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1. Introduction and preliminaries

For a finite group G , a semi-Mackey functor (resp. a Tambara functor) is regarded as a G-bivariant
analog of a commutative monoid (resp. ring), as seen in [8]. As such, some naive algebraic
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constructions are generalized to this G-bivariant setting. For example an analog of ideal theory was
considered in [5], and an analog of monoid-ring construction was considered in [4].

In the ordinary ring theory, fraction is another well-established construction. If we are given a
multiplicatively closed subset S of a ring R , then there are associated a ring S−1 R and a natural ring
homomorphism �S : R → S−1 R satisfying some universality. Similarly for monoids.

As a G-bivariant analog of this, we consider fraction of a Tambara (and a semi-Mackey) functor, by
a multiplicative semi-Mackey subfunctor.

In this article, a monoid is always assumed to be unitary and commutative. Similarly a ring is
assumed to be commutative, with an additive unit 0 and a multiplicative unit 1. We denote the
category of monoids by Mon, the category of rings by Ring, and the category of abelian groups by Ab.
A monoid homomorphism preserves units, and a ring homomorphism preserves 0 and 1. A G-set is a
set equipped with a G-action G × X → X , and a G-monoid is a monoid equipped with a compatible
G-action. Equivalently, a G-monoid is a pair (M,μ) of monoid M and group homomorphism μ : G →
AutMon(M), where AutMon(M) denotes the group of monoid automorphisms of M .

We always assume that a multiplicatively closed subset S ⊆ R contains 1. Thus a multiplicatively
closed subset is nothing other than a submonoid of Rμ , where Rμ denotes the underlying multiplica-
tive monoid of R . For any submonoid S of a monoid M , its saturation S̃ is defined by

s̃ = {x ∈ M | ax = s for some a ∈ M, s ∈ S}.
Then s̃ ⊆ M is again a submonoid. S is called saturated if it satisfies S = s̃.

Remark also that if M is a G-monoid and S ⊆ M is G-invariant, its saturation s̃ is also G-invariant.
Throughout this article, we use the same basic notation as in [5]. We fix a finite group G , whose

unit element is denoted by e. Abbreviately we denote the trivial subgroup of G by e, instead of {e}.
H � G means H is a subgroup of G . G set denotes the category of finite G-sets and G-equivariant
maps. The order of H is denoted by |H|, and the index of K in H is denoted by |H : K |, for any
K � H � G .

For any category C , we denote by Ob(C ) the class of its objects, and for any pair of objects X
and Y in C , the set of morphisms from X to Y in C is denoted by C (X, Y ).

2. Fraction of a semi-Mackey functor

Before constructing a fraction of a Tambara functor, we introduce the fraction of a semi-Mackey
functor. First, we briefly recall the definition of a (semi-)Mackey functor. Although the notion of
(semi-)Mackey functor seems to be well known, we add this section for the sake of self-containedness
and to fix the notation.

Definition 2.1. A semi-Mackey functor M on G is a pair M = (M∗, M∗) of a covariant functor

M∗ : G set → Set,

and a contravariant functor

M∗ : G set → Set

which satisfies the following. Here Set denotes the category of sets.

(1) For each object X ∈ Ob(G set), we have M∗(X) = M∗(X). We denote this simply by M(X).
(2) For any pair X, Y ∈ Ob(G set), if we denote the inclusions into X � Y by ιX : X ↪→ X � Y and

ιY : Y ↪→ X � Y , then (
M∗(ιX ), M∗(ιY )

) : M(X � Y ) → M(X) × M(Y )

becomes an isomorphism. M(∅) = {∗} for the empty set ∅.



H. Nakaoka / Journal of Algebra 352 (2012) 79–103 81
(3) (Mackey condition) If we are given a pullback diagram

X ′ X

Y ′ Y

�

ξ

f ′ f

η

in G set, then

M(X ′) M(X)

M(Y ′) M(Y )

M∗(ξ)

M∗( f ′) M∗( f )

M∗(η)

�

is commutative.

If M is a semi-Mackey functor, then M(X) becomes a monoid for each X ∈ Ob(G set), and M∗ , M∗
become monoid-valued functors G set → Mon. In fact, a commutative multiplication on X is given by
the folding map ∇ : X � X → X as

M(X) × M(X) ∼= M(X � X)
M∗(∇)−−−−→ M(X),

and the inclusion of the empty set ι : ∅ ↪→ X gives the unit M∗(ι) : M(∅) → M(X). Those
M∗( f ), M∗( f ) for morphisms f in G set are called structure morphisms of M . M∗( f ), M∗( f ) are of-
ten abbreviated to f ∗, f∗ . Also remark that if H is a subgroup of G , then M(G/H) is equipped with
a natural NG(H)/H-monoid structure. Here, NG(H) � G is the normalizer of H in G . Indeed for each
n ∈ NG(H)/H , the G-map

cn : G/H → G/H; g H �→ gnH (∀g ∈ G)

induces a monoid automorphism M∗(cn) on M(G/H).
A morphism of semi-Mackey functors ϑ : M → N is a family of monoid homomorphisms

ϑ = {
ϑX : M(X) → N(X)

}
X∈Ob(G set),

natural with respect to the contravariant and the covariant parts. We denote the category of semi-
Mackey functors by SMack(G).

If M is a semi-Mackey functor on G , a semi-Mackey subfunctor S ⊆ M is a family of submonoids
{S (X) ⊆ M(X)}X∈Ob(G set) , satisfying

f ∗(S (Y )
) ⊆ S (X), f∗

(
S (X)

) ⊆ S (Y )

for any f ∈ G set(X, Y ). Then S itself becomes a semi-Mackey functor, and this is nothing other than
a subobject in SMack(G).

A semi-Mackey functor M on G is called a Mackey functor if it satisfies M(X) ∈ Ob(Ab) for any
X ∈ Ob(G set). The full subcategory of Mackey functors is denoted by Mack(G) ⊆ SMack(G). For the
properties of Mackey functors, see for example [1].

Trivial example is the following.
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Example 2.2. Let M be a semi-Mackey functor on G . If we define M× ⊆ M by

M×(X) = (
M(X)

)× = {
invertible elements in M(X)

}
for each X ∈ Ob(G set), then M× ⊆ M becomes a semi-Mackey subfunctor.

Proposition 2.3. Let S ⊆ M be a semi-Mackey subfunctor.

(1) S −1M = {S (X)−1M(X)}X∈Ob(G set) has a structure of a semi-Mackey functor induced from that on M.
Here, S (X)−1M(X) denotes the ordinary fraction of monoids.

(2) The natural monoid homomorphisms

�S ,X : M(X) → S −1M(X); x �→ x

1

(∀X ∈ Ob(G set)
)

form a morphism of semi-Mackey functors �S : M → S −1M.
(3) For any semi-Mackey functor M ′ , the above �S gives a bijection between the morphisms S −1M → M ′

and the morphisms ϑ : M → M ′ satisfying ϑ(S ) ⊆ M ′×:

SMack(G)
(
S −1M, M ′) ∼=−→ {

ϑ ∈ SMack(G)
(
M, M ′) ∣∣ ϑ(S ) ⊆ M ′×}

.

