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We use the theory of Mori dream spaces to prove that 
the global Okounkov body of a Bott–Samelson variety with 
respect to a natural flag of subvarieties is rational polyhedral. 
As a corollary, Okounkov bodies of effective line bundles over 
Schubert varieties are shown to be rational polyhedral. In 
particular, it follows that the global Okounkov body of a flag 
variety G/B is rational polyhedral. As an application we show 
that the asymptotic behaviour of dimensions of weight spaces 
in section spaces of line bundles is given by the volume of 
polytopes.
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Introduction

Okounkov bodies were first introduced by A. Okounkov in his famous paper [20] as 
a tool for studying multiplicities of group representations. The idea is that one should 
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be able to approximate these multiplicities by counting the number of integral points 
in a certain convex body in Rn. More precisely, the setting is the following. Let G
be a complex reductive group which acts as automorphisms on an effective line bun-
dle L over a projective variety X, and hence defines a representation on the space of 
sections H0(X, Lk) for each integral power, Lk, of L. For an n-dimensional variety, Ok-
ounkov constructs a convex compact set Δ ⊆ Rn whose most important property can be 
interpreted as follows: for each irreducible finite-dimensional representation Vλ the mul-
tiplicity mkλ,k := dim HomG(Vkλ, H0(X, Lk)) of Vkλ in H0(X, Lk) is “asymptotically 
given” by the volume of the convex body Δλ := Δ ∩Hλ. Here, λ—the so-called highest 
weight—is a parameter and Hλ ⊆ Rn+1 is a certain affine subspace. Concretely,

lim
k→∞

mkλ,k

km
= volm(Δλ), (1)

where m is the dimension of Δλ, and the volume on the right hand side denotes the 
m-dimensional Euclidean volume–normalized by a certain sublattice of Zm–of Δλ. In 
fact, this gives a Euclidean interpretation of a Duistermaat–Heckman-measure, cf. [20]. 
An approximation of the integral volm(Δλ) by Riemann sums yields that the multiplicity 
mkλ,k is asymptotically given by the number of points of the set Δλ ∩ 1

kZ
m.

The construction of the body Δ is purely geometric and depends on a choice of a flag 
Y•, Yn ⊆ Yn−1 ⊆ · · · ⊆ Y0 = X of irreducible subvarieties of X, and the “successive 
orders of vanishing” of unipotent invariant sections s ∈ H0(X, Lk) along this flag. It 
was later realized by Kaveh and Khovanskii ([9]), and independently by Lazarsfeld and 
Mustaţă, ([15]), that Okounkov’s construction makes sense for more general subseries of 
the section ring R(X, L) of a line bundle over a variety X, and that the asymptotics of 
dimensions of linear series can be expressed as volumes of convex bodies. Specifically, 
the analog of (1) for the complete linear series of a big line bundle L is given by the 
identity

lim
k→∞

h0(X,Lk)
n!kn = 1

n!voln(ΔY•(L)),

where ΔX•(L) denotes the Okounkov body of the line bundle L with respect to the flag 
Y•.

The above formula shows in particular that the volume of the Okounkov body is an 
invariant of the line bundle L, and thus does not depend on the choice of the flag Y•. 
However, the shape of ΔX•(L) depends heavily on the flag, and it is a notoriously hard 
problem to explicitly describe these bodies, or even to show that they possess some 
nice properties, such as being polyhedral. A yet more difficult problem is to determine 
the global Okounkov body ΔY•(X) of a variety X (cf. [15]), which is a convex cone in 
Rn × N1(X)R such that for each big divisor D the fibre of the second projection over 
[D] is exactly ΔY•(D).

Returning to the original motivation by Okounkov of studying multiplicities of repre-
sentations, there is also another approach to describing multiplicities by counting lattice 
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points in convex bodies, namely Littelmann’s construction of string polytopes ([16]). The 
setting here is the following. Let G, again, be a complex reductive group, and let H ⊆ G

be a maximal torus in G. Then any irreducible finite-dimensional G-representation Vλ

admits a basis of weight vectors with respect to H, and this basis is parametrized by 
the integral points in a rational polytope Cλ, the string polytope of Vλ. Moreover, the 
approximative lattice counting problem is even exact here. Since the irreducible rep-
resentations Vλ can be realized as section spaces H0(X, Lλ), where X = G/B for a 
Borel subgroup B ⊆ G, and Lλ is a line bundle over X, it would be interesting to 
recover Littelmann’s string polytopes Cλ as Okounkov bodies, or at least to construct 
rational polyhedral Okounkov bodies which describe asymptotic multiplicities of weight 
spaces.

In the present paper we study both problems described above—namely the Okounkov 
bodies for complete linear series, and the asymptotics of weight multiplicities—for general 
Bott–Samelson varieties Z = Zw (given by a reduced expression w for an element w in 
the Weyl group of G), that is, Bott–Samelson varieties which desingularize some Schubert 
variety Xw in a flag variety G/B.

Our main result is the following

Theorem A. Let Z = Zw be a Bott–Samelson variety defined by a reduced expression w
of an element w in the Weyl group of G. Then there exists a natural flag Y• on Z, the so 
called vertical flag, such that the corresponding global Okounkov-body ΔY•(Z) is rational 
polyhedral.

Among other reasons, one is interested in rational polyhedrality of Okounkov bodies 
as a necessary condition of finite generation of the valuation semi-groups ΓY•(D) for 
divisors D, which in turn would yield toric degenerations of X by [1]. It would be nice to 
know whether in our situation the valuation semi-groups are indeed finitely generated. 
However, this is unclear to the authors.

In order to facilitate cleanness of presentation we separate the proof into two steps, 
proving a result formulated in the more general context of Mori dream spaces.

Any Mori dream space X admits finitely many small Q-factorial modifications such 
that any movable divisor D on X is the pullback of a nef divisor under one of these 
modifications. In particular, for any effective divisor E, all necessary flips in the E-MMP 
exist and terminate. We define an admissible flag X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn to be good, 
if

(1) Yi is a Mori dream space for each 0 ≤ i ≤ n, and for i = 1, . . . , n, Yi defines a Cartier 
divisor of Yi, and

(2) any small Q-factorial modification f : Yi ��� Y ′
i restricts to a small Q-factorial 

modification of Yi+1.

We prove the following result.
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Theorem B. Let X be a Mori dream space and assume that there exists a good flag 
Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn. Then the global Okounkov body ΔY•(X) of X with respect 
to the flag Y• is a rational polyhedral cone.

Note that the existence of a good flag is in general very hard to check. In the 
case of a Mori dream surface S, condition (2) is vacuous, so S admits a good 
flag if and only if it contains a rational curve. As far as the authors know, apart 
from trivial examples like projective space, the following theorem provides the only 
known instance in higher dimensions. It is not unreasonable to expect that there 
are other Mori dream spaces also admitting a good flag and we hope to deter-
mine those in the future. We discuss the similar looking result from [18] in Re-
mark 3.6.

Theorem C. Let Z = Zw be a Bott–Samelson variety defined by a reduced expression w
of an element w in the Weyl group of G.

(i) The variety Z is log-Fano and hence a Mori dream space. (Theorem 2.2)

(ii) The vertical flag Y• on Z is good. (Proposition 4.7)

As a consequence, all Okounkov bodies ΔY•(L) of line bundles L over Z are rational 
polyhedral. Using the desingularization Zw −→ Xw of the Schubert variety Xw, we also 
see that line bundles over Schubert varieties admit rational polyhedral Okounkov bodies.

