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Abstract polytopes are combinatorial structures with certain 
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(subject to certain natural constraints). Symmetry can be 
measured by the effect of automorphisms on the ‘flags’ of the 
polytope, which are maximal chains of elements of increasing 
rank (dimension). An abstract polytope of rank n is said to be 
chiral if its automorphism group has precisely two orbits on 
the flags, such that two flags that differ in one element always 
lie in different orbits. Examples of chiral polytopes have been 
difficult to find and construct. In this paper, we introduce 
a new covering method that allows the construction of some 
infinite families of chiral polytopes, with each member of a 
family having the same rank as the original, but with the 
size of the members of the family growing linearly with one 
(or more) of the parameters making up its ‘type’ (Schläfli 
symbol). In particular, we use this method to construct several 
new infinite families of chiral polytopes of ranks 3, 4, 5 
and 6.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: m.conder@auckland.ac.nz (M.D.E. Conder), weijuan.zhang@auckland.ac.nz

(W.-J. Zhang).
http://dx.doi.org/10.1016/j.jalgebra.2017.01.047
0021-8693/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2017.01.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:m.conder@auckland.ac.nz
mailto:weijuan.zhang@auckland.ac.nz
http://dx.doi.org/10.1016/j.jalgebra.2017.01.047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2017.01.047&domain=pdf


438 M.D.E. Conder, W.-J. Zhang / Journal of Algebra 478 (2017) 437–457
1. Introduction

Abstract polytopes are combinatorial structures obeying certain axioms that gener-
alise the classical properties of convex geometric polytopes. Highly symmetric examples 
include not only classical regular polytopes such as the Platonic solids and more exotic 
structures such as the 120-cell and 600-cell, but also regular maps on surfaces (such as 
Klein’s quartic).

Roughly speaking, an abstract polytope P is a partially-ordered set endowed with a 
rank function, satisfying certain conditions that arise naturally from a geometric setting. 
Such objects were proposed by Grünbaum in the 1970s, and their definition (initially as 
‘incidence polytopes’) and theory were developed by Danzer and Schulte. Every auto-
morphism of an abstract polytope is uniquely determined by its effect on any flag, which 
is a maximal chain in the poset P. The most symmetric examples are regular, with all 
flags lying in a single orbit, and a comprehensive description of these is given in a book 
on the subject by McMullen and Schulte [19]. These objects are also known as ‘thin 
residually-connected geometries with a linear diagram’.

Quite a lot is known about regular polytopes, and small examples and some infinite 
families are easily constructible via their automorphism groups, which are quotients of 
‘string’ Coxeter groups (viz. Coxeter groups with a linear Coxeter–Dynkin diagram). For 
example, the automorphism group of a regular n-simplex is the symmetric group Sn+1, 
via its representation as a quotient of the Coxeter group [3, 3, . . . , 3] of rank n. Others 
are described in [19] and in other references listed there.

An interesting class of examples which are not quite regular are the chiral polytopes, 
for which the automorphism group has two orbits on flags, with any two flags that differ 
in just one element lying in different orbits. The study of chiral abstract polytopes was 
pioneered by Schulte and Weiss (see [26,27] for example). Chiral polytopes of rank 3 are 
much the same as chiral maps on surfaces (see Coxeter and Moser [12]), with modest 
extra geometric conditions.

The first family of chiral maps was constructed by Heffter [17] in 1898; see also Doro 
and Wilson [15]. Contributions to the more general study of chiral polytopes were first 
made by Weber and Seifert [30], and also later by Coxeter [11]. After Coxeter, several 
families of chiral regular maps on surfaces of higher genus were found by Sherk [29], 
Garbe [16], and Bujalance, Conder and Costa [3]. In 2001, Conder and Dobcsanyi [7]
determined all chiral regular maps on orientably surfaces of genus 7 to 15, and this 
list has subsequently been extended to genus 300 at [5]. Also Schulte [25] constructed 
three families of infinite chiral 3-polytopes in ordinary space that are geometrically chi-
ral.

For quite some time, the only known finite examples of chiral polytopes had ranks 3
and 4 (see [13,20,21,26] for example), while some infinite examples of chiral polytopes of 
rank 5 had been constructed by Schulte and Weiss in [28]. But then some finite examples 
of rank 5 were constructed about 10 years ago by Conder, Hubard and Pisanski [8]. 
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The latter included the smallest examples in each of three classes: properly self-dual, 
improperly self-dual, and non-self-dual. Now quite a few such examples are known. In 
early 2009 Conder and Devillers devised a construction for chiral polytopes whose facets 
are simplices, and used this to construct examples of finite chiral polytopes of ranks 6, 
7 and 8 [unpublished]. Also Breda, Jones and Schulte developed a method of ‘mixing’ 
a chiral d-polytope with a regular d-polytope to produce a larger example of a chiral 
polytope of the same rank d; see [2].

At about the same time, Pellicer devised a quite different method for constructing 
finite chiral polytopes, with given regular facets, and used this construction to prove 
the existence of finite chiral polytopes of every rank d ≥ 3; see [22]. A few years later, 
Cunningham and Pellicer proved every finite chiral d-polytope with regular facets is itself 
the facet of a chiral (d + 1)-polytope; see [14]. Then the work of Conder and Devillers 
was taken up by Conder, Hubard, O’Reilly Regueiro and Pellicer [9] to prove that all 
but finitely many alternating groups An and symmetric groups Sn are the automorphism 
group of a chiral 4-polytope of type {3, 3, k} for some k (dependent on n). This will be 
extended to ranks greater than 4 by the authors of [9].

These examples are very large, however. It is still an open problem to find alternative 
constructions for families of chiral polytopes of relatively small order, with easily de-
scribed automorphism groups. Many other questions about chiral polytopes were posed 
in [23]. Chiral polytopes continue to be surprisingly rare in comparison with regular 
polytopes, even though the latter possess a higher degree of symmetry.

In this paper, we introduce a new method for constructing chiral polytopes, as covers of 
a given ‘base’ example, with a covering group that is abelian, and sometimes cyclic. This 
method is similar to the ‘mixing’ approach of [2], in that it produces chiral polytopes 
of the same rank as the given one, but with different type and larger automorphism 
group. On the other hand, it can produce an infinite family of chiral polytopes from a 
given one, with the sizes of members of the family growing linearly with one (or more) 
of the parameters making up its ‘type’ (Schläfli symbol). We illustrate and apply this 
method in the construction of several new infinite families of chiral polytopes of ranks 3 
to 6.

Before that, we give some further background on polytopes and their properties in 
Section 2. Then we describe our new approach in Section 3, and summarise some of the 
new families it produces in Section 4.

In a subsequent paper, we will take a somewhat different approach, to construct 
chiral polytopes as abelian covers of regular polytopes. In contrast to other methods, 
this enables the construction of chiral polytopes without needing a ‘base’ chiral polytope 
to build on.

2. Further background

Below we give some further background on abstract polytopes, especially those that 
are regular or chiral. Additional details may be found in [4,8,9,19,26], for example.
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2.1. Abstract polytopes

An abstract d-polytope (or abstract polytope of rank d) is a partially ordered set P, 
the elements and maximal totally ordered subsets of which are called faces and flags
respectively, such that certain properties are satisfied, which we explain below.

First, P contains a minimum face F−1 and a maximum face Fd, and there is a rank 
function from P to the set {−1, 0, . . . , d} such that rank(F−1) = −1 and rank(Fd) = d. 
Every flag of P contains precisely d + 2 elements, including F−1 and Fd. The faces of 
rank i are called i-faces, the 0-faces are called vertices, the 1-faces are called edges, and 
the (d − 1)-faces are called facets (or co-vertices).

