϕ̃(g)) � aν z̃(g) + b for any
g ∈ k�x�. Then β is the Chevalley function of ϕ means exactly the following:

∀ f ∈ k�x� ord
(
ϕ( f )

)
� β

(
ord( f )

)
and

∀n ∈ N ∃ fn ∈ k�x�
∣∣ ord( fn) = n, ord

(
ϕ( fn)

) = β
(
ord( fn)

)
.

This is equivalent to the fact that there is a function γ : N −→ N such that

∀ f ∈ k�x� ν z̃
(
q( f )

)
� γ

(
ord( f )

)
,

∀n ∈ N ∃ fn ∈ k�x�
∣∣ ord( fn) = n, ν z̃( fn) = γ

(
ord( fn)

)
and

∀n ∈ N γ (n) � β(n) � aγ (n) + b. (2)

Let us consider the following three rings along with the canonical injections

A := k�x1, . . . , xn �
i1

B := k�x1, . . . , xn �[t]
(x1 − tx2)

i2
C := k�x1, . . . , xn, t �

(x1 − tx2)
.

The homomorphism τ : C −→ k�x1, . . . , xn � defined by τ (x1) = x1x2, τ (xi) = xi for i > 1 and τ (t) = x1
is an isomorphism and τ ◦ i2 ◦ i1 = q. We will often omit the notations i1 and i2 in rest of the paper.

Let us remark the following fact:

The element τ−1( z̃ ) ∈ C is not algebraic over A.

Indeed, if z̃ was algebraic over A, then we would have a relation a0 + a1̃z + · · · + ad̃ z d = 0, such that
ai ∈ A for 0 � i � d and ad �= 0. Because C is an integral domain, we may assume that a0 �= 0 by
assuming that d is minimal. Thus we get ϕ(a0) = 0, because ϕ̃( z̃ ) = 0, thus ϕ would not be injective
which would contradicting the hypothesis. Hence z̃ is not algebraic over A.
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Let us denote by ν1 the valuation on A defined by its maximal ideal and let us denote by ν2 the
valuation on C defined by its maximal ideal. We still denote by ν2 its restriction on A or B . Let us
remark that ν1( f ) � ν2( f ) � 2ν1( f ) for any f ∈ A and that ν2( f ) = ν1(q( f )) for any f ∈ A.

Let us denote by KA (resp. KC ) the field of fractions of A (resp. C ). Let us remark that KA is also
the field of fractions of B . Let us denote, for any f ∈ KA , | f |1 := e−ν1( f ) , and for any g ∈ KC let us
denote |g|2 := e−ν2(g) . Then | · |1 and | · |2 are non-Archimedian norms on KA and KC respectively.
Let us denote by K̂ the completion of KA with respect to | · |2. We can remark that there is a natural
injection KC ↪→ K̂.

Let us come back to z̃, the generator of Ker(ϕ̃). We have the following lemma:

Lemma 4.7. The element τ−1( z̃ ) satisfies the following property: there exists a decreasing function
α : R

+ −→ R
+ such that ∣∣∣∣ f

g
− τ−1( z̃ )

∣∣∣∣
2
� α

(|g|2
) ∀ f ∈ A, g ∈ B.

Moreover, the Chevalley function of ϕ is not bounded by an affine function because of the following fact: If α is
the greatest function satisfying the above inequality, then ln(α(u))

ln(u)
−→ 0 as u goes to 0.

Proof. The fact (2) means that for any f ∈ A and for any g ∈ C , we have ν2( f − gτ−1( z̃ )) � γ (ν1( f ))
and this inequality is the best possible. This is equivalent to ν2( f − gτ−1( z̃ )) � γ (ν1( f )) for any
f ∈ A and any g ∈ B , where the inequality is the best possible, because C is the completion of B
for ν2. Thus for any f ∈ A and for any g ∈ B , we have

ν2
(

f − gτ−1( z̃ )
)
� γ ′(ν2( f )

)
, (3)

with γ ( n
2 ) � γ ′(n) � γ (n) for any n ∈ N, and this inequality is the best possible. We do not make any

restriction if we assume that ν2( f ) = ν2(gτ−1( z̃ )): if it is not the case we have ν2( f − gτ−1( z̃ )) �
ν2( f ), but clearly the least function γ ′ satisfying the inequality (3) for any f and g satisfies γ ′(n) � n
for any n ∈ N. Thus we get | f

g − τ−1( z̃ )|2 � α(|g|2) for any f ∈ A, g ∈ B with α(u) := e−γ ′(ln(u)) for

any u > 0. We get ln(α(u))
ln(u)

−→ 0 as u goes to 0, because γ ′ is not bounded by an affine function, this
following from the fact that β , thus γ , is neither bounded by an affine function. �
Remark 4.8. Let us remark the following fact: if z ∈ C is algebraic over A, then there does not exist
any function α : R

+ −→ R
+ such that | f

g − z|2 � α(|g|2) ∀ f ∈ A, g ∈ B . Indeed since z is algebraic

over A there exists a relation adzd +· · ·+a1z +a0 such that ai ∈ A for 0 � i � d and ad �= 0. Because C
is an integral domain, we may assume that a0 �= 0. Thus z.w = a0 with w := −(ad zd−1 + · · ·+a1) ∈ C .
For any n ∈ N, let us denote by wn an element of B such that wn − w ∈ mn

C and ν2(wn) = ν2(w).
Such a wn exists because C is the completion of B . Thus we have ν2(z − a0

wn
) = n − ν2(w) for any

n ∈ N . Thus |z − a0
wn

|2 −→ 0 as n −→ ∞, but |wn|2 = |w|2 �= 0 for any n ∈ N .

