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1. Introduction

We develop the theory of additive cyclic codes in the case when the length of the code is coprime
to the characteristic of the field. The definition of an additive code and some basic relations between
a code defined over an extension field and its subfield and trace codes are recalled in Section 2.
Section 3 discusses the notions of cyclicity of a code. In Section 4 we develop the theory of additive
codes which are cyclic in the permutation sense. This contains the classical theory of cyclic linear
codes. We discuss when cyclic codes are equivalent and consider the special case of cyclic quantum
codes. The general theory of additive codes which are cyclic in the monomial sense is discussed
in Section 5. It is proved in Corollary 3 that each quaternary additive code which is cyclic in the
monomial sense either is cyclic in the (more restricted) permutation sense or is linear over F4.

Special cases of this theory were published in earlier work [5,4,1–3].
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2. Basic facts

Definition 1. A q-linear qm-ary code [n,k]qm is a km-dimensional Fq-subspace C ⊆ En , where E = F
m
q .

In particular C has qkm codewords.

This is a generalization of linear codes in the sense that the alphabet is not considered as a
field Fqm but only as a vector space over the subfield Fq . These codes are also collectively known
as additive codes. Observe that the case m = 1 constitutes the family of linear codes (over a field Fq).
We will develop the general theory of additive codes which are cyclic in the monomial sense under
the general assumption that the characteristic p of the underlying field is coprime to the length n of
the code. The main effect of the assumption is that the action of a (cyclic) group of order n on a vector
space over a field of characteristic p is completely reducible, by Maschke’s theorem (see Definition 5
and Theorem 1). We will make use of basic relations between linear codes over a finite field F and its
trace codes and subfield codes over a subfield K ⊂ F . These basic facts and fundamental notions like
the Galois group, cyclotomic cosets and Galois closedness are introduced in Chapter 12 of [2]. Recall
in particular the Delsarte theorem (Theorem 12.14 of [2]) relating codes over F , their duals, the trace
codes and the subfield codes as well as Theorem 12.17 of [2] which states among other things that
dimF (U ) = dimK (tr(U )) provided the F -linear code U is Galois closed with respect to the subfield K .

3. Code equivalence and cyclicity

Definition 2. Codes C and D are permutation equivalent if there is a permutation π on n objects
such that

(x1, x2, . . . , xn) ∈ C ⇐⇒ (xπ(1), xπ(2), . . . , xπ(n)) ∈ D

for all x = (x1, . . . , xn) ∈ C .

The notion of permutation equivalence can be used for all codes of fixed block length n. It uses
the symmetric group Sn as group of motions. Two codes are equivalent if they are in the same orbit
under Sn . The stabilizer under Sn is the permutation automorphism group of the code.

In the special case of additive codes, the following more general notion of equivalence is more
natural.

Definition 3. q-linear qm-ary codes C and D are monomially equivalent if there exist a permuta-
tion π on n objects and elements Ai ∈ GL(m,q) such that

(x0, x1, . . . , xn−1) ∈ C ⇐⇒ (A0xπ(1), A1xπ(2), . . . , An−1xπ(n−1)) ∈ D

for all x = (x0, . . . , xn−1) ∈ C .

The group of motions is the wreath product of GL(m,q) and Sn , of order |GL(m,q)|n × n! and
two additive codes are equivalent in the monomial sense if they are in the same orbit under the
action of this larger group. The elements of the wreath product are described by (n + 1)-tuples
(A0, . . . , An−1,π) where the coefficients Ai ∈ GL(m,q) and the permutation π ∈ Sn . Write the ele-
ments of the monomial group as g(A0, . . . , An−1,π).

Definition 4. A code C of length n is cyclic in the permutation sense if there is an n-cycle π ∈ Sn

such that π(C) = C .
A q-linear qm-ary code C is cyclic in the monomial sense if it is invariant under an element

g(A0, . . . , An−1,π) of the monomial group where π ∈ Sn is an n-cycle.
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As the n-cycles are conjugate in Sn , it is clear that each code which is cyclic in the permutation
sense is permutation equivalent to a code which is invariant under the permutation π = (1,2, . . . ,n).

Proposition 1. Let C be q-linear qm-ary of length n and cyclic in the monomial sense. Then the following hold:

• C is monomially equivalent to a code which is invariant under g(I, . . . , I, A′
n−1,π) where π =

(0,1, . . . ,n − 1).
• If C is invariant under g(A0, . . . , An−1, (0, . . . ,n − 1)) and A0 A1 . . . An−1 = I , then C is cyclic in the

permutation sense.
• If C is invariant under g(I, . . . , I, A, (0, . . . ,n − 1)) and ord(A) is coprime to n, then C is cyclic in the

permutation sense.

Proof. We just saw that we can assume C to be invariant under g(A0, A1, . . . , An−1,π) where π =
(0,1, . . . ,n − 1). We have that (xi) ∈ C implies (Ai xi+1) ∈ C . Let now

C′ = {
(B0x0, . . . , Bn−1xn−1)

∣∣ x = (x0, . . . , xn−1) ∈ C
}
.

Let yi = Bi xi . Then (yi) ∈ C′ implies (Bi Ai B−1
i+1 yi+1) ∈ C′ . Choose the Bi such that (for i = 0) B1 =

B0 A0 (for i = 1) B2 = B1 A1 = B0 A0 A1, up to (for i = n − 2) Bn−1 = Bn−2 An−2 = B0 A0 . . . An−2. It
follows that C′ is invariant under g(I, . . . , I, A, (0,1, . . . ,n − 1)) as claimed. Here A = B0(A0 A1 . . .