If F and G are faces of ranks r and s with F ≤ G, then we say that F and G are 
incident, and define the section G/F as {H | F ≤ H ≤ G}; such a section of P is said to 
have rank s − r− 1, and may be called an (s − r− 1)-section of P. For any face G of P, 
the section G/F−1 may be identified with G itself in P; hence, for example, a facet may 
be viewed as a (d − 1)-face, or as the section F = G/F−1 for some (d − 1)-face G of P. 
Similarly, if G is a j-face then the ‘complementary’ section Fd/G is sometimes called a 
co-j-face, or the co-face at G. In particular, a co-vertex is a vertex-figure, and a co-edge
is a (d − 2)-section Fd/G (where G is an edge).

One important property that has to be satisfied is the diamond condition, which says 
that whenever G/F is a 1-section, with rank(G) = rank(F ) + 2 = i + 2 (say), there are 
precisely two intermediate faces H1 and H2 of rank i +1 with F < Hj < G for j ∈ {1, 2}. 
This implies that for any flag Φ and for every i ∈ {0, . . . , d − 1}, there is a unique flag 
Φi that differs from Φ in precisely the i-face. We call Φi the i-adjacent flag for Φ. More 
generally, two flags of P are said to be adjacent if they differ in only one face.

The final important property is strong connectivity, which says that if Φ and Φ′ are 
any two given flags of P, then there exists a sequence Ψ0, Ψ1, . . . , Ψm of flags of P from 
Ψ0 = Φ to Ψm = Φ′ such that Ψk−1 is adjacent to Ψk, and Φ ∩Φ′ ⊆ Ψk, for 1 ≤ k ≤ m.

This completes the definition of an abstract d-polytope.

2.2. Equivelar polytopes, Schläfli type, isomorphism and duality

Let P be any abstract regular polytope of rank d ≥ 3, and suppose (as we will 
throughout this paper) that P is finite, in that it has only finitely many faces of each 
rank j.

Every 2-section G/F of P is isomorphic to the face lattice of a polygon, and if the 
number of sides of every such polygon depends only on the rank of G, and not on F or G
itself, then we say that P is equivelar. When that happens, if ki is the number of edges 
of every 2-section between an (i −2)-face and an (i +1)-face of P, for 1 ≤ i < d, then the 
expression {k1, k2, . . . , kd−1} is called the Schläfli type (or Schläfli symbol) of P. Note 
that this definition carries no assumption of symmetry. Also by convention, we assume 
that each such polygon is non-degenerate, so has at least 3 edges, and therefore ki ≥ 3
for all i.
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Two polytopes P and Q of the same rank d are said to be isomorphic (to each other) 
if there exists an order-preserving bijection from P to Q, taking j-faces of P to j-faces 
of Q for 0 ≤ j < d. The automorphisms from P to P form a group denoted by Aut(P), 
or sometimes by Γ(P). By the diamond condition and strong flag-connectivity, it is easy 
to see that every automorphism of P is uniquely determined by its effect on any given 
flag of P, and it follows that the number of automorphisms of P is bounded above by 
the number of flags of P.

Two polytopes P and Q of the same rank d are said to be dual (to each other) if there 
exists an order-reversing bijection from P to Q, taking j-faces of P to (d − 1 − j)-faces 
of Q for 0 ≤ j < d. When this happens, we call Q the dual of P and denote 
it by P∗, and vice versa, giving (P∗)∗ ∼= Q∗ ∼= P. Moreover, if P is equivelar, 
with Schläfli type {k1, k2, . . . , kd−2, kd−1}, then also P∗ is equivelar, with Schläfli type 
{kd−1, kd−2, . . . , k2, k1}. Any such order-reversing bijection from P to Q is called a du-
ality, and if it has order 2 then it is called a polarity. The polytope P is self-dual if it is 
isomorphic to its dual P∗.

2.3. Regular polytopes

A d-polytope P is said to be regular whenever Γ(P) acts transitively (and therefore 
regularly) on the set of all flags of P. In that case, Γ(P) acts transitively on the j-faces 
of P for all j, and so P is equivelar.

Also when P is regular, its automorphism group Γ(P) is generated by a canonical 
set of involutions ρ0, . . . , ρd−1, where ρi is the unique automorphism mapping a given 
base flag Φ to its i-adjacent flag Φi, for 0 ≤ i < d. It is not difficult to see that these 
generators satisfy the relations

ρ 2
i = 1 for 0 ≤ i < d, (1)

(ρj−1ρj)kj = 1 for 1 ≤ j < d, (2)

(ρiρj)2 = 1 whenever |i− j| ≥ 2. (3)

Moreover, by the polytope axioms, they must satisfy the following intersection condition:

〈 ρi : i ∈ I 〉 ∩ 〈 ρj : j ∈ J 〉 = 〈 ρk : k ∈ I ∩ J 〉 for all I, J ⊆ {0, 1, . . . , d− 1}. (4)

The relations given in (1) to (3) above are precisely the defining relations for the 
Coxeter group [k1, k2, . . . , kd−1], and in particular, Γ(P) is a smooth homomorphic image 
of the latter group, where ‘smooth’ (here) means that the orders of the generators and 
their pairwise products are preserved.

The rotation group Γ+(P) of P is the image of the orientation-preserving subgroup 
of the Coxeter group, or in other words, the subgroup of Γ(P) consisting of words of 
even length in the generators ρ0, ρ1, . . . , ρd−1. In particular, Γ+(P) is generated by the 
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abstract rotations σj = ρj−1ρj for 1 ≤ j < d, and has index at most 2 in Γ(P). We say 
that P is directly regular (or sometimes orientably-regular) when this index is 2.

Also the stabiliser in Γ(P) of the i-face of the base flag Φ is the subgroup generated by 
{ρ0, ρ1, . . . , ρd−1} \ {ρi}, for 0 ≤ i < d. In particular, the stabiliser of the vertex (0-face) 
of Φ is 〈 ρ1, ρ2, . . . , ρd−1 〉, while the stabiliser of the facet of Φ is 〈 ρ0, ρ1, . . . , ρd−2 〉.

2.4. Chiral polytopes

A d-polytope P is said to be chiral if its automorphism group Γ(P) has two orbits on 
flags, with every two adjacent flags lying in different orbits. In this case, for a given base 
flag Φ, and for 1 ≤ j < d, the polytope P admits an automorphism σj that takes Φ to the 
flag (Φj)j−1 which differs from Φ in precisely its (j−1)- and j-faces. This automorphism 
σj is the analogue of the abstract rotation ρj−1ρj in the regular case, for each j, and in 
particular, it follows that P is equivelar. Moreover, P has maximum possible ‘rotational’ 
symmetry (because it admits the analogues of all the abstract rotations), but on the 
other hand, it admits none of the ‘reflections’ ρi.

Every non-degenerate orientably-regular map on a surface can be regarded as an ab-
stract 3-polytope, and each one is either regular or chiral depending on whether or not 
it admits reflections. In fact 3 is the smallest rank of a chiral polytope, because every 
abstract 2-polytope is combinatorially isomorphic to a regular convex polygon with at 
least 3 sides (by our non-degeneracy assumption), and hence is regular. The facets and 
vertex-figures of a chiral d-polytope P may be regular or chiral, but the (d − 2)-faces 
and the co-edges are always regular, by a nice argument given in [26, Proposition 9].

If P has Schläfli type {k1, k2, . . . , kd−1}, then its automorphism group is a smooth quo-
tient of the orientation-preserving subgroup of the Coxeter group [k1, . . . , kd−1]. Indeed 
the elements σ1, σ2, . . . , σd−1 satisfy the relations

σ
kj

j = 1 for 1 ≤ j < d, (5)

(σiσi+1 ... σj)2 = 1 for 1 ≤ i < j < d. (6)

It also follows that σi commutes with σj whenever j−i > 2, since if w = σi+1σi+2 ... σj−1
then each of w, σiw, wσj and σiwσj is an involution, and therefore 1 = (σiwσj)2 =
σiwσjσiwσj = σiσ

−1
j w−1w−1σ−1

i σj = σiσ
−1
j w−2σ−1

i σj = σiσ
−1
j σ−1

i σj .
The stabiliser in Γ(P) of the i-face of the base flag Φ is the subgroup generated by

⎧⎪⎪⎨
⎪⎪⎩

σ2, σ3, . . . , σd−1 when i = 0
σ1, σ2, . . . , σi−1, σiσi+1, σi+2, . . . , σd−1 when 1 ≤ i ≤ d− 2
σ1, σ2, . . . , σd−2 when i = d− 1.

