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An LDB division algebra is a triple (A, �, •) in which � and •
are regular bilinear laws on the finite-dimensional non-zero 
vector space A such that x � (x • y) is a scalar multiple of y
for all vectors x and y of A. This algebraic structure has 
been recently discovered in the study of the critical case in 
Meshulam and Šemrl’s estimate of the minimal rank in non-
reflexive operator spaces.
In this article, we obtain a constructive description of all 
LDB division algebras over an arbitrary field together with 
a reduction of the isotopy problem to the similarity problem 
for specific types of quadratic forms over the given field. In 
particular, it is shown that the dimension of an LDB division 
algebra is always a power of 2, and that it belongs to {1, 2, 4, 8}
if the characteristic of the underlying field is not 2.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the article, K denotes an arbitrary field.

1.1. The main concept

A division algebra (over K) is a pair (A, �) in which A is a non-zero finite-dimensional 
vector space (over K) and � : A × A → A is a bilinear map that is regular in the sense 
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that x �y �= 0 for all non-zero vectors x and y of A. This is the weakest possible definition 
of a finite-dimensional division algebra over a field (we require neither associativity nor 
the existence of a one-sided unity). Following the terminology introduced by Albert [1], 
we say that two division algebras (A, �) and (B, •) are isotopic whenever there are vector 
space isomorphisms f , g and h from A to B such that

∀(x, y) ∈ A2, x � y = h−1(f(x) • g(y)
)
.

If the field K is algebraically closed, then a division algebra over K must be of dimen-
sion 1. Over the reals, a division algebra must have dimension 1, 2, 4 or 8 (see [2,8]). 
This result extends to real closed fields [4,5]. Over fields that are neither algebraically 
closed nor real closed, division algebras exist in arbitrarily large dimensions. Apart from 
that, little is known in general over arbitrary fields without additional assumptions on 
the multiplicative law.

In this article, we shall focus on a special type of division algebra that has been discov-
ered very recently [12]. Given a division algebra (A, �), we define a quasi-left-inversion
for � as a map • : A × A → A such that, for all (x, y) ∈ (A � {0})2, the vector x • y is 
non-zero and x �(x •y) is a scalar multiple of y (in other words, up to a scalar, x •y is the 
solution of the equation x � z = y (with unknown z), that is “y left-divided by x”). If we 
have a bilinear quasi-left-inversion • for �, then one easily obtains (see Proposition 5.1 
of [12]) a uniquely defined quadratic form q on A such that

∀(x, y) ∈ A2, x � (x • y) = q(x)y.

The quadratic form q is anisotropic (that is q(x) �= 0 for all non-zero x ∈ A), but its 
polar form bq : (x, y) �→ q(x + y) − q(x) − q(y) might be degenerate if the field K has 
characteristic 2 (a mundane example is given by the standard multiplication on A = K).

In the above situation, one proves that • is, up to multiplication by a non-zero scalar, 
the unique bilinear quasi-left-inversion for � (see Proposition 5.2 of [12]). The triple 
(A, �, •) is then called a left-division-bilinearizable division algebra (in abbreviated form: 
LDB division algebra) and q is called the quadratic form attached to it. Note that, for 
all λ ∈ K

∗, the triple (A, �, λ•) is another LDB division algebra with λq as its attached 
quadratic form. Whenever possible, we shall understate the two laws � and • and simply 
say that A is an LDB division algebra.

When one is confronted with quadratic forms in the context of division algebras 
the comparison with composition algebras is unavoidable. Let us recall that a (finite-
dimensional) composition algebra is a triple (A, �, N) in which A is a finite-dimensional 
non-zero vector space over K, � : A2 → A is a bilinear map, and N is a non-degenerate 
quadratic form on A such that

∀(x, y) ∈ A2, N(x � y) = N(x)N(y).

A composition algebra is called a Hurwitz algebra when it has a (two-sided) unity.
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Two division algebras (A, �) and (B, �′) are called isomorphic when there is a vector 
space isomorphism f : A �−−→ B such that ∀(x, y) ∈ A2, f(x �y) = f(x) �′ f(y). A famous 
result [7,9]1 states that every Hurwitz algebra has dimension 1, 2, 4 or 8 and is isomorphic 
to one of the following canonical Hurwitz algebras:

• the one-dimensional Hurwitz algebra (K, ·, x �→ x2), if K does not have characteris-
tic 2;

• the two-dimensional Hurwitz algebra (K ×K, ·, (x, y) �→ xy);
• the two-dimensional Hurwitz algebra (L, ·, NL/K), where L is a separable quadratic 

extension of K, and NL/K is the norm of L over K;
• the four-dimensional Hurwitz algebra (C(q), ·, NC(q)), where q is a regular 2-dimen-

sional quadratic form over K, and C(q) denotes its Clifford algebra with norm 
denoted by NC(q);

• the eight-dimensional Hurwitz algebra (C(q)2, ×ε, Nε), where q is a regular 2-dimen-
sional quadratic form over K, ε is a non-zero scalar, and ×ε and Nε are defined, 
respectively, by

(a, b) ×ε (c, d) := (ac− db, ad− εcb)

and

Nε(a, b) := aa− εbb,

where x �→ x denotes the conjugation in the quaternion algebra C(q).

Let (A, �, N) be a Hurwitz algebra. One sees that (A, �) is a division algebra if and only 
if N is anisotropic. Moreover, if N is anisotropic then we can find a bilinear quasi-left-
inversion for �. Indeed, denoting by x �→ x the opposite of the reflection of the quadratic 
space (A, N) along the unity of (A, �), one can check – e.g., by referring to the above 
canonical situations – that the following identity holds:

∀(x, y) ∈ A2, x � (x � y) = N(x)y.

Thus, provided that N is anisotropic, the law • : (x, y) �→ x � y is a bilinear quasi-left-
inversion for � and the triple (A, �, •) is an LDB division algebra with attached quadratic 
form N . In that situation, we shall say that it is an LDB division algebra of Hurwitz 
type. More precisely, we shall say that it is of separable quadratic type, quaternionic 
type, or octonionic type, depending on whether it has dimension 2, 4 or 8.

Assuming now that K has characteristic 2, we can give an additional kind of example. 
A finite-dimensional field extension L of K is called hyper-radicial if ∀x ∈ L, x2 ∈ K. 
Given such an extension, q : x �→ x2 is an anisotropic quadratic form on L seen as a vector 

1 A good account of the history of Hurwitz’s result is given in Chapter 10 of [6].
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space over K. Thus, with � as the multiplication of the field L, the triple (L, �, �) is an 
LDB division algebra with q as its attached quadratic form: we call it the LDB division 
algebra associated with the hyper-radicial extension L, and we say that it is an LDB 
division algebra of hyper-radicial type. Note that q is totally degenerate, i.e. its polar 
form is zero. Moreover, in this situation we see that the degree of L over K is a power 
of 2, and if dimK L = 2n and L = K[a1, . . . , an], then q � 〈1, a2

1〉 ⊗ · · · ⊗ 〈1, a2
n〉.

Here is a unification of some of the above examples. First of all (K, ·, ·) is always an 
LDB division algebra with attached quadratic form x �→ x2: it is of Hurwitz type if K
has characteristic not 2, otherwise it is of hyper-radicial type (take L = K). Next, let L
be a quadratic field extension of K, and denote by x �→ x the non-identity automorphism 
of L over K if L is a separable extension of K, and the identity of L otherwise. Denoting 
by � the multiplication on L and defining • by x • y := x � y, one sees that (L, �, •)
is an LDB division algebra whose attached quadratic form is the norm of L over K; it 
is of Hurwitz type if L is a separable extension of K, otherwise K has characteristic 2
and (L, �, •) is of hyper-radicial type; in any case we shall say that (L, �, •) is an LDB 
division algebra of quadratic type.

LDB division algebras were recently discovered in the study of non-reflexive spaces 
of linear operators. Recall that, given vector spaces U and V , a linear subspace S of 
the space L(U, V ) of all linear maps from U to V is called (algebraically) reflexive when 
every f ∈ L(U, V ) that satisfies ∀x ∈ U , f(x) ∈ Sx belongs to S. A result of Meshulam 
and Šemrl [10] states that, provided that the underlying field has more than n elements, 
a non-reflexive n-dimensional operator space must contain a non-zero operator f with 
rank(f) ≤ 2n − 2 (it was recently shown that the provision on the cardinality of the 
underlying field is unnecessary [13]). In [12], investigating the optimality of this result 
has led to the discovery of LDB division algebras and their connection to examples in 
which the upper-bound 2n − 2 is reached: take an n-dimensional LDB division algebra 
(A, �, •) with attached quadratic form q, and consider the bilinear map

ΓA :
{(

A⊕K
2)×A2 → A2(

x + (λ, μ), (y, z)
)
�→ (x � z + λy, x • y + μz).

The set TA consisting of all the endomorphisms ΓA(x + (λ, μ), −) of A2, with (x, λ, μ) ∈
A ×K

2, is an (n + 2)-dimensional linear subspace of L(A2) called the twisted operator 
space attached to (A, �, •). This operator space has very interesting properties: given 
(x, λ, μ) ∈ A × K

2, the endomorphism ΓA(x + (λ, μ), −) is non-singular if and only if 
q(x) − λμ �= 0 (see [12, Proposition 5.5]). In other words, by identifying TA with A ⊕K

2

through the isomorphism X �→ ΓA(X, −), the set of all singular operators in TA is seen 
to correspond to the isotropy cone of the quadratic form q̃ : x + (λ, μ) �→ q(x) − λμ. 
Moreover, TA is locally linearly dependent, that is, for all (y, z) ∈ A2, there is a non-zero 
operator f ∈ TA such that f(y, z) = 0 (see [12, Proposition 5.4]). Using this, one proves 
that every anisotropic hyperplane of TA is non-reflexive [12, Proposition 5.6]. Thus, if we 
have an anisotropic hyperplane of (A ⊕ K

2, ̃q ), then we obtain an (n + 1)-dimensional 
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non-reflexive operator space in which every non-zero operator has rank 2n = 2(n +1) −2, 
thus yielding an example which demonstrates that the upper-bound of Meshulam and 
Šemrl is optimal. Theorem 6.1 of [12] shows that all the non-reflexive operator spaces 
for which Meshulam and Šemrl’s upper bound is reached essentially arise from this 
construction, provided that the underlying field K be of large cardinality.

