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The graded cellularity of Libedinsky double leaves, which form 
a basis for the endomorphism ring of the Bott–Samelson–
Soergel bimodules, allows us to view the Kazhdan–Lusztig 
polynomials as graded decomposition numbers. Using this 
interpretation, we can provide a proof of the monotonicity 
conjecture for any Coxeter system.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In their seminal paper [12], Kazhdan and Lusztig defined, for each Coxeter system 
(W, S), a family of polynomials with integer coefficients indexed by pairs of elements 
of W . These polynomials are now known as the Kazhdan–Lusztig (KL) polynomials. We 
will denote them by Px,w(q) ∈ Z[q], for all x, w ∈ W . Applications of the KL-polynomials 
have been found in the representation theory of semisimple algebraic groups, the topol-
ogy of Schubert varieties, the theory of Verma modules, the Bernstein–Gelfand–Gelfand 
(BGG) category O, etc. (see, e.g., [2] and references therein).
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Aside from the importance of the KL-polynomials in the above-mentioned subjects, 
there are purely combinatorial reasons to study these polynomials. Perhaps the ma-
jor reason is the longstanding Kazhdan–Lusztig positivity conjecture [12], which states 
that Px,w(q) ∈ N[q], for all Coxeter groups W and all x, w ∈ W . In 2014, Elias and 
Williamson [6] gave a proof of this conjecture by proving a stronger result known as 
Soergel’s conjecture.

For each Coxeter group W , Soergel constructed a category of graded R-bimodules 
(where R is a polynomial ring with coefficients in R) known as the category of Soergel 
bimodules, which we will denote by SBim. He proved that (up to degree shift) W pa-
rameterizes the set of all indecomposable objects in SBim. For w ∈ W , let us denote 
by Bw the corresponding indecomposable object. Soergel proved in [18] that SBim is 
a categorification of the Hecke algebra H of W . This means that there is an algebra 
isomorphism

ε : H → [SBim], (1.1)

where [SBim] denotes the split Grothendieck group of SBim. Soergel proposed the fol-
lowing conjecture, which came to be known as Soergel’s conjecture:

ε(Hw) = [Bw], (1.2)

where {Hw}w∈W is the Kazhdan–Lusztig basis of H. Assuming this conjecture, Soergel 
showed that the Kazhdan–Lusztig polynomials of W arise as graded ranks of Hom spaces 
between indecomposable Soergel bimodules and standard bimodules. It follows that these 
coefficients are non-negative, i.e., he proved that (1.2) implies the positivity conjecture.

More than mere positivity is conceivable for coefficients of KL-polynomials. In effect, 
a monotonicity property is known for these coefficients, when W is a finite or affine Weyl 
group. Namely, for these groups it is true that if u, v, w ∈ W and u ≤ v ≤ w, then

Pu,w(q) − Pv,w(q) ∈ N[q], (1.3)

where ≤ denotes the usual Bruhat order on W . In other words, if we fix the second 
index of a KL-polynomial, and if the first one decreases in Bruhat order, all coefficients 
in the polynomial weakly increase in value. This result was originally proved by Irving 
[10, Corollary 4] using the interpretation of KL-polynomials as multiplicities of simple 
objects in the socle filtration of a Verma module, when W is a finite Weyl group, and by 
Braden and MacPherson [3, Corollary 3.7] using the interpretation of KL-polynomials 
as Poincaré polynomials of the local intersection cohomology of Schubert varieties, when 
W is a finite or affine Weyl group.

It is natural to conjecture that (1.3) holds for arbitrary Coxeter groups. In the 
literature, the latter conjecture is referred to as the Monotonicity Conjecture2 for KL-

2 To the best of the author’s knowledge nobody conjectured the Monotonicity Conjecture.
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polynomials. Elias and Williamson’s work not only solved Soergel’s conjecture, but it 
provides a “geometric” setting for arbitrary Coxeter groups. In this context, in order to 
prove (1.3), it then seems reasonable to try to adapt the geometric proof of Braden and 
MacPherson to the language of Soergel bimodules. However, a proof for the Monotonic-
ity Conjecture has not been formally documented anywhere, to the best of the author’s 
knowledge. In this paper, we adopt an alternative approach. Actually, we provide a proof 
of the Monotonicity Conjecture for arbitrary Coxeter groups completely contained in the 
language of Soergel bimodules. Therefore, the arguments used in our proof are different 
from the algebraic arguments used by Irving, and different from the geometric arguments 
used by Braden and MacPherson.

Let us briefly explain our approach to the Monotonicity Conjecture. For each reduced 
expression w of an element w ∈ W , one can explicitly define a Soergel bimodule BS(w), 
called the Bott–Samelson bimodule. The endomorphisms ring of a Bott–Samelson bimod-
ule, End(BS(w)), has a natural structure of free right R-algebra. Libedinsky constructed 
in [14] an R-basis for these spaces that he called light leaves basis. He generalized his 
construction in [15] to obtain another basis that he called the double leaves basis. The 
latter is more useful than the light leaves basis for our purposes because of its symmetry 
properties. In particular, Elias and Williamson noticed in [7] that the double leaves basis 
is a cellular basis for End(BS(w)), in the sense of Graham and Lehrer [8].

Let R+ be the ideal of R generated by homogeneous elements of nonzero degree. 
We have R ∼= R/R+. Therefore, we can reduce End(BS(w)) modulo R+ to obtain an 
R-algebra. The resulting algebra is equipped with a natural Z-grading. The double leaves 
basis behaves satisfactorily with respect to reduction modulo R+ and cellularity. Con-
cretely, the image of the double leaves basis is a graded cellular basis of End(BS(w)) ⊗RR
in the sense of Hu and Mathas [9]. The existence of a graded cellular basis allows us to 
define graded cell modules and graded simple modules, as well as graded decomposition 
numbers. We then prove using Soergel’s conjecture that the KL-polynomials (suitably 
normalized) can be interpreted as graded decomposition numbers. Finally, we construct 
certain injective homomorphisms between cell modules that allow us to embed a cell 
module into another cell module. This embedding provides a family of inequalities for 
the respective graded decomposition numbers. This implies the Monotonicity Conjec-
ture according to the aforementioned interpretation of the KL-polynomials as graded 
decomposition numbers.

The layout of this article is as follows. In Section 2, we recall a few useful results 
of the theory of graded cellular algebras. In Section 3, we define Hecke algebras and 
the category of Soergel bimodules, and conclude this section by recalling Libedinsky’s 
construction of the double leaves basis. We establish the graded cellularity of double 
leaves basis in Section 4. Using graded cellularity, we can view the KL-polynomials as 
graded decomposition numbers. Finally, in Section 5, we show how to embed a cell 
module into another cell module. We then use this embedding to conclude our proof of 
the Monotonicity Conjecture.
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2. Graded cellular algebras

In this section, we briefly recall the theory of graded cellular algebras. Graded cellular 
algebras were defined by Hu and Mathas in [9], following and extending the ideas of 
Graham and Lehrer [8]. A clear exposition of this theory (in the ungraded setting) can 
be found in [16].

Let K be a field. A graded K-vector space M is a K-vector space that has a direct sum 
decomposition M =

⊕
k∈Z

Mk. If M is a graded K-vector space and k ∈ Z, we denote 
by M〈k〉 the graded K-vector space obtained from M by shifting the grading on M , i.e., 
M〈k〉i = Mi−k, for all i ∈ Z. Given a Laurent polynomial f =

∑
i∈Z

aiv
i ∈ N[v, v−1]

and a graded vector space M , we set

fM =
⊕
i∈Z

M〈i〉
⊕

ai .