Moreover, these generators σj must satisfy the following chiral form of the intersection 
condition, which is provable using [26, Proposition 7] and [26, Lemma 10]:



M.D.E. Conder, W.-J. Zhang / Journal of Algebra 478 (2017) 437–457 443
〈σ1, σ2, ..., σi 〉 ∩ 〈σj , σj+1, ..., σk〉 = 〈σj , ..., σi〉 for 1 ≤ i < k and 2 ≤ j ≤ k < d.

(7)

Here we note that chiral polytopes occur in pairs (or enantiomorphic forms), such that 
each member of the pair is the ‘mirror image’ of the other. If one of them, say P, has 
Schläfli type {k1, k2, . . . , kd−1}, and ψ is the corresponding epimorphism to Γ(P) from the 
orientation-preserving subgroup of the Coxeter group [k1, . . . , kd−1], then the kernel K of 
ψ is not normal in the full Coxeter group, but is conjugated by any orientation-reversing 
element (in the full Coxeter group) to another subgroup Kc which is the kernel of the 
epimorphism ψc corresponding to the mirror image Pc of P. In fact the automorphism 
groups of P and Pc are the same, but have different canonical generating sets: a base flag 
of Pc can be chosen such that σ−1

1 , σ1σ
−1
2 σ−1

1 , σ3, σ4, . . . , σd−2, σd−1 are the canonical 
generators for Γ(Pc). Note that these would be the conjugates of σ1, σ2, . . . , σd−1 by the 
reflection ρ0 if P were regular.

A chiral polytope P can sometimes be self-dual, but there are two kinds of self-duality. 
If δ : P → P is a duality, and Φ is a base flag for P, then we say that P is properly 
self-dual if δ takes Φ to a flag in the same orbit as Φ under the automorphism group 
Γ(P), or improperly self-dual if Φδ lies in the other orbit of Γ(P).

2.5. Construction of regular and chiral polytopes from groups

Some of the properties of the automorphism group of a regular or chiral polytope de-
scribed above can be turned around to give constructions for regular and chiral polytopes 
from particular kinds of generating sets for groups.

If Γ is any finite group generated by d involutions ρ0, ρ1, . . . , ρd−1 that satisfy the 
relations (1) to (3) above, as well as the intersection condition (4), then we may construct 
a regular d-polytope P with automorphism group Γ(P) isomorphic to Γ, by taking as 
its i-faces the (right) cosets of the subgroup generated by {ρ0, ρ1, . . . , ρd−1} \ {ρi}, for 
0 ≤ i < d, and defining incidence by non-empty intersection; see [19, Theorem 2E11].

Similarly, if Γ is any finite group generated by d − 1 elements σ1, σ2, . . . , σd−1 that 
satisfy the relations (5) and (6) and the intersection condition (7), then we may construct 
a directly regular or chiral d-polytope P with rotation group Γ+(P) isomorphic to Γ, by 
taking as its j-faces the (right) cosets of the subgroup generated by

⎧⎪⎪⎨
⎪⎪⎩

σ2, σ3, . . . , σd−1 when j = 0
σ1, σ2, . . . , σj−1, σjσj+1, σj+2, . . . , σd−1 when 1 ≤ j ≤ d− 2
σ1, σ2, . . . , σd−2 when j = d− 1,

and defining incidence by non-empty intersection.
We will denote this polytope by P(σ1, σ2, . . . , σd−1). If F and G are incident faces of 

P of ranks i − 2 and j + 1 with i ≤ j, then the section G/F is isomorphic to the (j −
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i +2)-polytope P(σi, σi+1, . . . , σj). Also we observe that P(σ1, σ2, . . . , σd−1) is regular if 
and only if the group Γ has an automorphism ρ that takes (σ1, σ2, σ3, σ4, . . . , σd−2, σd−1)
to (σ−1

1 , σ1σ
−1
2 σ−1

1 , σ3, σ4, . . . , σd−2, σd−1), and in that case, the polytope is directly 
regular.

Similarly, if P(σ1, σ2, . . . , σd−1) is chiral, then it is properly self-dual if Γ has an 
automorphism δ that takes (σ1, σ2, . . . , σd−2, σd−1) to (σ −1

d−1, σ
−1
d−2, . . . , σ

−1
2 , σ−1

1 ), and 
improperly self-dual if Γ has an automorphism δ that takes (σ−1

1 , σ1σ
−1
2 σ−1

1 , σ3, σ4, . . . ,
σd−2, σd−1) to (σ −1

d−1, σ
−1
d−2, . . . , σ

−1
2 , σ−1

1 ). See [18] for further details.

2.6. Flatness and tightness

An abstract polytope is said to be flat if each of its facets contains every vertex. An 
easy example is the hemicube. A regular polytope P is flat if and only if its automorphism 
group Γ(P) is the set-theoretic product of the stabilisers of a vertex and an incident 
facet (see [19, Proposition 4E4]), and the same holds also for a chiral polytope P (see 
the remarks following Lemma 1.2 in [24]).

If P is a regular polytope of type {k1, k2, . . . , kd−1}, then by multiple applications 
of the intersection condition it is easy to prove that |Γ(P)| ≥ 2k1k2 . . . kd−1, and then 
P is called tight if this lower bound on |Γ(P)| is attained; see [4]. Similarly, if P is a 
chiral polytope of type {k1, k2, . . . , kd−1}, then P is called tight if the corresponding 
lower bound |Γ(P)| ≥ k1k2 . . . kd−1 is attained. In both cases, the order of Γ(P) is equal 
to k1 times the order of the stabiliser of a vertex, and also to kd−1 times the order of the 
stabiliser of a facet, and it follows that every tight regular or chiral polytope is flat.

3. Coverings

Let P and Q be any two polytopes of the same rank. Then a function γ : Q �→ P
is called a covering if it preserves incidence, rank and adjacency of flags. By flag-
connectivity, we note that any such γ is surjective. Also we say that Q covers P if 
there exists such a covering γ : Q �→ P. This terminology is adopted from the theory of 
maps and surfaces.

Next, we note that if P and Q are polytopes of the same rank d that are either chiral 
or directly regular, then their rotation groups are both quotients of the orientation-
preserving subgroup W+ of the rank d − 1 Coxeter group [∞, · · · , ∞]. This group 
W+ is generated by d − 1 elements σ1, σ2, . . . , σd−1, subject to the defining relations 
(σiσi+1 . . . σj)2 = 1 for 1 ≤ i < j ≤ d −1. Also if J and K are the corresponding kernels, 
with Γ+(P) ∼= W+/J and Γ+(Q) ∼= W+/K, then it is easy to see that Q covers P if 
and only if K ≤ J . Indeed in that case, we have Γ+(Q)/(J/K) ∼= (W+/K)/(J/K) ∼=
W+/J ∼= Γ+(P), and then we may call the quotient J/K the covering group, or the 
group of covering transformations.

We now introduce an approach for constructing covers of chiral polytopes with cyclic 
covering group. The main idea is to take a chiral d-polytope P of type {k1, k2, . . . , kd−1}
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and construct an infinite family {Q(n) : n = 1, 2, 3, . . . } of chiral polytopes of the same 
rank d, such that each member Q(n) of this family is a cover of P having almost the same 
type as P, with just one of the ki replaced by nki. In particular, Q(1) = P. For example, 
below we will exhibit such a family of chiral 4-polytopes having types {3n, 6, 9} for every 
positive integer n, and covering a particular chiral 4-polytope P of type {3, 6, 9}.