On the representation-theoretic side, we obtain Okounkov bodies describing weight 
multiplicities. Indeed, the flag Y• of subvarieties is B-invariant, which allows for the 
construction of affine subspaces Hμ mentioned before. We then get the following result 
on asymptotics of weight multiplicities in a section ring R(Z, L).

Theorem D. Let L be an effective line bundle over the Bott–Samelson variety Z. Let 
H ⊆ B be a torus contained in a maximal torus of G lying in B, and let μ be an rational 
H-weight. Then there exists an affine subspace Hμ (in Rn+1, where n = dimZ) such 
that the asymptotics of the multiplicity function mkμ,k defined above is given by

lim
k→∞

mkμ,k

km
= volm(ΔY•(L) ∩Hμ),

where ΔY•(L) is the rational polyhedral Okounkov body of L.

If we apply this to the situation when the torus H is a maximal torus, Z is of maximal 
dimension, and thus admits a birational morphism f : Z −→ G/B to the flag variety 
of G, and L = f∗(Lλ) is the pull-back of the line bundle Lλ over G/B, we obtain 
the following corollary, which can be seen as an analogue of Littelmann’s result which 
describes weight multiplicities using string polytopes.
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Corollary E. Let Vλ
∼= H0(G/B, Lλ) be the irreducible G-representation of highest 

weight λ. If μ is rational weight, let mkμ,k, for kμ integral, denote the multiplicity of 
the weight kμ in the G-module Vkλ. Then there exists an m ∈ N such that

lim
k→∞

mkμ,k

km
= volm(ΔY•(f∗(Lλ)) ∩Hμ).

We would finally like to mention the recent preprint by Postinghel–Urbinati ([21]), 
where the authors show that any Mori dream space X admits a birational model h :
X → X with an admissible flag Y • such that the corresponding global Okounkov body 
of X is rational polyhedral. It is not clear to us, however, whether our valuation can be 
seen as a special case of theirs.

The present paper is organized as follows: we begin by recalling basic facts about 
Okounkov bodies and Bott–Samelson varieties in sections 1 and 2, respectively. The 
general result on Mori dream spaces admitting good flags is proved in section 3. Finally, 
in section 4 the result is applied to Bott–Samelson varieties, furthermore we address 
there the representation-theoretic consequences.

We work throughout over the complex numbers C as our base field.

Acknowledgements. The authors would like to thank Thomas Bauer and Rob Lazarsfeld 
for helpful discussions and suggestions, as well as Jesper Funch Thomsen for having 
answered several questions about Bott–Samelson varieties. We would also like to thank 
Dave Anderson for interesting remarks on an earlier version of this paper. Finally, we
are very grateful to the referee for useful comments and suggestions that helped improve 
the exposition.

1. Okounkov bodies

For the convenience of the reader not familiar with the construction of Okounkov 
bodies we give here a quick overview. For a thorough discussion, we refer the reader to 
[9] and [15].

To a graded linear series W• on a normal projective variety X of dimension n we want 
to assign a convex subset of Rn carrying information on W•. In practice, more often than 
not, W• will be the complete graded linear series 

⊕
k H

0(X, OX(kD)) corresponding to 
an effective divisor D. However, at times it is convenient to work with an arbitrary 
linear series associated to some divisor D, i.e., a series W• = {Wk} of subspaces Wk ⊆
H0(X, OX(kD)) satisfying the condition Wk ·Wl ⊆ Wk+l. The construction will depend 
on the choice of a valuation-like function

ν :	
k≥0

Wk \ {0} −→ Zn.

Instead of recounting the conditions on ν, we describe a certain type of valuation which 
automatically satisfies these conditions. To this end, let
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Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn

be a flag of irreducible subvarieties such that codimX(Yi) = i and such that Yn is 
a smooth point of each Yi. Then, for a section s ∈ Wk ⊆ H0(X, OX(kD)), we set 
ν1(s) := ordY1(s). If we choose a local equation for Y1, we obtain a unique section 
s̃1 ∈ H0(X, OX(kD−ν1(s)Y1)) not vanishing identically along Y1, and thus determining 
a section s1 ∈ H0(Y1, OY1(D− ν1(s)Y1)). We then set ν2(s) = ordY2(s1), and proceed as 
before to obtain the valuation vector νY•(s) = (ν1(s), . . . , νn(s)).

One then defines the valuation semi-group of W• with respect to Y• as

ΓY•(W•) :=
{
(νY•(s),m) ∈ Zn+1 | 0 
= s ∈ Wm

}
.

Furthermore, we define the Okounkov body of W• as

ΔY•(W•) := Σ(ΓY•(W•)) ∩ (Rn × {1})

where Σ(ΓY•(W•)) denotes the closed convex cone in Rn+1 spanned by ΓY•(W•).
If W• is the complete graded linear series of a divisor D, we write ΔY•(D) for the 

Okounkov body of W•. In this case, by [15, Theorem 2.3], we have the important identity

volRn(ΔY•(D)) = 1
n!volX(D),

showing in particular, that the volume of the body ΔY•(D) is independent of the choice 
of the flag Y•. Another important observation made in [15] is that even the shape of 
the Okounkov body ΔY•(D) for a divisor D only depends on the numerical equivalence 
class of D. It is therefore a natural question how the bodies ΔY•(D) change as [D] varies 
in the Néron–Severi vector space N1(X)R. An answer to this question is given in [15, 
Theorem 4.5] by proving the existence of the global Okounkov body: there exists a closed 
convex cone

ΔY•(X) ⊂ Rn ×N1(X)R

such that for each big divisor D the fibre of the second projection over [D] is exactly 
ΔY•(D).

The concrete determination or even the description of geometric properties of Ok-
ounkov bodies associated to some graded linear series is extremely difficult in general. 
As is to be expected this will be even more true of the global Okounkov body of a 
given variety. In particular, it is an intriguing question under which conditions on X it 
is possible to pick a flag such that the corresponding global Okounkov body is rational 
polyhedral. Already in [15] this was shown to be possible for toric varieties. Based on 
this evidence it is conjectured to work also for any Mori dream space X. In [22], we in-
troduce a possible technique to prove rational polyhedrality of global Okounkov bodies 
by constructing so-called Minkowski bases on X. Work in progress hints at the feasibility 
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of this approach for any Mori dream space. In this paper however, we use a more direct 
strategy to prove the rational polyhedrality of global Okounkov bodies with respect to 
a natural choice of flag for a special class of Mori dream spaces, namely Bott–Samelson 
varieties, which we introduce in the following section.