5. Homomorphisms of Henselian kkk-algebras

In this section and the next one, we study a particular example of homomorphisms of local
k-algebras: namely the homomorphisms of W-system. Such homomorphisms generalize homomor-
phisms of analytic local rings in the sense that the local rings that we consider satisfy the Weierstrass
Division Theorem. In particular we have been inspired by the work of S.S. Abhyankar and M. van der
Put [Ab-vdP] on analytic k-algebras.

5.1. Terminology

From now on we assume that k is a field of any characteristic.
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Definition 5.1. (See [D-L].) By a Weierstrass System of local k-algebras, or a W-system over k, we mean
a family of k-algebras k�x1, . . . , xn �, n ∈ N, such that:

(i) For n = 0, the k-algebra is k.
For n � 1, k[x1, . . . , xn](x1,...,xn) ⊂ k�x1, . . . , xn � ⊂ k�x1, . . . , xn � and k�x1, . . . , xn+m � ∩ k�x1, . . . ,

xn � = k�x1, . . . , xn � for m ∈ N. For any permutation of {1, . . . ,n}, denoted by σ , k�xσ(1), . . . ,

xσ(n)� = k�x1, . . . , xn �.
(ii) Any element of k�x�, x = (x1, . . . , xn), which is a unit in k�x�, is a unit in k�x�.

(iii) Let f ∈ (x)k�x� such that f (0, . . . ,0, xn) �= 0. We denote d := ordxn f (0, . . . ,0, xn). Then for any
g ∈ k�x� there exist a unique q ∈ k�x� and a unique r ∈ k�x1, . . . , xn−1 �[xn] with degxn

r < d
such that g = qf + r.

(iv) (If char(k) > 0.) If h ∈ (y1, . . . , ym)k� y1, . . . , ym � and f ∈ k�x1, . . . , xn � such that f �= 0 and
f (h) = 0, then there exists g ∈ k�x� irreducible in k�x� such that g(h) = 0 and such that there
does not exist any unit u(x) ∈ k�x� with u(x)g(x) = ∑

α∈Nn aαxpα (aα ∈ k).

Remark 5.2. Let k�x� be a W-system over k.

(i) From [D-L] the ring k�x1, . . . , xn � (n ∈ N) is a Noetherian regular local ring with maximal ideal
(x1, . . . , xn) and its completion at its maximal ideal is k�x�.

(ii) For any f ∈ k�x1, . . . , xn+m � and any g1, . . . , gm ∈ (x)k�x1, . . . , xn �,

f
(
x1, . . . , xn, g1(x), . . . , gm(x)

) ∈ k�x1, . . . , xn �

[D-L].
(iii) For any f ∈ k�x�, if there is g ∈ k�x� such that f = x1 g , then g ∈ k�x� [D-L].
(iv) From Theorem 44.4 [Na], (iii) implies that k�x� is a Henselian local ring. In fact it is proven in

[D-L] that k�x� has the Artin Approximation Property, and by [Po] and [Ro] (where it is proven
that a local Noetherian ring has the Artin Approximation Property if and only if it is Henselian
and excellent), we see that k�x� is excellent. In [D-L, Remark 10] it is said that if a family of
excellent rings satisfies (i)–(iii), then it satisfies (iv).

(v) Let d > 1, d ∧ char(k) = 1, let a ∈ k
∗ be a d-th power in k and let f (x) ∈ (x)k�x�. It means that

P (T ) = T d − (a + f (x)) ∈ k�x�[T ] has a non-zero solution modulo (x). Thus, because k�x� is
Henselian, P (T ) has a solution in k�x�. Hence a + f (x) has a d-th root in k�x�.
If d = char(k) > 0, a ∈ k

∗ is a d-th power in k and f (x) ∈ (x)k�x� is a d-power in k�x�, then
P (T ) = T d − (a + f (x)) has d-root in k�x�, thus it has a d-root in k�x� by the Artin Approxima-
tion Theorem [D-L].

In fact we can give a quick proof of the fact that W-systems satisfy the Artin Approximation Prop-
erty if we assume that the rings of the family are excellent, using the Popescu’s Smoothing Theorem
(cf. [Po] or [Sp2]):

Theorem 5.3. (See [D-L].) Let k�x� be a W-system over k and let us assume that k�x1, . . . , xn � is excellent
for any n ∈ N. Then for any f = ( f1, . . . , f p) ∈ k�x, y� with x = (x1, . . . , xn) and y = (y1, . . . , ym), for any
c ∈ N and for any y ∈ (x)k�x�m such that f (y) = 0 there exist yc ∈ (x)k�x�m such that f (yc) = 0 and
yi − yc,i ∈ (x)c .