Proof. By the universality of the fraction of monoids, for any f ∈ G set(X, Y ), there exists a unique
monoid homomorphism

f ∗ : S −1M(Y ) → S −1M(X)

compatible with f ∗ for M , given by

f ∗
(

y

t

)
= f ∗(y)

f ∗(t)

(
∀ y

t
∈ S −1M(Y )

)
.

Similarly f∗ for S −1M is obtained uniquely by

f∗
(

x

s

)
= f∗(x)

f∗(s)

(
∀ x

s
∈ S −1M(X)

)
,

compatibly with f∗ for M . Obviously S −1M becomes a semi-Mackey functor, with these structure
morphisms.

The rest also immediately follows from the properties of ordinary fraction of monoids. Since we
discuss this again for Tambara functors in Proposition 4.6, we omit the details here. We remark that
analogs of Corollary 4.8 and Corollary 4.9 also hold, which will be left to the reader. �

In particular, we can take the fraction M−1M of a semi-Mackey functor M by itself. This can be
understood in a more functorial way as follows.

Remark 2.4. If F : Mon → Ab is a functor preserving finite products, then from any semi-Mackey
functor M , we obtain a Mackey functor

F (M) = {
F
(
M(X)

)}
.
X∈Ob(G set)
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This gives a functor, which we also abbreviate to F

F : SMack(G) → Mack(G).

(Similarly for functors Mon → Mon, Ab → Ab, and Ab → Mon.)

Example 2.5. The group-completion functor

K0 : Mon → Ab

and the functor taking the group of invertible elements

( )× : Mon → Ab

yield functors

K0 : SMack(G) → Mack(G),

( )× : SMack(G) → Mack(G).

Moreover the adjoint properties of the original functors are enhanced to this Mackey-functorial
level. In fact, it can be easily shown that K0 is left adjoint to the inclusion functor Mack(G) ↪→
SMack(G), and ( )× is right adjoint to the same functor.

Thus for any pair of semi-Mackey functors M and M ′ , we have a natural isomorphism

SMack(G)
(

K0(M), M ′) ∼= Mack(G)
(

K0(M), M ′×)
∼= SMack(G)

(
M, M ′×)

= {
ϑ ∈ SMack(G)

(
M, M ′) ∣∣ ϑ(M) ⊆ M ′×}

,

which re-creates the adjoint isomorphism in Proposition 2.3, in the case of S = M .

Definition 2.6. For any semi-Mackey subfunctor S ⊆ M , we define its saturation S̃ by

S̃ (X) = (
S (X)

)∼
.

S̃ ⊆ M becomes again a semi-Mackey subfunctor. We say S is saturated if it satisfies S = S̃ .

Remark 2.7. Let M be a semi-Mackey functor on G .

(1) If a semi-Mackey subfunctor S ⊆ M satisfies S ⊆ M× , then �S becomes an isomorphism. In
particular if S belongs to Mack(G), then we have S ⊆ M× and thus �S is an isomorphism.

(2) For any semi-Mackey subfunctor S ⊆ M , we have a natural isomorphism S −1M
∼=−→ S̃ −1M

compatible with �S and �S̃ .

Proof. These can be confirmed on each object X ∈ Ob(G set). See also Remark 4.5. �
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3. Semi-Mackey subfunctors generated by S ⊆ M(G/e)

In this section, we state the construction of semi-Mackey subfunctors S ⊆ M from a saturated
G-invariant submonoid S ⊆ M(G/e).

The following proposition is also used critically in the next section.

Proposition 3.1. Let S ⊆ M be a semi-Mackey subfunctor. Then, for any f ∈ G set(X, Y ),

S (X) ⊆ (
f ∗S (Y )

)∼

is satisfied. Namely, for any s ∈ S (X), there exist some a ∈ M(X) and s̄ ∈ S (Y ) satisfying f ∗(s̄) = as. Indeed,
s̄ can be chosen as s̄ = f∗(s).

Proof. Let

X ×Y X X

X Y

�

p2

p1 f

f

be a pullback diagram, and let � : X → X ×Y X be the diagonal map. If we put

Z =
(

X ×
Y

X
)

− �(X),

q1 = p1|Z , q2 = p2|Z ,

then

X � Z X

X Y

�

idX ∪q2

idX ∪q1 f

f

also becomes a pullback diagram. Thus by Mackey condition, we obtain

f ∗ f∗(s) = (idX ∪ q1)∗(idX ∪ q2)
∗(s) = s · (q1∗q∗

2(s)
)

for any s ∈ M(X).
In particular when s ∈ S (X), if we put a = q1∗q∗

2(s) and s̄ = f∗(s), then it follows f ∗(s̄) = as and
s̄ ∈ S (Y ). �
Corollary 3.2. If S ⊆ M is a saturated semi-Mackey subfunctor, then for any X ∈ Ob(G set), we have

S (X) = (
pt∗X

(
S (G/G)

))∼
,

where ptX : X → G/G is the constant map. Thus S is determined by S (G/G).

Proof. This immediately follows from pt∗X (S (G/G)) ⊆ S (X) ⊆ (pt∗X (S (G/G)))∼ and S (X) =
(S (X))∼ . �
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Remark 3.3. Let M be a semi-Mackey functor on G . To give a semi-Mackey subfunctor S ⊆ M is
equivalent to give a submonoid S (X) ⊆ M(X) for each transitive X ∈ Ob(G set), in such a way that

(i) f∗(S (X)) ⊆ S (Y ),
(ii) f ∗(S (Y )) ⊆ S (X)

are satisfied for any f ∈ G set(X, Y ) between transitive X, Y ∈ Ob(G set).
In fact, if we define S (X) for any (not necessarily transitive) X ∈ Ob(G set) by

S (X) = {
(s1, . . . , sn) ∈ M(X)

∣∣ si ∈ S (Xi) (1 � ∀i � n)
}

using the orbit decomposition X = X1 � · · · � Xn , then S ⊆ M becomes a semi-Mackey subfunctor.
(Here, we are identifying M(X) with M(X1) × · · · × M(Xn) by the isomorphism (ι∗i )1�i�n : M(X)

∼=−→∏
1�i�n M(Xi) induced from the inclusions ιi : Xi ↪→ X .)

Starting from a G-invariant submonoid S ⊆ M(G/e), we can construct semi-Mackey subfunctors
of M in the following way.

Proposition 3.4. Let S ⊆ M(G/e) be a saturated G-invariant submonoid. For each transitive X ∈ Ob(G set),
define LS (X) by

LS(X) = γX∗(S)

for some γX ∈ G set(G/e, X). Then LS ⊆ M becomes a semi-Mackey subfunctor.
Obviously we have LS (G/e) = S, and LS is the minimum one among the semi-Mackey subfunctors S

satisfying S (G/e) ⊇ S.

Proof. First remark that the definition of LS (X) does not depend on the choice of γX , since X is
transitive and S is G-invariant. We show the conditions in Remark 3.3 are satisfied.

Let f ∈ G set(X, Y ) be any morphism between transitive X, Y ∈ Ob(G set). Obviously we have
f∗(LS (X)) = ( f ◦ γX )∗(S) = LS (Y ).