Let us make a small remark on how the construction by Littelmann mentioned in 
the introduction compares to Okounkov bodies. Littelmann’s string polytopes are con-
structed by purely algebraic and combinatorial means, notably using quantum enveloping 
algebras of Lie algebras, and the result thus only shows formal analogies with the outcome 
of Okounkov’s approach. However, since—by the Borel–Weil theorem—every irreducible 
G-module Vλ can be realized as the space of sections H0(X, Lλ) of a line bundle Lλ over 
a flag variety X := G/B, where B is a Borel subgroup of G, Okounkov’s approach makes 
sense for the study of asymptotics of weight spaces in the section ring R(X, Lλ). For 
the approach to work, the flag Y• should consist of H-invariant subvarieties. A natural 
candidate for such a flag would then be a flag of Schubert varieties, and indeed this 
approach was taken by Kaveh in [11]. For technical reasons, notably for having a flag of 
Cartier divisors, Kaveh passed to a Bott–Samelson resolution Z −→ X of X, pulled back 
Lλ to Z, and replaced the flag Y• by a flag Z• of (translations of) Bott–Samelson subva-
rieties of Z. The main result in [11] is that Littelmann’s string bases can be interpreted 
in terms of a Zn-valued valuation on the function field C(Z) of Z, depending on the flag 
Z•. This valuation, however, differs from those introduced by Okounkov: whereas orders 
of vanishing of a regular function f are described in local coordinates x1, . . . , xn by the 
smallest monomial term of f(x) =

∑
a∈Nn cax

a, with respect to some ordering of the 
variables x1, . . . , xn, Kaveh’s valuation is locally defined by the highest monomial term. 
In geometric language, this valuation thus tells how often f can be differentiated in the 
various directions defined by the xi in the given order. Moreover, Fujita studied used this 
same valuation to study string polytopes for more general line bundles on Bott–Samelson 
varieties ([6]), being interested the closely related Demazure modules for the group B.

It still remains an open problem to interpret Littelmann’s string polytopes as Ok-
ounkov bodies, or indeed, more generally, to construct rational polyhedral Okounkov 
bodies for line bundles over flag varieties using some H-invariant flag Y•.

2. Bott–Samelson varieties

Let us recall the basics of Bott–Samelson varieties, following [14].

Let G be a connected and simply connected reductive complex linear group, let B ⊆ G

be a Borel subgroup, and let W be the Weyl group of G. If si ∈ W is a simple reflection, 
let Pi denote the associated minimal parabolic subgroup containing B. Then the quotient 
space Pi/B is isomorphic to P1. For a sequence w = (s1, . . . , sn) (where the si are not 
necessarily distinct), let Pw := P1×· · ·×Pn be the product of the corresponding parabolic 
subgroups, and consider the right action of Bn on Pw given by

(p1, . . . , pn)(b1, . . . , bn) := (p1b1, b
−1
1 p2b2, b

−1
2 p3b3, . . . , b

−1
n−1pnbn).
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The Bott–Samelson variety Zw is the quotient

Zw := Pw/B
n.

An alternative description of this quotient can be given as follows. Suppose that X and 
Y are two varieties, such that X is equipped with a right action and Y with a left action 
of B. Consider the right action of B on the product given by

(x, y).b := (xb, b−1y), (x, y) ∈ X × Y, b ∈ B,

and let X ×B Y := (X × Y )/B denote the quotient space. Then the map X ×B Y −→
X/B, [(x, y)] �→ xB exhibits X×B Y as a fibre bundle over X/B and with fibre Y . Now, 
we can alternatively describe Zw as

Zw = (P1 ×B · · · ×B Pn)/B,

where B acts on the right on P1 ×B · · · ×B Pn by

[(p1, . . . , pn)].b := [(p1, . . . , pn−1, pnb)], (p1, . . . , pn) ∈ Pw, b ∈ B.

As a consequence, using the fact that each quotient Pi/B is isomorphic to P1, Zw is 
given as an iteration of P1-bundles. In particular, Zw is a smooth variety. To describe 
this iterated fibre bundle structure in more detail, let, for j ∈ {1, . . . , n}, w[j] denote 
the truncated sequence (s1, . . . , sn−j), and let Zw[j] := Pw[j]/B

n−j denote the associated 
Bott–Samelson variety. Then the projections Pw −→ Pw[j] are Bn-equivariant, where Bn

acts on Pw[j] by the factor Bn−j , and thus induce a projections πw[j] : Zw −→ Zw[j], 
which can be factorized as a sequence of P1-fibrations

πw[j] : Zw −→ Zw[1] −→ · · · −→ Zw[j].

Let π : Zw −→ P1/B denote the composition of all these projections, i.e., π is the 
projection morphism onto P1/B defined by the description of Zw as the bundle

Zw := P1 ×B (P2 ×B × · · · ×B Pn).

Now, each P1-bundle admits a natural section as follows. Let w(j) := (s1, . . . , ŝj , . . . ,
sn), so that Pw(j) embeds naturally as a subgroup of Pw. The embedding σ0

w,j : Pw(j) −→
Pw is Bn−1-equivariant, and thus induces an embedding

σw,j : Zw(j) −→ Zw

of Zw(j) as a divisor in Zw such that the divisors Zw(j), j = 1, . . . , n, intersect transversely 
in a point. In particular, σw,n : Zw(n) ∼= Zw[1] −→ Zw defines a section of the P1-bundle 
πw[1]Zw −→ Zw[1], and identifies Zw[1] with a divisor which is transversal to the fibres 
of πw[1]. Now, the Picard group Pic(Zw) splits as the direct sum
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Pic(Zw) ∼= Pic(Zw[1]) ⊕ Z,

where Z is identified with the subgroup generated by the line bundle OZw
(Zw(n)). Iter-

ating the above splitting yields that the line bundles OZw
(Zw(j)), j = 1, . . . , n, define a 

basis for Pic(Zw). Clearly, they are all effective. Conversely, if w is a reduced sequence, 
i.e., if the length of the product w := s1 · · · sn equals n, a divisor

m1Zw(1) + · · · + mnZw(n), m1, . . . ,mn ∈ Z,

is effective if and only if m1, . . . , mn ≥ 0 (cf. [14, Prop. 3.5]). The basis {Zw(1), . . . , Zw(n)}
is called the effective basis for Pic(Zw). Notice that, since Zw(n) defines a section of the 
bundle πw[1], the restricted divisors

Zw(1) · Zw(n), . . . , Zw(n−1) · Zw(n) (2)

form the effective basis for Zw[1] ∼= Zw(n).

2.1. The vertical flag

We also recall the so-called O(1)-basis for Pic(Zw) defined as follows. Each product 
P1 × · · · × Pk, k = 1, . . . , n, defines a morphism

ϕk : Zw[n−k] −→ G/B, [(p1, . . . , pk)] �→ p1p2 · · · pkB.

Put Ow[n−k](1) := ϕ∗
kLωα

, where α is simple root corresponding to the simple reflection 
sk, ωα is its fundamental weight, viewed as a character of B, and Lωα

:= G ×B C is 
the associated line bundle over the flag variety G/B. Let Ok(1) := π∗

w[n−k]Ow[n−k](1). 
The line bundles O1(1), . . . , On(1), being pullbacks of globally generated line bundles, are 
then globally generated and form a basis for Pic(Zw). Moreover, a line bundle O1(1)m1 ⊗
· · · ⊗ On(1)mn is very ample (nef) if and only if m1, . . . , mn > 0 (m1, . . . , mn ≥ 0) ([14, 
Thm. 3.1]). Notice here that the morphism ϕk above is induced by the B-equivariant 
multiplication map

P1 × · · · × Pk −→ G, (p1, . . . , pk) �→ p1p2 · · · pk,

where B acts on P1 × · · · × Pk by the right multiplication on the factor Pk. We can 
therefore also view the line bundle Ow[n−k](1) over Zw[n−k] as the product

Ow[n−k](1) = P1 × · · · × Pk ×Bk

C,

where Bk acts on the product P1 × · · · × Pk by

(p1, . . . , pk).(b1, . . . , bk) := (p1b1, b
−1
1 p2b2, . . . , b

−1
k−1pkbk),
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and on C by the character

(b1, . . . , bk) �→ ωα(bk).