Proof. We may assume that p = 1 by replacing ( f1, . . . , f p) by

f := f 2
1 + x1

(
f 2

2 + x1
(

f 2
3 + x1

(· · · + x1 f 2
p

)2)2 · · ·)2
.
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By assumption there exist hi(x, y) ∈ k�x, y�, 1 � i � n, such that

f (y) +
n∑

i=1

(
yi − yi(x)

)
hi(x, y) = 0.

Because the ring k� y�〈x〉 is Henselian and excellent, it satisfies the Artin Approximation Prop-
erty for algebraic equations [Po] (k� y�〈x〉 is the Henselization of k� y�[x](y,x)). Thus there exist
f i(x, y),hi(x, y) ∈ k� y�〈x〉n , 1 � i � n, such that

hi(x, y) − hi(x, y), f i(x, y) − yi(x) ∈ (x, y)c, 1 � i � n, and

f (y) +
n∑

i=1

(
yi − f i(x, y)

)
hi(x, y) = 0.

We may assume that c � 2. In this case the Jacobian matrix of (yi − f i(x, y), 1 � i � n) with respect
to y1, . . . , yn has determinant equal to 1 modulo (x, y). The Henselian property asserts that there
exist yi,c(x) ∈ k�x� such that

yi,c(x) − f i
(
x, y1,c(x), . . . , yn,c(x)

) = 0 for 1 � i � n.

Then

f
(

y1,c(x), . . . , yn,c
) = 0 and

yi,c(x) − yi ∈ (x)c, 1 � i � n. �
Remark 5.4. In the same way we may prove that the rings k�x� satisfy the Strong Artin Approxima-
tion Property (cf. Theorem 7.1 [D-L]) using the fact that a ring that satisfies the Artin Approximation
Property satisfies also the Strong Artin Approximation Property [P-P].

Example 5.5.

(i) The family k�x1, . . . , xn � is a W-system over k.
(ii) Let k〈x1, . . . , xn〉 be the Henselization of the localization of k[x1, . . . , xn] at the maximal ideal

(x1, . . . , xn). Then, for n � 0, the family k〈x1, . . . , xn〉 is a W-system over k.
(iii) The family k{x1, . . . , xn} (the ring of convergent power series in n variables over a valued field k)

is a W-system over k.
(iv) The family of Gevrey power series in n variables over a valued field is a W-system over k [Br].

Definition 5.6. Let k�x� be a W-system over a field k. A local ring A is a local k-algebra with respect
to this W-system if A is isomorphic to k�x1, . . . , xn �[k′]/I for some n > 0, where k

′ is a finite field
extension of k and I is an ideal of k�x1, . . . , xn �[k′] (k�x�[k′] is the image of the k-homomorphism
k�x�[t1, . . . , ts] −→ k

′�x� where xi is sent on xi and t j is sent on ε j , where ε1, . . . , εs is a k-basis
of k

′).
A homomorphism of local k-algebras A −→ B is called a homomorphism of Henselian k-algebras if

A and B are local k-algebras with respect to the same W-system over k and the homomorphism is
a homomorphism of local k-algebras.

Remark 5.7. If A is a local k-algebra with respect to a W-system, then its residue field is a finite
extension of k. If A −→ B is a homomorphism of Henselian k-algebras, then the residue field of B is
a finite extension of the residue field of A.
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Remark 5.8. Since an integral extension of a local Henselian ring is a Henselian ring [Na, 43.16],
any local k-algebra with respect to a W-system is a Henselian ring. Let k�x� be a W-system. Thus,
from [La], k�x�[k′] satisfies property (iii) of the definition of a W-system if k −→ k

′ is a finite field
extension. Moreover it is straightforward to show that k�x�[k′] satisfies (i) and (ii) in the definition
of a W-system. Finally, from Remark 5.2(iv), and since any finite extension of an excellent ring is an
excellent ring, we see that k�x�[k′] satisfies (iv) of the definition of a W-system. Hence k�x�[k′] is
a W-system with respect to k

′ if k�x� is a W-system over k and k −→ k
′ is a finite field extension.

Definition 5.9. A homomorphism ϕ : A −→ B of Henselian k-algebras is strongly injective if the map
Â/A −→ B̂/B induced by ϕ is injective (or equivalently if ϕ̂ −1(B) = A).

Finally we give the following version of the Weierstrass Preparation Theorem:

Proposition 5.10 (Weierstrass Preparation Theorem). Let A and B be local k-algebras with respect to a W-
system and ϕ : A −→ B be a homomorphism of Henselian k-algebras. Then ϕ is finite if and only if ϕ is
quasi-finite (i.e. B/mA B is finite over A/mA ).