For a morphism γY ∈ G set(G/e, Y ), the fiber product of f and γY can be written in the form

�1�i�nG/e G/e

X Y

�

∇

⋃
1�i�n γi

γY

f

with some γ1, . . . , γn ∈ G set(G/e, X). Thus for any s ∈ S we have

f ∗γY ∗(s) =
∏

1�i�n

γi∗(s) ∈ LS(X).

Namely, we have f ∗(LS (Y )) ⊆ LS (X). �
Proposition 3.5. Let S ⊆ M(G/e) be a saturated G-invariant submonoid. Put S0 = (pt∗G/e)

−1(S) ⊆ M(G/G).
For each transitive X ∈ Ob(G set), define US (X) by

US(X) = (
(ptX )∗(S0)

)∼
.

Then US ⊆ M becomes a semi-Mackey subfunctor. Obviously we have US (G/e) ⊆ S.
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Proof. We show the conditions in Remark 3.3 are satisfied.
Let f ∈ G set(X, Y ) be any morphism between transitive X, Y ∈ Ob(G set). For any s ∈ US (Y ), by

definition, there exist a ∈ M(Y ) and t ∈ S0 such that as = pt∗Y (t) holds. Then we have

f ∗(a) f ∗(s) = f ∗pt∗Y (t) = pt∗X (t),

which means f ∗(US (Y )) ⊆ US(X).
It remains to show (i). We use the following lemma.

Lemma 3.6. For any transitive X ∈ Ob(G set) and any t ∈ S0 , we have

(ptX )∗pt∗X (t) ∈ S0.

Proof. If we take a pullback diagram

�nG/e X

G/e G/G

�

∃ζ=⋃
1�i�n ζi

∇ ptX

ptG/e

then we have

pt∗G/e(ptX )∗pt∗X (t) = ∇∗ζ ∗pt∗X (t) =
∏

1�i�n

ζ ∗
i pt∗X (t) = (

pt∗G/e(t)
)n ∈ S. �

For any s ∈ US (X), by definition, there exist a ∈ M(X) and t ∈ S0 such that as = pt∗X (t). Thus we
have f∗(a) f∗(s) = f∗pt∗X (t). By Proposition 3.1, there exists b ∈ M(Y ) satisfying

b · f∗pt∗X (t) = pt∗Y (ptY )∗ f∗pt∗X (t) = pt∗Y (ptX )∗pt∗X (t).

Thus we obtain

bf∗(a) f∗(s) = pt∗Y (ptX )∗pt∗X (t). (3.1)

By Lemma 3.6, we have (ptX )∗pt∗X (t) ∈ S0, and thus (3.1) implies

f∗(s) ∈ (
pt∗Y (S0)

)∼ = US(Y ),

and condition (i) follows. �
Proposition 3.7. Let S ⊆ M(G/e) be a saturated G-invariant submonoid. Then US is the maximum one
among semi-Mackey subfunctors S satisfying S (G/e) ⊆ S.

Proof. Let S be any semi-Mackey subfunctor satisfying S (G/e) ⊆ S . We have S ⊆ S̃ . Since S is
saturated, S̃ also satisfies S̃ (G/e) ⊆ S . Since S̃ ⊆ M is a semi-Mackey subfunctor, we have

pt∗G/e

(
S̃ (G/G)

) ⊆ S̃ (G/e) ⊆ S.
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Thus it follows

S̃ (G/G) ⊆ (
pt∗G/e

)−1
(S) (= S0).

Since S̃ is saturated, for any X ∈ Ob(G set) we have

S̃ (X) = (
pt∗X

(
S̃ (G/G)

))∼ ⊆ (
pt∗X (S0)

)∼ = US(X)

by Corollary 3.2. Thus we obtain S ⊆ S̃ ⊆ US . �
Corollary 3.8. For any saturated G-invariant submonoid S ⊆ M(G/e), we have LS ⊆ US . In particular we
have US (G/e) = S.

Moreover, for any semi-Mackey subfunctor S ⊆ M satisfying S (G/e) = S, we have LS ⊆ S ⊆ US .

Proof. This follows from Proposition 3.4 and Proposition 3.7. �
4. Fraction of a Tambara functor

First we briefly recall the definition of exponential diagrams and Tambara functors.

Remark 4.1. (See [7].) For each X ∈ Ob(G set), let G set/X denote the slice category of G set over X .
(Namely, its objects are G-maps to X .) For any G-map f ∈ G set(X, Y ) and any object (A

p−→ X) ∈
Ob(G set/X), we define Π f (A

p−→ X) = (Π f (A)
π−→ Y ) by

Π f (A) =
⎧⎨
⎩(y,σ )

∣∣∣∣
y ∈ Y ,

σ : f −1(y) → A a map of sets,
p ◦ σ = id f −1(y)

⎫⎬
⎭ ,

π(y,σ ) = y.

G acts on Π f (A) by g · (y, σ ) = (gy, gσ), where gσ is the map defined by

gσ(x) = gσ
(

g−1x
) (∀x ∈ f −1(gy)

)
.

If a ∈ (G set/X)((A
p−→ X), (A′ p′−−→ X)) is a morphism (namely, a ∈ G set(A, A′) satisfying p′ ◦ a = p),

then we define (Π f (a)) ∈ (G set/Y )(Π f (A
p−→ X),Π f (A′ p′−−→ X)) by

Π f (a)(y,σ ) = (y,a ◦ σ).

Then Π f gives a functor Π f : G set/X → G set/Y , which is right adjoint to the functor taking pullback
along f

X ×
Y

− : G set/Y → G set/X .

By the adjoint property, for any p ∈ G set(A, X), we have a commutative diagram

X

Y

A X ×Y Π f (A)

Π f (A)

f

p λ

ρ

π

� (4.1)
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where ρ is the pullback of f by π , and λ is the morphism corresponding to idΠ f (A) under the adjoint
isomorphism and p ◦ λ becomes the pullback of π by f .

Any commutative diagram in G set

X

Y

A Z

B

expf

p λ

ρ

q

isomorphic to (4.1) is called an exponential diagram. For the properties of exponential diagrams,
see [7].

Definition 4.2. A Tambara functor T on G is a triplet T = (T ∗, T+, T•) of two covariant functors

T+ : G set → Set, T• : G set → Set

and one contravariant functor

T ∗ : G set → Set

which satisfies the following.

(1) T α = (T ∗, T+) is a Mackey functor on G .
(2) T μ = (T ∗, T•) is a semi-Mackey functor on G .

Since T α, T μ are semi-Mackey functors, we have T ∗(X) = T+(X) = T•(X) for each X ∈ Ob(G set).
We denote this by T (X).

(3) (Distributive law) If we are given an exponential diagram

X

Y

A Z

B

expf

p λ

ρ

q

in G set, then

T (X)

T (Y )

T (A) T (Z)

T (B)

T•( f )

T+(p) T ∗(λ)

T•(ρ)

T+(q)

�

is commutative.