Thus, the sections of the sheaf Ow[n−k](1) over an open set U ⊆ Zw[n−k] correspond to 
the regular functions f on the Bk-invariant open subset

Ũk := {(p1, . . . , pk) ∈ P1 × · · · × Pk | [(p1, . . . , pk)] ∈ U}

satisfying the Bk-equivariance property

f(p1b1, b
−1
1 p2b2, . . . , b

−1
k−1pkbk) = ωα(bk)−1f(p1, . . . , pk),

(p1, . . . , pk) ∈ Ũk, (b1, . . . , bk) ∈ Bk.

It follows that sections of the sheaf Ok(1) over the open subset π−1
w[n−k](U) then corre-

spond to the regular functions f on the Bn-invariant open subset

Ũ := {(p1, . . . , pn) ∈ P1 × · · · × Pn | [(p1, . . . , pk)] ∈ U}

satisfying the Bn-equivariance property

f(p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn) = ωα(bk)−1f(p1, . . . , pn),

(p1, . . . , pn) ∈ Ũ , (b1, . . . , bn) ∈ Bn.

In other words, Ok(1) is the line bundle

Ok(1) = P1 × · · · × Pn ×Bn

C,

where Bn acts on C by the character

ξk : Bn → C×, ξk(b1, . . . , bn) := ωα(bk).

Since the Ok(1), k = 1, . . . , n, form a basis for the Picard group, we see that each line 
bundle corresponds to a unique character ξm1

1 · · · ξmn
n , for an (m1, . . . , mn) ∈ Zn in such 

a way that the sections of the sheaf O1(1)m1⊗· · ·⊗On(1)mn over an open subset U ⊆ Zw

correspond to the regular functions f on the Bn-invariant open subset

Ũ := {(p1, . . . , pn) ∈ P1 × · · · × Pn | [(p1, . . . , pk)] ∈ U}

satisfying the Bn-equivariance property

f(p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn) = ξ1(b1)−m1 · · · ξn(bn)−mnf(p1, . . . , pn),

(p1, . . . , pn) ∈ Ũ , (b1, . . . , bn) ∈ Bn. (3)
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Thus, every line bundle L on Zw is of the form

L = P1 × · · · × Pn ×Bn

C,

where Bn acts on C by the character ξm1
1 · · · ξmn

n , for a unique (m1, . . . , mn) ∈ Zn. Let 
O(m1, . . . , mn) denote the line bundle corresponding to (m1, . . . , mn). In particular, each 
line bundle L = O(m1, . . . , mn) admits an action of P1 as bundle automorphisms by

p.[((p1, . . . , pn), z)] �→ [((pp1, p2, . . . , pn), z)],

which is clearly well-defined since the left multiplication of P1 on the P1-factor in P1 ×
· · · × Pn commutes with the Bn-action on this product. The induced representation of 
P1 on the space of global sections H0(Zw, O(m1, . . . , mn)) is given by

(p.f)(p1, . . . , pn) := p.(f(p−1p1, p2, . . . , pn)), (4)

for p ∈ P1 and (p1, . . . , pn) ∈ P1 × · · · × Pn, where we have used the identification (3) of 
sections with equivariant regular functions on P1×· · ·×Pn. Clearly, the Bn-equivariance 
property is preserved by the left action of P1, so that this indeed defines a representation 
of P1 on H0(Zw, O(m1, . . . , mn)).

Consider now the fibration

π : Zw −→ P1/B ∼= P1

given by mapping [(p1, . . . , pn)] to the class [p1] = p1 ·B. All of its fibres are isomorphic 
to the Bott–Samelson variety Z[s2,...,sn]. Note that B operates on the quotient P1/B as 
the upper triangular matrices act on P1,

(
a b
0 c

)
[z0 : z1] = [az0 + bz1 : cz1],

and thus with exactly one fixed point p0 = [1 : 0]. Denote by Y the fibre over p0. Note 
also that for any p ∈ P1 and [(p1, . . . , pn)] ∈ Zw we have

π(p.[(p1, . . . , pn)]) = π([(pp1, p2, . . . , pn)])

= pp1B = p.π([(p1, . . . , pn)]),

i.e., π is P1-equivariant, and hence P1 acts as automorphisms of the fibre bundle π.
We can reiterate this construction to obtain a natural flag of Bott–Samelson varieties

Zw ⊇ Y1 ⊇ · · · ⊇ Yn

where Yi is given as the fibre of the corresponding bundle Yi−1 −→ P1 over the B-fixed 
point. Thus,
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Yi := {[(p1, . . . , pn)] ∈ Zw | p1 = · · · = pi = e}, i = 1, . . . , n.

In particular, being Bott–Samelson varieties of lower dimensions, all the Yi are smooth 
varieties. We call this flag the vertical flag on Zw.

Remark 2.1. The i-th piece Yi = {[(p1, . . . , pn)] | p1, . . . , pi ∈ B} is mapped onto the 
Schubert variety Xsi+1···sn ⊆ G/B by the map [(p1, . . . , pn)] �→ p1 · · · pnB (cf. [4, Sec-
tion 2.1]), so that the flag Y• defines a desingularization of the flag Xsn ⊆ Xsn−1sn ⊆
· · · ⊆ Xs2···sn ⊆ G/B of the flag variety.

Other authors, such as Kaveh ([11]) and Kiritchenko ([12]), have considered flags of 
subvarieties on Bott–Samelson varieties that desingularize flags of translates of Schubert 
varieties by various Weyl group elements. In fact, Kiritchenko’s flag, which is defined 
for Bott–Samelson varieties for the group GLn, has the same image in the flag variety 
GLn/B as our flag, up to translation of the individual pieces, meaning that the occurring 
Schubert varieties are the same. Harada and Yang ([7]), on the other hand, use a “hori-
zontal” flag, defining the i-th piece as the set of points represented by tuples (p1, . . . , pn)
having the last—instead of the first—i entries equal to the identity element. Although 
formally similar, this flag is of another nature than ours: it is not defined by intersections 
of globally generated divisors, but by the effective basis for the divisor class group.

Example 1. Let π : X −→ P2 be the blow-up of P2 at the point C ⊆ C2 defined 
as the subspace spanned by the first standard basis vector (1, 0). The variety X is 
isomorphic to the incidence variety of all pairs (V1, V2) of linear subspaces of C2 where 
Vi is i-dimensional and V1 ⊆ V2, C ⊆ C2. For such a pair, the subspace V2 can be viewed 
as a point in P(C3/C). The projection p2, (V1, V2) �→ V2 then describes as a P1-bundle 
over P(C2), and p2 also admits the section V2 �→ (C, V2). In fact, this bundle is the 
projective bundle of the tautological vector bundle over P(C3/C) whose fibre over a 
point V is precisely the space V viewed as a two-dimensional linear subspace of C3.

The blow-up morphism is given by π(V1, V2) := V1, so that π−1(C) = p2(P(C3/C)), 
i.e., the exceptional divisor E of π equals the image of the section p2. The morphism 
π is also the birational morphism from the Bott–Samelson variety X to the partial flag 
variety P2.