An−1)B−1
0 , a conjugate of A0 A1 . . . An−1. The first statement concerning cyclicity in the permutation

sense follows. Let now C be invariant under g = g(I, . . . , I, A, (0, . . . ,n − 1)) and ord(A) = u coprime
to n. Then gu has u of its coefficients equal to A, the others = I . The permutation of gu is an n-cycle.
The first statement implies that C is cyclic in the permutation sense. �

The cyclic group G = 〈g(A0, . . . , An−1, (0, . . . ,n − 1))〉 has an order a multiple of n and acts on
an n-dimensional vector space V over Fq . The cyclic codes are the G-submodules of V . The theory
simplifies considerably if the action of G on V is completely reducible.

Definition 5. Let the group G act on a vector space V = V (n, K ). An irreducible submodule A ⊂ V
is a nonzero G-submodule which does not contain a proper G-submodule (different from 0 and from
A itself). The action of G is completely reducible if for every G-submodule A ⊂ V there is a direct
complement B of A which is a G-module.

If the action is completely reducible, it suffices in a way to know the irreducibles, as every
G-submodule is a direct sum of irreducibles. There is still work to do as the representation of a mod-
ule as a direct sum of irreducibles may not be unique. However the situation is a lot simpler than in
the cases where complete reducibility is not satisfied. This is where Maschke’s theorem comes in.

Theorem 1 (Maschke). In the situation of Definition 5, let the order of G be coprime to the characteristic p of
the underlying field. Then the action of G is completely reducible.

See also [7, p. 666]. This fundamental theorem is the reason why in the theory of cyclic codes it is
often assumed that gcd(n, p) = 1.

4. Additive codes which are cyclic in the permutation sense

Recall the situation: W is the cyclic group generated by the permutation (0,1, . . . ,n−1). It acts on
the vector space V (n,q) as a cyclic permutation of the coordinates. The W -submodules are precisely
the cyclic linear codes over Fq . We assume gcd(n, p) = 1. Because of Maschke’s theorem the action
of W on V (n,q) is completely reducible.
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Let r = ordn(q) be the order of q when calculating mod n. Then n|(qr − 1) and r is the smallest
natural number with this property. Let F = Fqr . We find then a cyclic group of order n in F ∗ . It will
be profitable to identify W with this subgroup of F ∗ . Let W = 〈α〉.

As we are interested in cyclic additive codes, our alphabet is E = F
m
q and we study the action of W

on Vm = En = F
mn
q . Keep in mind however that we consider the elements of Vm (the codewords) not

as nm-tuples over Fq but rather as n-tuples over E . Refer to the n entries of a codeword as the outer
coordinates (in bijection with the elements αi , i = 0, . . . ,n − 1, of W ) and to the m coordinates of the
alphabet E as the inner coordinates. Let Vm,F = Vm ⊗ F = (F m)n be obtained by constant extension
with the action of W on outer coordinates. We will relate the codes C ⊂ Vm = En = F

nm
q to their

constant extensions C ⊗ F ⊂ Vm,F and use basic facts concerning relations between codes defined
over a larger field F and a subfield Fq . In particular we associate to each subcode U ⊂ Vm,F its trace
code tr(U ) ⊂ Vm obtained by applying the trace tr = trF |Fq in each inner coordinate.

Project to one of the m inner coordinates. We obtain then spaces F
n
q and F n . The elements of F n

can be uniquely described by univariate polynomials p(X) ∈ F [X] of degree < n, where the codeword
defined by p(X) is the evaluation ev(p(X)) = (p(αi)), i = 0, . . . ,n − 1. Doing this for each inner co-
ordinate we see that the elements of Vm,F can be uniquely described by tuples (p1(X), . . . , pm(X))

of polynomials p j(X) ∈ F [X] of degree < n, where the corresponding codeword is the evaluation
ev(p1(X), . . . , pm(X)) = (p1(α

i), p2(α
i), . . . , pm(αi))i (an n-tuple of m-tuples, each of the nm entries

in F ).
Consider the Galois group G = Gal(F |Fq) (cyclic of order r) and its orbits on Z/nZ, the cyclotomic

cosets. We interpret the elements of Z/nZ as the exponents of α in the description of the elements
of the cyclic group W . For each polynomial p(X) ∈ F [X] of degree < n, consider the exponents of the
monomials occurring in p(X) and how they distribute on the cyclotomic cosets.

Definition 6. Let P be the space of polynomials in F [X] of degree < n. Then P is an n-dimensional
F -vector space. Let A ⊆ Z/nZ be a set of exponents. The F -vector space P(A) consists of the polyno-
mials ∈ F [X] of degree < n all of whose monomials have degrees in A. The Galois closure Ã of A is
the union of all cyclotomic cosets that intersect A nontrivially.

Observe that P(A) is an F -vector space of dimension |A| and it is isomorphic to ev(P(A)) ⊂ V 1,F .
The terminology of Definition 6 is justified by the obvious fact that the Galois closure of the code
ev(P(A)) ⊂ V 1,F = F n is ev(P( Ã)).

4.1. Linear cyclic codes (case m = 1)

We have P = ⊕
Z P(Z) where Z varies over the cyclotomic cosets and correspondingly V 1,F =

F n = ⊕
Z ev(P(Z)). As the ev(P(Z)) are Galois closed we also have V 1 = F

n
q = ⊕

tr(ev(P(Z))) and
dimFq (tr(ev(P(Z)))) = dimF (ev(P(Z))) = |Z |. Let V 1(Z) = tr(ev(P(Z))). It is our first task to identify
the irreducible W -submodules (the irreducible cyclic codes) in V 1.