If T = (T ∗, T+, T•) is a Tambara functor, then T (X) becomes a ring for each X ∈ Ob(G set),
whose additive (resp. multiplicative) structure is induced from that on T α(X) (resp. T μ(X)). Those
T ∗( f ), T+( f ), T•( f ) for morphisms f in G set are called structure morphisms of T . For each f ∈
G set(X, Y ),
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• T ∗( f ) : T (Y ) → T (X) is a ring homomorphism, called the restriction along f .
• T+( f ) : T (X) → T (Y ) is an additive homomorphism, called the additive transfer along f .
• T•( f ) : T (X) → T (Y ) is a multiplicative homomorphism, called the multiplicative transfer along f .

T ∗( f ), T+( f ), T•( f ) are often abbreviated to f ∗, f+, f• .
A morphism of Tambara functors ϕ : T → S is a family of ring homomorphisms

ϕ = {
ϕX : T (X) → S(X)

}
X∈Ob(G set),

natural with respect to all of the contravariant and the covariant parts. We denote the category of
Tambara functors by Tam(G).

Example 4.3.

(1) If we define Ω by

Ω(X) = K0(G set/X)

for each X ∈ Ob(G set), where the right hand side is the Grothendieck ring of the category of finite
G-sets over X , then Ω becomes a Tambara functor on G . This is called the Burnside Tambara
functor ([7] or [5]).

(2) Let R be a G-ring. If we define P R by

P R(X) = {G-maps from X to R}
for each X ∈ Ob(G set), then P R becomes a Tambara functor on G . This is called the fixed
point functor associated to R ([7] or [5]). For each f ∈ G set(X, Y ), the multiplicative transfer
f• : P R(X) → P R(Y ) is given by(

f•(α)
)
(y) =

∏
x∈ f −1(y)

α(x)
(∀α ∈ P(X)

)
.

In this section, we construct a fraction of a Tambara functor by a semi-Mackey subfunctor S ⊆ T μ .
As in Example 2.2, we have a trivial semi-Mackey subfunctor (T μ)× , which we also denote simply
by T × .

Proposition 4.4. Let T be a Tambara functor on G and let S ⊆ T μ be a semi-Mackey subfunctor. Then
S −1T = {S (X)−1T (X)}X∈Ob(G set) has a structure of a Tambara functor induced from that on T .

Moreover, the natural ring homomorphisms

�S ,X : T (X) → S −1T (X); x �→ x

1

(∀X ∈ Ob(G set)
)

form a morphism of Tambara functors �S : T → S −1T .

Proof. As shown in Proposition 2.3, S −1T μ has a structure of a semi-Mackey functor, with structure
morphisms defined by

f ∗
(

y

t

)
= f ∗(y)

f ∗(t)

(
∀ y

t
∈ S −1T (Y )

)
,

f•
(

x

s

)
= f•(x)

f•(s)

(
∀ x

s
∈ S −1T (X)

)
,

for each f ∈ G set(X, Y ).
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Thus it suffices to give additive transfers for S −1T , compatibly with the structure on S −1T μ . Let
f ∈ G set(X, Y ) be any morphism.

Let x
s ∈ S −1T (X) be any element. If we put s̄ = f•(s), then by Proposition 3.1, we have f ∗(s̄) = as

for some a ∈ T (X). We define the additive transfer of S −1T along f by

f+ : S −1T (X) → S −1T (Y ); x

s
�→ f+(ax)

s̄
. (4.2)

To show the well-definedness, suppose we have x
s = x′

s′ in S −1T (X). Namely, there exists t ∈
S (X) such that ts′x = tsx′ . Let a,a′,b ∈ T (X) and s̄, s̄′, t̄ ∈ S (Y ) be elements satisfying

f ∗(s̄) = as, f ∗(s̄′) = a′s′ (4.3)

and

f ∗(t̄) = bt.

Then, by the projection formula, we have

t̄ s̄′ f+(ax) = f+
(
axf ∗(t̄ s̄′)) = f+

(
axbta′s′) = f+

(
aa′bts′x

)
,

t̄ s̄ f+
(
a′x′) = f+

(
a′x′ f ∗(t̄ s̄)

) = f+
(
a′x′btas

) = f+
(
aa′bts′x

)
.

This means we have f+(ax)
s̄ = f+(a′x′)

s̄′ in S −1T (Y ), and f+ is well defined. Also, this argument shows
that we can use arbitrary a ∈ T (X) and s̄ ∈ S (Y ) instead of f•(s) to define f+( x

s ) by (4.2), as long
as they satisfy f ∗(s̄) = as.

To show the additivity of f+ , let x
s and x′

s′ be arbitrary elements in S −1T (X), and take a,a′, s̄, s̄′
satisfying (4.3). Then we have f ∗(s̄s̄′) = aa′ss′ , and thus

f+
(

x

s
+ x′

s′

)
= f+

(
s′x + sx′

ss′

)
= f+(aa′(s′x + sx′))

s̄s̄′ .

On the other hand, we have

f+
(

x

s

)
+ f+

(
x′

s′

)
= f+(ax)

s̄
+ f+(a′x′)

s̄′ = s̄′ f+(ax) + s̄ f+(a′x′)
s̄s̄′ .

By the projection formula, we have

s̄′ f+(ax) + s̄ f+
(
a′x′) = f+

(
axf ∗(s̄′)) + f+

(
a′x′ f ∗(s̄)

)
= f+

(
aa′(s′x + sx′)),

and thus

f+
(

x

s
+ x′

s′

)
= f+

(
x

s

)
+ f+

(
x′

s′

)
.

With these definitions, we can easily confirm �S ,X ◦ f ∗ = f ∗ ◦ �S ,Y , �S ,Y ◦ f• = f• ◦ �S ,X and
�S ,Y ◦ f+ = f+ ◦ �S ,X for each f ∈ G set(X, Y ).

It remains to show the compatibilities between these (to-be) structure morphisms.
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(i) (Functoriality of ( )+( )+( )+)

Let X
f−→ Y

g−→ Z be a sequence of morphisms in G set. For any x
s ∈ S −1T (X), there exist a ∈ T (X)

and b ∈ T (Y ) satisfying

f ∗ f•(s) = as, (4.4)

g∗g•
(

f•(s)
) = bf•(s), (4.5)

by Proposition 3.1. Thus we have

g+ f+
(

x

s

)
= g+

(
f+(ax)

f•(s)

)
= g+(bf+(ax))

g• f•(s)
.

On the other hand by (4.4) and (4.5), we have

(g ◦ f )∗(g ◦ f )•(s) = f ∗(b) f ∗ f•(s) = f ∗(b)as,

and thus

(g ◦ f )+
(

x

s

)
= (g ◦ f )+( f ∗(b)ax)

(g ◦ f )•(s)
= g+(bf+(ax))

g• f•(s)
.

(ii) (Mackey condition for (S −1T )α(S −1T )α(S −1T )α )
Let

X ′ X

Y ′ Y

�

ξ

f ′ f

η

be any pullback diagram in G set. For any y
t ∈ S −1T (Y ′), there exists b′ ∈ T (Y ′) satisfying

η∗η•(t) = b′t, (4.6)

and

f ∗η+
(

y

t

)
= f ∗

(
η+(b′ y)

η•(t)

)
= f ∗η+(b′ y)

f ∗η•(t)
= ξ+ f ′ ∗(b′ y)

ξ• f ′ ∗(t)
.