The pseudoeffective cone Eff(X) is generated by the classes [H − E] and [E], where 
H is the divisor class of π∗OP2(1). The nef cone Nef(X) is generated by [H − E] and 
[H], and the other chamber in Eff(X) is generated by [H] and [E].

The vertical flag Y• is here given by a divisor C in |H −E| with C ∼= P1, and a point 
x ∈ C such that x /∈ E.

Example 2. Consider the three-dimensional incidence variety X consisting of all triples 
(V1, V2, V ′

2) of linear subspaces of C3 such that V1 is one-dimensional, V2, V ′
2 are two-

dimensional, and the inclusions

V1 ⊂ V2, V1 ⊂ V ′
2 , C ⊂ V2
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hold, where C ⊂ C3 denotes the span of the first standard basis vector (1, 0, 0). Moreover, 
let S denote the set of all tuples (V1, V2) of subspaces of the type above, satisfying the 
relations that do not include V ′

2 . It is well-known that S is the blow-up of P2 at the point 
C ⊂ C3, and that the blow-up morphism is given by q : S −→ P2, q(V1, V2) := V1.

Now, the map πX : X −→ S, πS(V1, V2, V ′
2) := (V1, V2) clearly defines a P1-bundle. 

Moreover, the map πS : S −→ P(C3/C), πS(V1, V2) := V2 defines S as a P1-bundle over 
P1. Together, these two maps describe X as an iterated P1-bundle. This yields a special 
case of a Bott–Samelson variety for the group SL3 (cf. [17, Section 2]).

The surface S comes equipped with the tautological vector bundles V1 and V∈, where 
Vi has the fibre Vi over the point (V1, V2), i = 1, 2. Then (V2/C)∗ = π∗

SOP1(1) and 
V∗

1 = p∗OP2(1). Define D1 to be the divisor class of (V2/C)∗ and D2 to be divisor class 
of V∗

1 . Then the exceptional divisor, E2, of q is given by the equation V1 = C, that is, as 
the zero set of the section

sE2 ∈ H0(S,V2/C⊗ V∗
1 ), sE2(V1, V2)(v) := v + V2, v ∈ V1.

This shows that E2 = D2 −D1. Pulling back E1 := D1 and E2 to X by πX , yields the 
first two elements, also denoted by E1 and E2 of the Picard group of X.

The final effective generator is the surface E3, obtained by embedding S into X by 
putting V ′

2 = C2. In order to describe the defining section of E3, we define a third 
tautological vector bundle V ′

2 on X–denoting by V1 and V2 also the pullbacks to X of 
these vector bundles on S–by requiring the fibre of V ′

2 over (V1, V2, V ′
2) to be the vector 

space V ′
2 . The section defining section of E3 is then given by

sE3 ∈ H0(X,C3/V2 ⊗ (V ′
2/V1)∗), sE3(V1, V2, V3)(v + V1) := v + V2,

v + V1 ∈ V ′
2/V1.

Defining D3 to be the divisor class of C3/V ′
2, using the identities

V ′
2/V1 ⊗ V1 ∼= detV ′

2

detV ′
2 ⊗ C3/V ′

2
∼= detC3,

one obtains E2 = D1 −D2 + D3.
The change of basis from (E1, E2, E3) to (D1, D2, D3) for the R-Picard group of X is 

then given by

aE1 + bE2 + cE3 = (a + c− b)D1 + (b− c)D2 + cD3.

Finally, we consider the projection onto the appropriate flag variety. Consider therefore 
the flag variety F(C3) given by all pairs (W1, W2) of linear subspaces of C3, where Wi

is i-dimensional for i = 1, 2 and W1 ⊂ W2. This variety is equipped with the obvious 
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tautological vector bundles W1 and W∈, and the Picard group of F(C3) is generated by 
the globally generated line bundles W∗

1 and C3/W2. The map

p : X −→ F(C3), (V1, V2, V
′
2) := (V1, V

′
2),

defines a birational morphism, and we have that p∗W∗
1 = OX(D2), p∗C3/W2 = OX(D3). 

The Picard group of F(C3) thus embeds into Pic(X) as the subgroup generated by 
OX(D2) and OX(D3).

We now study the vertical flag on X. The divisor Y = Y1 should be a fibre for the 
projection π := πS ◦ πX : X −→ P(C3/C), and we choose it to be the fibre above 
C2, the span of the first two standard basis vectors, which we identify with a point 
in P(C3/C). Thus, Y ∈ |E1|, and is given as the set of all (V1, V ′

2) with V1 ⊂ C and 
V1 ⊂ V ′

2 . This is again the blow-up of P2 at a point, the blow-up projection being given 
by (V1, V ′

2) �→ V ′
2 ∈ Gr(2, 3) ∼= P2, and the exceptional divisor is the curve E defined by 

V ′
2 = C2. The projection of Y onto P1 is the map (V1, V ′

2) �→ V1. Defining H to be the 
fibre above C for this projection, the pseudoeffective cone is spanned by the numerical 
equivalence classes of E and H − E.

The restriction of line bundles is given by the following three identities, which follow 
immediately from the defining equations for the respective divisors on X and Y :

OX(D) |Y = OY ,

OY (E2) |Y = OY (H − E),

OX(E3) |Y = OY (E).

The vertical flag Y• on X is given by x ⊂ C ⊂ Y , where C ∈ |H − E| is the fibre 
above C for the projection (V1, V ′

2) �→ V1, and x ∈ C \ E is a generic point on C.

2.2. Bott–Samelson varieties as Mori dream spaces

Now assume that w is a reduced sequence. Recall that the product map Pw −→
G, (p1, . . . , pn) �→ p1 · · · pn, induces a morphism

pw : Zw −→ Yw := BwB

into the Schubert subvariety Yw of the flag variety G/B, and that this morphism is in 
fact birational. Moreover, it is B-equivariant with respect to the left action of B on Zw

defined by

b[(p1, . . . , pn)] := [(bp1, p2, . . . , pn)], (p1, . . . , pn) ∈ Pw, b ∈ B.

In particular, if w is the longest element of the Weyl group, pw defines a birational map 
Zw −→ G/B.
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The following theorem is the crucial result for our application of the theory from the 
following section.

Theorem 2.2. Let G be a complex reductive group with Weyl group W , and let Z = Zw be 
a Bott–Samelson variety defined by a reduced sequence w of simple reflections. Then Z
admits a divisor Δ such that (Z, Δ) is a log Fano pair, i.e., it is Kawamata log terminal 
and −(KX + Δ) is ample. In particular, Z is a Mori dream space.

Proof. Let Y = G/B, and let Dρ be the divisor on Yw which corresponds to the restric-
tion to Yw of the square root of the anticanonical bundle of Y . Then Dρ is an ample 
divisor on Yw, so that p∗w(Dρ) is a nef divisor on Z.

In order to facilitate the notation, let {D1, ..., Dn} be the basis of effective divisors for 
Pic(Z). Now choose integers a1, ..., an > 0 so that 

∑n
i=1 aiDi is an ample divisor. Then, 

for every N > 0, the divisor p∗w(−Dρ) −
∑n

i=1 ai/NDi is anti-ample. Now let N ∈ N be 
so big that ai/N < 1 for every i, and put

Δ :=
n∑

i=1
(1 − ai/N)Di.