Proof. It is well known that (ii) of Definition 5.1 is equivalent to the proposition when there exist
surjective homomorphisms k�x1, . . . , xn � −→ A and k� y1, . . . , ym � −→ B for some W-system k�x�
([To1] or [Ab2] for example). Because k�x�[k′] is a W-system over k

′ as soon as k�x� is a W-system
over k and k −→ k

′ is a finite extension of fields, the proposition is proven. �
Corollary 5.11. Let A be a regular local k-algebra with respect to a W-system k�x� and let (a1, . . . ,an) be
a regular system of parameters of A. Let k

′ be the coefficient field of A. Let ϕ : k�x1, . . . , xn �[k′] −→ A be the
unique homomorphism of local k

′-algebras such that ϕ(xi) = ai for 1 � i � n. Then ϕ is an isomorphism.

Proof. Follows from Proposition 5.10. �
5.2. Strongly injective homomorphisms

We state now the following results about homomorphisms of Henselian k-algebras:

Lemma 5.12. (See [Ab-vdP, Lemma 2.1.2].) Let ϕ be a homomorphism of Henselian k-algebras. If ϕ is injective
and finite, then ϕ̂ is injective and finite and ϕ is strongly injective.

Proof. Local k-algebras are Zariski rings (cf. Theorem 9, Chapter VIII of [Z-S]). Then, using Theorems 5
and 11, Chapter VIII of [Z-S], we see that ϕ̂ is finite and injective. Then using Theorem 15, Chapter VIII
of [Z-S], we see that ϕ is strongly injective. �

Let k be a field of any characteristic and k�x� be a W-system with respect to k. We define the lo-
cal k-homomorphism q : k�x1, . . . , xn � −→ k�x1, . . . , xn � by q(x1) = x1x2 and q(xi) = xi for i > 1. For
any d ∈ N

∗ we define the local k-homomorphism ψd : k�x1, . . . , xn � −→ k�x1, . . . , xn � by ψd(x1) = xd
1

and ψd(xi) = xi for i �= 1.

Lemma 5.13. Let A be a k-algebra with respect to a W-system denoted by k�x1, . . . , xn �. Any composition of
k-automorphisms of A and of homomorphisms of the form q and ψd is injective. Moreover k-automorphisms
and homomorphisms of the form ψd are strongly injective.

Proof. It is clear that k-automorphisms, homomorphisms ψd and q are injective. Moreover it is clear
that k-automorphisms are strongly injective.

Let f (x1, . . . , xn) ∈ k�x1, . . . , xn � such that ψd( f ) = f (xd
1, x2, . . . , xn) ∈ k�x�. We have

f
(
xd

1, x2, . . . , xn
) = (

xd
1 − y

)
q(x, y) + r(x, y)
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with r(x, y) ∈ k�x2, . . . , xn, y�[x1] and degx1
(r) < d according to (iii) of Definition 5.1. On the other

hand,

f (x1, . . . , xn) = (x1 − y)q(x, y) + r

with r ∈ k�x2, . . . , xn, y� according to the formal Weierstrass Division Theorem. Thus

f
(
xd

1, x2, . . . , xn
) = (

xd
1 − y

)
q
(
xd

1, x2, . . . , xn, y
) + r

and because the division is unique in k�x, y�, we see that q(x, y) = q(xd
1, x2, . . . , xn, y) and r = r does

not depend on x1. Since r(x2, . . . , xn, x1) = f (x1, . . . , xn), f ∈ k�x�. �
Definition 5.14. Let k�x� be a W-system over k. We say that it is a good W-system if the homomor-
phism q : k�x1, . . . , xn � −→ k�x1, . . . , xn � defined by q(x1) = x1x2 and q(xi) = xi for i > 1 is strongly
injective. A homomorphism of local k-algebras A −→ B is called a homomorphism of good Henselian
k-algebras if A and B are local k-algebras with respect to some good W-system and the homomor-
phism is local. �
Remark 5.15. It would be interesting to know if any W-system is a good W-system.

Lemma 5.16. The W-systems k�x� presented in Example 5.5 are good W-systems over k. The same is true for
the respective W-systems over k

′ , k�x�[k′], where k −→ k
′ is a finite field extension.

Proof. It is clear for k�x�. For the convergent power series, we have just to remark that for any
f = ∑

α aαxα1
1 · · · xαn

n ∈ k�x� such that q( f ) is convergent, there exist R1 > 0, . . . , Rn > 0 such that∑
α |aα |Rα1

1 Rα1+α2
2 Rα3

3 · · · Rαn
n < +∞. Thus f is convergent because

∑
α |aα |(R1 R2)

α1 Rα2
2 Rα3

3 · · · Rαn
n <

+∞. The proof is the same when we take a finite extension of the residue field (see [Ab-vdP,
Lemma 2.2.1]). The proof is similar for Gevrey power series.