On the other hand by (4.6), we have

ξ∗ξ• f ′ ∗(t) = ξ∗ f ∗η•(t) = f ′ ∗η∗η•(t) = f ′ ∗(b′) f ′ ∗(t),

and thus

ξ+ f ′ ∗
(

y

t

)
= ξ+

(
f ′ ∗(y)

f ′ ∗(t)

)
= ξ+( f ′ ∗(b′) f ′ ∗(y))

ξ f ′ ∗(t)
.

•
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(iii) (Distributive law for S −1TS −1TS −1T )
Let

X

Y

A Z

B

expf

p λ

ρ

q

be any exponential diagram in G set. For any x
s ∈ S −1T (A), there exists a ∈ T (A) satisfying

p∗p•(s) = as, (4.7)

and

f•p+
(

x

s

)
= f•

(
p+(ax)

p•(s)

)
= f•p+(ax)

f•p•(s)
= q+ρ•λ∗(ax)

f•p•(s)
.

On the other hand, if we put s̄ = f• p•(s) and b = ρ•λ∗(a), then by (4.7), we have

q∗(s̄) = q∗ f•p•(s) = ρ•λ∗p∗p•(s) = ρ•λ∗(as) = bρ•λ∗(s),

and thus

q+ρ•λ∗
(

x

s

)
= q+

(
ρ•λ∗(x)

ρ•λ∗(s)

)
= q+(bρ•λ∗(x))

s̄
= q+(ρ•λ∗(ax))

f•p•(s)
.

Thus S −1T becomes a Tambara functor, and Proposition 4.4 is shown. �
Remark 4.5. Let T be a Tambara functor on G .

(1) If a semi-Mackey subfunctor S ⊆ T μ satisfies S ⊆ T × , then �S becomes an isomorphism of
Tambara functors. In particular if S belongs to Mack(G), then we have S ⊆ T × and thus �S is
an isomorphism.

(2) For any semi-Mackey subfunctor S ⊆ T μ , we have a natural isomorphism S −1T
∼=−→ S̃ −1T of

Tambara functors compatible with �S and �S̃ .

Proof. These can be confirmed on each object X ∈ Ob(G set), by the ordinary commutative ring the-
ory. �

Naturally, the morphism �S : T → S −1T satisfies the expected universality.

Proposition 4.6. Let ϕ : T → T ′ be a morphism of Tambara functors, and let S ⊆ T μ , S ′ ⊆ T ′μ be semi-
Mackey subfunctors. If ϕ satisfies ϕ(S ) ⊆ S ′ , then there exists unique morphism

ϕ̃ : S −1T → S ′−1T ′
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compatible with ϕ

T T ′

S −1T S ′−1T ′

ϕ

�S �S ′

ϕ̃

�

Proof. By the ordinary commutative ring theory, there exists a unique ring homomorphism

ϕ̃X : S −1T (X) → S ′−1T ′(X)

for each X ∈ Ob(G set), satisfying ϕ̃X ◦ �S ,X = �S ′,X ◦ ϕX . This is given by

ϕ̃X

(
x

s

)
= ϕX (x)

ϕX (s)

for any x
s ∈ S −1T (X).

It suffices to show ϕ̃ = {ϕ̃X }X∈Ob(G set) is compatible with f ∗, f+, f• for any morphism f ∈
G set(X, Y ). Compatibility with f ∗ and f• immediately follows from the definitions.

We show the compatibility with f+ . For any x
s ∈ S −1T (X), there exists a ∈ T (X) satisfying

f ∗ f•(s) = as. It follows

f ∗ f•ϕX (s) = ϕX f ∗ f•(s) = ϕX (a)ϕX (s),

and thus we obtain

ϕ̃Y f+
(

x

s

)
= ϕ̃Y

(
f+(ax)

f•(s)

)
= ϕY f+(ax)

ϕY f•(s)

= f+ϕX (ax)

f•ϕX (s)
= f+

(
ϕX (x)

ϕX (s)

)
= f+ϕ̃X

(
x

s

)
.

S −1T (X) S ′−1T ′(X)

S −1T (Y ) S ′−1T ′(Y )

ϕ̃X

f+ f+

ϕ̃Y

�

�

Corollary 4.7. Let T be a Tambara functor, and let S ⊆ T μ be a semi-Mackey subfunctor. Then �S gives a
bijection between the morphisms S −1T → T ′ and the morphisms ϕ : T → T ′ satisfying ϕ(S ) ⊆ T ′×:

− ◦ �S : Tam(G)
(
S −1T , T ′) ∼=−→ {

ϕ ∈ Tam(G)
(
T , T ′) ∣∣ ϕ(S ) ⊆ T ′×}

.

Proof. This immediately follows from Remark 4.5 and Proposition 4.6. �
Once Proposition 4.4 is shown, some natural compatibilities immediately follow from Proposi-

tion 4.6.

Corollary 4.8. Let ϕ : T → T ′ be a morphism of Tambara functors.
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(1) If S ⊆ T μ is a semi-Mackey subfunctor, then

ϕ(S ) = {
ϕX

(
S (X)

)}
X∈Ob(G set)

gives a semi-Mackey subfunctor ϕ(S ) ⊆ T ′μ , and we obtain a morphism S −1T → (ϕ(S ))−1T ′ com-
patible with ϕ .

(2) If S ′ ⊆ T ′μ is a semi-Mackey subfunctor, then

ϕ−1(S ′) = {
ϕ−1

X

(
S ′(X)

)}
X∈Ob(G set)

gives a semi-Mackey subfunctor ϕ−1(S ′) ⊆ T , and we obtain a morphism (ϕ−1(S ′))−1T → S ′−1T ′
compatible with ϕ .

Proof. This immediately follows from Proposition 4.6. �
Corollary 4.9. Let T be a Tambara functor, and let S ⊆ S ′ ⊆ T be semi-Mackey subfunctors. Then the
image S̄ ′ = �S (S ′) of S ′ under the morphism �S : T → S −1T becomes a semi-Mackey subfunctor
S̄ ′ ⊆ S −1T , and there is a natural isomorphism

S ′−1T
∼=−→ S̄ ′−1(

S −1T
)

compatible with �S ′ and �S̄ ′ ◦ �S .

Proof. This immediately follows from Corollary 4.8 and an objectwise argument from ordinary com-
mutative ring theory. �
5. Compatibility with the Tambarization

In [4], we constructed a functor (Tambarization)

T : SMack(G) → Tam(G),

which is left adjoint to the functor taking multiplicative parts

(−)μ : Tam(G) → SMack(G).

T is regarded as a G-bivariant analog of the monoid-ring functor

Mon → Ring; Q �→ Z[Q ].

In this view, we denote T (M) by Ω[M] for any M ∈ Ob(SMack(G)).
For each X ∈ Ob(G set), by definition (Ω[M])(X) is the Grothendieck ring

Ω[M](X) = K0(M-G set/X),

where M-G set/X is the category defined as follows.