1.2. The main results

The purpose of this article is to provide a constructive description of all LDB division 
algebras. First, we need to define relevant notions of isomorphisms for these structures. 
Let (A, �, •) be an LDB division algebra, together with three isomorphisms f : B �−−→ A, 
g : B �−−→ A and h : A �−−→ B. Then, the composition laws �′ and •′ on B defined by

x �′ y = h
(
f(x) � g(y)

)
and x •′ y = g−1(f(x) • h−1(y)

)
yield an LDB division algebra (B, �′, •′) with attached quadratic form x �→ q(f(x)). This 
motivates the following definition:

Definition 1. Let (A, �, •) and (B, �′, •′) be LDB division algebras.
We say that (A, �, •) and (B, �′, •′) are weakly equivalent when the division algebras 

(A, �) and (B, �′) are isotopic.
We say that (A, �, •) and (B, �′, •′) are equivalent when there are isomorphisms 

f : B �−−→ A, g : B �−−→ A and h : A �−−→ B such that, for all (x, y) ∈ B2,

x �′ y = h
(
f(x) � g(y)

)
and x •′ y = g−1(f(x) • h−1(y)

)
.

Note that the LDB division algebras (A, �, •) and (B, �′, •′) are weakly equivalent if 
and only if there exists a non-zero scalar λ ∈ K

∗ for which (A, �, •) and (B, �′, λ•′) are 
equivalent. Remember that two quadratic forms q and q′ on respective vector spaces V
and V ′ are equivalent (in which case we write q � q′) when there exists a vector space 
isomorphism u : V �−−→ V ′ such that q′(u(x)) = q(x) for all x ∈ V ; they are called similar
when there is a non-zero scalar λ such that q � λq′. It is then easily seen that equivalent 
(respectively, weakly equivalent) LDB division algebras have equivalent (respectively, 
similar) attached quadratic forms.

From there, our aim is to relate LDB division algebras to known structures, both for 
the relation of weak equivalence and for the one of equivalence.

We split our results into three theorems. We shall say that an LDB division algebra 
is non-degenerate (respectively, degenerate) when the attached quadratic form is non-
degenerate (respectively, degenerate). Note that, over a field of characteristic not 2, every 
LDB division algebra is non-degenerate since the attached quadratic form is anisotropic.

Theorem 1.1 (Structure theorem for non-degenerate LDB division algebras). Every non-
degenerate LDB division algebra has dimension 1, 2, 4 or 8.
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Every non-degenerate LDB division algebra is weakly equivalent to an LDB division 
algebra of Hurwitz type.

Every non-degenerate LDB division algebra whose attached quadratic form repre-
sents 1 is equivalent to an LDB division algebra of Hurwitz type.

Note in particular that, for fields of characteristic not 2, the quadratic form attached 
to an LDB division algebra is always similar to a Pfister form, that is a form of type 
〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 for some (a1, . . . , an) ∈ (K∗)n.

Remark 1. Theorem 1.1 essentially states that the non-degenerate LDB division alge-
bras are the isotopes of the Hurwitz algebras that are division algebras. This compares 
interestingly with the relationship between composition algebras and Hurwitz algebras. 
Indeed, it is a rather elementary observation that the composition algebras are the or-
thogonal isotopes of Hurwitz algebras in the following sense: two triples (A, �, q) and 
(B, �′, q′) – in which (A, �) and (B, �′) are non-associative algebras and q and q′ are 
quadratic forms, respectively, on A and B – are called orthogonally isotopic when there 
are isometries f , g and h from (A, q) to (B, q′) such that

∀(x, y) ∈ A2, x � y = h−1(f(x) �′ g(y)
)
.

Here is our result on degenerate LDB division algebras over fields of characteristic 2:

Theorem 1.2 (Structure theorem for degenerate LDB division algebras). Every degenerate 
LDB division algebra is weakly equivalent to an LDB division algebra of hyper-radicial 
type.

Every degenerate LDB division algebra whose attached quadratic form represents 1 is 
equivalent to an LDB division algebra of hyper-radicial type.

In particular, this shows that the quadratic form attached to an LDB division algebra 
is either totally degenerate or non-degenerate. Here are two nice corollaries to the above 
two theorems:

Corollary 1.3. The dimension of an LDB division algebra is always a power of 2. If 
the field K has characteristic not 2, then an LDB division algebra over K must have 
dimension 1, 2, 4 or 8.

Corollary 1.4. Let (A, �) be a division algebra. If � has a bilinear quasi-left-inversion, 
then (A, �) is isotopic to the reverse division algebra (A, �op), with �op : (x, y) �→ y � x, 
and in particular �op has a bilinear quasi-left-inversion.

To prove Corollary 1.4, we note that the result is obvious for 1-dimensional division 
algebras and that if (A, �, •) denotes an arbitrary LDB division algebra of quadratic, 
quaternionic, octonionic or hyper-radicial type, then � is isotopic to �op. Thus, by The-
orems 1.1 and 1.2, this property holds for all LDB division algebras.
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There is an additional powerful result whose statement encompasses both degenerate 
and non-degenerate LDB division algebras:

Theorem 1.5. Two LDB division algebras are equivalent if and only if their attached 
quadratic forms are equivalent.

Two LDB division algebras are weakly equivalent if and only if their attached quadratic 
forms are similar.

Remark 2. In Theorem 1.5, the direct implications are already known, and only the 
converse implications are non-trivial. Moreover, the second statement in this theorem is 
actually an easy consequence of the first one. Assume indeed that the first one holds, 
and let (A, �, •) and (B, �′, •′) be LDB division algebras with associated quadratic forms 
qA and qB that are similar. Choose λ ∈ K

∗ such that qB � λqA. Then, we note that 
(A, �, λ•) is an LDB division algebra with attached quadratic form λqA. From the first 
statement in Theorem 1.5, we deduce that (A, �, λ•) is equivalent to (B, �′, •′), whence 
(A, �, •) and (B, �′, •′) are weakly equivalent.

Remark 3. Let λ ∈ K
∗. Then, the LDB division algebras (A, �, •) and (B, �′, •′), with 

respective attached quadratic forms qA and qB, are equivalent if and only if (A, �, λ•) and 
(B, �′, λ•′) are equivalent. Note that the respective quadratic forms attached to the latter 
are λqA and λqB. Using this, we see that the converse implication in the first statement 
of Theorem 1.5 needs only be proved in the situation where 1 is represented by each one 
of the quadratic forms attached to the LDB division algebras under consideration.

Remark 4. It is known (see e.g. [3]) that two Hurwitz algebras are isotopic if and only 
if their attached quadratic forms are similar (and that two quadratic forms that are 
attached to Hurwitz algebras are similar if and only if they are equivalent). Thus, in the 
non-degenerate case the second statement in Theorem 1.5 is not new. However, the first 
one is new and the second one is an easy corollary of it, as explained in Remark 2.

1.3. Some consequences

Let U , V , U ′, V ′ be finite-dimensional vector spaces. Remember that two linear 
subspaces S ⊂ L(U, V ) and S ′ ⊂ L(U ′, V ′) are called equivalent when there are iso-
morphisms f : U �−−→ U ′ and g : V �−−→ V ′ such that S ′ = {g ◦ s ◦ f−1 | s ∈ S} (which 
amounts to saying that, in different choices of bases of the source and goal spaces, the 
same space of matrices may be used to represent both S and S ′). If U = V and U ′ = V ′, 
the endomorphism spaces S and S ′ are called similar when, in the above condition, we 
require that g = f . In [12], the following (non-trivial) result was established:

Theorem 1.6. Let A and B be LDB division algebras. Then, TA and TB are similar 
(respectively, equivalent) if and only if A and B are equivalent (respectively, weakly equiv-
alent).
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Combining this with Theorem 1.5, we readily deduce:

Theorem 1.7. Let A and B be LDB division algebras, with respective quadratic forms 
denoted by qA and qB. The twisted operator spaces TA and TB are similar (respectively, 
equivalent) if and only if the quadratic forms qA and qB are equivalent (respectively, 
similar).

Here is a nice corollary:

Corollary 1.8. Let A and B be LDB division algebras. The following conditions are 
equivalent:

(i) There exists a rank-preserving vector space isomorphism Φ : TA �−−→ TB.
(ii) The operator spaces TA and TB are equivalent.
(iii) The LDB division algebras A and B are weakly equivalent.

Proof. We already know that conditions (ii) and (iii) are equivalent, while condition (ii) 
obviously implies condition (i).

Assume that condition (i) holds. Denote by ϕ an arbitrary 2-dimensional hyperbolic 
quadratic form. Recall that the set of all singular operators of TA (respectively, of TB) 
is the isotropy cone of a quadratic form on TA (respectively, on TB) that is equivalent to 
qA ⊥ ϕ (respectively, to qB ⊥ ϕ). Thus, with the quadratic Nullstellensatz, we deduce 
that there exists a non-zero scalar λ such that qB ⊥ ϕ � λ(qA ⊥ ϕ). As ϕ is hyperbolic, 
we have λϕ � ϕ, whence qB ⊥ ϕ � (λqA) ⊥ ϕ and Witt’s cancellation rule yields that 
qB � λqA. Thus, Theorem 1.5 yields that A is weakly equivalent to B. �
1.4. Proof strategy

Our proof has two main steps. The first one consists in the reduction to the special 
situation below:

Definition 2. Let (A, �, •) be an LDB division algebra and e be a non-zero element 
of A. For x ∈ A, we set x := −se(x), where se is the reflection of (A, q) along Ke. We 
say that the LDB division algebra (A, �, •) is e-standard when the following conditions 
hold:

(i) e �− = idA, i.e. e is a left-sided unity for �;
(ii) ∀(x, y) ∈ A2, x • y = x � y.

Note that e = e in this situation, whence conditions (i) and (ii) yield q(e) = 1. It is 
striking that all the special LDB division algebras we have considered in the introduction 
have a left-sided unity and are standard with respect to it!
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Remark 5. Let (A, �, •) be an LDB division algebras that is standard with respect to one 
of its elements e, and denote by q its attached quadratic form and by bq its polar form. 
For all x ∈ A, the identity

∀y ∈ A, x �
(
−se(x) � y

)
= q(x)y

can be restated as

bq(x, e)(x �−) − (x �−)2 = q(x)idA. (1)

In particular, whenever x is q-orthogonal to e, we get

(x �−)2 = −q(x)idA,

which hints to a connection with Clifford algebras.