Let f ∈ k
′�x1, . . . , xn �. We have f = ∑

flεl where fl ∈ k�x1, . . . , xn � for 1 � l � r. Assume that
q( f ) ∈ k〈x1, . . . , xn〉[k′]. It is clear that q( fl) ∈ k〈x1, . . . , xn〉 for 1 � l � r. It is enough to prove that
if f ∈ k�x1, . . . , xn � satisfies q( f ) ∈ k〈x1, . . . , xn〉 then f ∈ k〈x1, . . . , xn〉. So let f ∈ k�x1, . . . , xn � such
that

g := f (x1x2, x2, . . . , xn) ∈ k〈x1, . . . , xn〉.
There exist s ∈ N and ai ∈ k[x1, . . . , xn](x) for 0 � i � s such that

as gs + · · · + a1 g + a0 = 0. (4)

We write ai = ∑
α ai,αxα1

1 · · · xαn
n for any i with ai,α ∈ k. Multiplying relation (4) by some power

of x2, we may assume that any α ∈ N
n such that ai,α �= 0 satisfies α2 � α1. Then there exist

bi ∈ k[x1, . . . , xn](x) such that q(bi) = ai for 0 � i � s. We have bs f s + · · · + b1 f + b0 = 0, hence
f ∈ k〈x1, . . . , xn〉 and q is strongly injective. �
Lemma 5.17. (See [Ab-vdP, Lemma 2.1.3].) Let ϕ : A −→ B and ϕ′ : B −→ C be homomorphisms of Henselian
k-algebras. If ϕ′ ◦ ϕ is strongly injective then ϕ is strongly injective.

Proof. Follows from the definitions. �
Lemma 5.18. Let k�x� be a W-system over k. Let ϕ : k�x1, . . . , xn � −→ k� y1, . . . , ym �[k′] where
k −→ k

′ is a finite field extension. Let ϕk′ denote the induced homomorphism of Henselian k
′-algebras:

k�x1, . . . , xn �[k′] −→ k� y1, . . . , ym �[k′]. Then grk(ϕ) = grk(ϕk′ ).
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Proof. By Lemma 2.2, we may replace the Henselian algebras by their completions. Then the result
comes from the fact that k�x1, . . . , xn � −→ k

′�x1, . . . , xn � is finite and Lemma 2.4. �
Theorem 3.4 is still valid for homomorphisms of Henselian k-algebras:

Theorem 5.19. Let k be an infinite field of any characteristic and let k�x� be a W-system over k. Let us con-
sider a homomorphism ϕ : A −→ B, where A = k�x1, . . . , xn � and B = k� y1, . . . , ym �. Then there exists an
admissible finite sequence of homomorphisms (ϕi)

k
i=0 : k�x1, . . . , xn � −→ k� y1, . . . , ym � such that ϕ0 = ϕ .

The last homomorphism ϕk satisfies

ϕk(xi) = ypαi

i ui for some units ui if char(k) = p > 0, or

ϕk(xi) = yi if char(k) = 0, for i � grk(ϕ), and

ϕk(xi) = 0 for i > grk(ϕ).

Moreover, if char(k) = p > 0, for any i, ui = 1 whenever αi = 0, and in(ui) = 1 and ui /∈ B p whenever
αi > 0. �
Proof. Modifications of types (2) and (4) are allowed according to (i) of the definition of W-systems
and Remark 5.2(iii). Steps 0, 1, 4 and 5 involve only k-automorphisms of k�x1, . . . , xn � and of
k� y1, . . . , yn � that are defined by polynomials. For Steps 2, 4 and 5, using modifications of type (3),
we take d-roots of elements of k�x� in k�x� and they are in k�x� from Remark 5.2(v). The only prob-

lem may occur at Step 3, where we replace x j by an element of the form x′
j := x j − ∑

k ckxk1
1 · · · x

k j−1
j−1

such that ϕ(x′
j) = 0 (and the sum is not finite) because we do not know if x′

j ∈ k�x�. When
char(k) = 0 this is obvious because ϕ(xi) = yi for 1 � i � j − 1 by assumption (see Remark 3.6).

From now on we assume that char(k) = p > 0. We assume that A = k�x1, . . . , xn � and B =
k� y1, . . . , ym � and we will prove that x′

j ∈ A. We will use the following lemma:

Lemma 5.20. Assume that char(k) = p > 0. Let us consider ϕ : k�x1, . . . , x j−1 � −→ k� y1, . . . , ym � such

that ϕ(xi) = ypαi

i ui for some units ui , for 1 � i � j − 1. Then ϕ is strongly injective.