A graded K-algebra A is a K-algebra with a direct sum decomposition A =
⊕

k∈Z
Ai

as a K-vector space such that AiAj ⊂ Ai+j , for all i, j ∈ Z. A graded right A-module 
M is a graded K-vector space that is an A-module in the usual (ungraded) sense, such 
that AiMj ⊂ Mi+j , for all i, j ∈ Z. Given a graded finite-dimensional K-vector space, 
M =

⊕
k∈Z

, Mk, we define its graded dimension dimv M ∈ N[v, v−1] as follows

dimv M =
∑
k∈Z

dimK(Mk)vk. (2.1)

We now define the concept of graded cellular algebra. This definition is provided in 
[9, Definition 2.1].

Definition 2.1. Let A be a graded finite-dimensional K-algebra. A graded cell datum is an 
ordered quadruple (Λ, T, C, deg), where (Λ, ≥) is a poset, T (λ) is a finite set for λ ∈ Λ, 
and C and deg are two functions defined as follows:

C :
∐
λ∈Λ

T (λ) × T (λ) → A, (s, t) → cλst; deg :
∐
λ∈Λ

T (λ) → Z

such that C is injective and:

(a) C = {cλst | s, t ∈ T (λ), λ ∈ Λ} is a basis of A.
(b) The K-linear map ∗ :A →A determined by (cλst)∗ = cλts is an anti-automorphism of A.
(c) For all a ∈ A, λ ∈ Λ, and s, t ∈ T (λ), there exist scalars rtv(a) ∈ K that do not 

depend on s, such that

cλsta ≡
∑

v∈T (λ)

rtv(a)cλsv mod A>λ (2.2)

where A>λ is the vector subspace of A spanned by {cμ
ab

| a, b ∈ T (μ), μ > λ}.
(d) Each cλst is a homogeneous element of degree deg(s) + deg(t).
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A graded cellular algebra is a graded algebra with a graded cell datum. The set C is a 
graded cellular basis of A.

Remark 2.2. Ignoring the grading on A, the degree function, and axiom (d) in the 
above definition, one recovers the original definition of cellular algebras by Graham 
and Lehrer [8]. In this case, we say that A is a cellular algebra with a cellular basis and 
a cell datum.

Let A be a graded cellular algebra with graded cellular basis C, as in the above 
definition. For each λ ∈ Λ, we define the graded cell module, Δ(λ), as the graded right 
A-module

Δ(λ) =
⊕
k∈Z

Δ(λ)k

where Δ(λ)k is a K-vector space with basis {cλt | t ∈ T (λ) and deg(t) = k}, and the 
symbols cλt are formal variables. The A-action on Δ(λ) is determined by the scalars that 
appear in (2.2), i.e.,

cλt a =
∑

v∈T (λ)

rtv(a)cλv (2.3)

Suppose that λ ∈ Λ. Then, it follows from Definition 2.1 that there is a bilinear form 
〈 , 〉 on Δ(λ) which is determined by

cλasc
λ
tb ≡ 〈cλs , cλt 〉cλab mod A>λ (2.4)

For each λ ∈ Λ, 〈 , 〉 satisfies 〈x, y〉 = 〈y, x〉, and 〈xa, y〉 = 〈x, ya∗〉, for all x, y ∈ Δ(λ)
and a ∈ A. Accordingly, the radical

rad(Δ(λ)) := {x ∈ Δ(λ) | 〈x, y〉 = 0, for all y ∈ Δ(λ)} (2.5)

of Δ(λ) is a graded A-submodule of Δ(λ) (see [9, Lemma 2.7]). Therefore, the quotient 
D(λ) := Δ(λ)/ rad(Δ(λ)) is a graded right A-module. Furthermore, if D(λ) 
= 0, then 
D(λ) is a simple graded right A-module. Define

Λ0 = {λ ∈ Λ | D(λ) 
= 0}.

The following theorem gives a classification of the simple graded A-modules for a 
graded cellular algebra A. This result is due to Hu and Mathas [9, Theorem 2.10], and 
is a graded version of [8, Theorem 3.4].

Theorem 2.3. Let A be a graded cellular algebra, with a cell datum as in Definition 2.1. 
Then, the set {D(λ)〈k〉 | λ ∈ Λ0 and k ∈ Z} is a complete set of pairwise non-isomorphic 
graded simple right A-modules.
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Let Δ and D be graded right A-modules. If D is simple, we denote by [Δ : D〈k〉]
the multiplicity of the graded simple module D〈k〉 as a graded composition factor in a 
graded composition series of Δ, for all k ∈ Z. We then define the graded decomposition 
number, d(Δ, D), as the Laurent polynomial:

d(Δ, D) =
∑
k∈Z

[Δ : D〈k〉]vk. (2.6)

In particular, if Δ = Δ(λ) and D = D(μ), for some λ ∈ Λ and μ ∈ Λ0, we denote

d(Δ, D) = d(λ, μ). (2.7)

Furthermore, we have

d(μ, μ) = 1 and d(λ, μ) 
= 0 only if λ ≥ μ. (2.8)

We end this section by relating the graded representation theory of the algebras A and 
eAe, where A is a graded (not necessarily cellular) algebra and e ∈ A is an homogeneous 
idempotent. We remark that for each right A-module V , the subspace V e of V has a 
natural structure of a right eAe-module.

Theorem 2.4. Let A be a graded algebra. Let e ∈ A be an homogeneous idempotent (and, 
therefore, of degree zero). We then have:

(a) If V is a simple graded right A-module and V e 
= 0, V e is a simple graded right 
eAe-module. Furthermore, all the simple right eAe-modules can be obtained in this 
manner.

(b) Let V and D be graded right A-modules. If D is simple and De 
= 0, then

d(V,D) = d(V e,De) (2.9)

where the left (resp. right) side of (2.9) corresponds to the graded decomposition 
number for A-modules (resp. eAe-modules).

Proof. This is well-known (see, for example, [5, Appendix A1] or [17, Theorem 2.4]). �
3. Libedinsky double leaves

In this section, we introduce, for an arbitrary Coxeter system (W, S), its corresponding 
Hecke algebra, and its corresponding category of Soergel bimodules. We end this section 
by introducing the double leaves basis. This is a basis for morphism spaces between 
Bott–Samelson bimodules. Double leaves are the combinatorial tool that we use to prove 
the monotonicity conjecture in Section 5. This basis admits a convenient diagrammatic 



330 D. Plaza / Journal of Algebra 473 (2017) 324–351
description. For the sake of brevity, we have omitted the diagrammatic approach in this 
paper. However, the diagrams allowed several calculations that helped us understand the 
problem. We refer the reader interested in the diagrammatic approach to [7, Part 3].

3.1. Hecke algebras and KL-polynomials

Let (W, S) be a Coxeter system. That is, W is a group with generators s ∈ S and 
relations

(st)mst = e for all s, t ∈ S (3.1)

where e ∈ W is the identity, mst ∈ {1, 2, . . . , ∞} satisfies: mst = 1 if and only if s = t, 
and mst = mts for all s, t ∈ S. When mst = ∞, relation (3.1) is omitted. We use the 
underlined letter w = (s1, . . . , sk), si ∈ S to denote a finite sequence of elements in S. 
We will call expressions to these sequences. If we consider an expression w = (s1, . . . , sk), 
the corresponding Roman letter, w, will denote its product in W , i.e., w = s1 . . . sk. We 
make this distinction between w and w because a few concepts defined in this paper 
and used throughout rely heavily on the considered expression for w rather than on w
itself. We will often write w = s1 . . . sk, where the underlined letter reminds us that 
the entire sequence, and not merely w, is important. The group W is equipped with a 
length function l : W → N and an order, called the Bruhat order, which is denoted by ≥
(see, e.g., [1, Chapter 1]). The length of an expression w = s1 . . . sk is k. We say that an 
expression is reduced if l(w) = l(w).