The following result, which will be established in Section 2, allows one to reduce the 
situation to the one of standard LDB division algebras:

Lemma 1.9 (Standardization lemma). Let (A, �, •) be an LDB division algebra with at-
tached quadratic form q, and let e ∈ A be such that q(e) = 1. Then, there are two laws 
�′ and •′ on A such that:

(i) (A, �′, •′) is an e-standard LDB division algebra;
(ii) (A, �′, •′) is equivalent to (A, �, •);
(iii) (A, �′, •′) has q as its attached quadratic form.

After we prove this, we shall analyze standard LDB division algebras by using classical 
structure theorems on Clifford algebras. Firstly, we will prove that the dimension of a 
non-degenerate LDB division algebra must belong to {1, 2, 4, 8} (see Section 3). Then, we 
will determine the 1-dimensional and 2-dimensional LDB division algebras (Section 4). 
In the remaining sections, we shall complete the theory of LDB division algebras, first 
for fields of characteristic not 2 (Section 5) and finally for fields of characteristic 2
(Section 6).

Remark 6. Before we move forward, it is important to lay out the main technique for 
proving the first statement of Theorem 1.5. As we have seen, we only need to care 
about the case when the attached quadratic forms represent 1. Now, let (A, �, •) and 
(B, �′, •′) be LDB division algebras whose respective attached quadratic forms q and q′

are equivalent and represent 1. Thus, we have an isomorphism f : A �−−→ B such that 
q′(f(x)) = q(x) for all x ∈ A. Then, we define two laws �1 and •1 on A by

x �1 y := f−1(f(x) �′ f(y)
)

and x •1 y := f−1(f(x) •′ f(y)
)
,
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and we see that (A, �1, •1) is an LDB division algebra that is equivalent to (B, �′, •′) and 
whose attached quadratic form is q. Thus, we need only consider the case when B = A

and q′ = q.
Assume now that we are in this special case. Then, we can fix a vector e ∈ A such that 

q(e) = 1, and the Standardization lemma shows that we may assume that both (A, �, •)
and (B, �′, •′) are e-standard. In order to prove that these LDB division algebras are 
equivalent, it suffices to exhibit two automorphisms h and u of the vector space A such 
that u commutes with x �→ x and

∀x ∈ A, h ◦
(
u(x) �−

)
◦ h−1 = x �′ −. (2)

Indeed, if we have two such automorphisms, then we obtain

∀x ∈ A, h ◦
(
u(x) • −

)
◦ h−1 = h ◦

(
u(x) �−

)
◦ h−1 = h ◦

(
u(x) �−

)
◦ h−1

= x �′ − = x •′ −,

and combining this with (2) yields that (A, �, •) is equivalent to (B, �′, •′).

Finally, the following basic lemma will be used in a few instances.

Lemma 1.10. Let (A, �) be a division algebra and u ∈ L(A) be an endomorphism that 
commutes with x �− for all x ∈ A. Then, the minimal polynomial of u is irreducible.

Proof. Let p be an irreducible factor of the minimal polynomial of u. Then, Ker p(u)
is stable under x � − for all x ∈ A. On the other hand, Ker p(u) contains a non-zero 
vector y. Since � is regular, we have A = {x �y | x ∈ A}, whence Ker p(u) = A. It follows 
that p annihilates u, whence it is the minimal polynomial of u. �
1.5. Additional notation

Given a left vector space V over a skew field D, we denote by L(V ) the set of all 
endomorphisms of V . To avoid any confusion, we shall denote this set by LD(V ) whenever 
necessary.

Given a quadratic form q on a vector space V (over a field), the Clifford algebra C(q)
is the quotient of the tensor algebra of V by the ideal generated by the set of all elements 
x ⊗x − q(x).1 with x ∈ V . It has a natural structure of Z/2-graded algebra, and we shall 
denote by C0(q) its even component.

Finally, assuming that K has characteristic 2, and given (a, b) ∈ K
2, we denote by 

[a, b] the quadratic form (x, y) �→ ax2 + xy + by2 on K2.

2. The reduction to standard LDB division algebras

The purpose of this section is to prove Lemma 1.9, thereby limiting the study of 
LDB division algebras to the one of standard LDB division algebras. This non-trivial 
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result will be obtained by refining some techniques that were featured in Section 5.3 
of [12].

2.1. The key lemma

In [12, Corollary 5.13], we have shown that every LDB division algebra (A, �, •) is 
equivalent to its opposite algebra2 (A, •, �). Here, we shall refine this statement as follows:

Proposition 2.1. Let (A, �, •) be an LDB division algebra with attached quadratic form q, 
and let s be a reflection of the quadratic space (A, q). Then, there are automorphisms g
and h of A such that

∀(x, y) ∈ A2, x • y = h
(
s(x) � g(y)

)
.

The proof has three steps. Before we explain them, some additional notation is re-
quired. In the rest of the section, we fix an LDB division algebra (A, �, •) with attached 
quadratic form denoted by q.

Notation 3. Given an anisotropic vector x ∈ A ⊕ K
2, we denote by sx the reflection of 

(A ⊕K
2, ̃q ) along Kx, and by π(x) the projection of x on A along K2.

Our starting point is the following result, which was the first step in the proof of 
Lemma 5.11 of [12]:

Lemma 2.2. Let a ∈ (A ⊕ K
2) � K

2 be an anisotropic vector. Then, there are automor-
phisms G and F of A2 such that

∀x ∈ A⊕K
2, ΓA

(
sa(x),−

)
= G ◦ ΓA

(
sπ(a)(x),−

)
◦ F.

From there, we obtain the following generalization:

Lemma 2.3. Let a1, . . . , ap be anisotropic vectors of (A ⊕K
2) �K

2. Set u := sa1 ◦ · · · ◦sap

and v := sπ(a1) ◦ · · · ◦ sπ(ap). Then, there are automorphisms G and F of A2 such that

∀x ∈ A⊕K
2, ΓA

(
u(x),−

)
= G ◦ ΓA

(
v(x),−

)
◦ F.

Proof. We prove the result by induction on p, the case p = 1 being given by Lemma 2.2. 
Assume that p > 1. Set w := sa1 ◦ · · · ◦sap−1 and h := sπ(a1) ◦ · · ·◦sπ(ap−1). By induction, 
there are automorphisms F and G of A2 such that

∀x ∈ A⊕K
2, ΓA

(
w(x),−

)
= G ◦ ΓA

(
h(x),−

)
◦ F.

2 To see that (A, •, �) is an LDB division algebra, one uses the fact that � is regular to deduce identity 
∀(x, y) ∈ A2, x • (x �y) = q(x)y from identity ∀(x, y) ∈ A2, x � (x •y) = q(x)y applied to the pair (x, x � y).
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We endow B := A with a new structure of LDB division algebra: for (x, y) ∈ B2, we set

x �′ y := h(x) � y and x •′ y := h(x) • y.

Noting that h is the identity on K2, we obtain

∀x ∈ A⊕K
2, ΓB(x,−) = ΓA

(
h(x),−

)
,

whence

∀x ∈ A⊕K
2, ΓA

(
w(x),−

)
= G ◦ ΓB(x,−) ◦ F.

As h induces an orthogonal automorphism of (A, q), the quadratic form attached to B

is q. In particular, for every anisotropic vector x of A ⊕K
2, we see that sx is the reflection 

of (B⊕K
2, ̃q ) along Kx. Applying Lemma 2.2 to the LDB division algebra B, we obtain 

automorphisms F ′ and G′ of A2 such that

∀x ∈ A⊕K
2, ΓB

(
sap

(x),−
)

= G′ ◦ ΓB

(
sπ(ap)(x),−

)
◦ F ′.

Therefore, for all x ∈ A ⊕K
2, we conclude that

ΓA

(
w
(
sap

(x)
)
,−

)
= G ◦ ΓB

(
sap

(x),−
)
◦ F

= G ◦G′ ◦ ΓB

(
sπ(ap)(x),−

)
◦ F ′ ◦ F

=
(
G ◦G′) ◦ ΓA

(
(h ◦ sπ(ap))(x),−

)
◦
(
F ′ ◦ F

)
.

As G ◦G′ and F ′ ◦ F are automorphisms of A2, this completes our inductive proof. �
Now, we can prove Proposition 2.1:

Proof of Proposition 2.1. Denote by B := (A, •, �) the opposite LDB division algebra of 
(A, �, •). Setting T : (y, z) ∈ A2 �→ (z, y) and t : x + (λ, μ) ∈ A ⊕ K

2 �→ x + (μ, λ), we 
obtain

∀x ∈ A⊕K
2, ΓB(x,−) = T ◦ ΓA

(
t(x),−

)
◦ T−1.

Note that t is the reflection of (A ⊕ K
2, ̃q ) along b := (1, −1). Now, let a ∈ A � {0}. 

Setting d := a +(1, 0), we see that q̃(d) = q(a), that d /∈ K
2 and that b is not q̃-orthogonal 

to d. In particular, d is anisotropic and t = sb = s−1
d ◦ ssd(b) ◦ sd = sd ◦ ssd(b) ◦ sd. As b

is not q̃-orthogonal to d, we see that π(sd(b)) is a non-zero scalar multiple of a. Thus, 
sπ(d) = sa = sπ(sd(b)). Applying Lemma 2.3, we obtain automorphisms G and F of A2

such that

∀x ∈ A⊕K
2, ΓA

(
t(x),−

)
= G ◦ ΓA

(
(sπ(d) ◦ sπ(sd(b)) ◦ sπ(d))(x),−

)
◦ F.
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Set G1 := T ◦G and F1 := F ◦ T−1. As sπ(d) ◦ sπ(sd(b)) ◦ sπ(d) = (sa)3 = sa, we obtain

∀x ∈ A⊕K
2, ΓB(x,−) = G1 ◦ ΓA

(
sa(x),−

)
◦ F1. (3)

As sa leaves (1, 0) and (0, 1) invariant, we have in particular⎧⎪⎨⎪⎩
ΓB

(
(1, 1),−

)
= G1 ◦ ΓA

(
(1, 1),−

)
◦ F1

ΓB

(
(1, 0),−

)
= G1 ◦ ΓA

(
(1, 0),−

)
◦ F1

ΓB

(
(0, 1),−

)
= G1 ◦ ΓA

(
(0, 1),−

)
◦ F1.

