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1. Introduction

Matrices can be used to represent various structures arising in combinatorics, including 
graphs and algebras, such as cluster algebras. The latter can be defined using a directed 
graph G(B), called quiver, and consequently by an adjacency matrix, where rows and 
columns represent the vertices and the positive values at positions (i, j) represent the 
quantity of edges between associated vertices of the graph.

In 2002, Sergey Fomin and Andrei Zelevinsky [9] introduced a class of commutative 
algebras called cluster algebras. These algebras have a strong combinatorial structure. 
They are tools to study questions of dual canonical bases and positivity of semisimple 
Lie groups. Cluster algebras are defined recursively via commutative algebras with a 
distinct set of generating variables (cluster variables) grouped into overlapping subsets 
(clusters) of fixed cardinality.

A basic feature of cluster algebra class is that both the generators and the relation-
ships between them are not given from the start, but are produced by an elementary 
iterative process of seed mutation. This process is somewhat counterintuitive, but it 
seems to encode a universal phenomenon in some way. This may explain the accelerated 
development of the cluster algebra theme in areas such as combinatorics, physics, math-
ematics (especially geometry), among others as discussed in [11,12,14]. This algebra can 
be defined using a skew-symmetrizable matrix, as we will see in Section 3.

The notion of quasi-Cartan matrices was introduced by Barot, Geiss and Zelevin-
sky [1]. A quasi-Cartan matrix is a symmetrizable matrix with all entries of the main 
diagonal equal to 2. The authors show some properties of the matrices from the math-
ematical point of view. A quasi-Cartan companion is a quasi-Cartan matrix associated 
with skew-symmetrizable matrix as we will see in Section 2.

One can decide whether a cluster algebra is of finite type (has a finite number of cluster 
variables) by deciding whether or not the skew-symmetrizable matrix is associated with 
a cyclically oriented graph and has a positive quasi-Cartan companion. By the Sylvester 
criterion [4], a symmetric matrix is positive if all its leading principal submatrices have 
positive determinant.

In this paper, we present three algorithms of polynomial time complexity. The first one 
can be used to decide whether or not a quasi-Cartan companion matrix is positive. This is 
used as a certificate to prove that the problem of setting whether a positive quasi-Cartan 
companion there exists or not belongs to the NP class of problems. The second algorithm 
can be used to establish whether or not there exists a positive quasi-Cartan companion of 
a skew-symmetrizable matrix associated with a cyclically oriented graph. To verify that 
an oriented graph is cyclically oriented, we will use the algorithm and results presented 
in [3]. The last algorithm can be used to decide whether or not a cluster algebra is of 
finite type. This is used to prove that the problem belongs to the P class of problems. 
For more information about P, NP and NP-complete classes, see [6,17].

The remainder of the paper is organized as follows: Section 2 presents the preliminary 
concepts; Section 3 defines what is a cluster algebra of finite type and presents some 
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of its properties; In Section 4, we present some properties of cyclically oriented graphs 
and the general idea of the polynomial algorithm for its determination that is presented 
in [3]; Section 5 presents a polynomial algorithm for determining if a skew-symmetrizable 
matrix has a positive quasi-Cartan companion when the associated graph is cyclically 
oriented; Section 6 shows that deciding whether or not a cluster algebra is of finite type 
is a problem belonging to the class of polynomial problems. Finally, Section 7 closes the 
paper with concluding remarks and future work.

2. Preliminaries

Let n be a positive integer, A, B, C ∈ Mn(Z) and D ∈ Mn(Q). A matrix A is symmetric
if A = AT , where AT is the transpose of A. A matrix C is symmetrizable if D × C is 
symmetric for some diagonal matrix D with positive diagonal entries. In this case, the 
matrix D × C is the symmetrization or symmetrized version of C and the matrix D is 
the symmetrizer of C. Note that this definition is equivalent to the one given in [5] and 
the matrix D is taken over Q for the sake of simplicity. A matrix C is symmetric by signs
if for all i, j ∈ {1, . . . , n}, with i �= j, we have cij = cji = 0 or cij · cji > 0.