Definition 3.1. Let A = Z[v, v−1] be the ring of the Laurent polynomials in v. The Hecke 
algebra H = H(W, S) is the A-algebra that is associative and unital with generators 
{Hs|s ∈ S} and relations

H2
s = (v−1 − v)Hs + 1 (3.2)

HsHtHs . . .︸ ︷︷ ︸
mst terms

= HtHsHt . . .︸ ︷︷ ︸
mst terms

. (3.3)

If w = s1 . . . sk is a reduced expression for w ∈ W , we define Hw := Hs1 . . . Hsk . It 
is well-known that Hw does not depend on the choice of the reduced expression w. The 
set {Hw|w ∈ W} is a basis for H as an A-module. There is a unique ring involution 
− : H → H determined by v = v−1 and Hw = H−1

w−1 , for all w ∈ W .

Theorem 3.2. [12, Theorem 1.1] There exists a unique basis {Hw | w ∈ W} for H as a 
A-module such that Hw is invariant under − and

Hw =
∑
x≤w

hx,wHx (3.4)

with hx,w ∈ vZ[v] if x 
= w and hw,w = 1.
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The set {Hw | w ∈ W} is called the Kazhdan–Lusztig basis of H and the polynomials 
hx,w are called the Kazhdan–Lusztig polynomials.

Remark 3.3. The reader should note that in this paper, we follow the normalization 
given by Soergel in [18] rather than the original normalization by Kazhdan and Lusztig 
in [12]. Therefore, we have q = v−2, and the original Kazhdan–Lusztig polynomials 
Px,w(q) ∈ Z[q] can be recovered from our Kazhdan–Lusztig polynomials hx,w(v) ∈ Z[v]
by the formula

hx,w(v) = vl(w)−l(x)Px,w(v−2). (3.5)

3.2. The category of Soergel bimodules

Let us fix once and for all a reflection-faithful representation V of W over R. In [19], 
Soergel constructed such a representation for arbitrary Coxeter groups. Let R be the 
R-algebra of regular functions on V . We can grade this algebra by setting R =

⊕
i∈Z

Ri, 
with R2 = V ∗. Let R+ be the ideal of R generated for all elements of positive degree. 
Of course, R/R+ ∼= R. We will often consider R as an R-module via this isomorphism. 
There is a natural action of W on R induced by the action of W on V . For s ∈ S, let 
Rs be the subring of R fixed by s. Then, we define the graded (R, R)-bimodule

Bs = R⊗Rs R(1), (3.6)

where for a graded (R, R)-bimodule B and every k ∈ Z, we denote by B(k) the graded 
(R, R)-bimodule defined by the formula

B(k)i = Bk+i (3.7)

For the expression w = s1 . . . ssk , we denote by BS(w) the (R, R)-bimodule defined 
by

BS(w) = Bs1 ⊗R Bs2 ⊗R . . .⊗R Bsk (3.8)

Bimodules of the type BS(w) will be called Bott–Samelson bimodules. We introduce 
the convention that BS(∅) = R. From now on, we denote the tensor product of 
(R, R)-bimodules, ⊗R, simply juxtaposition. Thus, BS(w) becomes Bs1Bs2 . . . Bsk . We 
then have the following isomorphism of (R, R)-bimodules

Bs1Bs2 . . . Bsk
∼= R⊗Rs1 R⊗Rs2 ⊗ . . .⊗Rsk R(k) (3.9)

Therefore, we can write an element of this module as a sum of terms given by k + 1
polynomials in R, one in each slot separated by the tensors. Let xs ∈ V ∗ be an equation 
of the hyperplane fixed by s ∈ S. Then, for all s ∈ S, we define the Demazure operator, 
∂s : R(2) → Rs, as a morphism of graded Rs-modules given by
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∂s(f) = f − s · f
2xs

(3.10)

It is not difficult to prove that ∂s(f) and Ps(f) = f − xs∂s(f) are s-invariant. Since 
f = Ps(f) + xs∂s(f), R is free as a graded right Rs-module with basis {1, xs}, i.e., we 
have a decomposition R � Rs⊕xsR

s. Using this decomposition, we can prove that BS(s)
is a free right R-module with basis {xs ⊗ 1, 1 ⊗ 1}. Let w = s1 . . . sk be an expression. 
Going once more through the above decomposition of R, we can see that BS(w) is a free 
right R-module of rank 2k, with basis

{xe1
s1 ⊗ xe2

s2 ⊗ . . .⊗ xek
sk

⊗ 1 | ei = 0, 1}. (3.11)

We now define the category of Soergel bimodules. This category categorifies the Hecke 
algebra, as will be made precise in Theorem 3.5.

Definition 3.4. The category of Soergel bimodules, SBim, is the category of Z-graded 
(R, R)-bimodules whose objects are grading shifts and direct sums of direct summands 
of Bott–Samelson bimodules. The morphisms are all degree-preserving bimodule ho-
momorphisms. For B, B′ ∈ SBim, we denote by Hom(B, B′) the corresponding set of 
morphisms. Moreover, we write

HomZ(B,B′) =
⊕
k∈Z

Hom(B(k), B′) (3.12)

to denote the bimodule homomorphisms between B and B′ of all degrees. In particular, 
we write EndZ(B) := HomZ(B, B). An element f ∈ Hom(B(k), B′) ∼= Hom(B, B(−k)) is 
called a homogeneous morphism of degree k and we write deg(f) = k. Let f, g ∈ EndZ(B)
be homogeneous elements of degree k and l, respectively. By the above isomorphism, we 
can consider g as an element of Hom(B(l + k), B(k)). Therefore, we can define fg :=
f ◦ g ∈ Hom(B(l+k), B). Extending by linearity the above definition, we have equipped 
to EndZ(B) with structure of Z-graded R-algebra.

Let [SBim] be the split Grothendieck group of the category SBim. That is, [SBim]
is the abelian group generated by the symbols [B] for all objects B ∈ SBim, subject to 
the relation [B] = [B′] + [B′′] whenever we have B ∼= B′ ⊕ B′′ in SBim. The following 
theorem is known as Soergel’s categorification theorem and relates SBim to H.

Theorem 3.5. For each w ∈ W , there exists a unique (up to isomorphism) indecomposable 
bimodule Bw that occurs as a direct summand of BS(w) for any reduced expression w
of w, and Bw does not appear in any BS(x) for a word x shorter than w. Furthermore, 
there is a unique A-algebra isomorphism

ε : H −→ [SBim] (3.13)

such that ε(v) = R(1) and ε(Hs) = [Bs] for all s ∈ S.



D. Plaza / Journal of Algebra 473 (2017) 324–351 333
In order to explain the inverse of ε, known as Soergel’s character map, we need to 
introduce standard bimodules. Given x ∈ W we define the standard bimodule Rx as the 
(R, R)-bimodule, such that Rx

∼= R as a left R-module and the right action on Rx is the 
right multiplication on R deformed by the action of x on R, i.e.,

r · r′ := rx(r′) for r ∈ Rx and r′ ∈ R. (3.14)

Theorem 3.6. The categorification ε : H → [SBim] admits an inverse, η : [SBim] → H, 
given by the formula

η([B]) =
∑
x∈W

dimv(HomZ(B,Rx) ⊗R R)Hx. (3.15)

We end this subsection by introducing Soergel’s conjecture. For historical reasons, we 
call this a conjecture even though it was proven in 2014 [6].

Conjecture 3.7. Let W be a Coxeter group. For all w ∈ W , we have

ε(Hw) = Bw. (3.16)

Remark 3.8. The Kazhdan–Lusztig positivity conjecture immediately follows from So-
ergel’s conjecture by applying Soergel’s character map to (3.16).