Our approach is based on the following key theorem:

Theorem 3.1. Let U be a group generated by d − 1 elements x1, x2, . . . , xd−1, with the 
property that for some � ∈ {1, 2, . . . , d − 1}, the following hold:

(a) (xixi+1 . . . xj)2 = 1 for 1 ≤ i < j < d,
(b) xi has finite order ki ≥ 3 for all i 
= �, while x� has infinite order,
(c) x k�

� generates a cyclic normal subgroup N of U , for some integer k� ≥ 3,
(d) the intersection of N with the subgroup generated by all the xi other than x� is trivial,
(e) the images of the generators x1, x2, . . . , xd−1 in the factor group U/N = U/〈x k�

� 〉
satisfy the intersection condition (7), and make U/N the automorphism group of a 
chiral d-polytope P of type {k1, k2, . . . , kd−1}.

Then for every positive integer n, the factor group U (n) = U/〈x nk�

� 〉 is the automorphism 
group of a chiral d-polytope Q(n) of type {k1, . . . , k�−1, nk�, k�+1, . . . , kd−1}, covering the 
chiral polytope Q(1) ∼= P. Moreover, if P is flat, then so is Q(n) for all n, and if P is 
tight, then so is Q(n) for all n.

Proof. First, note that N (n) = 〈x nk�

� 〉 is the only subgroup of index n in 〈x k�

� 〉 = N , 
and so is characteristic in N and hence normal in U . Also N (n) intersects triv-
ially the subgroup generated by {xi | i 
= �}, by (b), and therefore the images of 
x1, . . . , x�−1, x�, x�+1, . . . , xd−1 in the factor group U/N (n) = U/〈x nk�

� 〉 = U (n) have 
orders k1, . . . , k�−1, nk�, k�+1, . . . , kd−1 respectively. Furthermore, N (1) = 〈x k�

� 〉 = N , so 
U (1) = U/N ∼= Γ+(P).

Next, we show that the images x̄1, . . . , ̄xd−1 in U (n) of the generators of U satisfy the 
intersection condition (7). To do this, let I = {1, 2, . . . i} and J = {j, j + 1, . . . , k} where 
1 ≤ i < k and 2 ≤ j ≤ k < d, and then define A = 〈 ̄xr : r ∈ I 〉 and B = 〈 ̄xs : s ∈ J 〉 and 
C = 〈 ̄xt : t ∈ I ∩ J 〉, and also U = U (n) = U/N (n) and N = N/N (n). The intersection 
condition requires A∩B = C, but as usual, it is easy to see that A∩B contains C, and 
hence all we need do is prove the reverse inclusion. Next, if we let N = N/N (n), then 
by (e) we know that the images of x̄1, ̄x2, . . . , ̄xd−1 in the quotient U (1) = U/N ∼= U/N

satisfy the intersection condition, and therefore A ∩ B ⊆ CN . Now if � ∈ I ∩ J , then 
N = 〈x̄ k�

� 〉 ⊆ 〈x̄�〉 ⊆ 〈 ̄xt : t ∈ I ∩ J 〉 = C, so A ∩ B ⊆ CN = C; while on the other 
hand, if � /∈ I ∩ J , then by (d) either 〈 xr : r ∈ I 〉 or 〈 xs : s ∈ J 〉 intersects N trivially, 
so A ∩N = ∅ or B ∩N = ∅, and therefore (A ∩B) ∩N = ∅, so A ∩B ⊆ C.

Hence the intersection condition is satisfied, making U (n) the orientation-preserving 
subgroup of the automorphism group of a chiral or directly regular d-polytope Q(n) of 
type {k1, . . . , k�−1, nk�, k�+1, . . . , kd−1}.
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In fact, Q(n) is chiral. For suppose the contrary, namely that Q(n) is directly 
regular. Then there exists an automorphism θ of the group U = U (n) that takes 
(x̄1, ̄x2, ̄x3, . . . , ̄xd−1) to (x̄−1

1 , ̄x1x̄
−1
2 x̄−1

1 , ̄x3, . . . , ̄xd−1). Now if � 
= 2, then θ takes x̄�

to x̄±1
� and so preserves 〈x̄�〉 = N , while on the other hand if � = 2, then θ takes 

x̄� to x̄1x̄
−1
2 x̄−1

1 = x̄1x̄
−1
� x̄−1

1 , which generates N (because N is cyclic and normal 
in U), and so again θ preserves N . But then θ induces an analogous automorphism 
of U/N = U/N = U (1), making the polytope Q(1) = P reflexible, a contradiction.

Finally, we consider flatness and tightness. If P is flat, then U (1) = U/N is ex-
pressible as the product of the images of 〈x1, x2, . . . , xd−2〉 and 〈x2, x3, . . . , xd−1〉. 
When we move from P to its cover Q(n), the analogues of these two subgroups are 
〈x̄1, ̄x2, . . . , ̄xd−2〉 and 〈x̄2, ̄x3, . . . , ̄xd−1〉. At least one of these contains x̄� and hence 
contains N , so their product must be U (n). Thus Q(n) is also flat. Also if P is tight, 
then |U (1)| = |Γ(P)| = k1k2 . . . kd−1, and so |Γ(Q(n))| = |U (n)| = |U/N (n)| =
|U/N (1)||N (1)/N (n)| = |U (1)|n = nk1k2 . . . kd−1, which is the product of the entries 
of the Schläfli type {k1, . . . , k�−1, nk�, k�+1, . . . , kd−1} of Q(n), and so Q(n) is tight as 
well. �

As our first application of this theorem, we have the following:

Example 3.2. An infinite family of chiral 4-polytopes of type {3n, 6, 9}.

To construct this family, take U as the group with presentation

〈u, v, w | (uv)2 = (vw)2 = (uvw)2 = v6 = w9 = (v−1u2)2 = [w, u3] = vw 2v−3w−1 = 1 〉.

Note that (v−1u2)2 = 1 can be rewritten as 1 = v−1u3u−1v−1u2 = v−1u3vuu2 =
v−1u3vu3, which implies that v−1u3v = u−3, and it follows that the cyclic subgroup 
N generated by u3 is centralised by u and w and normalised by v. Adding the rela-
tion u3 = 1 gives the quotient U/N , which by a relatively easy calculation in Magma

[1] is a group of order 486, and is the automorphism group of the mirror image P of 
the chiral 4-polytope of type {3, 6, 9} with 486 automorphisms listed at [6]. Moreover, 
the Reidemeister–Schreier process, implemented via the Rewrite command in Magma, 
shows that the subgroup N is infinite cyclic. Hence the hypotheses (a), (b), (c) and (e) 
in the above theorem are satisfied, for (x1, x2, x3) = (u, v, w).

But also v and w satisfy the relations (vw)2 = v6 = w9 = vw 2v−3w−1 = 1, which by 
another Magma computation define a group of order 54. Moreover, in the factor group 
U/N of order 486, the image of the subgroup generated by v and w has order 54, and 
has trivial intersection with the image of the cyclic subgroup generated by u. (Indeed 
U/N is the complementary product of the images of 〈u〉 and 〈v, w, u−1wu〉, which have 
orders 3 and 162 respectively.) Then since the order of the subgroup generated by v and 
w in U cannot be greater than 54, it follows that the intersection 〈u〉 ∩ 〈v, w〉 is trivial 
in U , and therefore 〈x 3

1 〉 ∩ 〈x2, x3〉 = 〈u 3〉 ∩ 〈v, w〉 = N ∩ 〈v, w〉 is trivial as well, so (d) 
holds too.
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Hence by Theorem 3.1 we obtain an infinite family {Q(n) : n = 1, 2, 3, . . . } of chiral 
4-polytopes of type {3n, 6, 9}, as indicated earlier.