All symmetric matrices are symmetrizable and all symmetrizable matrices are sym-
metric by signs.

A matrix A is skew-symmetric if AT = −A. Observe that the values of the main 
diagonal are null. A matrix B is skew-symmetrizable if there exists a diagonal matrix D
with positive entries such that D×B is a skew-symmetric matrix. In this case, the matrix 
D × B is the skew-symmetrization or skew-symmetrized of B and the matrix D is the 
skew-symmetrizer of B. A matrix B is skew-symmetric by signs if for all i, j ∈ {1, . . . , n}
we have bii = 0 and if i �= j, then bij = bji = 0 or bij · bji < 0.

Also observe that all skew-symmetric matrices are skew-symmetrizable and that all 
skew-symmetrizable matrices are skew-symmetric by signs.

A generalized Cartan matrix is a symmetric matrix, whose main diagonal entries are 
equal to 2 and its other values are non-positives. A Cartan matrix is a symmetrizable 
matrix with a positive definite symmetrized matrix. Cartan matrices were first introduced 
by the French mathematician Élie Cartan. In fact, Cartan matrices, in the context of Lie 
algebras, were first investigated by Wilhelm Killing, whereas the Killing form is due to 
Cartan. Positive Cartan matrices represent the basis of the Cartan–Killing classification, 
see [10].

A symmetrizable matrix is quasi-Cartan if all the entries on its main diagonal equal 
to 2. For a skew-symmetrizable matrix B, we will refer to a quasi-Cartan matrix C with 
|cij | = |bij |, for all i �= j, as a quasi-Cartan companion of B.

Given a skew-symmetrizable matrix B, we associate G(B) with an oriented graph 
with vertices {1, 2, . . . , n} and edges (i, j) for each bij > 0, with i, j ∈ {1, . . . , n}.

Let G be a simple graph, with edge set E and vertex set V . Let n be the number of 
vertices in V and m the number of edges in E.
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A simple path is a finite sequence of vertices 〈v1, v2, . . . , vt〉 such that (vi, vi+1) ∈ E

for i ∈ {1, . . . , t − 1} and no vertex is repeated in the sequence, that is, vi �= vj , for 
i, j ∈ {1, . . . , t} and i �= j. A cycle is a simple path 〈v1, v2, . . . , vt〉 such that (vt, v1) ∈ E. 
We denote a cycle with t vertices by Ct.1 A chord of a cycle is an edge between two 
vertices of the cycle, that is not part of it. A cycle without chord is a chordless cycle.

An orientation of a graph G(B) consists of assigning an order to the endpoints of each 
of its edges. The orientation of a cycle 〈v1, v2 . . . , vt〉 is cyclic if it receives the orientations 
(v1, v2), . . . , (vt−1, vt), (vt, v1) or the opposite.

An oriented graph G(B) is cyclically oriented if any chordless cycle in G(B) is cyclic. 
It is cyclically orientable if it admits an orientation in which G(B) is cyclically oriented. 
Cyclically orientable graphs were introduced in 2006 by Barot, Geiss and Zelevinsky [1].

3. Cluster algebras of finite type

Cluster algebras are associated with the mutation-equivalence classes of skew-
symmetrizable matrices. Recall from [9] that, for each matrix index k, the mutation in 
direction k transforms a skew-symmetrizable matrix B into another skew-symmetrizable 
matrix B′ = μk(B), whose entries are given by

b′ij =
{
−bij , if i = k or j = k;
bij + sgn(bik) · [bik · bkj ]+, otherwise,

(1)

where we use the notation [x]+ = max(x, 0), with the convention sgn(0) = 0 and 
sgn(x) = x/|x|. One can easily check that μk is involutive, implying that the re-
peated mutations in all directions give rise to the mutation-equivalence relation on 
skew-symmetrizable matrices. Each of these matrices define an exchange pattern.