If KZ is the canonical divisor of Z, we then have that

KZ + Δ = π∗(−Dρ) −
n∑

i=1
Di +

n∑
i=1

(1 − ai/N)Di = π∗L−ρ −
n∑

i=1
(ai/N)Di

(cf. [14, Lemma 5.1]) is anti-ample. Since Z is nonsingular, and all subsets of the set of 
smooth divisors {D1, . . . , Dn} intersect transversely and smoothly, the pair (Z, Δ) thus 
defines a log Fano pair. �
Remark 2.3. In the context of the above theorem, it is worth mentioning an analogous 
result by Anderson and Stapledon ([2]) on the log Fano property of Schubert varieties.

3. Good flags on Mori dream spaces

In this section we prove the main theorem of this paper. The main objective is to 
establish conditions on a flag on a Mori dream space, such that its global Okounkov 
body is rational polyhedral.

First let us recall that a Mori dream space X is a normal Q-factorial variety such that 
Pic(X)Q ∼= N1(X)Q and with a Cox ring Cox(X) which is a finitely generated C-algebra. 
We make use of the theory of Mori dream spaces developed by Hu and Keel in [8] and 
we refer the reader to this beautiful paper for a detailed investigation of Mori dream 
spaces.
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Note that for any effective divisor D on a Mori dream space X, the ring of sections 
R(X, D) :=

⊕
k≥0 H

0(X, OX(kD)) is finitely generated, so we obtain a natural rational 
map

fD : X ��� Proj(R(X,D))

which is regular outside the stable base locus of D. One obtains an equivalence relation of 
effective divisors as follows: two effective divisors D and D′ are Mori-equivalent if up to 
isomorphism they yield the same rational maps. Hu and Keel prove ([8, Proposition 1.11]) 
that there are only finitely many equivalence classes, indexed by contracting rational 
maps f : X ��� X ′ and that the closure Σf of a maximal dimensional equivalence 
class can be described as the closed convex cone spanned by f -exceptional rays together 
with the face f∗(Nef(X ′)) of the moving cone. These subcones Σf , which decompose the 
pseudo-effective cone Eff(X), are in the remainder of this paper following [8] referred to 
as Mori-chambers.

Recall that a birational map f : X ��� X ′ to a Q-factorial variety X ′ is called a small 
Q-factorial modification if it defines an isomorphism

f |U : U → V

between open subsets U ⊆ X, V ⊆ X ′ with complements of codimension at least two. 
Then f∗ induces an isomorphism of pseudo-effective cones Eff(X) ∼= Eff(X ′) as well as 
an isomorphism Cox(X) ∼= Cox(X ′) of Cox rings. We further recall that f is induced by 
GIT in the following manner.

Let R = Cox(X). The variety X can be written as the GIT quotient X =
Spec(R)ss(χ)//G, where G is the complex torus of rank equal to the Picard number 
of X, and Spec(R)ss(χ) denotes the set of semistable points in Spec(R) with respect 
to the character χ of G. We even have that Spec(R)ss(χ) = Spec(R)s(χ); the set of 
χ-semistable points equals the set of χ-stable points, so that the quotient is even a 
geometric quotient. Also X ′ is a geometric quotient of the set of stable points with 
respect to a character χ′: X ′ = Spec(R)s(χ′)//G. Let πχ : Spec(R)s(χ) −→ X and 
πχ′ : Spec(R)s(χ′) −→ X ′ denote the respective quotient morphisms. In both cases the 
sets of unstable points (with respect to χ and χ′) are of codimension at least two in 
Spec(R), and the rational map f is induced on the level of quotients by the inclusion

Spec(R)s(χ) ∩ Spec(R)s(χ′) ⊆ Spec(R)s(χ′)

of the subset of common stable points into the set of χ′-stable points. In particular, the 
exceptional locus of f equals the complement of the domain of definition of f and is 
given as the image of the χ′-unstable and χ-stable points;

exc(f) = πχ(Spec(R)s(χ) ∩ Spec(R)us(χ′)),
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so that f induces an isomorphism

f |U : U
∼=−→ V, U := πχ(Spec(R)s(χ) ∩ Spec(R)s(χ′)),

V := πχ′(Spec(R)s(χ) ∩ Spec(R)s(χ′)).

Now let f : X ��� X ′ be a small Q-factorial modification as above, and assume 
that Y ⊆ X is an irreducible hypersurface given as the zero set Y = Z(s) of a section 
s ∈ H0(X, L) of some line bundle L. Let L′ := (f−1)∗L denote the corresponding line 
bundle on X ′, let s′ ∈ H0(X ′, L′) be the section of L′ corresponding to s, and put 
Y ′ := Z(s′). The restriction of f to Y then defines a birational map

fY : Y ��� Y ′,

yielding the commuting diagram

X
f

X ′

Y
fY

Y ′,

where the vertical arrows denote the respective inclusion morphisms.
We now turn to Okounkov bodies on a Mori dream space X equipped with an ad-

missible flag Y•. Our strategy is to deduce properties of the global Okounkov body of X
from those of Okounkov bodies of line bundles restricted to Y1 and to argue inductively. 
We are thus particularly interested in a comparison of the Okounkov bodies of a graded 
linear series coming from restricting sections to Y1 and of a restricted line bundle. More 
concretely, for a divisor D on X we consider the restriction map

R :
⊕
k

H0(X,OX(kD)) −→
⊕
k

H0(Y,OY (kD · Y ))

and hope for an identity

ΔY 1
•
(imR) = ΔY 1

•
(D · Y ),

where Y 1
• denotes the flag Y2 ⊇ . . . ⊇ Yn on Y1. Note that in case D is ample the above 

identity holds. This follows from the exact sequence

H0(X,OX(mD)) −→ H0(Y,OY (mD)) −→ H1(X,OX(mD − Y ))

together with the fact that for large m the last cohomology group is trivial by Serre’s 
vanishing theorem. In order to get the desired identity for any movable divisor D, we 
will consider the corresponding small modification.
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Proposition 3.1. Let X be a Mori dream space, and let Y• be an admissible flag of normal 
subvarieties, write Y := Y1, and let Y 1

• denote the admissible flag

Yn ⊆ · · · ⊆ Y1 = Y

of subvarieties of Y .
Let f : X ��� X ′ be a SQM, and let fY : Y ��� Y ′ be the induced birational morphism. 

Assume that there exist open subsets U ⊂ Y and V ⊂ Y ′ with codimY (Y \ U) ≥ 2 and 
codimY ′(Y ′ \ V ) ≥ 2 such that fY : U −→ V is an isomorphism.

If D′ is an ample divisor on X ′ and D := f∗(D′) is the corresponding divisor on X, 
then the identity

ΔY 1
•
(imR) = ΔY 1

•
(D · Y ) (5)

of Okounkov bodies holds.
Furthermore, if D′ is merely nef, then, for any a ∈ ΔY 1

•
(D · Y ), the point (0, a) ∈ Rn

is contained in the Okounkov body ΔY•(D), i.e., the inclusion

{0} × ΔY 1
•
(D · Y ) ⊆ ΔY•(D) (6)

holds.

Proof. Let us first assume that D′ is ample. Since S := imR is a graded linear subseries 
of 

⊕
k H

0(Y, OY (kD · Y )), the claimed identity of Okounkov bodies follows if we can 
show that both series have the same volume.