3.3. Double leaves basis

Let w and v be two (not necessarily reduced) expressions. In this section, we recall the 
construction of the double leaves basis (DLB), a basis of the space HomZ(BS(w), BS(v)), 
defined by Libedinsky in [15]. The DLB is, in some sense, an improvement over the light 
leaves basis, another basis for HomZ(BS(w), BS(v)) defined in [14]. In the remainder 
of this paper, we will work with the DLB rather than the light leaves basis because as 
we will see in Section 4, DLB is a (graded) cellular basis whereas the light leaves basis 
is not. We use the cellularity of the DLB to establish the monotonicity conjecture for 
Kazhdan–Lusztig polynomials.

To introduce the DLB, we begin by defining three morphisms between Bott–Samelson 
bimodules. The first one is the multiplication morphism, ms, which is a degree 1 mor-
phism determined by the formula:

ms : BS(s) = R⊗Rs R(1) → R

p⊗ q → pq
(3.17)

The second morphism is the unique (up to multiplication by a nonzero scalar) −1 degree 
morphism, js, determined by the formula
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js : BS(ss) = R⊗Rs R⊗Rs R(2) → BS(s)
1 ⊗ p⊗ 1 → ∂s(p) ⊗ 1

(3.18)

For s, r ∈ S, consider the bimodule

Xsr := BS(srs . . .)

with the product having msr terms. We then define fsr as the unique degree zero mor-
phism from Xsr to Xrs sending 1 ⊗ 1 ⊗ . . .⊗ 1 to 1 ⊗ 1 ⊗ . . .⊗ 1.

We denote by I the identity on the endomorphism ring of a Bott–Samelson bimodule. 
Each time we use the symbol I, the relevant Bott–Samelson bimodule will be clear from 
the context. For each expression w = s1 . . . sn ∈ Sn, we inductively define a perfect 
binary directed tree, denoted by Tw, with nodes colored by Bott–Samelson bimodules 
and edges colored by morphisms from parent nodes to child nodes. At depth 1, the tree 
looks as in Fig. 1.

Fig. 1. Level one of Tw.

Now, let 1 < k ≤ n and assume that we have constructed the tree to level 
k − 1. Let u = t1 . . . ti ∈ Si be a node N of depth k − 1 colored by the bimodule 
BS(t1 . . . ti)BS(sk . . . sn). We then have two possibilities:

a) l(t1 . . . tisk) > l(t1 . . . ti). In this case the child nodes and edges of N are constructed 
as shown in Fig. 2.

Fig. 2. Level k of Tw.

b) l(t1 . . . tisk) < l(t1 . . . ti). In this case, it is a well-known fact for Coxeter groups 
that there exists a sequence of braid moves that converts u = t1 . . . ti into u′ =
t′1 . . . t

′
i−1sk. Of course, there are several ways to do this. However, we can fix a 

particular sequence of braid moves and construct a morphism BS(u) → BS(u′) by 
replacing each braid move in the sequence by its respective morphism of type fsr. 
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We denote this morphism by F (u, u′, sk). The child nodes of N are then colored by 
the two Bott–Samelson bimodules located at the bottom of Fig. 3, and the child 
edges are colored by morphisms obtained by composing the dashed arrows in Fig. 3.

Fig. 3. Level k of Tw.

By construction, each leaf of the tree Tw is colored by a Bott–Samelson bimodule 
BS(u), where the expression u is reduced. Note that it is possible for two leaves to 
be colored by Bott–Samelson bimodules BS(u) and BS(u′), where u and u′ are two 
reduced expressions for the same element in u ∈ W . To avoid this ambiguity, we realize 
the following choices:

1. Fix, once and for all, a reduced expression u for all u ∈ W .
2. For all u ∈ W and all reduced expression u′ of u, choose a sequence of braid moves 

that converts u′ into u, where u is the fixed reduced expression selected in the 
previous step.

3. Finally, replace each braid move in the sequence selected in the previous step by its 
corresponding morphism of type fsr to obtain a morphism from BS(u′) to BS(u), 
denoted by F (u′, u).

We now complete the construction of Tw by composing each of the lower Bott–
Samelson bimodules with its corresponding morphism F (u′, u). This procedure avoids 
the ambiguity in coloring the leaves. That is, if two leaves are colored by BS(u) and 
BS(u′), where u and u′ are two reduced expressions for the same element u ∈ W , u and 
u′ are the same expressions.

By composing the corresponding arrows, we can consider each leaf in Tw colored by 
BS(u) as a morphism from BS(w) to BS(u), where u is the reduced expression for 
u ∈ W fixed above. Let Lw(u) be the set of all leaves colored by u. As mentioned before, 
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we will consider the set Lw(u) as a subset of HomZ(BS(w), BS(u)). Note that every leaf 
is a homogeneous morphism, since it was constructed as a composition of homogeneous 
morphisms. In fact, the degree of each leaf can be computed as the sum of +1 for each 
occurrence of a morphism of type ms minus the sum of −1 for each occurrence of a 
morphism of type js.

Remark 3.9. The set Lw(u) is not uniquely determined because it relies heavily on the 
choices realized along the way. Thus, when we refer to it, one must understand that we are 
implicitly assuming that we have fixed a particular choice for each of the non-canonical 
steps in the construction of Tw. For example, if w is a reduced expression for w ∈ W , 
there is exactly one leaf in Lw(w). This leaf can be chosen as any morphism of the type 
F (w, w′), where w′ is any reduced expression of w. However, we choose the identity in 
this case for the sake of simplicity. We will henceforth use this choice throughout the 
paper without reference to it.

In order to introduce the DLB, we need to define an adjoint leaf for each leaf. To do 
this, we must first define an adjoint morphism for each of ms, js, and fsr. The adjoint 
morphism of ms is

εs : R → BS(s)
1 → xs ⊗ 1 + 1 ⊗ xs

(3.19)

For js, the corresponding adjoint morphism is

ps : BS(s) → BS(ss)
1 ⊗ 1 → 1 ⊗ 1 ⊗ 1

(3.20)

Finally, for fsr, the adjoint morphism is frs. Each adjoint morphism is homogeneous 
and has the same degree as its corresponding morphism. For each leaf l : BS(w) → BS(u)
in Tw, we can thus define an adjoint leaf la : BS(u) → BS(w) as the morphism obtained 
by replacing each morphism of type ms, js and fsr by its corresponding adjoint. We thus 
obtain an inverted tree, Ta

w, with the same nodes as Tw but with the arrows pointing in 
the opposite direction.

For f ∈ HomZ(BS(w), BS(u)) and g ∈ HomZ(BS(x), BS(y)) we define

f · g =
{

f ◦ g, if w = y;
∅, if w 
= y.

(3.21)

For an expression w, we denote by Lw (resp. La
w) the set of all leaves in Tw (resp. 

Ta
w). We are now in a position to define the main object of interest in this paper.

Theorem 3.10. [15, Theorem 3.2] For all expressions w and v, the set La
v · Lw is a basis 

as right R-module of the space HomZ(BS(w), BS(v)). We call this set the double leaves 
basis.
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In order to prove the linear independence of La
v · Lw, Libedinsky [15] introduced an 

order on the set La
v · Lw and applied a classical triangularity argument. This order is 

defined by indexing each leaf by two sequences of zeros and ones, which we denote 
by i = (i1, . . . , in) and j = (j1, . . . , jn). Let us recall this assignment, since it will be 
important for our purposes.