For an integer n, a cluster algebra of rank n is a subring of the field Q(x1, . . . , xn)
of rational fractions in n indeterminates generated by a set, possibly infinite, of cluster 
variables. These variables are not fixed arbitrarily. The set of cluster variables is the 
union (not disjoint) of subsets of n elements called clusters, which are related by the 
mutation change. For any cluster X and any cluster variable x ∈ X , we obtain a cluster 
X ′ by exchanging x by a variable x′ defined using a binomial exchange relation: x · x′ =
M1 +M2, where M1 and M2 are defined using an exchange pattern. All cluster variables 
are recursively obtained in this way from an initial seed, which is composed by a cluster 
and an exchange pattern. This process is a seed mutation. For more information, see [9].

Cluster algebras of finite type are those that have a finite number of cluster variables. 
The classification of these algebras turns out to be identical to the famous Cartan–Killing 
classification of semisimple Lie algebras.

The following criterion for deciding whether a skew-symmetrizable matrix corresponds 
to a cluster algebra of finite type is presented in [1].

1 Observe that our definition of a cycle, as in [7], does not repeat the first vertex at the end of the sequence 
as usually done by other authors.
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Theorem 1. (See Barot, Geiss and Zelevinsky [1].) Given a cluster algebra A(B) associ-
ated with a skew-symmetrizable matrix B. Let S be the mutation-equivalence class of B. 
The following are equivalent:

(a) The cluster algebra A(B) is of finite type.
(b) S contains a matrix B′ such that the Cartan matrix C with off-diagonal entries 

cij = −|b′ij | is positive.
(c) For every B′ ∈ S and all i �= j, we have |b′ij · b′ji| ≤ 3.
(d) Every chordless cycle in G(B) is cyclically oriented, and B has a positive quasi-

Cartan companion.

Furthermore, the Cartan–Killing type of the Cartan matrix C in (b) is uniquely deter-
mined by S.

Mutations are hard to control, so each of the conditions (b) and (c) in Theorem 1 is 
hard to check in general, since there may be a very large (possibly infinite) number of 
matrices in S. On the other hand, the condition (d) leads us to a polynomial algorithm 
as we will see in Section 6. As with condition (d), we divide the verification into two 
parts: Section 4 presents the ideas of the algorithm to decide whether a graph G(B)
is cyclically oriented (that was proposed by us in [3]) and in Section 5 we present two 
polynomial algorithms that, together, decide whether B has a positive quasi-Cartan 
companion when G(B) is cyclically oriented.

4. Cyclically oriented

In this section, we will present some properties of chordless cycles, cyclically orientable 
and cyclically oriented graphs.

Some properties of cyclically orientable graphs are given by Barot, Geiss and Zelevin-
sky [1]. New characterizations were obtained by Speyer [16] and Gurvich [13] in later 
works, which enabled the development of algorithms for the recognition of cyclically 
orientable graphs.

The proposition below is used in preprocessing of our algorithm to determine whether 
a graph is cyclically oriented.

Proposition 1. (See Speyer [16].) If G is a cyclically orientable graph with n vertices, 
then G has at most 2 · n − 3 edges.

Now we will discuss two-connected components. They are important since any chord-
less cycle is contained in exactly one of the components. To calculate them, we can use 
an algorithm based on the ideas of Tarjan [19] and Szwarcfiter [18], that has time com-
plexity O(n2), which is an application of depth-first search (DFS), described in Cormen 
et al. [6].
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A graph G is connected when there exists a path between each pair of vertices of G, 
otherwise G is disconnected. A connected component of a graph G is a maximal connected 
subgraph of G. A graph is two-connected if it is connected and the elimination of at least 
two vertices is necessary to disconnect it. A single edge is a two-connected graph.

The following theorem deals with cyclic orientability in two-connected components. 
The idea is used in our algorithms.

Theorem 2. (See Speyer [16].) A graph G is cyclically orientable if and only if all of its 
two-connected components also are. A two-connected graph is cyclically orientable if and 
only if it is either a cycle, a single edge, or of the form G′ ∪Ct, where G′ is a cyclically 
orientable graph, Ct is a cycle and G′ and Ct meet along a single edge. Moreover, if 
G = G′ ∪ Ct is any such decomposition of G into a cycle and a subgraph meeting along 
a single edge, then G is cyclically orientable if and only if G′ is.