We have a commutative diagram

X
f

X ′

Y
fY

Y ′,

where the vertical arrows denote the respective inclusion morphisms By assumption, 
there are open subsets U ⊂ Y and V ⊂ Y ′ with codimY (Y \U) ≥ 2 and codimY ′(Y ′\V ) ≥
2 such that fY : U −→ V is an isomorphism.

Denote the restricted divisors D · Y and D′ · Y ′ by DY and D′
Y ′ , respectively.

Since D defines the map f , we have the identity

D = f∗(OX′(1)).

This restricts to U as the identity f∗
Y (OY ′(1))|U = DY |U . By assumption, Y \ U has 

codimension at least 2 in Y , so that we get

f∗
Y (OY ′(1)) = DY .
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Being ample, OY ′(1) does not have a divisorial base component in Y ′ \ V , so we can 
represent it as a divisor A = A ∩ V . Since in case of small modifications pulling back is 
functorial, under f−1

Y the divisor DY pulls back to A.
Since Y ′ might not be normal we consider the normalization

π : Ỹ ′ −→ Y ′.

Note that π defines an isomorphism π−1(V ) −→ V since V is contained in the normal 
locus of Y ′. In particular, we have the identity

(f−1
Y ◦ π)∗(DY ) = π∗f−1

Y
∗(DY ) = π∗(A).

Since f−1
Y ◦ π is a contracting birational map between normal varieties, this implies the 

identity of volumes

vol(DY ) = vol(π∗(A)).

Since π is a birational morphism, the right hand side is just vol(A). On the other hand,

vol(A) = vol(OY ′(1)) = vol(S),

since Y ′ = Proj(S). This proves the claim in case D′ is ample.
If D′ is merely nef, write [D′] as a limit [D′] = limi→∞[D′

i] of numerical equivalence 
classes of ample divisors D′

i, i ∈ N. Put Di := f∗Di. Then [D] = limi→∞[Di]. Now, let 
a ∈ ΔY 1

•
(D · Y ). Then (a, [D · Y ]) ∈ ΔY 1

•
(Y ). Now choose points ai ∈ ΔY 1

•
(Y · Di) so 

that (a, [D · Y ]) = limi→∞(ai, [Di · Y ]). By the above, the identity (5) holds when D is 
replaced by Di, i ∈ N. Hence, by [15, Theorem 4.26],

((0, ai), [Di]) ∈ ΔY•(X)

for each i, so that

((0, a), [D]) = lim
i→∞

((0, ai), [Di]) ∈ ΔY•(X),

i.e., (0, a) ∈ ΔY•(D). This shows that the inclusion (6) holds for an arbitrary nef divisor 
D′ on X ′. �

In order to apply the above proposition to obtain information on the structure of 
the global Okounkov body of a Mori dream space, we need the following construction 
formulated in a more general context. Here Y• can be any admissible flag on a normal 
projective variety X.

If s ∈ H0(X, OX(m1D1 + · · · + mnDn)) is a section which does not vanish on Y1, so 
that ν(s) = (ν1(s), . . . , νn(s)) with ν1(s) = 0, then the restriction of s to Y1 defines a 



D. Schmitz, H. Seppänen / Journal of Algebra 490 (2017) 518–554 537
section of the line bundle OY1(D · Y1) over Y1 with value ν1(s) = (ν2(s), . . . νn(s)) with 
respect to the truncated flag

Yn ⊆ · · · ⊆ Y1 (7)

on Y1.
For a finite set F1, . . . , Fr of movable divisors on X, let

Γ(F1, . . . , Fr) ⊆ Mov(X)

be the semigroup generated by the divisors F1, . . . , Fr, and let

C(F1, . . . , Fr) ⊆ Mov(X)

be the cone generated by F1, . . . , Fr. Define the semigroups

S(F1, . . . , Fr) := {(ν(s), [D]) ∈ Nn
0 × Γ(F1, . . . , Fr) | s ∈ H0(X,OX(D)),

D ∈ Γ(F1, . . . , Fr), ν1(s) = 0}

and

S1(F1, . . . , Fr) := {(ν1(s), [D · Y1]) ∈ Nn−1
0 ×N1(Y1)R | [D] ∈ Γ(F1, . . . , Fr),

s ∈ H0(Y1,OY1(D · Y1))},

as well as the morphism of semigroups

q0 : S → S1, q0(ν(s), [D]) := (ν1(s), [D · Y1]),

which extends to the linear map

q : Rn ⊕ V (F1, . . . , Fr) −→ Rn−1 ⊕N1(Y1)R, (8)

((x1, . . . , xn), [D]) �→ ((x2, . . . , xn), [D · Y1]),

where V (F1, . . . , Fr) ⊆ N1(X)R is the R-vector space generated by the numerical 
equivalence classes [F1], . . . , [Fr]. Furthermore, we denote by C(S(F1, . . . , Fr)) and 
C(S1(F1, . . . , Fr)) the closed convex cones in Rn×N1(X)R and Rn−1×N1(Y1)R spanned 
by the semigroups S(F1, . . . , Fr) and S1(F1, . . . , Fr), respectively.

We now recall that for a Mori dream space X the pseudo-effective cone Eff(X) is 
the union of finitely many Mori chambers, Σ1, . . . , Σm, where each Mori chamber Σj

is the convex hull of finitely many integral divisors Dj
1, . . . , D

j
�j

. More concretely, by 
[8, Proposition 1.1], the chambers are in correspondence to contracting birational maps 
fj : X ��� Xj with image a Mori dream space, and are given as the convex cone 
spanned by f∗

j (Nef(Xj)) together with the rays spanning the exceptional locus exc(fj). 
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The corresponding decomposition of a divisor D ∈ Σj is exactly its decomposition into 
its fixed and movable parts. We can thus reorder the divisors spanning each chamber in 
such a way that the first nj of them are movable and the remaining ones are fixed. Let 
σj
i ∈ H0(X, OX(N j

i )) be the defining section of Dj
i , for j = 1, . . . , m, i = nj + 1, . . . , �j .

Corollary 3.2. Let Y• be an admissible flag on a Mori dream space X such that the 
conclusion of Proposition 3.1 holds for any SQM f : X ��� X ′ and any nef divisor 
D′ ⊂ X ′. Furthermore let D1, . . . , Dr those generators of a Mori chamber Σ which are 
movable. Then we have the identity

C(S(D1, . . . , Dr)) = q−1(C(S1(D1, . . . , Dr))) ∩ ({0} × Rn−1
≥0 × C(D1, . . . , Dr)). (9)

Proof. This follows from the condition together with the fact that there exists a SQM 
π : X ��� X ′ such that each divisor in the cone C(D1, . . . , Dr) is a pullback by π of a 
nef divisor on X ′ ([8, Proposition 1.11(3)]). �

We can now prove the following theorem which will—together with identity 
(9)—enable us to inductively infer information on the shape of global Okounkov bodies 
of certain Mori dream spaces.

Theorem 3.3. Suppose in the above situation that each of the cones
C(S(Dj

1, . . . , D
j
nj

)) is rational polyhedral with generators given by vectors wj
1, . . . , w

j
rj . 

Then the global Okounkov body ΔY•(X) is the cone generated by the vectors

(ν(sY1 , [Y1])), (ν(σj
i ), [D

j
i ]), w

j
h, (10)

for

j = 1, . . . ,m, i = nj + 1, . . . , �j , h = 1, . . . , rj .