In particular, because ϕ(x j) = ϕ(
∑

k ckxk1
1 · · · x

k j−1
j−1 ) ∈ k� y1, . . . , ym �, we see that

∑
k

ckxk1
1 · · · x

k j−1
j−1 ∈ k� y1, . . . , ym �,

and so x′
j ∈ k� y1, . . . , ym �. �

Now we give the proof of Lemma 5.20:

Proof. Let us denote by π the quotient homomorphism k� y1, . . . , ym � −→ k� y1, . . . , y j−1 �. Then
the homomorphism induced by π ◦ ϕ:

k�x1, . . . , x j−1 �/(x1, . . . , x j−1) −→ k� y1, . . . , y j−1 �/
(
π ◦ ϕ

(
(x1, . . . , x j−1)

))
is finite. Using Proposition 5.10, we see that π ◦ ϕ is finite. Moreover, π ◦ ϕ is injective because
grk(π ◦ ϕ) = j − 1. Using Lemma 5.12, we see that π ◦ ϕ is strongly injective, and from Lemma 5.17
we see that ϕ is strongly injective. �
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In particular we get the following result, which is a weak version of a theorem of A.M.
Gabrielov [Ga2]:

Theorem 5.21. Let k be a field of any characteristic. Let ϕ : A −→ B be a homomorphism of good Henselian
k-algebras, where A and B are regular. If grk(ϕ) = dim(A), then ϕ is strongly injective.

Proof. Using Corollary 5.11, we may assume that A = k�x1, . . . , xn � and B = k� y1, . . . , ym �[k′]
where k −→ k

′ is finite and k�x� is a W-system over k. If we replace A by k�x�[k′] then
the geometric rank will not change by Lemma 5.18. Moreover if the induced homomorphism
ϕk′ : k�x1, . . . , xn �[k′] −→ k� y1, . . . , ym �[k′] is strongly injective, then ϕ is strongly injective. So from
now on we assume that k = k

′ .
From Corollary 2.7 we may assume that k is an infinite field. Using Theorem 5.19, we see that

σ1 ◦ ϕ = ϕ ◦ σ2 where the homomorphisms σ1 and σ2 are compositions of k-automorphisms of A

and B , of homomorphisms of the form q and ψd , and ϕ is defined by ϕ(xi) = ypαi

i ui , for some
units ui and some αi ∈ N, for all i. Then using Lemmas 5.13, 5.17 and 5.20, we see that ϕ is strongly
injective. �
6. Two particular cases

6.1. The two-dimensional case

Example 4.6 shows that we can construct injective homomorphisms ϕ : A −→ B with grkϕ <

dim(A) as soon as dim(A) � 3. We prove here that it is not possible to find such examples when
A is a Henselian k-algebra and dim(A) � 2.

In fact, it is obvious that if dim(A) = 1 and ϕ is injective then grk(ϕ) = 1. Indeed, using Lemma 2.4,
we can replace A by k�x�, where x is a single variable and B by k� y1, . . . , ym �[k′]. Then the result
is immediate.

When dim(A) = 2 we have the following result that shows us that dim(A) = 2 is a nice case as
remarked by S.S. Abhyankar and M. van der Put in [Ab1] and [Ab-vdP]:

Theorem 6.1. Let ϕ : A −→ B be a homomorphism of Henselian k-algebras where Â is an integral domain of
dimension 2 and B is regular. Then ϕ is injective if and only if grk(ϕ) = 2.

Proof. From Lemma 2.3, we see that grk(ϕ) = 2 implies that ϕ is injective. So from now on we
assume that ϕ is injective.

By Theorem 2.1 [D-L] there exists an injective and finite homomorphism of Henselian k-algebras
π : k�x1, x2 � −→ A (where k�x� is a W-system over k), so using Lemma 2.4, we can replace A by
k�x1, x2 �. Because B is regular we assume that B = k� y1, . . . , ym �[k′] (Corollary 5.11) where k

′ is
a finite field extension of k. Then, we can replace k�x1, x2 � by k�x1, x2 �[k′] using Lemma 5.18.

Let t be a variable over k and let K := k(t). Let ϕK : K�x1, x2 � −→ K� y1, . . . , ym � be the ho-
momorphism induced by ϕ . If ϕ is injective then ϕK is also injective: otherwise there would exist
a sequence ( fn)n ∈ k�x1, x2 �[K]N such that ϕK( fn) ∈ (y)n and fn − fn+1 ∈ (x)n for any n ∈ N. Let
d := ord( fn) for n large enough and let us denote by β the Chevalley function of ϕ . Let N ∈ N such
that ord(ϕK( f N )) > β(d). We may assume that g := f N ∈ k�x1, x2 �[k(t)] by multiplying it by an ele-
ment of K. We write g = ∑r

j=1 g jt j with g j ∈ k�x1, x2 � for 0 � j � r. Then ϕK(g) = ∑r
j=1 ϕ(g j)t j ∈

(y)β(d)+1 by assumption thus ord(ϕ(g j)) � β(d) + 1 for 0 � j � r, hence ord(g j) � d + 1 by definition
of β . This contradicts ord(g) = d. Hence ϕK is injective and we may assume that k is infinite from
Corollary 2.7.