4.1. Algorithm to determine whether a graph is cyclically oriented

Based on the results given by Speyer [16], Dias and Castonguay in [3] proposed a 
polynomial algorithm to verify if a graph is cyclically oriented. The algorithm can be 
slightly modified to verify whether or not a given oriented graph is cyclically oriented. 
Moreover, in the positive case, they show that the algorithm returns all chordless cycles 
of the graph.

We now highlight the ideas of the algorithm. It is based on the analysis of each 
two-connected component of a given graph. Following the idea presented by Speyer [16], 
the algorithm identifies chordless cycles induced by cycle Ct given by Theorem 2. This 
is done in order to reduce each two-connected component to a unique cycle.

Initially, the algorithm verifies if the given graph satisfies Proposition 1, that is, if the 
graph has 2 ·n −3 edges. If not, it returns the decision NO. Next, it finds all two-connected 
components and then verifies if each component satisfies Proposition 1. If not satisfied, 
it returns NO.

After that, the algorithm stores in a queue Q all vertices of degree two for each 
two-connected component. Observe that all vertices will be added to Q at most once 
and if G is cyclically orientable then all vertices will be added.

The algorithm tries, starting with the vertices of queue Q, to find and eliminate paths 
(cycles) in order to reduce the initial two-connected component to a cycle. If it is able 
to do so, the component is cyclically oriented. If not, it returns NO. This will continue 
for all components. In the final of process, the given graph will be classified as cyclically 
orientable if all two-connected components receive a cyclically orientable classification; 
otherwise, the graph is classified as not cyclically orientable. Therefore, it determines in 
O(n2) time whether this graph is cyclically orientable and, if so, it returns the set of all 
chordless cycles S of G. Here, we will consider the set S as a stack. Observe that there 
is at most n chordless cycles in the whole graph.
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Algorithm 1: IsPositive(C).
Input: A n × n symmetrizable matrix C.
Output: The response is if the matrix is positive or not.

1 foreach leading principal submatrix C′ of C do
2 if (det(C′) ≤ 0) then
3 return NO

4 return YES

Dias and Castonguay [3] provided an algorithm to verify whether a non-oriented 
graph is cyclically orientable. Observe that this paper consider oriented graphs, therefore 
it is necessary to make small modifications in order that the algorithm can be used in 
Algorithm 3. Consider the modified algorithm called ChordlessCyclesCOd(G). If a graph 
is cyclically oriented it returns the set S of all chordless cycles. For more information 
about the algorithm, see [3].

5. Positive quasi-Cartan companion

As we saw in Theorem 1, Barot, Geiss and Zelevinsky [1] show that for a cluster 
algebra of finite type we have that the associated skew-symmetrizable matrix B must 
have a positive quasi-Cartan companion C.

By the Sylvester criterion [4], a symmetric matrix is positive if all leading princi-
pal submatrices have positive determinant. A leading principal submatrix is obtained 
by iteratively removing the last row and the last column of the matrix. Using [8], 
a symmetrizable matrix is positive if all leading principal submatrices have positive 
determinant.

Dias, Castonguay and Dourado [8] presented Algorithm 1 with time complexity θ(n4)
to decide whether the given matrix C is positive. This algorithm is used as a verifier for 
the general problem of deciding if there exists a positive quasi-Cartan companion. Thus, 
the problem belongs to the NP class.

Verifying all quasi-Cartan companions is exponential since if B is a n × n skew-
symmetrizable matrix there are 2m matrices C which are quasi-Cartan companions of B. 
Note that a quasi-Cartan companion of B is specified by choosing the signs of its off-
diagonal matrix entries, with the only requirement being that sgn(cij) = sgn(cji) and 
|cij | = |bij |, for i �= j. Dias, Castonguay and Dourado [8] showed that if C is symmetric 
according to the signs, then C is symmetrizable with the same symmetrizer of B.

Thus, it is not efficient to test all possible signs for a quasi-Cartan companion. How-
ever, Barot, Geiss and Zelevinsky [1] showed a sign condition which simplifies the test of 
the existence of a positive quasi-Cartan companion without having to assign all possible 
signs.