(4)

As ΓB((1, 1), −) = idA2 = ΓA((1, 1), −), the first identity in (4) yields G1 = F−1
1 . As 

KerΓA((0, 1), −) = A × {0} = KerΓB((0, 1), −) and KerΓA((1, 0), −) = {0} × A =
KerΓB((1, 0), −), the second and third identities in (4) yield that F1 stabilizes A × {0}
and {0} ×A, giving rise to automorphisms g and h of A such that

∀(y, z) ∈ A2, F1(y, z) =
(
g(y), h(z)

)
.

Thus, for all x ∈ A, applying (3) to x yields

∀(y, z) ∈ A2, (x • z, x � y) =
(
g−1(sa(x) � h(z)

)
, h−1(sa(x) • g(y)

))
.

Extracting the first components from both sides concludes the proof. �
2.2. Completing the reduction to the standard case

Now, we are ready to prove Lemma 1.9. Let (A, �, •) be an LDB division algebra with 
attached quadratic form q, and let e ∈ A be such that q(e) = 1. Denote by bq the polar 
form of q. For x ∈ A, we set x := −se(x). Since q(e) = 1, we have

∀x ∈ A, x = −x + bq(x, e)e.

Proposition 2.1 yields automorphisms h and g of A such that

∀(x, y) ∈ A2, x • y = h
(
x � g(y)

)
.

For x ∈ A, denote by M(x) the endomorphism y ∈ A �→ x � y of A. With the above 
identity, we deduce that

∀x ∈ A, M(x) ◦ h ◦M(x) ◦ g = q(x)idA.

Setting N(x) := M(x) ◦ h and f := g−1 ◦ h, we deduce that

∀x ∈ A, N(x) ◦N(x) = q(x)f,
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and in particular N(e)2 = f . Let us prove that N(x) commutes with N(e) for all x in A. 
Fix x ∈ A. Polarizing the above quadratic identity in (x, e) yields

N(x) ◦N(e) + N(e) ◦N(x) = bq(x, e)f.

As e = e, this reads

N(x) ◦N(e) −N(e) ◦N(x) + bq(x, e)N(e)2 = bq(x, e)f.

Since N(e)2 = f , we deduce, as claimed, that

N(x) ◦N(e) −N(e) ◦N(x) = 0.

It ensues that

∀x ∈ A,
(
N(e)−1 ◦N(x)

)
◦
(
N(e)−1 ◦N(x)

)
= N(e)−2 ◦N(x) ◦N(x)

= q(x)idA. (5)

We are ready to conclude. Defining new laws �′ and •′ on A by

x �′ y := N(e)−1(x � h(y)
)

and x •′ y := h−1(x •N(e)[y]
)
,

we see that (A, �′, •′) is an LDB division algebra that is equivalent to (A, �, •) and whose 
attached quadratic form is q. Let us check that (A, �′, •′) is e-standard. First, we note 
that x �′− = N(e)−1◦N(x) for all x ∈ A, and in particular e �′− = idA. Next, identity (5)
yields that the law •′′ defined by x •′′ y := x �′ y is a bilinear quasi-left-inversion of �′, 
and q is the quadratic form attached to the LDB division algebra (A, �′, •′′). Thus, we 
have a scalar λ such that •′′ = λ•′, and q = λq since λq is the quadratic form attached 
to (A, �′, λ•′). It follows that λ = 1 and •′′ = •′ and hence (A, �′, •′) is e-standard, as 
claimed. This completes the proof of Lemma 1.9.

The following result was already proved in [12] by using the fact that an invertible 
alternating matrix must have an even number of columns. Here, we use the Standard-
ization lemma to give a new proof of it:

Corollary 2.4. Let (A, �, •) be an LDB division algebra with dimension n > 1. Then, n is 
even.

Proof. It suffices to deal with the case when n > 2. Using Remark 3 and the Standard-
ization lemma, we see that no generality is lost in assuming that (A, �, •) is e-standard 
for some e ∈ A � {0}. Then, as n > 2, we can choose a vector x ∈ A � Ke that is 
q-orthogonal to e. Thus, the endomorphism f := x � − satisfies f2 = −q(x)idA, and 
〈1, q(x)〉 = 〈q(e), q(x)〉 is anisotropic since it is equivalent to a subform of q. It follows 
that −q(x) is a non-square in K, whence the polynomial p(t) := t2 + q(x) is irreducible 
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over K. Thus, p(t) is both irreducible and the minimal polynomial of f , whence the 
dimension of A is a multiple of the degree of p(t). �
3. The dimension of a non-degenerate LDB division algebra

Let (A, �, •) be a non-degenerate LDB division algebra with dimension n and attached 
quadratic form q. We wish to show that n ∈ {1, 2, 4, 8}, thereby proving the first state-
ment in Theorem 1.1. As we already know from Corollary 2.4 that n is even or equals 1, 
we can simply assume that n ≥ 6, in which case we know that n is even and we need to 
prove that n = 8.

Using Remark 3 and Lemma 1.9, we can further assume that A is standard with 
respect to one of its non-zero elements e. Then, as q is non-degenerate, we can find a 
linear subspace V ⊂ E with codimension 2 such that qV is non-degenerate and V ⊥ Ke. 
By (1), we have ∀x ∈ V , (x � −)2 = −q(x)idA, whence the linear map x �→ x � −
extends into a homomorphism of K-algebras from the Clifford algebra C(−qV ) to L(A). 
As the dimension of V is even and −qV is non-degenerate, the algebra C(−qV ) is simple 
(see [11, Chapter 9] Theorem 2.10 for fields of characteristic not 2, and Corollary 4.7 for 
fields of characteristic 2). In particular, the above homomorphism is injective, whence 
dimC(−qV ) ≤ dimL(A), which leads to 2n−2 ≤ n2. Obviously, this yields n ≤ 8.

Assume now that n = 6. In that case, we note that the above homomorphism yields 
a structure of left C(−qV )-module on A. As C(−qV ) is a finite-dimensional simple 
K-algebra, it is isomorphic to Mp(L) for some skew field extension L of K and some 
positive integer p, and all the minimal left C(−qV )-modules have dimension pd over K, 
where d := [L : K]. In particular, dimA should be a multiple of pd. As on the other hand 
p2d = dimC(−qV ), we deduce that pd is a power of 2 and that pd ≥

√
dimC(−qV ) = 4. 

As pd divides 6, this is absurd. Therefore, n = 8, which completes the proof of the first 
statement in Theorem 1.1.

4. LDB division algebras of dimension at most 2

Our aim in this short section is to understand the structure of all LDB division 
algebras with dimension at most 2.

Let (A, �, •) be an LDB division algebra with dimension at most 2 and attached 
quadratic form denoted by q.

Assume first that (A, �, •) has dimension 1. Without loss of generality, we may assume 
that A = K. If A is 1-standard, it is obvious that (A, �, •) = (K, ·, ·). Thus, Lemma 1.9
yields that (A, �, •) is equivalent to (K, ·, ·) whenever q represents 1. Using Remark 3, 
we deduce that Theorem 1.5 holds for all 1-dimensional LDB division algebras.

The following lemma deals with 2-dimensional LDB division algebras:

Lemma 4.1. Let (A, �, •) be a 2-dimensional LDB division algebra whose attached 
quadratic form q represents 1. Then, A is equivalent to the quadratic LDB division al-
gebra associated with the field extension C0(q) of K.
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Proof. We choose e ∈ A such that q(e) = 1. Using the Standardization lemma, we 
see that no generality is lost in assuming that e � − = idA. In that situation, we see 
that L := {x � − | x ∈ A} is a two-dimensional subspace of L(A) that contains idA

and in which all the non-zero operators are invertible. Choosing f ∈ L � KidA, we 
find that L = K[f ], whence L is a field extension of K. Then, using the isomorphisms 
F : x ∈ A �→ (x �−) ∈ L and G : g ∈ L �→ g(e) ∈ A, one easily checks that

∀(x, y) ∈ A2, G
(
F (x) ◦G−1(y)

)
= x � y,

and hence L is weakly equivalent to A through a weak equivalence that maps e to 1L. 
This yields a scalar λ such that (A, �, λ•) is equivalent to L, with λq(e) = NL/K(1L) and 
λq � NL/K. It follows that λ = 1, that A is equivalent to L and that NL/K is equivalent 
to q.

If q � 〈1, −a〉 for some a ∈ K, then C0(q) � K[
√
a ] � L. If K has characteristic 2 and 

q � [1, a] for some a ∈ K, then X2 + X + a is irreducible over K since q is anisotropic, 
and we see that C0(q) � K[t]/(t2 + t + a) � L. As q represents 1, this shows that C0(q)
is always equivalent to L.

We conclude by noting that isomorphic quadratic extensions of K obviously yield 
equivalent LDB division algebras. �

Combining Lemma 4.1 with Remark 3 yields that every 2-dimensional LDB division 
algebra is weakly equivalent to a quadratic LDB division algebra, and we obtain both 
statements in Theorem 1.5 for 2-dimensional LDB division algebras.

5. LDB algebras over fields of characteristic not 2

In this section, we assume that the underlying field K does not have characteristic 2, 
and we obtain Theorems 1.1 and 1.5 in this situation. We will understand the structure 
of all 4-dimensional LDB division algebras over K, and then of all 8-dimensional LDB 
division algebras over K.

In each case, the basic strategy is to consider an LDB division algebra whose attached 
quadratic form represents 1 and to prove that this quadratic form is a Pfister form. Then, 
we use the strategy outlined in Remark 6 to prove that two LDB division algebras are 
equivalent whenever their attached quadratic forms are equivalent.

5.1. Four-dimensional LDB division algebras

Let (A, �, •) be an LDB division algebra with dimension 4 and whose attached 
quadratic form q represents 1. Our aim is to prove that (A, �, •) is equivalent to any 
quaternionic LDB division algebra whose attached quadratic form is equivalent to q. We 
choose e ∈ A such that q(e) = 1. By the Standardization lemma, we lose no generality 
in further assuming that A is e-standard.
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Our first step is the following:

Claim 1. The quadratic form q is a Pfister form, that is q � 〈1, −a〉 ⊗ 〈1, −b〉 for some 
(a, b) ∈ K

2.

Proof. As q represents 1, it suffices to prove that the discriminant of q equals 1. Assume 
on the contrary that this is not the case.