– An object in M-G set/X is a pair (A
p−→ X,m) of (A

p−→ X) ∈ Ob(G set/X) and m ∈ M(A).
– A morphism from (A1

p1−−→ X,m1) to (A2
p2−−→ X,m2) is a morphism f ∈ G set(A1, A2) satisfying

p2 ◦ f = p1 and M∗( f )(m2) = m1.
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– The sum of (A1
p1−−→ X,m1) and (A2

p2−−→ X,m2) is(
A1 � A2

p1∪p2−−−−→ X,m1 � m2
)
,

where m1 � m2 is the element in M(A1 � A2) corresponding to (m1,m2) under the natural iso-
morphism M(A1 � A2) ∼= M(A1) × M(A2).

– The product of (A1
p1−−→ X,m1) and (A2

p2−−→ X,m2) is (A
p−→ X,m1 � m2), where

A A2

A1 X

�

�2

�1 p2

p1

is a pullback diagram, and

p = p1 ◦ �1 = p2 ◦ �2,

m1 � m2 = � ∗(m1) · � ∗
2 (m2).

We denote the equivalence class of (A
p−→ X,m) in Ω[M](X) by [A

p−→ X,m]. Any element in
Ω[M](X) can be written in the form of[

A1
p1−→ X,m1

] − [
A2

p2−→ X,m2
]

for some (A1
p1−−→ X,m1), (A2

p2−−→ X,m2) ∈ Ob(M-G set/X).

Remark 5.1. This kind of construction seems to be firstly done by Jacobson in [3], and later by Hart-
mann and Yalçın in [2], to obtain a Green functor from a monoid-valued additive contravariant functor.

Recently this construction was utilized to obtain a Tambara functor from a semi-Mackey functor
in [4]. This can be also regarded as a generalization of crossed Burnside Tambara functors considered
in [6].

For the later use, we briefly recall the construction of the adjoint isomorphism

Tam(G)
(
Ω[M], T

) ∼= SMack(G)
(
M, T μ

)
,

ϕ ↔ ϑ,

for each M ∈ Ob(SMack(G)), T ∈ Ob(Tam(G)) (Theorem 2.15 in [4]).
For any ϕ ∈ Tam(G)(Ω[M], T ), the corresponding ϑ is given by

ϑX : M(X) → T μ(X),

m �→ ϕX
([

X
idX−−→ X,m

])
for each X ∈ Ob(G set).

For any ϑ ∈ SMack(G)(M, T μ), the corresponding ϕ is given by

ϕX : Ω[M](X) → T (X),[
A1

p1−→ X,m1
] − [

A2
p2−→ X,m2

] �→ T+(p1) ◦ ϑA1(m1) − T+(p2) ◦ ϑA2(m2)

for each X ∈ Ob(G set).
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From this, for any semi-Mackey functor M ∈ Ob(SMack(G)), the adjunction morphism

ε : M → Ω[M]μ

corresponding to idΩ[M] is given by

εX : M(X) → Ω[M](X),

m �→ [
X

idX−−→ X,m
]

(5.1)

for each X ∈ Ob(G set). Remark that, for any ϕ ∈ Tam(G)(Ω[M], T ) and corresponding ϑ ∈
SMack(G)(M, T μ), we have

ϕ ◦ ε = ϑ. (5.2)

By (5.1), it is shown that εX is monomorphic for any X , and thus M can be regarded as a semi-
Mackey subfunctor M ⊆ Ω[M]μ through ε. Thus if we are given a semi-Mackey subfunctor S ⊆ M ,
we can localize Ω[M] by ε(S ). We denote the fraction ε(S )−1(Ω[M]) simply by S −1(Ω[M]).

Proposition 5.2. Let M be a semi-Mackey functor on G, and let S ⊆ M be a semi-Mackey subfunctor. We
have a natural isomorphism of Tambara functors

S −1(Ω[M]) ∼= Ω
[
S −1M

]
.

Proof. It suffices to construct a natural bijection

Tam(G)
(
S −1(Ω[M]), T

) ∼= Tam(G)
(
Ω

[
S −1M

]
, T

)
for each T ∈ Ob(Tam(G)). This is obtained from

Tam(G)
(
Ω

[
S −1M

]
, T

) ∼= SMack(G)
(
S −1M, T μ

)
∼= {

ϑ ∈ SMack(G)
(
M, T μ

) ∣∣ ϑ(S ) ⊆ (
T μ

)× = T ×}
and

Tam(G)
(
S −1(Ω[M]), T

) = Tam(G)
(
ε(S )−1(Ω[M]), T

)
∼= {

ϕ ∈ Tam(G)
(
Ω[M], T

) ∣∣ ϕ(
ε(S )

) ⊆ T ×}
∼= {

ϑ ∈ SMack(G)
(
M, T μ

) ∣∣ ϑ(S ) ⊆ T ×}
. �

6. Compatibility with ideal quotients

In [5], an ideal of a Tambara functor T was defined as follows.

Definition 6.1. Let T be a Tambara functor. An ideal I of T is a family of ideals I (X) ⊆ T (X)

(∀X ∈ Ob(G set)) satisfying

(i) f ∗(I (Y )) ⊆ I (X),
(ii) f+(I (X)) ⊆ I (Y ),

(iii) f•(I (X)) ⊆ f•(0) + I (Y )

for any f ∈ G set(X, Y ).
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As shown in [5], for any ideal I ⊆ T , the quotients

(T /I )(X) = T (X)/I (X)
(

X ∈ Ob(G set)
)

form a Tambara functor T /I , and the projections

p X : T (X) → T (X)/I (X)
(

X ∈ Ob(G set)
)

form a morphism of Tambara functors p : T → T /I .
The following gives some examples of ideals [5].

Example 6.2. Let T be a Tambara functor, and I ⊆ T (G/e) be a G-invariant ideal of T (G/e). For each
X ∈ Ob(G set), define II (X) by

II (X) =
⋂

γ ∈G set(G/e,X)

(
γ ∗)−1

(I). (6.1)

Then II ⊆ T becomes an ideal of T , which is the maximum one among ideals I satisfying
I (G/e) = I .

Remark 6.3. Let T be a Tambara functor. Let I ⊆ T (G/e) be a G-invariant ideal and let S ⊆ T (G/e)μ be
a saturated G-invariant submonoid. For any ideal I ⊆ T satisfying I (G/e) = I and any semi-Mackey
subfunctor S ⊆ T satisfying S (G/e) = S , the following are equivalent.

(1) I ∩ S = ∅.
(2) I ∩ S = ∅. Namely, I (X) ∩ S (X) = ∅ for any non-empty X ∈ Ob(G set).

Proof. Obviously (2) implies (1). Conversely, assume (1) holds. Then, for any X ∈ Ob(G set) and γ ∈
G set(G/e, X), since

γ ∗(I (X)
) ⊆ I and γ ∗(S (X)

) ⊆ S,

we obtain

I (X) ∩ S (X) ⊆ (
γ ∗)−1

(I ∩ S) = ∅. �
Proposition 6.4. Let T be a Tambara functor. Let I ⊆ T be an ideal and S ⊆ T μ be a semi-Mackey subfunc-
tor, satisfying I ∩ S = ∅.