Let w = s1 . . . sn be an expression of length n. Recall that l was constructed induc-
tively in n steps. For all 1 ≤ k ≤ n, we set ik = 1 if a morphism of type ms appears 
in the k-th step of the construction of l; otherwise, we set ik = 0. In a similar manner, 
we set jk = 1 if a morphism of type js appears in the k-th step of the construction of l, 
and otherwise set jk = 0. Note that each leaf l is completely determined by these two 
sequences and the expression w. Thus, we denote l = fj

i . For s ∈ S, let us denote x0
s = 1

and x1
s = xs. If j = (j1, . . . , jn) is a sequence of zeros and ones, we set

xj = xj1
s1 ⊗ xj2

s2 ⊗ . . .⊗ xjn
sn ⊗ 1 ∈ BS(s) (3.22)

In particular, if j = (0, . . . , 0), we denote xj by 1⊗. The indexing of each leaf by 
pairs of binary sequences is compatible with the lexicographic order in the sense of the 
following lemma [15, Section 5.5].

Lemma 3.11. Denote by ≥ the lexicographic order on {0, 1}n. Then,

fj
i (xj′

) =
{

1⊗, if j = j′;
0, if j > j′.

We end this section by introducing a basis for HomZ(BS(w), Rx), for all reduced 
expressions w of w ∈ W and x ∈ W . We recall that Rx denotes the standard bimodule 
defined immediately following Theorem 3.6. We first need to introduce a new morphism. 
For all s ∈ S, consider the (R, R)-bimodule morphism βs : BS(s) → Rs determined by 
βs(p ⊗ q) = ps(q), for all p, q ∈ R. Let x = s1 . . . sk be a reduced expression for x ∈ W . 
Define βx := βs1 ⊗ . . . ⊗ βsk : BS(w) → Rs1 ⊗R . . . ⊗R Rsk . Since RyRz

∼= Ryz, for 
all y, z ∈ W , βx can be considered as a morphism from BS(x) to Rx. If the underlying 
reduced expression x is clear from the context, then we often denote βx simply as βx. 
Let us define the set

Lβ
w(x) = {βx ◦ l | l ∈ Lw(x)} ⊂ HomZ(BS(w), Rx). (3.23)

Following Libedinsky, we will call Lβ
w(x) the standard leaves basis. This name is justified 

by the following lemma (see[15, Proposition 6.1]).

Lemma 3.12. Let w be an expression and let x ∈ W . Then, Lβ
w(x) is an R-basis of 

HomZ(BS(w), Rx) as a right R-module.
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Corollary 3.13. Let w be a reduced expression for w and let x ∈ W . Then,

HomZ(BS(w), Rx) 
= 0

if and only if x ≤ w.

Proof. The result is a direct consequence of Lemma 3.12 once we note that Lw(x) 
= ∅
if and only if x ≤ w. �
4. KL-polynomials as graded decomposition numbers

In this section, we interpret KL-polynomials as graded decomposition numbers. For 
the rest of this section, we fix a reduced expression w for an element w ∈ W . As we saw 
in the previous section, EndZ(BS(w)) is Z-graded R-algebra of finite rank, with a basis, 
the double leaves basis. Although our definition of graded cellular algebras applies only 
when the ground ring is a field, the original definition provided by Hu and Mathas in [9]
does not require this assumption. However, in order to apply Theorem 2.3, the ground 
ring must be a field. On the other hand, if we recall that R is a polynomial ring with 
coefficients in R, then it is clear that EndZ(BS(w)) is an infinite dimensional Z-graded 
R-algebra. Koenig and Xi [13] extend the framework of cellular algebras to algebras over 
a field not necessarily finite dimensional. Furthermore, they provide an analogous of 
Theorem 2.3 in this setting. However, the classification of simple modules in this case is 
rather complicated.

We remark that R ∼= R/R+. This allows us to consider R as a left R-module. Given 
r ∈ R we denote by r̂ ∈ R/R+ ∼= R its reduction modulo R+. By the previous paragraph, 
it should be natural to consider Aw := EndZ(BS(w)) ⊗R R rather than EndZ(BS(w)). 
By definition of Aw and the fact that EndZ(BS(w)) is a free Z-graded R-algebra of 
finite rank, it is clear that Aw is a finite dimensional Z-graded R-algebra, where for a 
homogeneous element a ∈ EndZ(BS(w)) we have deg(a ⊗ 1) := deg(a). Furthermore, we 
have

Theorem 4.1. The set C = {la1 ◦ l2 ⊗R 1 | l1, l2 ∈ Lw(x); x ∈ Λ(w)} is a graded cellular 
basis for Aw.

Proof. Let us specify a graded cell datum for Aw, as in Definition 2.1. Take

Λ = Λ(w) := {x ∈ W | w ≥ x}

partially ordered by reversing the usual Bruhat order. Accordingly, w and e (where e
denotes the identity of W ) are the minimal and the maximal element in Λ(w), respec-
tively. For each x ∈ Λ(w), define T (x) := Lw(x), i.e., T (x) is the set of all leaves in Tw

with final target x. We also define cxl l =: la1 ◦ l2 ⊗ 1, for all l1, l2 ∈ T (x) and x ∈ Λ. On 

1 2
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the other hand, there is a natural degree function

deg :
∐

x∈Λ(w)

T (x) → Z (4.1)

given by the degree of the leaves.
Forgetting the grading for a moment, the cellularity of the basis C of Aw is clear from 

the cellularity of the double leaves basis of EndZ(BS(w)), which was noticed by Elias 
and Williamson in [7, Proposition 6.22]. For the graded part, we only need to check that

deg(la1 ◦ l2 ⊗ 1) = deg(l1) + deg(l2), (4.2)

for all x ∈ Λ(w) and l1, l2 ∈ T (x). This follows by the fact that composition of morphisms 
is additive with respect to degree, and to the fact that adjunctions preserve degrees, that 
is, deg(la) = deg(l), for all l ∈ Tw. �

Given the details of the graded cellular structure of Aw we have automatically defined 
the corresponding graded cell Aw-modules and graded simple Aw-modules, as well as 
the graded decomposition numbers for Aw. However, by the abstract definition of cell 
modules and their bilinear forms given in Section 2, it is not clear how one ought to work 
with them. Fortunately, in this case, we can be a little more specific. Let us provide two 
definitions.

Definition 4.2. Let w and v be expressions of some elements in W . Given u ∈ W we say 
that a double leaf la1 ◦ l2 ∈ La

v · Lw factors through u if l1 ∈ Lv(u) and l2 ∈ Lw(u).

Definition 4.3. Let w and v be expressions of some elements in W . For u ∈ W , we define 
the set DL<u(w, v) ⊂ HomZ(BS(w), BS(v)) as the span of the double leaves in La

v · Lw

that factor through x < u.

Let us denote by Δw(x), Dw(x), and dw(x, y) the graded cell module, the graded sim-
ple module, and the graded decomposition number of Aw, for x, y ∈ Λ(w), respectively, 
corresponding to the cellular structure determined by the double leaves basis. We now 
explain the action of Aw on a cell module. Let x ∈ Λ(w). By definition, the graded cell 
module Δw(x) is the R-vector space spanned by Lw(x).

Remark 4.4. If we want to be completely consistent with the notation introduced in 
Section 2, the cell module must be the R-vector space with basis

{cxl | l ∈ Lw(x)}.