Denote by V the orthogonal complement of Ke in (A, q), so that x = −x for all 
x ∈ V . Thus, (x �−)2 = −q(x)idA for all x ∈ V . The map x ∈ V �→ (x �−) ∈ L(A) can 
then be extended into a homomorphism of K-algebras Φ : C(−qV ) → L(A). Choosing 
(a, b, c) ∈ K

3 such that qV � 〈a, b, c〉, we know that C(−qV ) � C〈−ab, −ac〉K ⊗K L

where L := K[t]/(t2 − abc). On the other hand, q � 〈1, a, b, c〉. Thus, abc is not a square 
in K, and hence L is a quadratic extension of K. Thus, C(−qV ) � C〈−ab, −ac〉L and 
C(−qV ) is a simple K-algebra with dimension 8. Using the above homomorphism of 
K-algebras, we obtain a structure of left C(−qV )-module on A. As A has dimension 4
over K, the algebra C〈−ab, −ac〉L is not a skew field, which yields that 〈1, ab, ac, bc〉L �
〈1, −(−ab), −(−ac), (−ab)(−ac)〉L is hyperbolic. As abc is a square in L, it follows that 
〈1, ab(abc), ac(abc), bc(abc)〉L � 〈1, c, b, a〉L is hyperbolic. However, as L = K[t]/(t2−abc)
and q is anisotropic, this would yield scalars a′ and b′ in K such that q � 〈1, c, b, a〉 �
〈1, −abc〉 ⊗ 〈a′, b′〉 (by Remark 5.11 of [11, Chapter 2]) and one would conclude that 
the discriminant of q equals 1. This contradicts our initial assumption, completing the 
proof. �

Now, we have found non-zero scalars a and b such that q � 〈1, −a〉 ⊗ 〈1, −b〉. On 
the other hand, the quaternionic LDB division algebra associated with the quaternion 
algebra C〈a, b〉 has its attached quadratic form equivalent to 〈1, −a〉 ⊗〈1, −b〉. In order to 
conclude that this quaternionic LDB division algebra is equivalent to (A, �, •), it suffices 
to prove that every LDB division algebra whose attached quadratic form is equivalent 
to q is equivalent to (A, �, •) itself. Using the strategy outlined in Remark 6, we find that 
it suffices to prove the following result:

Claim 2. Let (B, �′, •′) be an e-standard LDB division algebra (with B = A) with attached 
quadratic form q. Then, there are automorphisms h and u of A such that u commutes 
with x �→ x and ∀x ∈ A, h ◦ (u(x) �−) ◦ h−1 = x �′ −.

Proof. Denote by V the orthogonal complement of Ke in (A, q), so that −qV has discrim-
inant 1. As in the proof of Claim 1, we find that the linear map x ∈ V �→ (x �−) ∈ L(A)
extends into a homomorphism of K-algebras Φ : C(−qV ) → L(A). However, as −qV has 
discriminant 1, we obtain C(−qV ) � C0(−qV ) ×C0(−qV ), whose center Z is isomorphic 
to K ×K. Let p be an idempotent of Z. Then, Φ(p) is an idempotent of L(A) that com-
mutes with x �− for all x ∈ A (as e �− = idA), and hence Lemma 1.10 yields Φ(p) = idA

or Φ(p) = 0. Varying p and taking linear combinations, it follows that Φ maps every 
element of the center of C(−qV ) to a scalar multiple of idA.



276 C. de Seguins Pazzis / Journal of Algebra 423 (2015) 259–288
Next, by Witt’s cancellation rule, we can choose an orthogonal basis (e1, e2, e3) of V
such that q(e1) = −a, q(e2) = −b and q(e3) = ab. Classically, e1e2e3 belongs to the 
center of C(−qV ), and (e1e2e3)2 = q(e1)q(e2)q(e3) = (ab)2. Thus, Φ(e1e2e3) = ±abidA, 
which yields an i ∈ {0, 1} such that

(e3 �−) = (−1)i(e1 �−) ◦ (e2 �−).

Next, we set P := span(e1, e2), and we extend the linear map x ∈ P �→ (x � −) ∈
L(A) into a homomorphism Ψ : C(−qP ) → L(A) of K-algebras. This homomorphism is 
injective because C(−qP ) is a simple algebra. Denote by v the vector space isomorphism 
from A to C(−qP ) that maps e1 to e1, e2 to e2, e3 to e1e2 and e to 1, and denote by s the 
reflection of (A, q) along Ke3. Then, as e �− = idA and e3 �− = (−1)iΨ(e1e2), we obtain

∀x ∈ A, x �− = Ψ
(
v
(
si(x)

))
.

Now, we are close to the conclusion. With the same line of reasoning applied to 
(A, �′, •′), we find a homomorphism Ψ ′ : C(−qP ) → L(A) of K-algebras together with a 
j ∈ {0, 1} such that

∀x ∈ A, x �′ − = Ψ ′(v(sj(x)
))
.

As C(−qP ) is a simple algebra and L(A) is a central simple K-algebra, the Skolem–
Noether theorem [11, Chapter 8, Theorem 4.2]3 yields an automorphism h of A such 
that ∀y ∈ C(−qP ), Ψ ′(y) = h ◦ Ψ(y) ◦ h−1. Thus, for all x ∈ A, we obtain

x �′ − = h ◦
(
sj−i(x) �−

)
◦ h−1.

The endomorphism s commutes with x �→ x because e is q-orthogonal to e3. Thus, 
sj−i commutes with x �→ x and the claimed result is proved. �

From there, the arguments from Remark 6 show that an LDB division algebra is 
equivalent to (A, �, •) whenever its attached quadratic form is equivalent to q. In par-
ticular, (A, �, •) is equivalent to a quaternionic LDB division algebra. More precisely, if 
q � 〈1, −a〉 ⊗ 〈1, −b〉, then (A, �, •) is equivalent to C〈a, b〉.

5.2. Eight-dimensional LDB division algebras

Let (A, �, •) be an LDB division algebra with dimension 8 and whose attached 
quadratic form q represents 1. We choose e ∈ A such that q(e) = 1. Our aim is to prove 
that q is a Pfister form and that every LDB division algebra with attached quadratic 

3 Instead of the Skolem–Noether theorem, one could simply note that Ψ and Ψ ′ define two structures of 
left C(−qP )-vector space on A, both with dimension 1 over C(−qP ), and one could conclude by choosing 
an isomorphism h from the first structure to the second one.
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form q is equivalent to (A, �, •). By the Standardization lemma, it suffices to do this 
when A is e-standard and, in what follows, we shall assume that this condition holds.

As q is anisotropic and K has characteristic not 2, the subspace V := {e}⊥ satisfies 
A = V ⊕Ke.

We start with a preliminary result on the quadratic form q:

Claim 3. The quadratic form q has discriminant 1.

Proof. By (1), we have ∀x ∈ V , (x �−)2 = −q(x)idA and hence the linear map x ∈ V �→
(x �−) ∈ L(A) can be extended into a homomorphism of K-algebras Φ : C(−qV ) → L(A). 
This homomorphism cannot be injective since dimL(A) = 82 < 27 = dimC(−qV ). 
Therefore, C(−qV ) is not simple, which entails that the discriminant of −qV equals 1. 
It follows that the discriminant of q equals 1, as claimed. �

Next, we can choose an orthogonal basis (ei)1≤i≤7 of V in which q(e7) =
∏6

i=1 q(ei). 
We set W := span(ei)1≤i≤6. The restriction of Φ to C(−qW ) must be injective since 
C(−qW ) is simple. As dimC(−qW ) = 26 = dimL(A), we deduce that Φ is surjective. In 
particular, since z := e1e2e3e4e5e6e7 lies in the center of C(−qV ), the element Φ(z) is a 
scalar multiple of the identity, whence we have a scalar λ such that Φ(e7) = λ 

∏6
i=1 Φ(ei). 

Using Φ(ei)2 = −q(ei)idA for all i ∈ [[1, 6] ] together with the fact that Φ(e1), . . . , Φ(e6)
are pairwise skew-commuting operators, we deduce that λ2 ∏6

i=1 q(ei) = q(e7), and we 
conclude that λ = ±1. Using this, we shall prove:

Claim 4. An LDB division algebra is equivalent to (A, �, •) whenever its attached 
quadratic form equals q.

Proof. As explained in Remark 6, it suffices to consider an e-standard LDB division 
algebra (A, �′, •′) with q as its attached quadratic form, and to exhibit automorphisms 
h and u of A such that

∀x ∈ A, x �′ − = h ◦
(
u(x) �−

)
◦ h−1

and u commutes with x �→ x. Using the above considerations, we see that the linear 
maps x ∈ W �→ (x � −) ∈ L(A) and x ∈ W �→ (x �′ −) ∈ L(A) extend, respectively, 
into homomorphisms of K-algebras Ψ : C(−qW ) → L(A) and Ψ ′ : C(−qW ) → L(A). 
Moreover, we have indexes i and j in {0, 1} such that

e7 �− = (−1)i
6∏

k=1

Ψ(ek) and e7 �
′ − = (−1)j

6∏
k=1

Ψ ′(ek).

Denote by v the linear map from A to C(−qW ) that maps ek to itself for all k ∈ [[1, 6] ], 
that maps e to 1 and that maps e7 to e1e2e3e4e5e6. Denote finally by s the reflection of 
(A, q) along Ke7. Then, we obtain
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∀x ∈ A, x �− = Ψ
(
v
(
si(x)

))
and x �′ − = Ψ ′(v(sj(x)

))
.

Since C(−qW ) is a simple K-algebra and L(A) is a central simple K-algebra, the 
Skolem–Noether theorem yields an automorphism h of A such that ∀y ∈ C(−qW ), 
Ψ ′(y) = h ◦ Ψ(y) ◦ h−1. Therefore,

∀x ∈ A, x �′ − = h ◦
(
sj−i(x) �−

)
◦ h−1,

which is the desired conclusion since s commutes with x �→ x (because e is q-orthogonal 
to e7). �

Now, coming back to the structure of (A, �, •), we aim at proving that q is a Pfister 
form.

Claim 5. One of the 4-dimensional subforms of q is a Pfister form.