Definition 1 (Sign condition). (See Barot, Geiss and Zelevinsky [1].) Let B be skew-
symmetrizable matrix. A quasi-Cartan companion C of B satisfies the sign condition if, 
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for every chordless cycle Ct in G(B), the product 
∏

(i,j)∈Ct

(−cij) over all edges of Ct is 

negative.

In our case, the skew-symmetrizable matrix always has at least one quasi-Cartan 
companion that satisfies the sign condition.

Proposition 2. (See Barot, Geiss and Zelevinsky [1].) Let B be a skew-symmetrizable ma-
trix. If G(B) is cyclically oriented, then B has a quasi-Cartan companion (not necessarily 
positive) satisfying the sign condition; furthermore, such a quasi-Cartan companion is 
unique up to simultaneous sign changes in rows and columns.

The next proposition shows that it is enough to check the quasi-Cartan companion 
satisfying the sign condition.

Proposition 3. (See Barot, Geiss and Zelevinsky [1].) To be positive, a quasi-Cartan 
companion C of a skew-symmetrizable matrix B must satisfy the sign condition.

Observe that a quasi-Cartan matrix that satisfies the sign condition is not necessarily 
positive.

The following proposition shows that, for our purpose, it is enough to verify the 
positivity of one quasi-Cartan companion that satisfies the sign condition. The proposed 
algorithm to verify if a skew-symmetrizable matrix has a positive quasi-Cartan matrix 
is based on finding a quasi-Cartan matrix that satisfies the sign condition.

Proposition 4. Let C be a quasi-Cartan companion of a skew-symmetrizable matrix B
which satisfies the sign condition. If G(B) is cyclically oriented, then B has a positive 
quasi-Cartan companion if and only if C is positive.

Proof. Suppose that G(B) is cyclically oriented. Clearly, if C is positive, then B has a 
positive quasi-Cartan companion. On the other hand, if B has a positive quasi-Cartan 
companion, say C ′, then by Proposition 3, C ′ satisfies the sign condition. By Propo-
sition 2, C is obtained from C ′ by simultaneous sign changes in rows and columns. 
Therefore, there exists a diagonal matrix X = (xij) with xii ∈ {−1, 1} such that 
C = XC ′X. Since det(C) = det(X) · det(C ′) · det(X) and det(X) ∈ {−1, 1}, we have 
that C is positive. �

Next we present an algorithm that defines an attribution of sign for a quasi-Cartan 
companion of B. In the algorithm, the obtained matrix C will satisfy the sign condition. 
Later, we verify the positivity of C. By Proposition 4, the matrix B has a positive 
quasi-Cartan companion if and only if C is positive.

Observe that the stack S contains all chordless cycles obtained by the Algorithm 
ChordlessCyclesCOd(G) and the set T contains all two-connected components of G that 
are single edges.
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Algorithm 2: PositiveCompanion(G, B, S).
Input: A cyclically oriented graph G, a skew-symmetrizable matrix B associated with G, a stack 

S of chordless cycles and a set T of single edges (two-connected components of G).
Output: The response whether or not there exists a positive quasi-Cartan companion.

1 initialize sgn(xi, xj) ← 0 for all i, j ∈ {1, 2, . . . , n}
2 initialize sgn(edge) ← 1 for all single edges in T
3 while (S �= ∅) do
4 remove an element c of S /* c = 〈x1, . . . , xt〉 */
5 xt+1 ← x1
6 I ← 0
7 prod ← 1
8 foreach i ∈ {1, . . . , t} do
9 if (sgn(xi, xi+1) �= 0) then

10 prod ← prod · sgn(xi, xi+1)
11 else
12 if (I = 0) then
13 I ← i

14 else
15 sgn(xi, xi+1) ← 1

16 sgn(xI , xI+1) ← −prod

17 initialize cij ← |bij | · sgn(xi, xj) for all i, j ∈ {1, 2, . . . , n}
18 initialize cii ← 2 for all i ∈ {1, 2, . . . , n}
19 if (IsPositive(C)) then
20 return YES
21 else
22 return NO

Based on [3], one can see that the cardinality of S is at most n. Therefore, the time 
complexity of Algorithm 2 is O(n4), due Line 19. The rest of the algorithm is O(n2). To 
prove the correctness of Algorithm 2, we first show that the function sgn is well defined.