However, to avoid a subindex catastrophe, we prefer the previous notation.
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Let a ∈ EndZ(BS(w)) and l ∈ Lw(x). To determine l(a ⊗1) ∈ Δw(x), we first calculate 
the expansion of l ◦ a in terms of the double leaves basis for HomZ(BS(w), BS(x)). It is 
not difficult to see that

l ◦ a ≡
∑

g∈Lw(x)

grg mod DL<x(w, x), (4.3)

for some scalars rg ∈ R. Then, the action of Aw on Δw(x) is given by

l(a⊗ 1) =
∑

g∈Lw(x)

gr̂g ∈ Δw(x). (4.4)

In a similar manner, we can describe the bilinear form on Δw(x) induced by the cellular 
structure. Let l1, l2 ∈ Lw(x). Now, l1 ◦ la2 ∈ EndZ(BS(x)). Thus, we can expand it in 
terms of the double leaves basis for EndZ(BS(x)). Again, it is not hard to see that

la1 ◦ l2 ≡ Ixrl1,l2 mod DL<x(x, x), (4.5)

for some rl1,l2 ∈ R, and where Ix denotes the identity map of BS(x). Then, the value of 
the bilinear form 〈 , 〉 on Δw(x) at two leaves l1 and l2 is 〈l1, l2〉 = r̂l1,l2 ∈ R. We note 
that deg(Ix) = 0 implies that

deg(l1) + deg(l2) = deg(rl1,l2). (4.6)

Thus, 〈l1, l2〉 = 0 unless deg(l1) + deg(l2) = 0.
It is a straightforward exercise to confirm that the descriptions of cell modules and 

bilinear form provided here coincide with those in Section 2. Furthermore, the explicit 
description given for the bilinear form makes clear that the graded dimension of Dw(x)
coincides with the graded rank of the local intersection form Iw,x of w at x (see [11, 
Definition 3.3]). For the sake of brevity, we do not recall here the definition of local 
intersection form. We only need this concept in order to establish the next lemma.

Let us denote by Λ0(w) the set that parameterizes the entire set (up to degree shift) 
of simple modules of Aw, i.e.,

Λ0(w) = {x ∈ Λ(w) | Dw(x) 
= 0}. (4.7)

Lemma 4.5. Let w be a reduced expression of w ∈ W . Then,

BS(w) ∼=
⊕

x∈Λ0(w)

dimv Dw(x)Bx, (4.8)

as graded (R, R)-bimodules.
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Proof. By [20, Lemma 4.1] the multiplicity of Bx in BS(w) is given by the graded rank 
of Iw,x. Then, the result follows since the graded rank of Iw,x coincides with dimv Dw(x), 
for all x ≤ w. �
Lemma 4.6. Let w be a reduced expression for w ∈ W . Then, there is an isomorphism of 
graded right Aw-modules

HomZ(BS(w), Rx) ⊗R R ∼= Δw(x), (4.9)

for all x ≤ w.

Proof. Note first that HomZ(BS(w), Rx) ⊗R R has a natural structure of a right 
Aw-module by composition of morphisms. Concretely, if g ∈ HomZ(BS(w), Rx) and 
a ∈ EndZ(BS(w)), the action of Aw on HomZ(BS(w), Rx) ⊗R R is given by

(g ⊗ 1)(a⊗ 1) = (g ◦ a) ⊗ 1 (4.10)

Furthermore, by Lemma 3.12, HomZ(BS(w), Rx) ⊗R R is an R-vector space with basis

{(βx ◦ l) ⊗ 1 | l ∈ Lw(x)},

where βx : BS(x) → Rx is the bimodule morphism defined following Lemma 3.11. Since 
Δw(x) is defined as the R-vector space with basis Lw(x), there is a canonical R-linear 
isomorphism determined by

f : Δw(x) → HomZ(BS(w), Rx) ⊗R R
l → (βx ◦ l) ⊗ 1

(4.11)

for all l ∈ Lw(x). Then, by the R-linearity of f , to finish the proof we need to show that

f(l(a⊗ 1)) = f(l)(a⊗ 1), (4.12)

for all a ∈ EndZ(BS(w)) and l ∈ Lw(x). We prove that both sides of (4.12) are equal to 
(βx ◦ l ◦ a) ⊗ 1. First, note that

f(l)(a⊗ 1) = ((βx ◦ l) ⊗ 1)(a⊗ 1) = (βx ◦ l ◦ a) ⊗ 1,

proving that the right side of (4.12) is equal to (βx ◦ l◦a) ⊗1. To prove the other equality, 
we need the following

Claim 4.7. If g ∈ HomZ(BS(w), BS(x)) belongs to DL<x(w, x) then βx ◦ g = 0.
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Proof. It is enough to show that

βx ◦ (la2 ◦ l1) = 0, (4.13)

for all double leaves (la2 ◦ l1) ∈ HomZ(BS(w), BS(x)) that factor through u < x. Let 
us suppose that there exists a double leaf (la2 ◦ l1) ∈ HomZ(BS(w), BS(x)) that factors 
through u < x such that βx ◦ (la2 ◦ l1) 
= 0. In particular, we have βx ◦ la2 
= 0. Note 
that βx ◦ la2 belongs to HomZ(BS(u), Rx), for some reduced expression u of u. Therefore, 
HomZ(BS(u), Rx) 
= 0. This contradicts Corollary 3.13 since u < x, proving (4.13) and 
Claim 4.7. �

Let us return to the proof of the lemma. To conclude the proof, we need to show that 
f(l(a ⊗ 1)) = (βx ◦ l ◦ a) ⊗ 1. Write

l ◦ a ≡
∑

g∈Lw(x)

grg mod DL<x(w, x), (4.14)

for some scalars rg ∈ R. Composing with βx on the left in (4.14) and using Claim 4.7, 
we obtain

βx ◦ l ◦ a =
∑

g∈Lw(x)

(βx ◦ g)rg. (4.15)

Thus, by reducing modulo R+ we obtain

(βx ◦ l ◦ a) ⊗ 1 =
∑

g∈Lw(x)

(βx ◦ g)r̂g ∈ HomZ(BS(w), Rx) ⊗R R. (4.16)

On the other hand, by (4.14) we know that

l(a⊗ 1) =
∑

g∈Lw(x)

gr̂g ∈ Δw(x). (4.17)

Thus,

f(l(a⊗ 1)) =
∑

g∈Lw(x)

(βx ◦ g)r̂g ∈ HomZ(BS(w), Rx) ⊗R R. (4.18)

Combining (4.16) with (4.18), we conclude that f(l(a ⊗ 1)) = (βx ◦ l ◦ a) ⊗ 1. This 
completes the proof of the lemma. �

We are now in a position to interpret the Kazhdan–Lusztig polynomials as graded 
decomposition numbers.
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Theorem 4.8. Let w be a reduced expression of some element w ∈ W . Then,

dw(x, y) = hx,y, (4.19)

for all y ∈ Λ0(w) and x ≤ w.

Proof. By Lemma 4.5, we have the following isomorphism

BS(w) ∼=
⊕

y∈Λ0(w)

dimv Dw(y)By (4.20)

of (R, R)-bimodules. Fix y ∈ Λ0(w). Then, we can choose a projector (idempotent) 
ey ∈ EndZ(BS(w)) whose image is isomorphic to By(k), for some k ∈ Z. We denote by 
êy ∈ Aw its reduction modulo R+. Consider the idempotent truncation subalgebra

êyAwêy ∼= EndZ(By(k)) ⊗R R ∼= EndZ(By) ⊗R R. (4.21)

We have the following two facts about êyAwêy.

Claim 4.9. êyAwêy has no non-trivial idempotents.

Proof. First, we note that êy is the identity of êyAwêy. Suppose that there exists a 
non-trivial idempotent e ∈ êyAwêy. Then, by (4.21), there exists a non-trivial idempotent 
E ∈ EndZ(By) ⊗R R. As is explicated in the proof of [11, Lemma 4.1], we can obtain an 
idempotent Ẽ ∈ EndZ(By) which is a lift of E. Since By is indecomposable, Ẽ must be 
trivial. This proves our claim. �
Claim 4.10. Up to isomorphism and degree shift, Dw(y)êy is the unique simple 
êyAwêy-module. Furthermore, Dw(y)êy ∼= Δw(y)êy.