The ‘base’ polytope P = Q(1) has 9 vertices, 27 edges, 81 2-faces and 9 facets (and 
972 flags), with each facet F being a directly regular 3-polytope of type {3, 6} having 
full automorphism group of order 108, and each vertex-figure V being a chiral 3-polytope 
of type {6, 9} having automorphism group of order 54 (isomorphic to 〈v, w〉). It follows 
that Q(n) has 9n vertices, 27n edges, 81 2-faces, 9 facets and 972n flags. Moreover, each 
facet F (n) of Q(n) is a directly regular 3-polytope of type {3n, 6}, with 9n vertices, 27n
edges and 18 faces, and full automorphism group of order 108n, while each vertex-figure 
V(n) is isomorphic to the same tight chiral 3-polytope of type {6, 9} as for P, with 6
vertices, 27 edges and 9 faces, and automorphism group of order 54.

Next, the above approach can be extended to produce families of covers for which the 
covering group is abelian but not necessarily cyclic:

Theorem 3.3. Let U be a group generated by d − 1 elements x1, x2, . . . , xd−1, with the 
property that for some subset L of {1, 2, . . . , d − 1}, the following hold:

(a) (xixi+1 . . . xj)2 = 1 for 1 ≤ i < j < d,
(b) xi has finite order ki ≥ 3 for all i /∈ L, while x� has infinite order for all � ∈ L,
(c) for all � ∈ L, there exists an integer k� ≥ 3 such that x k�

� generates a cyclic normal 
subgroup N� of U that intersects 〈 xi : i 
= � 〉 trivially,

(d) the normal subgroup N = 〈 x k�

� : � ∈ L 〉 =
∏

�∈L N� intersects 〈 xi : i /∈ L 〉 trivially,
(e) the images of the generators x1, x2, . . . , xd−1 in U/N satisfy the intersection condi-

tion (7), and make U/N the automorphism group of a chiral d-polytope P of type 
{k1, k2, . . . , kd−1}.

Then for every indexed sequence SL = (n�)�∈L of positive integers, the factor group 
U (SL) = U/〈 x n�k�

� : � ∈ L 〉 is the automorphism group of a chiral d-polytope Q(SL) that 
covers P and has type {s1, s2, . . . , sd−1}, where si = ki for all i /∈ L and s� = n�k�
for all � ∈ L, and the covering group for Q(SL) over P is isomorphic to the abelian 
group 

∏
�∈L Cn�

. Moreover, if P is flat, then so is Q(SL), and if P is tight, then so is 
Q(SL). Also if P is properly (resp. improperly) self-dual, then Q(SL) is properly (resp. 
improperly) self-dual if and only if d − � ∈ L and nd−� = n� whenever � ∈ L.

Proof. Most of this follows easily from Theorem 3.1, by induction on |L|. Note that 
N = 〈 x k�

� : � ∈ L 〉 is the product of the normal subgroups N� = 〈xk�

� 〉 for � ∈ L, which 
are cyclic and have trivial pairwise intersections, and hence N is abelian. In turn, this 
implies that the covering group is the direct product of the quotients N�/〈xn�k�

� 〉 ∼= Cn�

for � ∈ L. For the final claims about duality, necessity follows from the fact that the type 
of the dual of an equivelar polytope is the reverse of the given type, while sufficiency can 
be proved by showing that when d − � ∈ L and nd−� = n� whenever � ∈ L, any duality 
of P can be extended to a duality of Q(SL). �
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As an application of this more general theorem, we have the following:

Example 3.4. An infinite family of chiral 3-polytopes of type {4m, 4n}.

To construct this family, take U as the group with presentation

〈u, v | (uv)2 = (v−1u3)2 = (u−1v3)2 = uv−1uv−1u2v2u−2v−2 = 1 〉.

Note that (v−1u3)2 = 1 can be rewritten as 1 = v−1u4v−1v−1u3 = v−1u4vuu3 =
v−1u4vu4, which implies that v−1u4v = u−4, and hence that the cyclic subgroup gener-
ated by u4 is centralised by u and normalised by v. Similarly, the relation (u−1v3)2 = 1
implies that u−1v4u = v−4, and hence that the cyclic subgroup generated by v4 is 
normalised by u and centralised by v. Thus N = 〈u4, v4〉 is normal in U . Adding the 
relations u4 = v4 = 1 gives the quotient U/N , which by a calculation in Magma is a 
group of order 80, and is the automorphism group of a chiral 3-polytope of type {4, 4}
listed at [6]. In particular, the intersection of the images of 〈u〉 and 〈v〉 in U/N is trivial. 
Moreover, the Reidemeister–Schreier process shows that the subgroup N is free abelian 
of rank 2 (with just a single defining relation [u4, v4] = 1), and it follows that the cyclic 
subgroups generated by u and v have trivial intersection in U . Hence the hypotheses (a), 
(b), (c) and (e) in the above theorem are satisfied, for (x1, x2) = (u, v). The hypothesis 
(d) is vacuous.

By Theorem 3.3, we obtain for every ordered pair of positive integers m and n a chiral 
4-polytope Q(m,n) of type {4m, 4n}, with automorphism group of order 80mn. The ‘base’ 
polytope P = Q(1,1) is an improperly self-dual chiral polytope of type {4, 4} mentioned 
above, with 20 vertices, 40 edges, 20 2-faces and automorphism group of order 80, and it 
follows that the covering polytope Q(m,n) is also improperly self-dual, with 20m vertices, 
40mn edges, 20n 2-faces, and 160mn flags.

Before giving more examples, we note that analogues of Theorems 3.1 and 3.3 can be 
proved also in finite cases — where one or more of the selected generators x� has finite 
order, and then the subgroup 〈xk�

� 〉 has order s� (divisible by k�), and the integer n or 
n� is restricted to divisors of s�/k�. The proofs are essentially the same, and applications 
appear in §§ 4.2, 4.14, 4.19, 4.22, 4.23, 4.26, 4.27 and 4.29–4.31 below.

4. Infinite and finite families

This section exhibits further applications of Theorems 3.1 and 3.3, to the construction 
of infinite families of chiral polytopes of ranks 3 to 6, and some additional finite families 
in the rank 6 case.

We use much the same notation as above, but for simplicity we write group presen-
tations in the form 〈X | R〉 where X is the generating set and R is the set of defining 
relators (with a relation of the form w = z written as the relator wz−1). Also we use 
R(d) as an abbreviation for the set of relators (xixi+1 . . . xj)2 for 1 ≤ i < j < d and the 
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implied relators [xi, xj ] when j − i > 2, and we use the symbols u, v, w, x and y in place 
of x1, x2, x3, x4 and x5.

In each case we give the finitely-presented group U and indicate the relevant normal 
subgroup N , and then summarise particular properties of the polytopes in the resulting 
family, but without the kind of detail given in Examples 3.4 and 3.2.

4.1. Chiral 3-polytopes of type {4m, 4n}

• U = 〈 u, v | R(3), (v−1u3)2, (u−1v3)2, uv−1uv−1u2v2u−2v−2 〉
• N = 〈 u4, v4 〉 ∼= Z ⊕ Z (free abelian of rank 2), with quotient U/N of order 80
• Q(m,n) has 20m vertices, 40mn edges, 20n 2-faces, and 160mn flags, for all m, n ≥ 1
• Q(n,n) is improperly self-dual, for all n ≥ 1.

4.2. Chiral 4-polytopes of type {3, 4m, 4n} for m = 1, 2, 3 or 6

• U = 〈 u, v, w | R(4), v24, u3, [u, v4], (w−1v3)2, [u, w4], (v−1w3)2, uv−1uw2v−1wuw 〉
• N = 〈 v4, w4 〉 ∼= Z6 ⊕ Z, with quotient U/N of order 480
• Q(m,n) has 6 vertices, 60m edges, 80mn 2-faces, 20n facets, and 960mn flags, for all 

n ≥ 1, whenever m ∈ {1, 2, 3, 6}
• Each facet is a directly regular 3-polytope of type {3, 4m} with 48m automorphisms
• Each vertex-figure is a chiral 3-polytope of type {4m, 4n} with 80mn automorphisms, 

isomorphic to the one of type {4m, 4n} in §4.1 above when m = 1 or 3.