Proof. We consider the 2-dimensional space P := span(e1, e2). Since ∀x ∈ P , (x �−)2 =
−q(x)idA, the linear map x ∈ P �→ (x �−) ∈ L(A) can be extended into a homomorphism 
ϕ : C(−qP ) → L(A) of K-algebras. The quadratic form 〈1〉 ⊥ qP is anisotropic since it 
is equivalent to a subform of q, whence the quaternion algebra H := C(−qP ) is a skew 
field. Using ϕ, we naturally endow A with a structure of left vector space over H. Now, 
set U := span(ei)3≤i≤7. By polarizing the quadratic identity

∀x ∈ V, (x �−)2 = −q(x)idA,

we obtain that the operator x � − skew-commutes with both e1 � − and e2 � − for all 
x ∈ U . Denoting by γ the involution of C(−qP ) associated with its Z/2-graduation, we 
deduce that the map x �− is semi-H-linear with associated field automorphism γ for all 
x ∈ U (that is, for all h ∈ H, all x ∈ U and all y ∈ A, we have x � (h.y) = γ(h).(x � y)). 
It follows that, for all x ∈ A, the endomorphism x � − splits as y �→ h.y + u(y), where 
h ∈ H and u ∈ LK(A) is semi-H-linear with associated field automorphism γ.

We know that x �→ x �e is an automorphism of the K-vector space A. Thus, the space 
E := {x ∈ A: x �e ∈ He} is a 4-dimensional linear subspace of A over K, and it contains e, 
obviously. As x = −x + bq(x, e)e for all x ∈ A, we deduce that E is stable under x �→ x. 
Let x ∈ E. We contend that x � − stabilizes He. Indeed, we have a quaternion h ∈ H
and a semi-H-linear endomorphism u of A such that ∀y ∈ A, x � y = h.y + u(y). As 
h.e ∈ He and x � e ∈ He, we obtain u(e) ∈ He. As u is semi-H-linear, it follows that 
u(He) ⊂ He, which entails that x �− stabilizes He: we denote by κ(x) the endomorphism 
of the K-vector space He induced by x � −. Thus, we have κ(x) ◦ κ(x) = q(x)idHe for 
all x ∈ E. As E and He are both 4-dimensional vector spaces over K, we can choose an 
isomorphism of K-algebras Δ : L(He) �−−→ L(E). Then, we define two laws �1 and •1
on E by
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x �1 y := Δ
(
κ(x)

)
[y] and x •1 y := Δ

(
κ(x)

)
[y],

and one easily checks that (E, �1, •1) is an LDB division algebra with dimension 4 and 
attached quadratic form qE. Since e ∈ E, the quadratic form qE represents 1 and hence 
the structure theorem for 4-dimensional LDB division algebras shows that qE is a Pfister 
form, which proves our claim. �
Claim 6. q is a Pfister form.

Proof. We know that, for some (a, b) ∈ (K∗)2, the form 〈1, −a, −b, ab〉 is equivalent to 
a subform of q. Using Witt’s cancellation rule, we deduce that 〈−a, −b, ab〉 is equivalent 
to a subform of qV . Thus, no generality is lost in assuming that q(e1) = −a, q(e2) = −b

and q(e3) = ab. We set F := span(e4, e5, e6, e7). Our aim is to prove that qF is similar 
to 〈1, −a〉 ⊗ 〈1, −b〉.

Set P ′ := span(e1, e2, e3). Again, the linear map x ∈ P ′ �→ (x �−) ∈ L(A) is naturally 
extended into a homomorphism Δ : C(−qP ′) → L(A) of K-algebras. The even subalgebra 
Q := C0(−qP ′) is isomorphic to the quaternion algebra C〈a, b〉, which is a skew field 
since 〈1, −a, −b〉, being equivalent to a subform of q, is anisotropic. Again, we use Δ to 
endow A with a structure of left Q-vector space.

Polarizing the identity ∀x ∈ V , (x �−)2 = −q(x)idA yields that x �− skew-commutes 
with y �− for all x ∈ F and all y ∈ P ′, whence x �− commutes with Δ(y) for all x ∈ F

and all y ∈ Q. In other words the map x �− is an endomorphism of the Q-vector space A

for all x ∈ F .
From there, we can extend the K-linear map x ∈ F �→ (x � −) ∈ LQ(A) into a 

homomorphism of K-algebras Ψ : C(−qF ) → LQ(A). As C(−qF ) is simple (because 
dimF is even and qF is non-degenerate), we see that Ψ is injective. On the other hand, as 
q � qF ⊥ (〈1, −a〉 ⊗〈1, −b〉) and q has discriminant 1, we find that qF has discriminant 1, 
and hence −qF has discriminant 1. It follows that the center of C0(−qF ) is isomorphic 
to K × K (see [11, Chapter 9, Theorem 2.10]). Remember that, as dimF is even, the 
conjugation by a non-zero element of F always induces the non-identity automorphism 
of the center of C0(−qF ). Let us fix a non-trivial idempotent p in the center of C0(−qF ); 
then we see that xpx−1 = 1 − p for all x ∈ F � {0}. In particular, Ψ(p) is a non-trivial 
idempotent of LQ(A) and, for all x ∈ F , the map x � − swaps the Q-linear subspaces 
A1 := KerΨ(p) and A2 := ImΨ(p).

Now, we fix an arbitrary operator f ∈ Ψ(F ) � {0}. We choose a basis B1 of the 
K-vector space A1 and we see that B2 := f(B1) is a basis of the K-vector space A2, 
whence B := B1 � B2 is a basis of the K-vector space A. For x ∈ A, let us denote by 
M(x) the matrix of the endomorphism x � − in the basis B. In particular, for x0 ∈ F

such that f = x0 �−, we have

M(x0) =
[

0 −q(x0)I4
]
.

I4 0
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Fix h ∈ Q. As A1 and A2 are Q-vector spaces, we know that the matrix of y �→ h.y in B
has the form

N(h) =
[
h1 0
0 h2

]
for some (h1, h2) ∈ M4(K)2.

As this matrix commutes with M(x0), a straightforward computation shows that 
h1 = h2. Now, for h ∈ Q, we can write

N(h) =
[
R(h) 0

0 R(h)

]
,

so that R(Q) ⊂ M4(K) is a quaternion algebra that is isomorphic to Q.
Next, for x ∈ F , we know that x �− swaps A1 and A2, whence we have matrices B(x)

and C(x) of M4(K) such that

M(x) =
[

0 C(x)
B(x) 0

]
,

and, as M(x) commutes with N(q) for all q ∈ Q, we see that B(x) commutes with 
R(q) for all q ∈ Q. Note that x �→ B(x) is one-to-one since M(x) is non-singular for all 
x ∈ F�{0}. However, as R(Q) is a 4-dimensional skew field extension of K, its centralizer 
in M4(K) is a skew field that is isomorphic to the opposite algebra R(Q)op, whence 
B(F ) equals this centralizer. As every Clifford algebra possesses an anti-automorphism, 
we conclude that B(F ) is itself a subalgebra of M4(K) that is isomorphic to Q as a 
K-algebra. For N ∈ B(F ), let us denote by N∗ the conjugate of N in the quaternion 
algebra B(F ).

From the identity ∀x ∈ F , (x �−)2 = −q(x)idA, we deduce

∀x ∈ F, B(x)C(x) = −q(x)I4.

Now, we choose an isomorphism Θ : M4(K) → L(F ) of K-algebras, and we define two 
laws �2 and •2 on F as

x �2 y := Θ
(
B(x)

)
[y] and x •2 y := Θ

(
C(x)

)
[y],

so that (F, �2, •2) is an LDB division algebra with attached quadratic form −qF . However, 
with the law •3 defined on F as

x •3 y := Θ
(
B(x)∗

)
[y],

we obtain that (F, �2, •3) is an LDB division algebra whose attached quadratic form is 
x �→ NB(F )(B(x)), where NB(F ) denotes the norm of the quaternion algebra B(F ). It 
follows that NB(F ) is similar to −qF . As B(F ) is isomorphic to Q, its norm is equivalent to 
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〈1, −a〉 ⊗〈1, −b〉, which yields a scalar c ∈ K such that −qF � c〈1, −a〉 ⊗〈1, −b〉. Finally, 
as A = span(e, e1, e2, e3) 

⊥
⊕ F and qspan(e,e1,e2,e3) � 〈1, −a〉 ⊗ 〈1, −b〉, we conclude that 

q � 〈1, −a〉 ⊗ 〈1, −b〉 ⊗ 〈1, −c〉, as claimed. �
From the above claims, we conclude that (A, �, •) is equivalent to the octonionic LDB 

division algebra associated with the quaternion algebra C〈a, b〉 and the scalar c.

6. LDB division algebras over fields of characteristic 2

Throughout the section, we assume that the underlying field K has characteristic 2. 
Section 6.1 is devoted to the proof of Theorem 1.2, that is the determination of the 
structure of degenerate LDB division algebras over K. The next two sections are de-
voted to the theory of non-degenerate LDB division algebras with dimensions 4 and 8, 
respectively.

6.1. Degenerate LDB division algebras

In this section, we prove Theorem 1.2. Let (A, �, •) be a degenerate LDB division 
algebra with attached quadratic form q. If dimA = 1, we already know from Section 4
that (A, �, •) is weakly equivalent to the hyper-radicial LDB division algebra K, and 
that it is even equivalent to it whenever q represents 1. Thus, in the rest of the section, 
we assume that dimA ≥ 2, to the effect that dimA is even (see Corollary 2.4). We 
denote by R the radical of the polar form of q, and we split A = R ⊕ V , so that qV is 
non-degenerate and dimV is even. Thus, dimR ≥ 2.

Until further notice, we assume that there is an element e ∈ R such that q(e) = 1. We 
can use the Standardization lemma to reduce the situation to the one where (A, �, •) is 
e-standard. However, as e belongs to the radical of q, formula (1) yields

∀x ∈ A, (x �−)2 = q(x)idA.

By polarizing this formula, we learn in particular that, for all x ∈ R, the operator x �−
commutes with all the operators y �− with y ∈ A.

Now, denote by L the subalgebra of L(A) generated by the operators x �− with x ∈ R, 
so that L is a commutative subalgebra of L(A) and every element of L commutes with 
all the operators y � − with y ∈ A. It follows from Lemma 1.10 that every non-zero 
operator in L is non-singular, and hence L is a field! Moreover, as (x � −)2 ∈ KidA for 
all x ∈ R and as K has characteristic 2, we find that f2 ∈ KidA for all f ∈ L. Thus, 
L is a hyper-radicial extension of K. Now, we have a natural structure of L-vector space 
on A; note that the operators x � −, for x ∈ A, are all L-linear. Setting d := [L : K], 
m := dimK V and n := dimK A, we have dimL LL(A) = n2

d2 and d ≥ dimR = n −m ≥ 2.