Theorem 2. In case m = 1, gcd(n, p) = 1 the irreducible cyclic codes in the permutation sense are precisely
the V 1(Z) = tr(ev(P(Z))) of Fq-dimension |Z | where Z is a cyclotomic coset. Each cyclic code can be written
as a direct sum of irreducibles in precisely one way. The total number of cyclic codes is 2u , where u is the
number of different cyclotomic cosets.

Theorem 2 is of course well known in the classical theory of linear cyclic codes. In order to be
self-contained we will prove it in the remainder of this subsection.

It follows from basic properties of the trace that in the description of a code C ⊆ V 1 by codewords
tr(ev(p(X))) it suffices to use polynomials of the form p(X) = a1 X z1 + a2 X z2 + · · · where z1, z2, . . .

are representatives of different cyclotomic cosets.

Lemma 1. Let Z be a cyclotomic coset, z ∈ Z , |Z | = s, L = Fqs . The Fq-vector space 〈W z〉 generated by the
uz where u ∈ W is L. The codeword tr(ev(aX z)) where a ∈ F is identically zero if and only if a ∈ L⊥ where
duality is with respect to the trace form.
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Proof. As ev(P(Z)) is F -linear and Galois closed of dimension s, it follows that tr(ev(P(Z))) is
Fq-linear of dimension s. Its generic codeword is tr(ev(aX z)). This codeword is identically zero if
and only if a ∈ 〈W z〉⊥ . Comparing dimensions shows dim(〈W z〉) = s. Let u ∈ W . Then uzqs = uz by
definition of a cyclotomic coset. This shows W z ⊂ L. It follows 〈W z〉 = L. �

Lemma 1 shows that we can assume ai /∈ L⊥
i for each i. Let us speak of a polynomial in standard

form in this case, for the moment. Observe that tr(ev(p(X))) = tr(a1 X z1 ) + tr(a2 X z2) + · · · and the
summands tr(ai X zi ) are in different parts of the direct sum decomposition V 1 = ⊕

Z V 1(Z).

Lemma 2. Let C ⊆ V 1 be a cyclic code and B ⊆ P the set of all polynomials p(X) of degree < n such that
tr(ev(p(X))) ∈ C . Let p(X) = a1 X z1 + a2 X z2 + · · · ∈ B where z1, z2, . . . are representatives of different cy-
clotomic cosets. Then p(l)(X) = a1α

lz1 X z1 + a2α
lz2 X z2 + · · · ∈ B for all l. The smallest cyclic code containing

tr(ev(p(X))) is the code spanned by the tr(ev(p(l)(X))) for all l.

Proof. The entry of tr(ev(p(X))) in coordinate αi is tr(a1α
iz1 + a2α

iz2 + · · ·). After cyclic shift we
obtain a codeword whose entry in coordinate αi is tr(a1α

(i+1)z1 + a2α
(i+1)z2 + · · ·) = tr(a1α

z1αiz1 +
a2α

z2αiz2 + · · ·) which is the trace of the evaluation of a1α
z1 X z1 + a2α

z2 X z2 + · · · . The first claim
follows by repeated application, the second is obvious. �

Let us complete the proof of Theorem 2. Let C be an irreducible cyclic code and tr(ev(p(X))) ∈ C
where p(X) is in standard form. Assume p(X) is not a monomial. Let B be defined as in Lemma 2
and p(X) = a1 X z1 +a2 X z2 +· · · ∈ B. Lemma 2 implies that a1α

lz1 X z1 +a1α
lz2 X z2 ∈ B for all l. Assume

at first |Z1| 
= |Z2|. Choose l such that αlz1 = 1 and αlz2 
= 1. By subtraction we have a2(α
lz2 − 1)X z2 +

· · · ∈ B. The cyclic code generated by the trace-evaluation of this polynomial has trivial projection
to V 1(Z1). As this is not true of C it follows from irreducibility that this codeword must be the
0-word, hence a2(α

lz2 − 1) ∈ L⊥
2 . This implies a2 ∈ L⊥

2 , a contradiction. Assume now |Z1| = |Z2| = s,
let L = Fqs . Use Lemma 2. Let cl ∈ Fq such that

∑
l clα

lz1 = 0. The same argument as above shows that∑
l clα

lz2 = 0. We have β = αz1 ∈ L and L is the smallest subfield of F containing β . Also αz2 = β j

where j is coprime to the order of β . Let
∑s

l=0 clβ
l be the minimal polynomial of β . We just saw that∑s

l=0 clβ
jl = 0. This shows that the mapping x �→ x j is a field automorphism of L. It implies that z1

and z2 are in the same cyclotomic coset, a contradiction.
We have seen that a polynomial in standard form whose trace-evaluation generates an irreducible

cyclic code is necessarily a monomial aX z where a /∈ L⊥ using the by now standard terminology
(z ∈ Z , |Z | = s, L = Fqs ,⊥ with respect to the trace form). Lemma 2 shows that aαlz X z ∈ B for all l.
As the αlz generate L (see Lemma 1), it follows that au X z ∈ B for all u ∈ L. By Lemma 2 again we
have in fact C = tr(ev(aL X z)). Consider the mapping u �→ tr(ev(au X z)) from L onto C . The kernel of
this mapping is 0, so C has dimension s. As it is contained in V 1(Z) of dimension s, we have equality.