(1) If we define S −1I ⊆ S −1T by

S −1I (X) =
{
α ∈ S −1T (X)

∣∣∣ α = x

s
for some x ∈ I (X), s ∈ S (X)

}

for each X ∈ Ob(G set), then S −1I becomes an ideal of S −1T .
(2) Let p : T → T /I be the projection, and put S̄ = p(S ). Then we have a natural isomorphism of Tambara

functors

υ : S −1T /S −1I
∼=−→ S̄ −1(T /I ),
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compatible with projections

T T /I

S −1T S −1T /S −1I

S̄ −1(T /I )

p

�S

�S̄

∼= υ
� (6.2)

Proof. By the ordinary ideal theory for rings, S −1I (X) ⊆ S −1T (X) becomes an ideal for each
X ∈ Ob(G set). Thus it suffices to show

f ∗(S −1I (Y )
) ⊆ S −1I (X), f+

(
S −1I (X)

) ⊆ S −1I (Y ),

and

f•
(
S −1I (X)

) ⊆ f•(0) + S −1I (Y ).

Let f ∈ G set(X, Y ) be any morphism. For any y ∈ I (Y ) and t ∈ S (Y ), we have f ∗( y
t ) = f ∗(y)

f ∗(t) ∈
S −1I (X), and thus

f ∗(S −1I (Y )
) ⊆ S −1I (X).

For any x ∈ I (X) and s ∈ S (X), if we take a ∈ T (X) satisfying as = f ∗ f•(s), then we have f+( x
s ) =

f+(ax)
f•(s) ∈ S −1I (Y ), and thus

f+
(
S −1I (X)

) ⊆ S −1I (Y ).

Besides, by f•( x
s ) − f•(0) = f•(x)− f•(s) f•(0)

f•(s) = f•(x)− f•(0)
f•(s) ∈ S −1I (Y ), we obtain

f•
(
S −1I (X)

) ⊆ f•(0) + S −1I (Y )

for any f ∈ G set(X, Y ). Thus S −1I ⊆ S −1T becomes an ideal.
By the ordinary ideal theory for rings, for any X ∈ Ob(G set), there is a ring isomorphism

υX : S −1T /S −1I (X)
∼=−→ S̄ −1(T /I )(X),

x

s
+ S −1I (X) �→ p(x)

p(s)

(
∀ x

s
∈ S −1T (X)

)
,

which makes (6.2) commutative at X . Since the structure morphisms of S̄ −1(T /I ) and S −1T /

S −1I are those induced from T , we can check that υ = {υX }X∈Ob(G set) becomes an isomorphism of
Tambara functors. �
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7. Fraction and field-like Tambara functors

As in [5], we say a Tambara functor T is field-like if the zero ideal (0) � T is maximal with respect
to the inclusion. In this section, we consider fractions by the following semi-Mackey subfunctor, and
investigate the relations between field-like Tambara functors.

Example 7.1. Let T be a Tambara functor. If we put

Z = {
s ∈ T (G/e)

∣∣ s is not a zero divisor
}
,

then we obtain two semi-Mackey subfunctors LZ ⊆ T μ and UZ ⊆ T μ .

We introduce the following condition from [5].

Definition 7.2. A Tambara functor T is said to satisfy (MRC) if, for any f ∈ G set(X, Y ) between transi-
tive X, Y ∈ Ob(G set), the restriction f ∗ is monomorphic. Remark that we may assume X = G/e.

Remark 7.3. Let T be a Tambara functor and I(0) ⊆ T be the ideal corresponding to (0) ⊆ T (G/e) as
in Example 6.2. If we define TMRC by TMRC = T /I(0) , then TMRC satisfies (MRC). Besides, T satisfies
(MRC) if and only if T = TMRC.

Fact 7.4. (See Theorem 4.21 in [5].) A Tambara functor satisfies (MRC) if and only if T is a Tambara
subfunctor of PT (G/e).

Fact 7.5. (See Theorem 4.32 in [5].) For any Tambara functor T �= 0, the following are equivalent.

(1) T is field-like.
(2) T satisfies (MRC), and T (G/e) has no non-trivial G-invariant ideal.

First, we show that if T is field-like itself, then nothing is changed under the fraction by UZ .

Proposition 7.6. If T is a field-like Tambara functor, then we have

T ×(G/e) = Z =
{

s ∈ T (G/e)
∣∣∣ ∏

g∈G

gs �= 0

}
.

Proof. For any s ∈ T (G/e), put s̃ = ∏
g∈G gs. Since we have

T ×(G/e) ⊆ Z ⊆ {
s ∈ T (G/e)

∣∣ s̃ �= 0
}
,

it suffices to show {
s ∈ T (G/e)

∣∣ s̃ �= 0
} ⊆ T ×(G/e).

Take any s ∈ {s ∈ T (G/e) | s̃ �= 0}. Since s̃ �= 0 and T contains no non-trivial ideal, we have 〈s̃〉 = T .
In particular we have 〈s̃〉(G/e) � 1.

On the other hand, since s̃ is G-invariant, it can be easily shown that we have

〈s̃〉(G/e) = {
rs̃

∣∣ r ∈ T (G/e)
}
.

Thus there exists some r ∈ T (G/e) such that rs̃ = 1, which means s̃ ∈ T ×(G/e). Consequently we
obtain s ∈ T ×(G/e). �
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Proposition 7.7. Let T be a field-like Tambara functor. If S ⊆ T (G/e) is a saturated G-invariant submonoid
contained in Z, then we have LS ⊆ US ⊆ T × .

Proof. Remark that T is a Tambara subfunctor of a fixed point functor. Especially we have
(ptG/e)•pt∗G/e(x) = x|G| for any x ∈ T (G/G). Thus if x ∈ T (G/G) satisfies pt∗G/e(x) ∈ S (⊆ T ×(G/e)),

then it satisfies x ∈ T ×(G/G). Namely we have

(
pt∗G/e

)−1
(S) ⊆ T ×(G/G).

Thus it follows

US(X) ⊆ (
pt∗X

(
T ×(G/G)

))∼ ⊆ T ×(X)

for any transitive X ∈ Ob(G set). Thus it follows US ⊆ T × . �
Corollary 7.8. For any field-like Tambara functor T , we have

U −1
Z

T ∼= L −1
Z

T ∼= T .

Proof. This follows from Remark 4.5 and Proposition 7.7. �
In the following, we investigate when U −1

Z
T becomes field-like.

Remark 7.9. Let T be a Tambara functor, and let S ⊆ T μ be a semi-Mackey subfunctor. Then the
following are equivalent.

(1) S −1T satisfies (MRC).
(2) For any transitive X ∈ Ob(G set) and any x ∈ T (X) admitting some s ∈ S (G/e) satisfying

s · γ ∗
X (x) = 0 for γX ∈ G set(G/e, X), there exists some t ∈ S (X) such that tx = 0.

Especially, if S satisfies S (G/e) ⊆ Z, then these are also equivalent to:

(2)′ For any transitive X ∈ Ob(G set) and any x ∈ T (X) satisfying γ ∗
X (x) = 0 for γX ∈ G set(G/e, X), there

exists some t ∈ S (X) such that tx = 0.