To compute grk(ϕ) we use the algorithmic proof of Theorem 3.4.
We first give the proof when char(k) = p > 0. Using Step 1, we may assume that ϕ(x1) = yd

1u for
some unit u. Then we define

� := {
α ∈ N

∣∣ ∃z ∈ k�x1, x2 �[k′] with ord(z) = 1, and ϕ(z)(y1,0, . . . ,0) = ypαd
1 u

such that p ∧ d = 1 and u is a unit
}
.
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By assumption � is not empty. Let us denote by α the least integer of �. Let us choose an element
z1 ∈ k�x1, x2 �[k′] such that ϕ(z1) = ypαd

1 u with p ∧ d = 1 and u a unit. By using the following mod-
ification of type (2): ψ(y1) = y1 and ψ(yk) = yk y1 for k > 1, we can replace ϕ by ϕ := ψk ◦ ϕ , for

k � 0, such that ϕ(z1) = ypαd
1 u for some unit u, with p ∧ d = 1. Let us choose z2 ∈ k�x1, x2 �[k′] such

that (z1, z2) is a regular system of parameters. Now, because α is the least integer of �, in(ϕ(z)) has
no monomial of the form cyk

1 such that pα does not divide k. Then we can skip Step 4, and using

Step 5, we can replace ϕ by ϕ such that ϕ(z1) = y
pαde1,1
1 y

pαde1,2
2 u1, ϕ(z2) = y

i1e1,1+i2e2,1
1 y

i1e1,2+i2e2,2
2 u2

for some units u1 and u2, and with ϕ = ψ ′ ◦ ϕ where ψ ′ is a composition of blowing-ups and auto-
morphisms of k� y1, . . . , ym �[k′]. Moreover the matrix (ei, j)i, j is invertible. Then using modifications

of type (4) we transform ϕ in ϕ such that ϕ(x) = ypα1

1 u1 and ϕ(z′) = ypα2

2 u2 for some units u1
and u2. Hence grkϕ = 2.

Now, if char(k) = 0 then we can do almost the same, but we do not need �. We just choose
z1 = x1 and z2 = x2. After that the proof is the same as above. �
Corollary 6.2. Let ϕ : k�x1, x2 � −→ k� y1, . . . , ym � be an injective homomorphism of Henselian k-algebras
where k is infinite. Let k −→ k

′ be a finite field extension and let us assume that there is a W-system
k

′�x� over k
′ such that k

′�x� ∩ k�x� = k�x�. Then the induced homomorphism ϕk′ : k
′�x1, x2 � −→

k
′� y1, . . . , ym � is injective.

Proof. By Theorem 6.1 grk(ϕ) = 2. Thus, if char(k) = p > 0, ϕ can be transformed using modifications

into a homomorphism ϕ such that ϕ(x1) = ypα1

1 u1 and ϕ(x2) = ypα2

2 u2 for some units. Then ϕk′ can
be transformed in the same way and grk(ϕk′ ) = 2. Then ϕk′ is injective by Lemma 2.3. The proof in
characteristic zero is the same. �

Using this result we deduce the following two results, the first being a generalization to the case
of Henselian k-algebras of a theorem of S.S. Abhyankar and M. van der Put (cf. Theorem 2.10 of [Ab-
vdP]):

Theorem 6.3. Let ϕ : A −→ B be a homomorphism of good Henselian k-algebras where A and B are regular
and dim(A) = 2. If ϕ is injective then it is strongly injective.

Proof. We have grk(ϕ) = 2 from Theorem 6.1. Hence from Theorem 5.21 ϕ is strongly injective. �
Corollary 6.4. Let ϕ : A −→ B denote a homomorphism of complete local k-algebras where A is a two-
dimensional integral domain and B is regular. Then ϕ is injective if and only if ϕ has a linear Chevalley estimate.

Proof. It is obvious that ϕ is injective if it has a linear Chevalley estimate.
On the other hand the result follows from Theorems 6.1 and 4.2. �

6.2. The algebraic case

Here we give a generalization of the main theorem of [To2,Be,Mi]. The result is the following: any
homomorphism of analytic k-algebras defined by algebraic power series has maximal geometric rank. This
result has been proven for homomorphisms of analytic C-algebras defined by polynomials in the
three papers cited above.

Definition 6.5. Let ϕ : A −→ B be a homomorphism of local k-algebras. We define r2 := dim( Â
Ker(ϕ̂ )

)

and r3 := dim( A
Ker(ϕ)

). Moreover r1 := grk(ϕ).

It is clear that r2(ϕ) � r3(ϕ). Moreover, from the definition, we see that r1(ϕ̂ ) is equal to the
geometric rank of the homomorphism Â/Ker(ϕ̂) −→ B̂ induced by ϕ̂ , and using the Abhyankar’s
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Inequality [Ab1] and Lemma 2.2 we see that r1(ϕ) � r2(ϕ). Thus we always have r1(ϕ) � r2(ϕ) �
r3(ϕ). If r1(ϕ) = r2(ϕ) we say that ϕ is regular. A difficult theorem of A. Gabrielov asserts that if
ϕ : A −→ B is a regular homomorphism when A and B are quotients of convergent power series rings
over C then r2(ϕ) = r3(ϕ), i.e. Ker(ϕ̂) = Ker(ϕ) Â (cf. [Ga2]).