This completes the proof of Theorem 2. As a result we obtain an algorithmic description of all
codewords of all cyclic linear codes in the permutation sense of length n, where gcd(n, p) = 1. The
codes are in bijection with sets of cyclotomic cosets. Let Z1 ∪ · · · ∪ Zt be such a set. Let zk ∈ Zk ,
sk = |Zk|, Lk = Fqsk . The dimension of the code is

∑
k sk . Its generic codeword w(x1, . . . , xt) where

xk ∈ Lk has entry

∑
k

trLk|Fq

(
xkα

izk
)

in coordinate i where i = 0, . . . ,n − 1. The cyclic shift of codeword w((xk)k) is w((xkα
zk )k).

4.2. Cyclic additive codes

Let now m � 1 arbitrary. This is the case of additive not necessarily linear cyclic codes in the
permutation sense. Recall that we still assume gcd(n, p) = 1. We want to determine the irreducible
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cyclic codes in this case. The fact that we have dealt with case m = 1 already will be helpful. Let C
be an irreducible cyclic code and π j , j = 1, . . . ,m, the projections to the inner coordinates. If π j(C)

is not identically zero, then π j(C) is a linear irreducible cyclic code. It is therefore described by a
cyclotomic coset (see Theorem 2). It can be assumed that this happens for all j (otherwise we are
dealing with a smaller value of m). Let Z1, . . . , Zm be the corresponding cyclotomic cosets. At first we
show that they are identical.

Lemma 3. Let C be an irreducible cyclic code. The cyclotomic cosets determined by the irreducible linear cyclic
codes π j(C) are all identical.

Proof. We can assume m = 2 and tr(ev(p1(X), p2(X))) ∈ C where p1(X) = a1 X z1 , p2(X) = a2 X z2

and ai /∈ L⊥
i with the notation used in the previous subsection. Assume z1, z2 are in different cy-

clotomic cosets. The proof is similar to the main portion of the proof of Theorem 2. Lemma 2 shows
(a1α

lz1 X z1 ,a2α
lz2 X z2) ∈ B for all l, where B is the Fq-linear space of tuples of polynomials whose

trace-evaluation is in C . Assume z1, z2 are in different cyclotomic cosets Z1, Z2, of lengths s1, s2. If
s1 
= s2, the same argument applies as in the proof of Theorem 2. If s1 = s2, the argument used in the
proof of Theorem 2 shows Z1 = Z2, another contradiction. �
Theorem 3. Let Z be a cyclotomic coset. Each nonzero codeword in Vm(Z) = tr(ev(P(Z), . . . ,P(Z))) gener-
ates an irreducible cyclic code of dimension s = |Z |.

Proof. Such a codeword can be written as tr(ev(a1 X z,a2 X z, . . . ,am X z)). The entry in outer coordi-
nate i and inner coordinate j is tr(a jα

iz). Lemma 2 shows that the cyclic code C generated by this
codeword is the span of the codewords with entry tr(a jα

lzαiz) in the same position. As the αlz gen-
erate L = Fqs (see Lemma 1) it follows that C consists of the codewords with entry tr(a juαiz) in
the (i, j)-coordinate, where u ∈ L. It is now clear that this code is the cyclic code generated by any
of its nonzero codewords, in other words C is irreducible. By the transitivity of the trace we have
tr(a juαiz) = trL|Fq (b juαiz) where b j = trF |L(a j). The fact that the code is nonzero means that not all
the b j vanish. The mapping u �→ tr(ev(a1u X z, . . . ,amu X z)) is injective, so dim(C) = s. �
Corollary 1. The total number of irreducible permutation cyclic q-linear qm-ary codes of length n coprime to
the characteristic is

∑
Z (qms − 1)/(qs − 1) where Z varies over the cyclotomic cosets and s = |Z |.

Proof. In fact, Vm(Z) has Fq-dimension ms, and each of the irreducible subcodes has qs − 1 nonzero
codewords. �

Observe that this is true also in the linear case m = 1: the number of irreducible cyclic codes is the
number of cyclotomic cosets in this case (see Theorem 2). More importantly we obtain a parametric
description of the irreducible codes. Such a code is described by the following data:

1. A cyclotomic coset Z . Let s = |Z |, L = Fqs , choose z ∈ Z .
2. A point P = (b1 : . . . : bm) ∈ PG(m − 1, L).

The codewords are then parametrized by x ∈ L. The entry in outer coordinate i and inner coordi-
nate j is trL|Fq (b j xαiz). Denote this code by C(z, P ). This leads to a parametric description of all cyclic
additive codes, not just the irreducible ones.

Definition 7. Let Z be a cyclotomic coset of length s, z ∈ Z , L = Fqs and U ⊂ V (m, L) a k-dimensional
vector subspace (equivalently: a PG(k − 1, L) ⊂ PG(m − 1, L)). Let P1, . . . , Pk be the projective points
determined by a basis of U . Define C(z, U ) = C(z, P1) ⊕ · · · ⊕ C(z, Pk).

Refer to the C(z, U ) as constituent codes. Here C(z, U ) has dimension ks if U ⊆ Lm has dimen-
sion k. Use an encoding matrix B = (blj), a (k,m)-matrix with entries from L. The rows zl of B form
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a basis of U . The codewords w(x) are parametrized by x = (xl) ∈ Lk . The entry of codeword w(x) in
outer coordinate i and inner coordinate j = 1, . . . ,m is

trL|Fq

(
(x · s j)α

iz) (1)

where s j is column j of B . The image of w(x) under one cyclic shift is w(αzx). What hap-

pens if we use a different basis (z′
l) for the same subspace U ? Then z′

l = ∑k
r=1 alr zr and A =

(alr) is invertible. The image of w(x) under this operation (replacing zl by z′
l ) has (i, j)-entry

trL|Fq (
∑k

l=1 xl
∑k

r=1 alrbr jα
iz). This describes w(x′) where x′

l = ∑k
r=1 xrarl , in other words x′ = xA ∈ Lk .