Proposition 5. The function sgn is well defined, that is, sgn(edge) ∈ {1, −1} for all 
edge ∈ E.

Proof. The line numbers in this proof refer to lines of Algorithm 2. First, we prove that 
in Line 15, I �= 0. We can assume that G is a two-connected graph, since the algorithm 
acts on each two-connected component. The first cycle is a cycle without a defined edge. 
Therefore, the first edge does not satisfy the condition in Line 9 and enters on Line 12
(I = 1). For any other cycles Ct, we have G = G′ ∪ Ct such that only edges of G′ are 
defined. Therefore, the first or second edge of Ct is not defined (I = 1 or I = 2).

Since the graph G is two-connected, for each connected component we have a single 
edge or the edge is part of a cycle. If G is a single edge, then it receives 1 at Line 2. If not, 
the edge receives 1 at Line 15 or “−prod” at Line 16. Therefore, sgn is well defined. �

We show next that the construction of C gives a quasi-Cartan companion that satisfies 
the sign condition.
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Algorithm 3: ClusterAlgebraFiniteType(B, G).
Input: A skew-symmetrizable matrix B that defines a cluster algebra A(B), and the respective 

graph G.
Output: The response if the cluster algebra A(B) is of finite type or not.

1 COd, S ← ChordlessCyclesCOd(G)
2 if (COd = YES) then
3 PositiveCompanion(G, B, S)
4 else
5 return NO

Theorem 3. The n × n matrix C defined below satisfies the sign condition.

cij =
{

2, if i = j

sgn(xi, xj) · |bij |, otherwise.

Proof. Recall that S is composed of all chordless cycles of G. It follows from Proposition 5
that the product of each cycle is equal to −prod2. �
Theorem 4. The Algorithm 2 is correct.

Proof. Follows from [3], Theorem 3 and Proposition 4. �
6. Recognizing cluster algebras of finite type is in P

Since the algorithm ChordlessCyclesCOd(G) checks whether or not a graph is cycli-
cally oriented and the algorithm PositiveCompanion(G, B, S) verifies whether or not the 
matrix has a positive quasi-Cartan companion, both in polynomial time complexity, it 
follows from Theorem 1 that deciding whether or not a cluster algebra is of finite type 
belongs to the class of polynomial problems (P).

Based on the above algorithms, we have that the time complexity of Algorithm 3
is O(n4). The correctness of Algorithm 3 follows directly from the correctness of Algo-
rithms 1 and 2.

7. Conclusions and future work

In this paper, we proposed two polynomial algorithms that together prove that decid-
ing if a cluster algebra is of finite type belongs to the class of polynomial problems (P). 
The first checks whether or not the associated graph is cyclically orientable and, if so, 
the second verifies whether there exists a positive quasi-Cartan companion of B, which 
represents a cluster algebra. These two criteria can be evaluated for the determination of 
finiteness of a cluster algebra due to Theorem 1 presented by Barot, Geiss and Zelevin-
sky [1].
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The result shown is important because the use of an efficient algorithm to determine 
if a cluster algebra is of finite type will facilitate the research in many areas of the 
application of cluster algebras.

Another interesting solution of the problem was obtained by A. Seven in [15], in which 
it is verified whether a cluster algebra is of finite type in terms of “forbidden minors” 
of B. For special case of type A and D, the quivers have been classified in [2], for type A, 
and in [20], for type D. An interesting study would be if those characterizations leads to 
polynomial algorithms. Maybe with those characterizations, we can modify our algorithm 
to return the type of the quiver.

Importantly, we conjecture that, in general, the problem of finding a positive quasi-
Cartan companion for a skew-symmetrizable matrix B is an NP-complete problem. This 
problem will be considered in future work.
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