(Conditions (2) and (2)′ do not depend on the choice of γX ∈ G set(G/e, X).)

Proposition 7.10. Let T be a Tambara functor, and let S ⊆ T μ be a semi-Mackey subfunctor satisfying
S (G/e) ⊆ Z. Let p : T → T /I(0) = TMRC be the projection, and S̄ ⊆ TMRC be the image of S under p.
Then we have the following.

(1) S −1T /S −1I(0)
∼= S̄ −1TMRC .

(2) S −1T satisfies (MRC) if and only if the ideal S −1I(0) ⊆ S −1T is equal to (0).
(3) If S −1T satisfies (MRC), then S −1T ∼= S̄ −1TMRC .

Proof. (1) follows from Proposition 6.4, since S satisfies I(0) ∩ S = ∅. (2) follows from Remark 7.9.
In fact, for any transitive X ∈ Ob(G set), the following are equivalent.

(i) S −1I(0)(X) = 0.
(ii) For any x ∈ I(0)(X), there exists t ∈ S (X) satisfying tx = 0.
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(iii) For any x ∈ T (X) satisfying γ ∗
X (x) = 0 for γX ∈ G set(G/e, X), there exists t ∈ S (X) satisfying

tx = 0.

(3) follows from (1) and (2). �
Lemma 7.11. Let T be a Tambara functor. If T satisfies one of the following conditions, then U −1

Z
T satisfies

(MRC).

(i) T satisfies (MRC).
(ii) For any transitive X ∈ Ob(G set), if we let γX ∈ G set(G/e, X) be a G-map, then

(γX )+(1) ∈ UZ(X)

holds. (Remark that this does not depend on γX .)

Proof. We use the criterion of Remark 7.9.

(i) This is obvious, since γ ∗
X (x) = 0 implies x = 0.

(ii) By the projection formula, γ ∗
X (x) = 0 implies

γX+(1) · x = γX+γ ∗
X (x) = 0. �

As an immediate consequence of Lemma 7.11, we have:

Proposition 7.12. Let T be a Tambara functor. If T (G/e) is an integral domain and if T satisfies one of the
conditions (i), (ii) in Lemma 7.11, then U −1

Z
T becomes a field-like Tambara functor.

Proof. By Lemma 7.11, U −1
Z

T satisfies (MRC). Since (U −1
Z

T )(G/e) is a field, U −1
Z

T becomes field-
like by Fact 7.5. �
Example 7.13.

(1) For any G-ring R , the fixed point functor P R satisfies condition (i) in Lemma 7.11. Especially if R
is an integral domain, then U −1

Z
P R becomes a field-like Tambara functor by Proposition 7.12.

(2) If T (G/e) has no |G|-torsion, then the Tambara functor T satisfies condition (ii) in Lemma 7.11.

Proof. (1) follows immediately from the definition of P R . We show (2). Let X ∈ Ob(G set) be transitive.
We may assume X = G/H , for some H � G . It suffices to show (pH

e )+(1) ∈ UZ(X).
By the existence of a pullback diagram

�|G:H|G/e G/e

G/H G/G

�

∃ζ

⋃
|G:H| pH

e pG
e

pG
H

we have

(
pG

H

)∗(
pG

e

)
(1) = |G : H| · (pH

e

)
(1). (7.1)
+ +



102 H. Nakaoka / Journal of Algebra 352 (2012) 79–103
In particular if H = e, we obtain

(
pG

e

)∗(
pG

e

)
+(1) = |G| · 1. (7.2)

Since T (G/e) has no |G|-torsion, we have |G| · 1 ∈ Z, and thus (7.2) implies

(
pG

e

)
+(1) ∈ ((

pG
e

)∗)−1(|G| · 1
) ⊆ ((

pG
e

)∗)−1
(Z),

namely

(
pG

e

)
+(1) ∈ (

pt∗G/e

)−1
(Z).

From (7.1), we obtain

|G : H| · (pH
e

)
+(1) = (

pG
H

)∗(
pG

e

)
+(1) = pt∗X

((
pG

e

)
+(1)

) ∈ pt∗X
((

pt∗G/e

)−1
(Z)

)
,

and thus γX+(1) ∈ UZ(X). �
Corollary 7.14. Let Ω ∈ Ob(Tam(G)) be the Burnside Tambara functor. Then U −1

Z
Ω becomes a field-like

Tambara functor.

Proof. Since Ω(G/e) is an integral domain with no |G|-torsion, this immediately follows from Propo-
sition 7.12 and Example 7.13. �
Caution 7.15. In [5], we also considered an analogous notion of an integral domain, as a ‘domain-like’
Tambara functor. In [5], a Tambara functor T is called domain-like if the zero ideal (0) ⊆ T is prime.
Typical examples of domain-like Tambara functors are T = Ω and the fixed point functor T = P R

associated to an integral domain R (with a G-action). For this Tambara functor T , the associated
fraction U −1

Z
T becomes field-like as shown in Example 7.13 and Corollary 7.14. However in general,

we will have to assume some more conditions on a domain-like Tambara functor, if we expect U −1
Z

T
to be field-like.

By using Proposition 7.10, we can calculate U −1
Z

Ω . First we remark the following.

Remark 7.16. For each H � G , let O(H) denote a set of representatives of conjugacy classes of sub-
groups of H .

Then Ω(G/H) is a free module over

{
G/K = [

G/K
pH

K−−→ G/H
] ∣∣ K ∈ O(H)

}
,

where pH
K : G/K → G/H is the canonical projection.

Especially, for any transitive X ∼= G/H ∈ Ob(G set), any α ∈ Ω(X) can be decomposed uniquely as

α =
∑

K∈O(H)

mK
[
G/K

pH
K−−→ G/H

]
(mK ∈ Z). (7.3)

Proposition 7.17. We have an isomorphism of Tambara functors

U −1
Z

Ω ∼= PQ.
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Proof. As in Corollary 7.14, U −1
Z

Ω satisfies (MRC). Thus by Proposition 7.10, it suffices to show

Ū −1
Z

ΩMRC ∼= PQ,

where ŪZ ⊆ ΩMRC is the image of UZ under the projection Ω → ΩMRC.
As shown in [5], the family of ring isomorphisms {℘H }H�G

℘H : (Ω/I(0))(G/H) → PZ(G/H) = Z,∑
K∈O(H)

mK
[
G/K

pH
K−−→ G/H

] �→
∑

K∈O(H)

mK |H : K |

gives an isomorphism of Tambara functors ℘ : Ω/I(0)
∼=−→ PZ .

Remark that, for m ∈ Z, we have ℘H (m[G/H id−→ G/H]) = 0 if and only if m = 0. Additionally, since
m[G/H id−→ G/H] ∈ UZ(G/H) for any 0 �= m ∈ Z, we have

℘(ŪZ)(G/H) = Z \ {0}
for any H � G . Thus it follows

Ū −1
Z

(Ω/I(0)) ∼= ℘(ŪZ)−1 PZ
∼= PQ. �
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