We have seen that C(z, U ) is indeed independent of the choice of an encoding matrix. Basic prop-
erties of the trace show that the dependence on the choice of representative z ∈ Z is given by
C(qz, U q) = C(z, U ).

Here is a concrete expression for the weights of constituent codes: Codeword w(x) has entry
w(x)i = 0 in outer coordinate i if and only if x · s j ∈ (αiz)⊥ for all j, with respect to the trL|Fq -form.

Finally each cyclic code can be written in a unique way as the direct sum of its constituent codes:
C = ⊕

Z C(z, U Z ) where Z varies over the cyclotomic cosets and z is a fixed representative of Z .

Definition 8. Let N(m,q) be the total number of subspaces of the vector space F
m
q .

In particular N(1,q) = 2, N(2,q) = q + 3, N(3,q) = 2(q2 + q + 2).

Corollary 2. The total number of permutation cyclic q-linear qm-ary codes of length n coprime to the charac-
teristic is

∏
Z N(m,q|Z |).

Example 1. Let q = 2, m = 2, n = 7. The cyclotomic cosets have lengths 1,3,3 (representatives
0,1,−1). There are 3 + 9 + 9 = 21 irreducible cyclic, 5 × 11 × 11 = 605 cyclic codes altogether.
A [7,3.5,4]4-code is obtained as C(1, (1,0)F8)⊕C(−1, (0,1)F8)⊕C(0, (1,1)F2), where C(0, (1,1)F2)

simply is the repetition code 〈(11)7〉. In the language of Definition 1 we have km = 2k = 7 and the
quaternary dimension is therefore k = 3.5. It may be checked that the minimum distance is indeed 4.

Example 2. Let q = 2, m = 2, n = 15. Representatives of the cyclotomic cosets are 0 (length 1), 5
(length 2) and 1,3,14 (length 4 each). There are 3 + 5 + 3 × 17 = 59 irreducible cyclic codes and a
total of 5 × 7 × 193 cyclic codes. A [15,4.5,9]4-code is obtained as C(1, (ε,1)F16)⊕C(3, (1, ε2)F16)⊕
C(0, (1,1)F2), see [3]. Here F = F16 = F2(ε) and ε4 = ε + 1.

Equivalence
When are two additive cyclic codes

⊕
Z C(z, U Z ) and

⊕
z C(z, U ′

Z ) equivalent? Two such situations
are easy to see. Here is the first.

Proposition 2. Let C = (cu j) ∈ GL(m,q). Then the additive cyclic code C = ⊕
Z C(z, U Z ) is monomially equiv-

alent to
⊕

Z C(z, U Z C).

Proof. Use the GL-part of monomial equivalence. An equivalent code is obtained if we apply the
matrix C to each entry of C . This means that for each constituent Z the entry w(x)i( j) = trL|Fq ((x ·
s j)α

iz) is replaced by
∑m

u=1 cu j w(x)i(u). As cu j ∈ Fq this amounts to replacing the encoding matrix
B Z by B Z C , and therefore the subspace U Z by U Z C . �

As a special case of Proposition 2 consider the case of irreducible codes for m = 2. We have a
fixed cyclotomic coset Z of length s = |Z | and U = (b1 : b2) is a point of the projective line PG(1, L).
Multiplication by C from the right amounts to apply a Möbius transformation, an element of PGL(2,q).
The number of non-equivalent irreducible codes belonging to cyclotomic coset Z with respect to the
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equivalence described by Proposition 2 equals the number of orbits of PGL(2,q) on the projective line
PG(1,qs).

Here is the second such situation.

Proposition 3. Let gcd(t,n) = 1. The additive permutation cyclic code C = ⊕
Z C(z, U Z ) is permutation

equivalent to
⊕

Z C(tz, U Z ).

Proof. The generic codeword w(x) of the second code above has entry trL|Fq ((x · s j)α
itz) in outer

coordinate i, inner coordinate j (see Eq. (1)). This is the entry of the first code in outer coordinate
i/t mod n and inner coordinate j. �

Proposition 3 describes an action of the group of units in Z/nZ. Here is an example.

Example 3. There are precisely three non-equivalent length 7 irreducible additive quaternary codes
which are cyclic in the permutation sense.

Proof. This is case q = 2, m = 2, n = 7. The total number of irreducible cyclic codes is 3 + 9 + 9 = 21
(once PG(1,2) and twice PG(1,8)). The number of inequivalent such codes is at most 1 + 2 = 3. In
fact, the three codes C(0, U ) where U ∈ PG(1,2) are all equivalent by Proposition 2. By Proposition 3
it suffices to consider Z(1) for the remaining irreducible codes. The number of possibly inequivalent
such irreducible codes is the number of orbits of GL(2,2) on PG(1,8). There are two such orbits. The
corresponding codes are C(1, (0,1)) and C(1, (1, ε)) where ε /∈ F2. It is in fact obvious that those
irreducible codes are pairwise non-equivalent. Clearly the first one is inequivalent to the others as
it has binary dimension 1 (the repetition code 〈(11)7〉). The second code has w(x)i = (0, tr(xε i)), of
constant weight 4. The third of those irreducible codes has w(x)i = (tr(xε i), tr(xε i+1)), clearly not of
constant weights. �
4.3. Duality and quantum codes