4.3. Chiral 4-polytopes of type {3n, 6, 9}

• U = 〈 u, v, w | R(4), v6, w9, (v−1u2)2, [w, u3], vw 2v−3w−1 〉
• N = 〈 u3 〉 ∼= Z, with quotient U/N of order 486
• Q(n) has 9n vertices, 27n edges, 81 2-faces, 9 facets, and 972n flags, for all n ≥ 1
• Each facet is a directly regular 3-polytope of type {3n, 6} with 108n automorphisms
• Each vertex-figure is a tight chiral 3-polytope of type {6, 9} with 54 automorphisms.

4.4. Chiral 4-polytopes of type {4, 3n, 6}

• U = 〈 u, v, w | R(4), u4, w6, (u−1v2)2, (w−1v2)2, (uwv−1w)2 〉
• N = 〈 v3 〉 ∼= Z, with quotient U/N of order 576
• Q(n) has 8 vertices, 48n edges, 72n 2-faces, 24 facets, and 1152n flags, for all n ≥ 1
• Each facet is a directly regular 3-polytope of type {4, 3n} with 48n automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {3n, 6} with 144n auto-

morphisms.

4.5. Chiral 4-polytopes of type {3m, 4, 6n}

• U = 〈 u, v, w | R(4), v4, (v−1u2)2, (v−1w)4, u−1wvw−1vuw−2 〉
• N = 〈 u3, w6 〉 ∼= Z ⊕ Z, with quotient U/N of order 576



450 M.D.E. Conder, W.-J. Zhang / Journal of Algebra 478 (2017) 437–457
• Q(m,n) has 6m vertices, 48m edges, 96n 2-faces, 24n facets, and 1152mn flags, for 
all m, n ≥ 1

• Each facet is a directly regular 3-polytope of type {3m, 4} with 48m automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {4, 6n} with 192n auto-

morphisms.

4.6. Chiral 4-polytopes of type {3m, 8, 3n}

• U = 〈 u, v, w | R(4), v8, (v−1u2)2, (v−1w2)2, (w−1v3)2, uwvuv−1uwv−1wuwv 〉
• N = 〈 u3, w3 〉 ∼= Z ⊕ Z, with quotient U/N of order 576
• Q(m,n) has 12m vertices, 96m edges, 96n 2-faces, 12n facets, and 1152mn flags, for 

all m, n ≥ 1
• Each facet is a directly regular 3-polytope of type {3m, 8} with 96m automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {8, 3n} with 96n automor-

phisms
• Q(n,n) is properly self-dual, for all n ≥ 1.

4.7. Chiral 4-polytopes of type {4, 4, 3n}

• U = 〈 u, v, w | R(4), u4, v4, (v−1w2)2, u−1vu−1vu2v2 〉
• N = 〈 w3 〉 ∼= Z, with quotient U/N of order 720
• Q(n) has 30 vertices, 120 edges, 90n 2-faces, 18n facets, and 1440n flags, for all n ≥ 1
• Each facet is a chiral 3-polytope of type {4, 4} with 40 automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {4, 3n} with 48n automor-

phisms.

4.8. Chiral 4-polytopes of type {3n, 8, 8}

• U = 〈 u, v, w | R(4), v8, w8, (v−1u2)2, (v2w−2)2, uwv−1uw−2vw−1 〉
• N = 〈 u3 〉 ∼= Z, with quotient U/N of order 768
• Q(n) has 6n vertices, 48n edges, 128 2-faces, 16 facets, and 1536n flags, for all n ≥ 1
• Each facet is a directly regular 3-polytope of type {3n, 8} with 96n automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {8, 8} with 256 automor-

phisms.

4.9. Chiral 4-polytopes of type {4, 4, 4n}

• U = 〈 u, v, w | R(4), u4, v4, uv−1uv−1u−2v2, uv−1u−2w−1u−1w2v−1w 〉
• N = 〈 w4 〉 ∼= Z, with quotient U/N of order 800
• Q(n) has 10 vertices, 100 edges, 100n 2-faces, 20n facets, and 1600n flags, for all 

n ≥ 1
• Each facet is a chiral 3-polytope of type {4, 4} with 40 automorphisms
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• Each vertex-figure is a chiral 3-polytope of type {4, 4n} with 80n automorphisms, 
isomorphic to the mirror image of the one of type {4, 4n} in §4.1 above.

4.10. Chiral 4-polytopes of type {3n, 6, 18}

• U = 〈 u, v, w | R(4), v6, (v−1u2)2, v−1wv3w−5, uv−1w−1v2uwv−3 〉
• N = 〈 u3 〉 ∼= Z, with quotient U/N of order 972
• Q(n) has 9n vertices, 27n edges, 162 2-faces, 18 facets, and 1944n flags, for all n ≥ 1
• Each facet is a directly regular 3-polytope of type {3n, 6} with 108n automorphisms
• Each vertex-figure is a chiral 3-polytope of type {6, 18} with 108 automorphisms.

4.11. Chiral 4-polytopes of type {3m, 18, 3n}

• U = 〈 u, v, w | R(4), (v−1u2)2, (v−1w2)2, [u, v6], [w, v6], u−1v2u−1v2u2v2,
(uv−1wuw)2, v2w−1v3wv3w2 〉

• N = 〈 u3, w3 〉 ∼= Z ⊕ Z, with quotient U/N of order 1458
• Q(m,n) has 9m vertices, 243m edges, 243n 2-faces, 9n facets, and 2916mn flags, for 

all m, n ≥ 1
• Each facet is a directly regular 3-polytope of type {3m, 8} with 324m automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {8, 3n} with 324n auto-

morphisms
• Q(n,n) is properly self-dual, for all n ≥ 1.

4.12. Chiral 4-polytopes of type {3n, 6, 6}

• U = 〈 u, v, w | R(4), v6, w6, [u, v2], (v−1w)4, u−1vw3u−1w2vw−1 〉
• N = 〈 u3 〉 ∼= Z, with quotient U/N of order 1728
• Q(n) has 3n vertices, 144n edges, 288 2-faces, 96 facets, and 3456n flags, for all n ≥ 1
• Each facet is a directly regular 3-polytope of type {3n, 6} with 36n automorphisms
• Each vertex-figure is a chiral 3-polytope of type {6, 6} with 576 automorphisms.

4.13. Chiral 4-polytopes of type {3m, 24, 3n}

• U = 〈 u, v, w | R(4), (v−1u2)2, (v−1w2)2, [u, v4], [w, v4], uwvuwuwvuwv−2 〉
• N = 〈 u3, w3 〉 ∼= Z ⊕ Z, with quotient U/N of order 1728
• Q(m,n) has 12m vertices, 288m edges, 288n 2-faces, 12n facets, and 3456mn flags, 

for all m, n ≥ 1
• Each facet is a directly regular 3-polytope of type {3m, 24} with 288m automor-

phisms
• Each vertex-figure is a directly regular 3-polytope of type {24, 3n} with 288n auto-

morphisms
• Q(n,n) is properly self-dual, for all n ≥ 1.
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4.14. Chiral 4-polytopes of type {4n, 4s, 4t} for s, t = 1 or 2

• U = 〈 u, v, w | R(4), v8, w8, (v−1u3)2, [w, u4], (u−1v3)2, (w−1v3)2, [u, w4], (v−1w3)2,
uv−1uv−1u2v2u−2v−2, u−1w−2v−2u2w−1u−1w−1 〉

• N = 〈 u4, v4, w4 〉 ∼= Z ⊕ Z2 ⊕ Z2, with quotient U/N of order 3200
• Q(n,s,t) has 20n vertices, 400ns edges, 400st 2-faces, 40t facets, and 6400nst flags, 

for all n ≥ 1, whenever s, t ∈ {1, 2}
• Each facet is a chiral 3-polytope of type {4n, 4s} with 80ns automorphisms, as in 

§4.1 above (with (n, s) in place of (m, n)).
• Each vertex-figure is a chiral 3-polytope of type {4s, 4t} with 160st automorphisms
• Q(n) is never self-dual.