Claim 7. The quadratic form q is totally degenerate.
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Proof. Assume that the contrary holds, that is m ≥ 2. With the identity ∀x ∈ V , 
(x �−)2 = q(x)idA, we may extend x ∈ V �→ (x �−) ∈ LL(A) into a homomorphism of 
L-algebras Φ : C((qV )L) → LL(A). Since (qV )L is non-degenerate, the algebra C((qV )L)
is simple, whence Φ is injective. Comparing the dimensions over L leads to 2m ≤ n2

d2 , 
and hence

(d + m)2 ≥ 2md2.

Noting that the function t �→ (t+1)2
t2 is decreasing on the interval (0, +∞), we find that 

(k+1)2 < 2k2 for all k > 2; if d > 2, it follows that the sequence ((d +k)2(2kd2)−1)k≥0 is 
decreasing, and as the initial value of that sequence is 1, the only remaining option is that 
d = 2. In that case, we see that ((d + k)2(2kd2)−1)k≥2 is decreasing with initial value 1, 
whence the above inequality yields m = 2. Thus, dimR = dimV = 2, and if we write 
qR � 〈1, δ〉, then L is isomorphic to the inseparable quadratic extension K[t]/(t2 − δ). 
As dimL C((qV )L) = 4 = dimL LL(A), we deduce that the above homomorphism Φ is an 
isomorphism of L-algebras, whence the quaternion algebra C((qV )L) is not a skew field, 
and we deduce that the quadratic form 〈1〉 ⊥ qV becomes isotropic over L.

We shall conclude by showing that this contradicts the assumption that q �
〈1, δ〉 ⊥ qV should be anisotropic. Denote by t an element of L � K such that t2 = δ. 
We embed V naturally into L ⊗K V . As 〈1〉 ⊥ qV becomes isotropic over L, we find 
α ∈ {0, 1} together with a non-zero pair (x, y) ∈ V 2 such that (qV )L(x + ty) = α. This 
yields q(x) + δq(y) = α and bq(x, y) = 0. As V has dimension 2, the second equality 
shows that x and y are collinear, yielding a non-zero vector z ∈ V together with a 
non-zero pair (λ, μ) ∈ K

2 such that x = λz and y = μz. Thus, α = (λ2 + δμ2)q(z). As 
(λ, μ) �= (0, 0) and q is anisotropic, we have λ2 + δμ2 �= 0. Setting β := α(λ2 + δμ2)−1λ

and γ := α(λ2 + δμ2)−1μ, we finally obtain

q(z) = β2 + δγ2

by noting that α2 = α. As z �= 0, this shows that 〈1, δ〉 ⊥ qV is isotropic, contradicting 
our assumptions. Thus, we conclude that m = 0, as claimed. �

Next, we prove that (A, �, •) is equivalent to a hyper-radicial LDB division algebra. 
Since A is a non-zero vector space over L, we have d ≤ n, and hence the injective linear 
map Φ : x ∈ A �→ (x � −) ∈ L is an isomorphism of vector spaces (over K). It follows 
that q is equivalent to the quadratic form λ �→ λ2 on L, which is associated with the 
hyper-radicial LDB division algebra L.

In order to conclude, it remains to prove that an LDB division algebra is equivalent 
to (A, �, •) whenever its attached quadratic form is equivalent to q. As explained in 
Remark 6, it suffices in this prospect to consider an LDB division algebra (A, �′, •′) that 
is e-standard and whose attached quadratic form is q. Using the isomorphism Φ, we 
enrich the K-vector space A into a hyper-radicial field extension of K, so that Φ is an 
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isomorphism of K-algebras. Then, the newly defined multiplication × on A only depends 
on q, as we have

∀(x, y) ∈ A2, q(x× y).idA = Φ(x× y)2 = Φ(x)2Φ(y)2 = q(x)q(y)idA,

whence

∀(x, y) ∈ A2, q(x× y) = q(x)q(y).

As q is injective (it is a group homomorphism from (A, +) to (K, +) since q is totally 
degenerate, and its kernel is zero since q is anisotropic), the above identity shows that × is 
determined by q. Now, with the new LDB division algebra (A, �′, •′), we obtain another 
homomorphism of K-algebras Φ′ : A → LK(A). As A is a field, the Skolem–Noether 
theorem yields an automorphism h of the K-vector space A such that

∀x ∈ A, Φ′(x) = h ◦ Φ(x) ◦ h−1,

which reads

∀x ∈ A, x �′ − = h ◦ (x �−) ◦ h−1.

From Remark 6, we conclude that (A, �′, •′) is equivalent to (A, �, •). In particular, we 
obtain that (A, �, •) is equivalent to the hyper-radicial LDB division algebra (A, ×, ×).

Now, we can conclude: given a degenerate LDB division algebra (A, �, •) with attached 
quadratic form q, we can choose a non-zero vector e in the radical of bq, and we find a 
scalar λ such that the quadratic form attached to (A, �, λ•) maps e to 1. With the above 
results, we deduce that (A, �, λ•) is equivalent to a hyper-radicial LDB division algebra. 
Finally, using Remark 6, we obtain the remaining results of Theorem 1.2, together with 
both statements of Theorem 1.5 for degenerate LDB division algebras.

6.2. Four-dimensional non-degenerate LDB division algebras

Let (A, �, •) be a non-degenerate LDB division algebra with dimension 4. We assume 
that the quadratic form q attached to A represents 1, and we choose e ∈ A such that 
q(e) = 1. Our goal is to show that (A, �, •) is equivalent to a quaternionic LDB division 
algebra and that an LDB division algebra is equivalent to (A, �, •) whenever its attached 
quadratic form is equivalent to q. In this prospect, we lose no generality in assuming 
that A is e-standard. Our first step consists in proving that the Arf invariant of q, which 
we classically denote by Δ(q), equals 0.

Given a non-degenerate alternating form B on a finite-dimensional vector space V , 
a symplectic basis of (V, B) is a basis (e1, . . . , e2n) of V in which the 2-dimensional sub-
spaces span(e2k−1, e2k), for k ∈ [[1, n] ], are pairwise B-orthogonal and B(e2k−1, e2k) = 1
for all k ∈ [[1, n] ]. Remember that, given a non-degenerate quadratic form ϕ on a finite-
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dimensional vector space V , the Arf invariant of ϕ is the class of 
∑n

k=1 ϕ(e2k−1)ϕ(e2k) in 
the quotient (additive) group K/{x2 + x | x ∈ K} for any symplectic basis (e1, . . . , e2n)
of (V, bϕ).

Let us extend e into a symplectic basis (e1, e2, e3, e) of (A, bq). We set P :=
span(e1, e2), so that qP is a non-degenerate quadratic form. As every vector of P
is orthogonal to e, we obtain ∀x ∈ P , (x � −)2 = q(x)idA, whence the linear map 
x ∈ P �→ (x � −) ∈ L(A) can be naturally extended into a homomorphism of al-
gebras Φ : C(qP ) → L(A). Set f := e3 � −. By polarizing the identity ∀x ∈ A, 
(x �−)2 = bq(x, e)(x �−) + q(x)idA, we obtain

∀x ∈ P, Φ(x) ◦ f + f ◦ Φ(x) = Φ(x).

Let x ∈ P � {0}. Then, Φ(x) ◦ f ◦ Φ(x)−1 = f + idA. However, x(e1e2)x−1 = e1e2 + 1
(by standard computations in the Clifford algebra C(qP )). Thus, Φ(x) ◦ (f + Φ(e1e2)) ◦
Φ(x)−1 = f + Φ(e1e2). It follows that

g := f + Φ(e1e2)

commutes with x �− for all x ∈ P . On the other hand, we see that Φ(e1e2) ◦f◦Φ(e1e2)−1 =
Φ(e1) ◦ (f + idA) ◦ Φ(e1)−1 = f , whence g also commutes with f = e3 � −. Finally, 
f + Φ(e1e2) commutes with idA = e � −, whence g commutes with x � − for all x ∈ A. 
On the other hand, as we have just seen that f and Φ(e1e2) commute, we obtain

g2 + g = f2 + f + Φ
(
(e1e2)2 + e1e2

)
=

(
q(e3) + q(e1)q(e2)

)
idA.

Assume now that the Arf invariant of q is non-zero. As q � [q(e1), q(e2)] ⊥ [1, q(e3)], 
this invariant is represented by the scalar δ := q(e3) + q(e1)q(e2), and we deduce that 
the polynomial t2 + t + δ is irreducible over K. Thus, L := K[g] is a field and we can 
use it to extend the scalar multiplication on A to turn A into a vector space over L. 
The above commutations show that x � − is L-linear for all x ∈ A, thus yielding a 
homomorphism Ψ : C(qP )L → LL(A) of L-algebras. As dimL(A) = 2, we see that 
dimL C((qP )L) = 4 = dimL LL(A). Since C(qP )L is simple, we deduce that Ψ is an 
isomorphism, to the effect that the quaternion algebra C(qP )L is not a skew field. It 
follows that the quadratic form 〈1〉 ⊥ [q(e1), q(e2)] becomes isotropic over L. Note that 
g2 + g = δidA. We naturally embed P into the L-vector space L ⊗K P . Then, we find 
ε ∈ {0, 1} together with a non-zero pair (x, y) ∈ P 2 such that (qP )L(x + gy) = ε. As 
〈1〉 ⊥ qP is anisotropic, we see that y �= 0. Expanding the above identity, we obtain 
q(x) + gbq(x, y) + g2q(y) = ε, whence

q(x) + δq(y) = ε and bq(x, y) = q(y).

As y �= 0, we have q(y) �= 0 and we can set x1 := x
q(y) , so that (x1, y) is a symplec-

tic basis of P . As q(x1) = q(x)
2 = ε

2 + δ , we deduce that Δ(qP ) = [δ + ε ], 
q(y) q(y) q(y) q(y)
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whence Δ(qspan(e3,e)) = Δ(q) −Δ(qP ) = [ ε
q(y) ]. As qspan(e3,e) represents 1, it follows that 

qspan(e3,e) � [1, ε
q(y) ], whence

q �
[
q(x1), q(y)

]
⊥

[
1, ε

q(y)

]
.