Fix a nondegenerate bilinear form 〈 , 〉 on the vector space E = F
m
q , extend it to Vm = En , to F m

and to Vm,F = (F m)n in the natural way. In coordinates this means that 〈 〉 is described by coefficients
akl ∈ Fq where k, l = 1, . . . ,m such that 〈(xk), (yl)〉 = ∑

k,l aklxk yl . Duality will be with respect to this
bilinear form. Basic information is derived from the following fact:

Lemma 4. Let W = 〈α〉 ⊂ F = Fqr be the cyclic subgroup of order n, and the integer l not a multiple of n. Then∑n−1
i=0 αil = 0.

Proof. Let S = ∑n−1
i=0 αil . Then αl S = S and αl 
= 1. It follows (1 − αl)S = 0 which implies S = 0. �

Proposition 4. Vm,F (Z)⊥ = ⊕
Z ′ 
=−Z Vm,F (Z ′). Vm(Z)⊥ = ⊕

Z ′ 
=−Z Vm(Z ′).

Proof. As the dimensions are right, it suffices to show that Vm,F (Z) is orthogonal, with respect to 〈 〉,
to Vm,F (Z ′) when Z ′ 
= −Z (an analogous statement holds for the second equality). Concretely this
means

∑m
k,l=1 akl

∑n−1
i=0 pk(α

i)ql(α
i) = 0 where pk(X) ∈ P(Z),ql(X) ∈ P(Z ′). By bilinearity it suffices

to prove this for fixed k, l and pk(X) = X z , ql(X) = X z′
where z ∈ Z , z′ ∈ Z ′ . Let j = z + z′ . Then j is

not a multiple of n. We need to show
∑n−1

i=0 αiz+iz′ = 0. This follows from Lemma 4. This proves the
first equality. The proof of the second equality is analogous, using the definition of the trace. �

Observe that the result of Proposition 4 is independent of the bilinear form 〈 , 〉. The information
contained in the bilinear form will determine the duality relations between subspaces of Vm,F (Z) and
Vm,F (−Z) as well as between subspaces of Vm(Z) and Vm(−Z). In order to decide self-orthogonality,
the following formula is helpful (see Lemma 17.26 of [2]):
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Lemma 5.
∑

u∈W tr(auz)tr(bu−z) = n × tr(atrF |L(b)).

Proof. Let S be the sum on the left. Write out the definition of the trace: S = ∑r−1
j,k=0 aqi

bq j ×∑
u∈W u(qi−q j)z . The inner sum vanishes if (qi − q j)z is not divisible by n. In the contrary case the

inner sum is n. The latter case occurs if and only if i = j + ρs where s = |L| and ρ = 0, . . . , s − 1. It
follows S = n

∑
i aqi ∑

ρ bqiqρs = ntr(atrF |L(b)). �
An interesting special case concerns the cyclic quantum stabilizer codes, over an arbitrary ground

field Fq . In this case m = 2 and the bilinear form is the symplectic form 〈(x1, x2), (y1, y2)〉 = x1 y2 −
x2 y1 (in particular 〈x, x〉 = 0 always). By definition such a code is a (cyclic) q-ary quantum stabilizer
code if it is self-orthogonal with respect to the symplectic form. The basic lemma to decide self-
orthogonality is the following:

Proposition 5. In the situation considered here (m = 2 and the symplectic form, gcd(n, p) = 1) irreducible
codes C(z, P ) and C(−z, P ′) are orthogonal if and only if P = P ′ .

Proof. Observe that Z and −Z have the same length s, L = Fqs and P , P ′ ∈ PG(1, L). It suffices to
show that C(z, P ) and C(−z, P ) are orthogonal. Let P = (v1 : v2). Writing out the symplectic product
of typical vectors we need to show

∑
u∈W

tr
(
av1uz)tr

(
bv2u−z) =

∑
u∈W

tr
(
av2uz)tr

(
bv1u−z)

for a,b ∈ F . Lemma 5 shows that the sum on the left equals n × tr(av1trF |L(bv2)) = n ×
tr(av1 v2trF |L(b)) = n × trL|Fq (v1 v2trF |L(a)trF |L(b)) which by symmetry coincides with the sum on
the right. �
Theorem 4. The number of additive cyclic q2-ary quantum stabilizer codes is

∏
Z=−Z , s=1

(q + 2)
∏

Z=−Z , s>1

(
qs/2 + 2

) ∏
Z 
=−Z

(
3qs + 6

)
.

The number of self-dual such codes is

∏
Z=−Z , s=1

(q + 1)
∏

Z=−Z , s>1

(
qs/2 + 1

) ∏
Z 
=−Z

(
qs + 3

)
.

Here s = |Z | and the last product is over all pairs {Z ,−Z} of cyclotomic cosets such that Z 
= −Z .

Proof. Let C = ∑
Z S Z where S Z = C(z, U Z ). This is self-orthogonal if and only if S Z and S−Z are

orthogonal for each Z . Consider at first the generic case Z 
= −Z . If S Z or S−Z is 0, then there is no
restriction on the other. If S Z = C(z, L2), then S−Z = 0.