4.15. Chiral 4-polytopes of type {3n, 6, 12}

• U = 〈 u, v, w | R(4), v6, w12, [u, v2], (v−1w)4, u−1vw3u−1w2vw−1 〉
• N = 〈 u3 〉 ∼= Z, with quotient U/N of order 6912
• Q(n) has 3n vertices, 288n edges, 1152 2-faces, 384 facets, and 13824n flags, for all 

n ≥ 1
• Each facet is a directly regular 3-polytope of type {3n, 6} with 36n automorphisms
• Each vertex-figure is a chiral 3-polytope of type {6, 12} with 2304 automorphisms.

4.16. Chiral 5-polytopes of type {3n, 4, 6, 3}

• U = 〈 u, v, w, x | R(5), v4, w6, x3, (v−1u2)2, (v−1w)4, (vu)−1w2vuw2,
vx−1v2wx−1v−1xw 〉

• N = 〈 u3 〉 ∼= Z, with quotient U/N of order 2304
• Q(n) has 6n vertices, 48n edges, 128 2-faces, 48 3-faces, 4 facets, and 4608n flags, for 

all n ≥ 1
• Each facet is a chiral 3-polytope of type {3n, 4, 6} with 576n automorphisms
• Each vertex-figure is a directly regular 3-polytope of type {4, 6, 3} with 768 auto-

morphisms.

4.17. Chiral 5-polytopes of type {3, 8, 8, 4n}

• U = 〈u, v, w, x | R(5), u3, v8, w8, (u−1v3)2, (v2w−2)2, uwv−1uw−2vw−1,
v−1x−1vxw2, (vxw−1)2 〉

• N = 〈 x4 〉 ∼= Z, with quotient U/N of order 3072
• Q(n) has 6 vertices, 48 edges, 128 2-faces, 32n 3-faces, 4n facets, and 6144n flags, for 

all n ≥ 1
• Each facet is a chiral 4-polytope of type {3, 8, 8} with 768 automorphisms, isomorphic 

to the one of type {3, 8, 8} in §4.8 above
• Each vertex-figure is a directly regular 4-polytope of type {8, 8, 4n} with 1024n

automorphisms.
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4.18. Chiral 5-polytopes of type {3, 4, 4, 3n}

• U = 〈 u, v, w, x | R(5), u3, v4, w4, (w−1x2)2, v−1wv−1wv2w2, uwuwu−1v−2w−2 〉
• N = 〈 x3 〉 ∼= Z, with quotient U/N of order 4320
• Q(n) has 6 vertices, 90 edges, 240 2-faces, 90n 3-faces, 18n facets, and 8640n flags, 

for all n ≥ 1
• Each facet is a chiral 4-polytope of type {3, 4, 4} with 240 automorphisms
• Each vertex-figure is a chiral 4-polytope of type {4, 4, 3n} with 720n automorphisms, 

as in §4.7 above.

4.19. Chiral 5-polytopes of type {3k, 3m, 4, 6n} for k, m = 1, 2, 4

• U = 〈 u, v, w, x | R(5), u12, v12, w4, [v, u3], [u, v3], (w−1x)4, (w−1v2)2, vx2wvx2w 〉
• N = 〈 u3, v3, x6 〉 ∼= Z4 ⊕ Z4 ⊕ Z, with quotient U/N of order 4608
• Q(k,m,n) has 8k vertices, 24km edges, 128m 2-faces, 192n 3-faces, 24n facets, and 

9216kmn flags, for all n ≥ 1 whenever k, m ∈ {1, 2, 4}
• Each facet is a directly regular 4-polytope of type {3k, 3m, 4} with 384km automor-

phisms
• Each vertex-figure is a chiral 4-polytope of type {3m, 4, 6n} with 576mn automor-

phisms, as in §4.5 above (but with m restricted to {1, 2, 4}).

4.20. Chiral 5-polytopes of type {3m, 6, 6, 3n}

• U = 〈 u, v, w, x | R(5), v6, w6, [u, v2], [x, w2], (v−1w)4, u−1vw3u−1w2vw−1 〉
• N = 〈 u3, x3 〉 ∼= Z ⊕ Z, with quotient U/N of order 5184
• Q(m,n) has 3m vertices, 144m edges, 288 2-faces, 144n 3-faces, 3n facets, and 

10368mn flags, for all m, n ≥ 1,
• Each facet is a chiral 4-polytope of type {3m, 6, 6} with 1728m automorphisms, as 

in §4.12 above (with m in place of n)
• Each vertex-figure is a chiral 4-polytope of type {6, 6, 3n} with 1728n automorphisms, 

dual to the mirror image of the one of type {3n, 6, 6} in §4.12 above
• Q(n,n) is improperly self-dual, for all n ≥ 1.

4.21. Chiral 5-polytopes of type {3m, 4, 6, 3n}

• U = 〈 u, v, w, x | R(5), v4, w6, (v−1u2)2, (w−1x2)2, (v−1w)4, u−1v−1w2vuw2,
wx−1w−2xw3xw−2x−1 〉

• N = 〈 u3, x3 〉 ∼= Z ⊕ Z, with quotient U/N of order 6912
• Q(m,n) has 6m vertices, 48m edges, 384 2-faces, 144n 3-faces, 12n facets, and 

13824mn flags, for all m, n ≥ 1,
• Each facet is a chiral 4-polytope of type {3m, 4, 6} with 576m automorphisms, iso-

morphic to the one of type {3m, 4, 6} in §4.5 above
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• Each vertex-figure is a directly regular 4-polytope of type {4, 6, 3n} with 2304n
automorphisms.

4.22. Chiral 5-polytopes of type {3, 3m, 8, 3n} for m = 1, 2, 4

• U = 〈 u, v, w, x | R(5), u3, v12, w8, (w−1v2)2, (w−1x2)2, [u, v3], (v−1w3)2, (x−1w3)2,
vxwvxwvw−1vxw−1x 〉

• N = 〈 v3, x3 〉 ∼= Z4 ⊕ Z, with quotient U/N of order 9216
• Q(m,n) has 16 vertices, 96m edges, 512m 2-faces, 384n 3-faces, 24n facets, and 

18432mn flags, for all n ≥ 1 when m = 1, 2 or 4
• Each facet is a directly regular 4-polytope of type {3, 3m, 8} with 768m automor-

phisms
• Each vertex-figure is a chiral 4-polytope of type {3m, 8, 3n} with 576mn automor-

phisms, as in §4.6 above (but with m restricted to {1, 2, 4}).

4.23. Chiral 5-polytopes of type {3m, 3, 8, 3n} for m = 1, 2, 4

• U = 〈 u, v, w, x | R(5), v3, w8, [v, u3], (w−1x2)2, (x−1w3)2, vxwvxwvw−1vxw−1x 〉
• N = 〈 u3, x3 〉 ∼= Z4 ⊕ Z, with quotient U/N of order 9216
• Q(m,n) has 16m vertices, 96m edges, 512 2-faces, 384n 3-faces, 24n facets, and 

18432mn flags, for all n ≥ 1 when m = 1, 2 or 4
• Each facet is a directly regular 4-polytope of type {3m, 3, 8} with 768m automor-

phisms
• Each vertex-figure is a chiral 4-polytope of type {3, 8, 3n} with 576n automorphisms, 

isomorphic to the one of type {3, 8, 3n} in §4.6 above.