Definition 6.6. A homomorphism A −→ B of Henselian k-algebras is said to be a homomorphism of
algebraic k-algebras if A and B are local k-algebras with respect to the W-system of algebraic power
series (Example 5.5(ii)).

Theorem 6.7. Let ϕ : A −→ B a homomorphism of algebraic k-algebras where B is regular if char(k) = p > 0.
Then r1(ϕ) = r3(ϕ).

Proof. If char(k) = 0 and B is not regular, by the existence of a resolution of singularities for Spec(B),
there exists a homomorphism of Henselian k-algebras which is a composition of local blow-ups
ψ : B −→ k〈y1, . . . , ym〉. In particular r1(ψ ◦ ϕ) = r1(ϕ) by Proposition 2.8. Thus we may assume that
B is regular.

Let us denote A′ := A/Ker(ϕ). Then d := dim(A′) = r3(ϕ). There exists a finite injective homo-
morphism k〈x1, . . . , xd〉 −→ A′ from the Weierstrass Preparation Theorem. Let us denote by τ the
homomorphism induced by ϕ on k〈x〉. By Lemma 2.4, r1(τ ) = r1(ϕ), and because τ is injective,
r3(τ ) = d = r3(ϕ).

Let t be a variable over k. We may replace k by k(t) since Corollary 2.7 and since the homo-
morphism induced by τ on k(t)〈x〉 is clearly injective. Now we apply Theorem 3.4 to τ . We get the
following commutative diagram:

k〈x〉 τ

σ1

k〈y〉
σ2

k〈x〉 τ
k〈y〉

where τ is as defined in (iii) of Theorem 3.4. In particular we see that r3(τ ) = r1(τ ) because Ker(τ ) =
(xr1(τ )+1, . . . , xd). We have r1(τ ) = r1(σ2 ◦ τ ) and r3(τ ) = r3(σ2 ◦ τ ). Moreover r1(τ ) = r1(τ ) according
to Proposition 2.8. Thus we only have to prove that r3(τ ) = r3(τ ).

Let us consider the following commutative diagram:

k〈x〉 τ

σ

k〈y〉

k〈x〉

ψ

where τ is injective and σ is one of the homomorphisms defined in (ii) of Theorem 3.4. We will prove
that ψ is still injective. Thus this will prove by induction that τ is injective and that r3(τ ) = r3(τ ).

In order to prove that ψ is injective, we have to check the three following cases: If σ is an
isomorphism, then it is clear that ψ is injective.

If σ = χd (d ∈ N
∗) is defined by χd(x1) = xd

1, and χd(xi) = xi ∀i �= 1, we can write d = pre with
e ∧ p = 1. If f ∈ Ker(ψ), then let us define g := ∏

ε∈Ue
( f (εx1, x2, . . . , xd))

pr
, where Ue is the set

of e-roots of unity in a finite field extension of k. Then g ∈ k〈x〉 and g ∈ Im(σ ). Let g′ ∈ k〈x〉 such
that σ(g′) = g . Then τ (g′) = ψ(g) = 0. Thus g′ = 0 because τ is injective, hence f = 0 and ψ is
injective.

Finally, let us assume that σ = q defined by q(xi) = xi for i �= 2 and q(x2) = x1x2. Let f ∈ Ker(ψ).
Let P (Y ) ∈ k[x][Y ] be an irreducible polynomial having f as a root. Let us denote by ai ∈ k[x], 0 �
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i � r, its coefficients (i.e. ar f r + · · · + a1 f + a0 = 0). Then ψ(a0) = 0 and a0 �= 0 if f �= 0. If d :=
degx2

(a0), then g := xd
1a0 ∈ Im(σ ) and ψ(g) = 0. Let g′ ∈ k[x] such that σ(g′) = g . Then τ (g′) =

ψ(g) = 0. Thus g′ = 0 because τ is injective, hence a0 = 0, then f = 0 and ψ is injective. �
Corollary 6.8. Let ϕ : k{x} −→ k{y}/Ik{y} be a homomorphism of analytic k-algebras where k is a valued
field, I is an ideal of k〈y〉 and such that ϕ(xi) ∈ k〈y〉/I for 1 � i � m. Assume moreover that char(k) = 0 or
I = (0). Then r1(ϕ) = r3(ϕ).

Proof. Let ψ : k〈x〉 −→ k〈y〉/I be the homomorphism of Henselian k-algebra defined by ψ(xi) :=
ϕ(xi) for 1 � i � n. Then we have r1(ψ) = r3(ψ) by the preceding theorem. Moreover, by Lemma 2.2,
we have r1(ψ) = r1(ψ̂) = r1(ϕ̂) = r1(ϕ̂ ) because ψ̂ = ϕ̂ . Clearly Ker(ψ)k{x} ⊂ Ker(ϕ), thus r3(ϕ) �
r3(ψ). Thus r1(ϕ) � r3(ϕ) � r3(ψ) = r1(ψ) = r1(ϕ) and we get the conclusion. �
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