Consider case Z = −Z , s > 1. Then s = 2i. Either S Z = 0 or S Z = C(z, P ) is a self-orthogonal ir-
reducible code where P ∈ PG(1, L). The dual of S Z in its constituent is C(−z, P ) by Proposition 5.
As −z = zqi

, we have C(−z, P ) = C(z, P qi
). This equals S Z if and only if P ∈ PG(1, L′) where L′ = Fqi .

There are qi +1 choices for P . Case Z = −Z , s = 1 contributes q+2 self-orthogonal and q+1 self-dual
codes. �
Example 4. In case n = 7 we obtain 4 × 30 = 120 quantum codes altogether and 3 × 11 = 33 self-dual
ones.
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Example 5. For n = 15 the number of quantum codes is 4 × 4 × 6 × 54 and there are 3 × 3 × 5 × 19
self-dual codes.

5. Cyclic additive codes in the monomial sense

Let C be a qm-ary q-linear code of length n, which is cyclic in the monomial sense. Let
gcd(n, p) = 1, m � 1 and A ∈ GL(m,q) of order u, where gcd(u, p) = 1. Let r = ordn(q), r′ = ordun(q)

and F = Fqr ⊆ F ′ = Fqr′ be the corresponding fields. Consider cyclotomic cosets Z ⊂ Z/unZ. For
fixed Z of length s let z ∈ Z , L = Fqs . Also, let κ = ordu(q) and K = Fqκ . It follows from Proposi-
tion 1 that by monomial equivalence it suffices to consider cyclic codes in the monomial sense fixed
under the action of g = g(I, . . . , I, A, (0,1, . . . ,n − 1)) of order un. Such codes are also known as con-
stacyclic codes. Here the matrix A plays the role of a constant factor. Let G = 〈g〉. Also, let β be a
generator of the group of order un in F ′ and α = βu ∈ F . Let γ = βn be of order u. Then γ ∈ K = Fqκ .

Definition 9. Let A ∈ GL(m,q), Au = 1. Define the inflation I A : Fmn
q −→ F

umn
q by

I A(x0, . . . , xn−1︸ ︷︷ ︸
x

) = (
x|Ax . . . |Au−1x

)
.

The mapping contr : (x|Ax . . . |Au−1x) �→ x ∈ F
mn
q is the contraction : I A(Fmn

q ) −→ F
mn
q .

Lemma 6. In the situation of Definition 9, the q-linear qm-ary code C of length n is invariant under the (mono-
mial) action of the cyclic group G of order un generated by g(I, . . . , I, A, (0,1, . . . ,n − 1)) if and only if I A(C)

is cyclic in the permutation sense under the permutation (0,1, . . . , un − 1). The contraction contr(C) is irre-
ducible under the action of G if and only if the cyclic length un code C is irreducible.

Proof. Observe that C and I A(C) have the same dimension and C is recovered from I A(C) as the
projection to the first n coordinates. The claims are by now obvious. �
5.1. The linear case m = 1

In this special case we have g = g(1, . . . ,1, γ , (0,1, . . . ,n − 1)) where the matrix A now is a
constant γ ∈ F

∗
q of order u where u|q − 1. Let u = ord(γ ). Write the elements of the ambient space

F
un
q as (xi) where i ∈ Z/unZ. Then x ∈ F

un
q is in Iγ (Fn

q) if and only if xi+n = γ xi always holds.

Theorem 5. Let gcd(n, p) = 1 and γ ∈ F
∗
q,ord(γ ) = u. The codes which are invariant under the group gen-

erated by g = g(1, . . . ,1, γ , (0,1, . . . ,n − 1)) are the contractions of the cyclic codes of length un in the
permutation sense defined by cyclotomic cosets consisting of numbers which are 1 mod u. If there are a such
cyclotomic cosets in Z/unZ, then the number of codes invariant under g is 2a.

Proof. Observe gcd(un, p) = 1. By Lemma 6 the codes in question are the contractions of the length
un cyclic codes all of whose codewords (xi) satisfy xi+n = γ xi for all i. Let Z be a cyclotomic coset,
z ∈ Z , |Z | = s, L = Fqs . A typical codeword of the irreducible cyclic code defined by Z has entry
xi = trL|Fq (aβ iz), where a ∈ L. It follows xi+n = trL|Fq (aβ(i+n)z) = γ zxi . We must have z = 1 mod u. �

Here is an algorithmic view concerning linear length n q-ary codes which are invariant under
g = g(1, . . . ,1, γ , (0,1, . . . ,n − 1)) where ord(γ ) = u: Let r′ = ordun(q) and F ′ = Fqr′ . Let ord(β) = un
such that γ = βn . Let α = βu . Consider the cyclotomic cosets Z1, . . . , Za in Z/unZ whose elements
are 1 mod u. Observe that |Z1 ∪ · · · ∪ Za| = n. Let sk = |Zk|, Lk = Fqsk ⊆ F ′ . Then C ⊆ ⊕

Ck where the
Ck are the irreducible γ -constacyclic codes of length n. We have dim(Ck) = sk . The codewords of Ck
are w(x) where x ∈ Lk . The entry of w(x) in coordinate i is trLk|Fq (xβ izk ). The image of w(x) under
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the monomial operation g(1, . . . ,1, γ , (0,1, . . . ,n − 1)) is w(βzk x). After n applications this leads to
w(γ zk x) = w(γ x) = γ w(x), as expected.

Example 6. Consider q = 4, u = 3, n = 15. Then F = F16 whereas F ′ = F46 . The cyclotomic cosets in
Z/45Z consisting of numbers divisible by 3 are in bijection with the 9 cyclotomic cosets mod 15.
The contractions of the cyclic length 45 codes defined by Z-cosets all of whose elements are divisible
by 3 reproduce precisely the length 15 cyclic codes in the permutation sense. There are only three
cyclotomic cosets all of whose elements are 1 mod 3. They are

{1,4,16,19,31,34}, {7,13,22,28,37,43}, {10,25,40}.