Proof. By the previous Claim 4.9 it is clear that êyAwêy has a unique simple module. 
Furthermore, by combining Theorem 2.3 and Theorem 2.4(a) we know that this module 
is of the form Dw(z)êy, for some z ∈ Λ0(w). On the other hand, by definition of ey, we 
have the following isomorphism of right R-modules

HomZ(BS(w), Rx)ey ∼= HomZ(By(k), Rx), (4.22)

for all x ∈ W . Then, Lemma 4.6 implies

Δw(x)êy ∼= (HomZ(BS(w), Rx) ⊗R R)êy ∼= HomZ(By(k), Rx) ⊗R R (4.23)

as graded R-vector spaces. Since Soergel’s conjecture is known to be true, by taking the 
graded dimension on both sides of (4.23) we obtain
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dimv Δw(x)êy = dimv HomZ(By(k), Rx) ⊗R R
= vk dimv HomZ(By, Rx) ⊗R R
= vkhx,y,

(4.24)

for all x ∈ W . In particular, by putting x = y in (4.24), we have dimv Δw(y)êy = vk. 
Hence, Δw(y)êy 
= 0. Finally, the triangularity of the graded decomposition numbers 
(2.8) and Corollary 3.13 allow us to conclude that the unique composition factor of 
Δw(y)êy must be Dw(y)êy. As a matter of fact, this also proves that Δw(y)êy ∼=
Dw(y)êy. �

With Claim 4.10 at hand it is easy to finish the proof of Theorem 4.8. Actually, by 
using Theorem 2.4(b), we obtain

vkhx,y = dimv Δw(x)êy
= dimv Dw(y)êy · d(Δw(x)êy, Dw(y)êy)
= vkd(Δw(x), Dw(y))
= vkdw(x, y),

for all x ≤ w. �
Note that the left hand side of (4.19) depends on the expression w whereas the right 

hand side does not. Thus, Theorem 4.8 seems to claim that dw(x, y) does not depend 
on the choice of the reduced expression w of w. The above is not completely correct. 
Actually, dw(x, y) is only defined for y ∈ Λ0(w) and Λ0(w) depends heavily on w. Then, 
the existence of dw(x, y) depends on w. What Theorem 4.8 really claims is that once 
we know that dw(x, y) exists (that is, it is defined), its value does not depend on w and 
coincides with hx,y.

The previous paragraph may suggest that there are Kazhdan–Lusztig polynomials 
that can not be interpreted as graded decomposition numbers. Fortunately, this does 
not hold. Let x, w ∈ W . Assume that x ≤ w. Then, the graded decomposition num-
ber dw(x, w) always exists since w ∈ Λ0(w), for all reduced expression w of w. Thus, 
dw(x, w) = hx,w. On the other hand, if x � w then dw(x, w) does not make sense. 
However, in this case we know that hx,w = 0. Therefore, this case is irrelevant for our 
purposes.

5. Monotonicity

In this section, we prove the Monotonicity Conjecture for the coefficients of the 
Kazhdan–Lusztig polynomials. More precisely, we prove:

Conjecture 5.1. Let W be any Coxeter group. If u, v, w ∈ W and u ≤ v ≤ w then

Pu,w(q) − Pv,w(q) ∈ N[q]. (5.1)
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In terms of the polynomials hx,w(v) ∈ Z[v], the above conjecture is equivalent (via 
Remark 3.3) to

hu,w(v) − vl(v)−l(u)hv,w(v) ∈ N[v] (5.2)

We prove (5.2) in this section. To do this, we are first interested in a particular leaf.

Lemma 5.2. Let W be a Coxeter group. Let u, v ∈ W with u ≤ v and let v be a reduced 
expression for v. Then, there is a unique leaf in Lv(u) of degree l(v) − l(u).

Proof. This is a direct consequence of the definition of the leaves and [15, Lemma 5.1]
or [4, Proposition 2.3]. �

Let u, v, w ∈ W with u ≤ v ≤ w. For the rest of the paper, we fix reduced expressions 
u, v, and w for u, v, and w, respectively. We denote by Gu

v the leaf in the above theorem, 
and refer to it as the largest leaf from BS(v) to BS(u). It follows directly from the 
construction of the leaves that for all f ∈ Lv(u),

deg(f) = nm(f) − nj(f)
l(v) − l(u) = nm(f) + nj(f),

(5.3)

where nm(f) (resp. nj(f)) denotes the number of times that morphisms of type ms

(resp. js) appear in the construction of leaf f . In particular, if we set f = Gu
v in (5.3)

and subtract the resulting equations, we obtain

nj(Gu
v ) = 0, (5.4)

since deg(Gu
v ) = l(v) − l(u). That is, morphisms of type js do not appear in the 

construction of the largest leaf. Consequently, Gu
v is the leaf in Lv(u) of largest de-

gree, which justifies its name. We define a map, Φu,v
w , from HomZ(BS(w), Rv) ⊗R R to 

HomZ(BS(w), Ru) ⊗R R, determined in the standard basis by

Φu,v
w : HomZ(BS(w), Rv) ⊗R R → HomZ(BS(w), Ru) ⊗R R

(βv ◦ l) ⊗ 1 → (βu ◦Gu
v ◦ l) ⊗ 1

(5.5)

for all l ∈ Lw(v). The map Φu,v
w will be the key to prove the monotonicity conjecture at 

the end of this section. In order to know the properties of Φu,v
w , we need some notation 

and a technical lemma.

Definition 5.3. Let w be an expression of some element in W . For b ∈ BS(w), we define 
coef1⊗(b) as the coefficient of 1⊗ in the expansion of b in terms of the basis of BS(w)
described in (3.11).
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Lemma 5.4. Let u, v, w ∈ W with u ≤ v ≤ w. If h ∈ HomZ(BS(w), BS(v)) belongs to 
DL<v(w, v), then,

Gu
v ◦ h ≡

∑
g∈Lw(u)

grg mod DL<u(w, u), (5.6)

for some scalars rg ∈ R+.

Proof. Let la2◦l1 be a double leaf morphism in HomZ(BS(w), BS(v)) that factors through 
z < v. Write

Gu
v ◦ (la2 ◦ l1) =

∑
g∈Lw(u)

grg + f, (5.7)

for some scalars rg ∈ R and some morphism f ∈ DL<u(w, u). To finish the proof, we 
need to show that rg ∈ R+, for all g ∈ Lw(u).

We recall the indexing (given in Section 3) of the leaves by two sequences of zeros and 
ones, and define

J u
w = {j ∈ {0, 1}l(w) | there is a leaf g ∈ Lw(u) such that g = fj

i }. (5.8)

By [15, Lemma 5.1], we know that each j ∈ J u
w determines a unique leaf in Lw(u). Index 

J u
w = {j1, . . . , jm} so that jk < jk+1 (< here denotes the lexicographical order), for all 

1 ≤ k < m. We denote by gjk the leaf determined by jk. With this notation at hand, 
we can rewrite (5.7) as

Gu
v ◦ (la2 ◦ l1) =

m∑
k=1

gjkrk + f, (5.9)

where rk := rgjk ∈ R. We need the following

Claim 5.5. For all b ∈ BS(w) we have

coef1⊗((Gu
v ◦ la2 ◦ l1)(b)), and coef1⊗(f(b)) ∈ R+. (5.10)

Proof. Let b ∈ BS(w). Since la2 ◦ l1 factors through z < v, a morphism of type εs occurs 
in la2 . Then, by looking at the definition of the morphism εs, it is clear that

coef1⊗((la2 ◦ l1)(b)) ∈ R+. (5.11)

On the other hand, since only morphisms of type ms occur in Gu
v , (5.11) implies

coef1⊗((Gu
v ◦ la2 ◦ l1)(b)) ∈ R+.