From there, we deduce that 〈q(y), ε
q(y) 〉 � 〈q(y), εq(y)〉 is equivalent to a subform of q, 

which is absurd because this form is obviously isotropic. Thus, we have obtained:

The Arf invariant of q equals 0.

As q represents 1, it follows that q is equivalent to [1, ab] ⊥ [a, b] for some (a, b) ∈ (K∗)2, 
that is q is equivalent to the norm of the quaternion algebra C[a, b]. In order to conclude, 
it suffices to prove that two LDB division algebras are equivalent whenever their attached 
quadratic forms are equivalent to q.

To see this, we start by noting that the polynomial t2 + t + (q(e3) + q(e1)q(e2)) splits 
over K. However, by Lemma 1.10, the minimal polynomial of g must be irreducible, 
whence it must have degree 1 since it divides t2 + t + (q(e3) + q(e1)q(e2)). This yields a 
scalar λ such that g = λidA, that is

e3 �− = Φ(e1e2) + λidA.

Now, let (A, �′, •′) be an e-standard LDB division algebra with attached quadratic 
form q. As above, the linear map x ∈ P �→ (x �′−) ∈ L(A) extends into a homomorphism 
Φ′ : C(qP ) → L(A) of K-algebras, and we obtain a scalar μ ∈ K such that

e3 �
′ − = Φ′(e1e2) + μidA.

Since C(qP ) is simple and L(A) is central and simple, the Skolem–Noether theorem yields 
an automorphism h of A such that Φ′(y) = h ◦ Φ(y) ◦ h−1 for all y ∈ C(qP ). Next, for 
α ∈ K, we denote by uα the isomorphism from A to C(qP ) that maps each vector e1, e2
to itself and that maps e3 to α + e1e2 and e to 1. Thus, we have

∀x ∈ A, x �− = Φ
(
uλ(x)

)
and x �′ − = Φ′(uμ(x)

)
.

Therefore, with v := u−1
λ ◦ uμ, we see that

∀x ∈ A, x �′ − = h ◦
(
v(x) �−

)
◦ h−1.

Finally, we note that v(x) = x + (μ − λ)bq(x, e)e for all x ∈ A, whence v commutes with 
x �→ x = x + bq(x, e)e (both being polynomials in the operator x �→ bq(x, e)e). Thus, 
with Remark 6, we conclude that (A, �, •) and (A, �′, •′) are equivalent.

Finally, as the quadratic form attached to C[a, b] is equivalent to q, we conclude that 
this quaternionic LDB division algebra is equivalent to (A, �, •), which completes the 
proof.
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6.3. Eight-dimensional non-degenerate LDB division algebras

Here, we determine the non-degenerate LDB division algebras of dimension 8 over K. 
The strategy is largely similar to the one of Section 5.2. First of all, we consider an 
8-dimensional non-degenerate LDB division algebra (A, �, •) whose attached quadratic 
form q represents 1. We need to prove that A is equivalent to an octonionic LDB division 
algebras and that every LDB division algebra with an equivalent attached quadratic form 
is equivalent to A. Choosing e ∈ A such that q(e) = 1, we know from the Standardization 
lemma that no generality is lost in assuming that (A, �, •) is e-standard.

We extend e into a symplectic basis (e1, . . . , e7, e) of (A, bq). Set f := e7 � −, W :=
span(e1, . . . , e6), and note that qW is non-degenerate and that every vector of W is 
orthogonal to e, so that

∀x ∈ W, (x �−)2 = q(x)idA.

Thus, the linear map x ∈ W �→ (x � −) ∈ L(A) extends into a homomorphism 
Φ : C(qW ) → L(A) of K-algebras. As C(qW ) is simple and dimC(qW ) = 26 = dimL(A), 
we find that Φ is an isomorphism.

Let x ∈ W � {0}. Polarizing the identity ∀y ∈ span(e1, . . . , e7), (y � −)2 +
bq(y, e)(y � −) = q(y)idA, we obtain (x � −) ◦ f + f ◦ (x � −) = (x � −), whence 
(x �−) ◦f◦(x �−)−1 = f+idA. However, x(e1e2+e3e4+e5e6)x−1 = (e1e2+e3e4+e5e6) +1, 
whence x �− commutes with Φ(e1e2 + e3e4 + e5e6) + f . As Φ is surjective and L(A) is 
a central K-algebra, we obtain a scalar λ such that

Φ(e1e2 + e3e4 + e5e6) + f = λidA.

From there, we find

f2 + f = Φ
(
(e1e2 + e3e4 + e5e6)2 + (e1e2 + e3e4 + e5e6)

)
+

(
λ2 + λ

)
idA

=
(
q(e1)q(e2) + q(e3)q(e4) + q(e5)q(e6)

)
+ λ2 + λ.

However, f2 + f = q(e7)idA, whence Δ[1, q(e7)] = Δ(qW ). As A = W
⊥
⊕ span(e, e7), we 

conclude:

The Arf invariant of q equals 0.

Claim 8. Every LDB division algebra with q as its attached quadratic form is equivalent 
to (A, �, •).

Proof. Again, we simply need to consider an e-standard LDB division algebra (A, �′, •′)
with attached quadratic form q. As above, we extend x ∈ W �→ (x �′ −) ∈ L(A) into an 
isomorphism Φ′ : C(qW ) → L(A) of K-algebras, and we find a scalar λ′ such that

e7 �
′ − = λ′idA + Φ′(e1e2 + e3e4 + e5e6).
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Using the Skolem–Noether theorem, we obtain an automorphism h of A such that

∀y ∈ C(qW ), Φ′(y) = h ◦ Φ(y) ◦ h−1.

Now, for α ∈ K, denote by vα the linear map from A to C(qW ) that maps ei to itself for 
all i ∈ [[1, 6] ], that maps e to 1 and that maps e7 to α + e1e2 + e3e4 + e5e6. Thus, for all 
x ∈ A, we find

x �− = Φ
(
vλ(x)

)
and x �′ − = Φ′(vλ′(x)

)
.

With u := v−1
λ ◦ vλ′ , it follows that

∀x ∈ A, x �′ − = h ◦
(
u(x) �−

)
◦ h−1.

Finally, we note that u(x) = x + (λ′ − λ)bq(x, e)e for all x ∈ A, and hence u commutes 
with x �→ x as both operators are polynomials in x �→ bq(x, e)e. From there, Remark 6
entails that (A, �, •) is equivalent to (A, �′, •′). �
Claim 9. There is a 4-dimensional subspace V1 of A that contains e and such that qV1 �
[1, ab] ⊥ [a, b] for some (a, b) ∈ (K∗)2.

Proof. Set P := span(e5, e6). As span(e, e5, e6) = Ke 
⊥
⊕ P , we see that 〈1〉 ⊥ [q(e5), q(e6)]

is anisotropic, whence the quaternion algebra Q := C(qP ) is a skew field. Seeing it 
naturally as a subalgebra of C(qW ), we can use the isomorphism Φ to endow A with a 
structure of left vector space over Q.

Next, we analyze how the operators x �− behave with that new vector space structure. 
For all x ∈ span(e1, . . . , e4), we obtain that x � − commutes with e5 � − and e6 � − by 
polarizing the identity ∀y ∈ span(e1, . . . , e6), (y �−)2 = q(y)idA. Thus, x �− is Q-linear 
for all x ∈ span(e1, . . . , e4). On the other hand, we have seen that e7 � − is a linear 
combination of idA, of (e1 �−) ◦ (e2 �−) + (e3 �−) ◦ (e4 �−) and of Φ(e5e6). Thus, for 
every x ∈ A, there exists h ∈ Q and a Q-linear endomorphism u of A such that

∀y ∈ A, x � y = h.y + u(y).

Then, setting V1 := {x ∈ A: x � e ∈ Qe}, we proceed as in the proof of Claim 5 and 
endow V1 with a structure of LDB division algebra with attached quadratic form qV1 . 
As V1 contains e5 and e6, the form qV1 is not totally degenerate, whence Theorem 1.2
yields that qV1 is non-degenerate, and as it represents 1 we deduce from the results of 
Section 6.2 that qV1 � [1, ab] ⊥ [a, b] for some (a, b) ∈ (K∗)2. �
Claim 10. There is a scalar c such that q � 〈1, c〉 ⊗ ([1, ab] ⊥ [a, b]).

Proof. We fix a subspace V1 given by Claim 9. Then, changing the basis if necessary, 
we can assume that V1 = span(e5, e6, e7, e) and that qspan(e5,e6) � [a, b]. Setting V2 :=
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span(e1, e2, e3, e4) = V ⊥
1 , our aim is to prove that qV2 is similar to [1, ab] ⊥ [a, b]. The 

line of reasoning is very similar to the one of the proof of Claim 6. Firstly, since the Arf 
invariant of q is 0 and the one of qV1 is 0, the Arf invariant of qV2 is 0. Now, with P :=
span(e5, e6) and Q := C(qP ), we consider again A with its structure of left Q-vector space 
induced by Φ. For all x ∈ V2, the map x �− is an endomorphism of the Q-vector space A, 
whence Φ induces an injective homomorphism of K-algebras from C(qV2) to LQ(A). As 
the Arf invariant of qV2 equals zero, the center of C0(qV2) is isomorphic to K ×K whence 
it contains a non-trivial idempotent p. Let x ∈ V2 � {0}. The conjugation y �→ xyx−1

induces the non-identity automorphism of the center of C0(qV2), which maps p to 1 − p. 
Setting g := Φ(p), it follows that (x � −) ◦ g = (id − g) ◦ (x � −), whence x � − swaps 
A1 := Ker g and A2 := Im g. From there, one uses the same line of reasoning as in the 
proof of Claim 6 to obtain that qV2 is the quadratic form attached to an LDB division 
algebra that is weakly equivalent to the quaternionic LDB division algebra Q, whence 
qV2 is similar to the norm of Q. This yields a scalar c such that qV2 � c([1, ab] ⊥ [a, b]). 
Finally, as A = V1

⊥
⊕ V2, we conclude that q � qV1 ⊥ qV2 � 〈1, c〉 ⊗ ([1, ab] ⊥ [a, b]). �

With the above data, one concludes that (A, �, •) is equivalent to the octonionic LDB 
division algebra associated with the quaternion algebra C[a, b] and with the scalar c. 
This completes the proof of the last point of Theorem 1.1 for fields of characteristic 2. 
Thus, Theorems 1.1, 1.2 and 1.5 are now fully established.
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