It follows that there are 23 = 8 constacyclic quaternary linear codes with constant γ = β15 of order 3.

Example 7. Consider q = 8, n = 21. Then F ′ = F242 = F814 . The constant is γ = β7 of order 7. We have
un = 7 × 21 = 147 and we have to consider the action of q = 8 (the Galois group of order 14) on the
21 elements which are 1 mod 7. The corresponding cyclotomic cosets are

Z(1) = {1,8,64,71,−20,−13,43,50,−41,−34,22,29,85,−55}

of length 14 and

Z(15) = {15,−27,78,36,−6,−48,57}

of length 7. It follows that there are precisely two irreducible γ -constacyclic F8-linear codes of
length 21, of dimensions 14 and 7.

Here are some more interesting and well-known examples.

Example 8. Let q = 4, u = 3, Q = 2 f where f is odd, and n = (Q f + 1)/3, F = F4 f . The irreducible
constacyclic quaternary code defined by the cyclotomic coset generated by 1 has dimension f and
dual distance 5. Its dual is therefore a linear [(2 f + 1)/3, (2 f + 1)/3 − f ,5]4-code. This is the first
family from [6], see also Section 13.4 of [2].

Example 9. The second family of constacyclic quaternary codes from [6] occurs in case u = 3, n =
(4 f − 1)/3 for arbitrary f where the cyclotomic cosets are those generated by 1 and −2. This yields
a 2 f -dimensional quaternary code of dual distance 5 and therefore [(4 f − 1)/3, (4 f − 1)/3 − 2 f ,5]4-
codes for arbitrary f .

5.2. The general case m � 1

Theorem 6. With notation as introduced above, choose a representative z for each cyclotomic coset Z and U Z

the Eigenspace of the Eigenvalue γ z of A in its action on Lm. Then each code stabilized by G is contained in⊕
Z contr(C(z, U Z )).

Proof. The additive cyclic length un codes are direct sums over cyclotomic cosets Z of codes
parametrized by subspaces U Z ⊂ Lm , using the customary terminology. Such a code is in I A(Fmn

q )

if and only if each codeword x = (xi) (where i = 0, . . . , un − 1 and xi ∈ F
m
q ) satisfies xi+n = Axi . Fix Z

and ask for which subspace U this is satisfied. Let A = (a jj′ ) ∈ GL(m,q) and U = P = (b1 : . . . : bm) ∈
PG(m − 1, L) be a point. Let tr = trL|Fq . The condition is

tr
(
xb jβ

(i+n)z) =
∑

j′
a jj′ tr

(
xb j′β

iz)
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for all i, all j and x ∈ L. As βn = α an equivalent condition is

tr

(
xβ iz

(
γ zb j −

∑
j′

a jj′b j′
))

= 0

which is equivalent to γ zb j = ∑
j′ a jj′b j′ , in other words b (written as a column vector) is an Eigen-

vector for the Eigenvalue γ z of A. �
Here is an algorithmic view again. The constacyclic length n additive codes are direct sums of

their constituents, where the constituents correspond to cyclotomic cosets in Z/unZ. Let Z be such a
cyclotomic coset, z ∈ Z , |Z | = s, L = Fqs and β,α,γ = βn as usual. The irreducible subcodes are the
contractions of C(z, P ) where P = (b1, . . . ,bm) ∈ Lm has to satisfy A P = γ z P (and we write P as a
column vector). This irreducible length n constacyclic code contr(C(z, P )) has dimension s. Its code-
words are w(x), x ∈ L. The entry of w(x) in outer coordinate i = 0,1, . . . ,n − 1 and inner coordinate j
is trL|Fq (xb jβ

iz). The effect of the generator g = g(I, . . . , I, A, (0, . . . ,n − 1)) of the cyclic group G is
g(w(x)) = w(βzx).

Proposition 6. Let C be a q-linear qm-ary length n code, which is invariant under g(I, . . . , I, A, (0,1, . . . ,

n − 1)), where gcd(n, p) = 1 and A of order u = qm − 1 represents multiplication by a primitive element γ
in Fqm . Then C is Fqm -linear.

Proof. It suffices to prove this for irreducible constacyclic codes contr(C(z, P )). The generic codeword
w(x) has been described above. Applying matrix A in each outer coordinate i = 0, . . . ,n −1 yields the
codeword w(γ zx) which is still in the code. �

Proposition 6 applies in particular in cases q = 2, m = 2, u = 3 and q = 2, m = 3, u = 7.

Corollary 3. Each quaternary additive code, which is cyclic in the monomial sense, either is quaternary linear
or is equivalent to cyclic in the permutation sense.

Proof. Use Proposition 1 to obtain a code which is invariant under g = (I, . . . , I, A, (0, . . . ,n − 1))

where A ∈ GL(2,2) and u = det(A). If u = 1 or u = 2 or when u = 3 and n not divisible by 3, then
the additive code is cyclic in the permutation sense (see Proposition 1). In the case when u = 3,
Proposition 6 shows that the code is a quaternary linear constacyclic code. �

This shows that in the quaternary case the full theory of additive constacyclic codes does not pro-
duce anything useful as in each case we are reduced to a more elementary theory, either quaternary
linear constacyclic or additive and cyclic in the permutation sense.
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