4.24. Chiral 5-polytopes of type {3m, 4, 4, 3n}

• U = 〈 u, v, w, x | R(5), v4, w4, (v−1u2)2, (w−1x2)2, vw−1vw2v2w−1,
uwvxw−1vu−1vxw2v 〉

• N = 〈 u3, x3 〉 ∼= Z ⊕ Z, with quotient U/N of order 12960
• Q(m,n) has 18m vertices, 270m edges, 720 2-faces, 270n 3-faces, 18n facets, and 

25920mn flags, for all m, n ≥ 1
• Each facet is a chiral 4-polytope of type {3m, 4, 4} with 720m automorphisms, dual 

to the mirror image of the one of type {4, 4, 3m} in §4.7 above
• Each vertex-figure is a chiral 4-polytope of type {4, 4, 3n} with 720n automorphisms, 

as in §4.7 above
• Q(n,n) is improperly self-dual for all n ≥ 1.

4.25. Chiral 5-polytopes of type {3m, 4, 12, 3n}

• U = 〈u, v, w, x | R(5), v4, w12, (v−1u2)2, (w−1x2)2, (v−1w)4, [x, w6], v−1w−1vxwv−2x,
u−1wvw−1vuw−2, wx−1w2x−1w3x−1w2x−1 〉
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• N = 〈 u3, x3 〉 ∼= Z ⊕ Z, with quotient U/N of order 13824
• Q(m,n) has 6m vertices, 48m edges, 768 2-faces, 288n 3-faces, 12n facets, and 

27648mn flags, for all m, n ≥ 1
• Each facet is a chiral 4-polytope of type {3m, 4, 12} with 1152m automorphisms, 

isomorphic to the one of type {3m, 4, 12} in §4.5 above
• Each vertex-figure is a directly regular 4-polytope of type {4, 12, 3n} with 4608n

automorphisms.

4.26. Chiral 6-polytopes of type {4m, 3, 8, 8, 4n} for m = 1 or 2

• U = 〈 u, v, w, x, y | R(6), v3, w8, x8, (v−1u3)2, u2w2u−2w2, vxw−1vx−2wx−1,
(w2x−2)2, (wyx−1)2, w−1y−1wyx2 〉

• N = 〈 u4, y4 〉 ∼= Z2 ⊕ Z, with quotient U/N of order 24576
• Q(m,n) has 8m vertices, 24m edges, 96 2-faces, 128 3-faces, 32n 4-faces, 4n facets, 

and 49152mn flags, for all n ≥ 1, when m = 1 or 2
• Each facet is a chiral 5-polytope of type {4m, 3, 8, 8} with 6144m automorphisms
• Each vertex-figure is a chiral 5-polytope of type {3, 8, 8, 4n} with 3072n automor-

phisms, as in §4.17 above.

4.27. Chiral 6-polytopes of type {3k, 3m, 4, 6, 3n} for k, m = 1, 2, 4

• U = 〈 u, v, w, x, y | R(6), u12, v12, w4, x6, (w−1v2)2, (x−1y2)2, [v, u3], [u, v3], (w−1x)4,
v−1w−1x2wvx2, xy−1x−2yx3yx−2y−1 〉

• N = 〈 u3, v3, y3 〉 ∼= Z4 ⊕ Z4 ⊕ Z, with quotient U/N of order 55296
• Q(k,m,n) has 8k vertices, 24km edges, 128m 2-faces, 768 3-faces, 144n 4-faces, 12n

facets, and 110592kmn flags, for all n ≥ 1 when k = 1, 2 or 4 and m = 1, 2 or 4
• Each facet is a chiral 5-polytope of type {3k, 3m, 4, 6} with 4608km automorphisms
• Each vertex-figure is a chiral 5-polytope of type {3m, 4, 6, 3n} with 6912mn auto-

morphisms, as in §4.21 above (but with m restricted to {1, 2, 4}).

4.28. Chiral 6-polytopes of type {3, 3, 4, 12, 3n}

• U = 〈 u, v, w, x, y | R(6), u3, v3, w4, x12, [v, u3], (w−1x)4, (x−1y2)2, [y, x6],
v−1w−1x2wvx2, xy−1x2y−1x3y−1x2y−1 〉

• N = 〈 y3 〉 ∼= Z, with quotient U/N of order 110592
• Q(n) has 8 vertices, 24 edges, 128 2-faces, 1536 3-faces, 288n 4-faces, 12n facets, and 

221184n flags, for all n ≥ 1
• Each facet is a chiral 5-polytope of type {3, 3, 4, 12} with 9216 automorphisms
• Each vertex-figure is a chiral 5-polytope of type {3, 4, 12, 3n} with 13824n automor-

phisms, isomorphic to the one of type {3, 4, 12, 3n} in §4.25 above.
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4.29. Chiral 6-polytopes of type {3m, 3, 8, 3, 3n} for m, n = 1, 2, 4

• U = 〈 u, v, w, x, y | R(6), u12, v3, w8, x3, y12, [v, u3], (x−1w3)2, [x, y3],
vxwvxwvw−1vxw−1x 〉

• N = 〈 u3, y3 〉 ∼= Z4 ⊕ Z4, with quotient U/N of order 294912
• Q(m,n) has 32m vertices, 384m edges, 4096 2-faces, 4096 3-faces, 384n 4-faces, 32n

facets, and 589824mn flags, for all m, n ∈ {1, 2, 4}
• Each facet is a chiral 5-polytope of type {3m, 3, 8, 3} with 9216m automorphisms, as 

in §4.23 above (with n = 1)
• Each vertex-figure is a chiral 5-polytope of type {3, 8, 3, 3n} with 9216n automor-

phisms, dual to the polytope of type {3n, 3, 8, 3} from §4.23 above
• Q(n,n) is properly self-dual for all n ∈ {1, 2, 4}
• Q(1,1) is currently the smallest known self-dual chiral polytope of rank 6; see [10].

4.30. Chiral 6-polytopes of type {3, 3m, 8, 3n, 3} for m, n = 1, 2, 4

• U = 〈 u, v, w, x, y | R(6), u3, v12, w8, x12, y3, [u, v3], (w−1v2)2, [v, w4], [x, w4],
(w−1x2)2, [y, x3], vxwvxwvw−1vxw−1x 〉

• N = 〈 v3, x3 〉 ∼= Z4 ⊕ Z4, with quotient U/N of order 294912
• Q(m,n) has 32 vertices, 384m edges, 4096m 2-faces, 4096n 3-faces, 384n 4-faces, 32

facets, and 589824mn flags, for all m, n ∈ {1, 2, 4}
• Each facet is a chiral 5-polytope of type {3, 3m, 8, 3n} with 9216mn automorphisms, 

as in §4.22 above
• Each vertex-figure is a chiral 5-polytope of type {3m, 8, 3n, 3} with 9216mn auto-

morphisms, dual to the polytope of type {3, 3n, 8, 3m} from §4.22 above
• Q(n,n) is properly self-dual for all n ∈ {1, 2, 4}.

4.31. Chiral 6-polytopes of type {3m, 3, 8, 3n, 3} for m, n = 1, 2, 4

• U = 〈u, v, w, x, y | R(6), u12, v3, w8, x12, y3, [v, u3], (w−1v2)2, [x, w4], (w−1x2)2, [y, x3],
vxwvxwvw−1vxw−1x 〉

• N = 〈 u3, x3 〉 ∼= Z4 ⊕ Z4, with quotient U/N of order 294912
• Q(m,n) has 32m vertices, 384m edges, 4096 2-faces, 4096n 3-faces, 384n 4-faces, 32

facets, and 589824mn flags, for all m, n ∈ {1, 2, 4}
• Each facet is a chiral 5-polytope of type {3m, 3, 8, 3n} with 9216mn automorphisms, 

as in §4.23 above
• Each vertex-figure is a chiral 5-polytope of type {3, 8, 3n, 3} with 9216n automor-

phisms, dual to the polytope of type {3, 3n, 8, 3} from §4.22 above.
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