The same argument proves that coef1⊗(f(b)) ∈ R+. �
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Let us return to the proof of the lemma. We proceed by induction. If we evaluate (5.9)
at xj1 , then by Lemma 3.11 and Claim 5.5, we find that

r1 = coef1⊗((Gu
v ◦ la2 ◦ l1)(xj1)) − coef1⊗(f(xj1)) ∈ R+, (5.12)

which provides the basis of our induction. Now, let 1 < n ≤ m and assume that we have 
already proven that rk ∈ R+, for all 1 ≤ k < n. Evaluating (5.9) at xjn , and again by 
using Lemma 3.11, we obtain

rn = coef1⊗((Gu
v ◦ la2 ◦ l1)(xjn)) −

n−1∑
k=1

coef1⊗(gjk(xjn))rk − coef1⊗(f(xjn)). (5.13)

By Claim 5.5 and our inductive hypothesis, we know that the right hand side of (5.13)
belongs to R+. Therefore, rn ∈ R+. This completes the induction and the proof of the 
lemma. �
Proposition 5.6. Let u, v, w ∈ W with u ≤ v ≤ w. Then, Φu,v

w is an homogeneous 
Aw-module homomorphism of degree l(v) − l(u).

Proof. The claim that Φu,v
w is homogeneous with degree l(v) −l(u) is a direct consequence 

of the definitions as well as the fact that deg(Gu
v ) = l(v) − l(u). Now, in order to prove 

that Φu,v
w is an Aw-module homomorphism, it is enough to show that

Φu,v
w (((βv ◦ l) ⊗ 1)(a⊗ 1)) = Φu,v

w ((βv ◦ l) ⊗ 1)(a⊗ 1) (5.14)

for all l ∈ Lw(v) and a ∈ EndZ(BS(w)). We prove that both sides of (5.14) are equal to 
(βu ◦Gu

v ◦ l ◦a) ⊗ 1. The desired equality for the right hand side of (5.14) is easy because 
by the definition of Φu,v

w , we have

Φu,v
w ((βv ◦ l) ⊗ 1)(a⊗ 1) = ((βu ◦Gu

v ◦ l) ⊗ 1)(a⊗ 1)
= (βu ◦Gu

v ◦ l ◦ a) ⊗ 1
(5.15)

To obtain the equality for the left hand side of (5.14), we first write

l ◦ a ≡
∑

f∈Lw(v)

frf mod DL<v(w, v), (5.16)

for some scalars rf ∈ R. By Claim 4.7, we know that

((βv ◦ l) ⊗ 1)(a⊗ 1) =
∑

βv ◦ frf ⊗ 1 (5.17)

f∈Lw(v)



348 D. Plaza / Journal of Algebra 473 (2017) 324–351
Thus, by applying Φu,v
w to (5.17), we have

Φu,v
w (((βv ◦ l) ⊗ 1)(a⊗ 1)) =

∑
f∈L(v)

(βu ◦Gv
u ◦ frf ) ⊗ 1. (5.18)

On the other hand, by composing (5.16) with Gv
u on the left and using Lemma 5.4, we 

obtain

Gu
v ◦ l ◦ a ≡

∑
f∈Lw(v)

Gu
v ◦ frf +

∑
g∈Lw(u)

gρg mod DL<u(w, u), (5.19)

for some scalars ρg ∈ R+. Now, by composing with βu to the left in (5.19) and using 
Claim 4.7, we have

βu ◦Gu
v ◦ l ◦ a =

∑
f∈Lw(v)

βu ◦Gu
v ◦ frf +

∑
g∈Lw(u)

βu ◦ gρg. (5.20)

Following this, by reducing modulo R+ and using the fact that ρg ∈ R+ for all g ∈ Lw(u), 
we obtain

βu ◦Gu
v ◦ l ◦ a⊗ 1 =

∑
f∈Lw(v)

βu ◦Gu
v ◦ frf ⊗ 1. (5.21)

Finally, combining (5.18) with (5.21), we obtain

Φu,v
w (((βv ◦ l) ⊗ 1)(a⊗ 1)) = βu ◦Gu

v ◦ l ◦ a⊗ 1.

This completes the proof of the proposition. �
Proposition 5.7. Let u, v, w ∈ W with u ≤ v ≤ w. The map Φu,v

w is injective.

Proof. As in the proof of Lemma 5.4 we define subsets of {0, 1}l(w),

J u
w := {j1 < j2 < . . . < jm} and J v

w := {ι1 < ι2 < . . . < ιμ},

where jk ∈ J u
w (resp. ικ ∈ J v

w) if there exists a leaf g ∈ Lw(u) (resp. l ∈ Lw(v)) such 

that g = f
jk

i (resp. l = f ικ
i ). We denote by gjk (resp. lικ) the leaf corresponding to jk

(resp. ικ). Given ικ ∈ J v
w we can write

Gu
v ◦ lικ ≡

∑
jk∈J u

w

gjkrjk,ικ mod DL<u(w, u), (5.22)

for some rjk,ικ ∈ R. By using the same recursive argument as the one utilized in the 
proof of Lemma 5.4 we can conclude
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rjk,ικ ∈ R+ (if jk < ικ), ικ ∈ J u
w and rικ,ικ = 1. (5.23)

We now suppose that

Φu,v
w

⎛⎝ ∑
ικ∈J v

w

[(βv ◦ lικ) ⊗ 1] ρικ

⎞⎠ = 0, (5.24)

for some ρικ ∈ R. To prove the proposition we need to show that ρικ = 0, for all ικ ∈ J v
w. 

By definition of the map Φu,v
w and (5.24) we have

∑
ικ∈J v

w

[(βu ◦Gu
v ◦ lικ) ⊗ 1] ρικ = 0. (5.25)

On the other hand, by combining Claim 4.7, (5.22) and (5.23) we obtain

(βu ◦Gu
v ◦ lικ) ⊗ 1 =

∑
jk∈J u

w

jk≥ικ

[
(βu ◦ gjk) ⊗ 1

]
r̂jk,ικ , (5.26)

where r̂jk,ικ ∈ R denotes the reduction modulo R+ of rjk,ικ . By replacing (5.26) into 
(5.25) and by reordering the sum, we get

∑
jk∈J u

w

[
(βu ◦ gjk) ⊗ 1

]⎛⎜⎜⎝ ∑
ικ∈J v

w

ικ≤jk

r̂jk,ικρικ

⎞⎟⎟⎠ = 0. (5.27)

Since, {(βu ◦ gjk) ⊗ 1|jk ∈ J u
w} is a basis for HomZ(BS(w), Ru) ⊗RR, we conclude that

∑
ικ∈J v

w

ικ≤jk

r̂jk,ικρικ = 0, (5.28)

for all jk ∈ J u
w . We recall from (5.23) that J v

w ⊂ J u
w . Then, by considering the equations 

in (5.28) associated to elements in J v
w we obtain an homogeneous system of μ = |J v

w|
equations with μ unknowns ρι1 , . . . , ριμ . The matrix associated to this system (when 
suitably ordered) is unitriangular. Therefore, it has a unique solution ρι1 = . . . = ριμ = 0. 
Hence, the map Φu,v

w is injective. �
Theorem 5.8. Let u, v, w ∈ W with u ≤ v ≤ w. Then,

hu,w(v) − vl(v)−l(u)hv,w(v) ∈ N[v]. (5.29)

That is, the Monotonicity Conjecture holds for arbitrary Coxeter groups.
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Proof. A direct consequence of Lemma 4.6, Proposition 5.6 and Proposition 5.7 is that 
Δw(v)〈l(v) − l(u)〉 can be seen as a graded right Aw-submodule of Δw(u). Therefore,

dw(u, y) − vl(v)−l(u)dw(v, y) ∈ N[v], (5.30)

for all y ∈ Λ0(w). Then, Theorem 4.8 implies

hu,y(v) − vl(v)−l(u)hv,y(v) ∈ N[v], (5.31)

for all y ∈ Λ0(w). Since we know that w ∈ Λ0(w), (5.29) is obtained from (5.31) by 
putting y = w. �
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