Proof. Let E be an effective integral divisor on X, and let s ∈ H0(X, OX(E)) be a 
nonzero section of E. Let ν1(s) = a. Then, ζ := s/saY1

, where sY1 ∈ H0(X, OX(Y1)) is 
the defining section of Y1, is a section of OX(E − aY1) which vanishes to order 0 along 
Y1. Now, let Σ = conv{D1, . . . , D�} be a Mori chamber such that E−aY1 ∈ Σ, and with 
generators ordered so that D1, . . . , Dr are the movable generators. Let E−aY1 = P +N

be the corresponding decomposition of E − aY1 into its movable part P and fixed part 
N . Choose M ∈ N large enough such that all the divisors MP = c1D1 + · · · + c�Dr, 
MN = cr+1Dr+1 + · · · + c�D�, where c1, . . . , c� ∈ N0, and all ciDi are integral divisors. 
Let σi ∈ H0(X, OX(Di)) be the defining section of Ni, i = r + 1, . . . , �. The section 
ζM ∈ H0(X, OX(m(E − aY1))) now decomposes uniquely as a product

ζM = ησ,
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where η ∈ H0(X, OX(c1D1 + · · · + crDr)), and σ = σ
cr+1
r+1 · · ·σc�

� . Since ν1(ζ) = 0, we 
also have ν1(η) = 0. Now, by assumption we have integral generators w1, . . . , wk ∈
Rn × Eff(X) for the cone C(S(D1, . . . , Dr)), so that (ν(η), MP ) = s1w1 + · · · + skwk, 
for some s1, . . . , sk ≥ 0. Hence,

(ν(s), E) = a(ν(sY1), Y1) + cr+1

M
(v(σr+1), [Dr+1]) + · · · + c�

M
(v(σ�), [D�])

+ s1

M
w1 + · · · + sk

M
wk.

It follows that ΔY•(X) lies in the closed convex cone generated by the vectors (10). Since 
all these vectors clearly belong to ΔY•(X), this finishes the proof. �

We are now in the position to prove the main result of this paper. Let us first define 
what we mean by a good flag on a Mori dream space.

Definition 3.4. Let X be a Mori dream space. An admissible flag X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn

is good, if

(1) Yi is a Mori dream space for each 0 ≤ i ≤ n, and for i = 1, . . . , n, Yi is cut out by a 
global section si ∈ H0(Yi−1, OYi−1(Yi)), and

(2) any small Q-factorial modification f : Yi ��� Y ′
i , restricts to a small Q-factorial 

modification of Yi+1.

Our main theorem now follows from the above results.

Theorem 3.5. Assume that the Mori dream space X admits a good flag Y•. Then ΔY•(X)
is rational polyhedral.

Proof. We prove the theorem by induction over n. Every Mori dream curve is isomorphic 
to P1, which for any choice of flag (i.e., choice of a point) has rational polyhedral global 
Okounkov body, namely the cone in R2 spanned by the points (0, 1) and (1, 1).

For the inductive step assume that ΔY 1
•
(Y1) is rational polyhedral. By Theorem 3.3, 

what we need to prove is that for any Mori chamber Σ in Eff(X) the set of movable 
generators D1, . . . , Dr of Σ yield a rational polyhedral cone C(S(D1, . . . , Dr)).

Since Y• is a good flag, in particular the assumptions of Proposition 3.1 are satisfied 
for Y1 ⊂ X, so we can apply Corollary 3.2. Since the linear map q (cf. (8)) is defined over 
Z, equality (9) implies that C(S(D1, . . . , Dr)) is rational polyhedral if C(S1(D1, . . . , Dr))
is. Now the rational polyhedrality of C(S1(D1, . . . , Dr)) follows from the rational poly-
hedrality of ΔY 1

•
(Y1) since

C(S1(D1, . . . , Dr)) = pr−1
2 (Γ(D1 · Y1, . . . , Dr · Y1)) ∩ ΔY 1

•
(Y1),

where Γ(D1 · Y1, · · · , Dr · Y1) ⊆ Eff(Y1) is the convex cone generated by the numerical 
equivalence classes of the divisors D1 · Y1, . . . , Dr · Y1 on Y1. �
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Remark 3.6. Formally, the above theorem looks similar to Okawa’s [18, Theorem 1.5]. 
Note however that the conditions for a good flag differ substantially. In particular, 
our condition (2) enables us to control the behaviour of Okounkov bodies under small 
Q-factorial modifications, an issue that Okawa appears not to consider.

Remark 3.7. It should be noted that the above result does not hold for general admissible 
flags of subvarieties of a Mori dream space. Indeed, [13, Example 3.4] shows that X :=
P2×P2 can be equipped with an admissible flag Y• such that the Okounkov body ΔY•(D), 
where D is a divisor in the linear series OP2×P2(3, 1), is not polyhedral. The flag Y• here 
is of course not a flag of Mori dream spaces: if Y1 := P2 ×E, where E ⊆ P2 is a general 
elliptic curve, were a Mori dream space, then its image E under the second projection 
would also be a Mori dream space by [19, Theorem 1.1]. However, P1 is the only Mori 
dream curve (cf. [5, p. 6]).

Finally, [13, Prop. 3.5] gives another example of a non-polyhedral Okounkov body of a 
divisor an a Mori dream space Z with respect to a family of admissible flags Y•. However, 
the description of the pseudo-effective cone Eff(Y1) shows that this cone is defined by 
quadratic equations and is thus not polyhedral; hence the divisor Y1 on Z is not a Mori 
dream space.

4. Okounkov bodies on Bott–Samelson varieties

In this section we apply the general results from the previous section to Bott–Samelson 
varieties.

4.1. Bott–Samelson varieties as quotients

Being a Mori dream space, we know that a Bott–Samelson variety X = Zw is given 
as a geometric quotient of an open subset of the spectrum of its Cox ring. In this section 
we shall see that the structure of X as a fibre bundle over P1 is reflected in the Cox ring 
of X – a fact that will turn to be useful for the study of the images of X under small 
Q-factorial modifications.

Let now X be an n-dimensional Bott–Samelson variety, and write X as X = P ×B Y , 
where Y is a Bott–Samelson variety of dimension n − 1 and P/B = P1. Let V :=
Spec(Cox(Y )) and let U0 ⊆ V be the open subset, invariant under the (n −1)-dimensional 
torus Tn−1, of stable points of a Tn−1-linearized line bundle such that Y = U0//T

n−1. 
Since B acts on the Cox ring of Y by graded automorphisms, B acts on V , and the 
action commutes with that of Tn−1, so that U0 is B-invariant. We can thus form the 
bundle P ×B V over X with fibre V , as well as the bundle P ×B U0 which embeds as an 
open subset of P ×B V . Let π0 : P ×B V −→ P/B denote the bundle projection. By the 
commutativity of the actions of B and Tn−1 on V , the torus Tn−1 then acts on P ×B V

by
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t.[(p, v)] := [(p, t.v)], [(p, v)] ∈ P ×B V, t ∈ Tn−1,

and X can be written as the geometric quotient

X = (P ×B U0)//Tn−1.

Let q : A2 \ {0} −→ P1 = P/B be the quotient morphism defined by the standard action 
of T 1 and consider the pullback q∗(P×B V ), which is a bundle over A2\{0} with fibre V . 
Let ϕ̃ : q∗(P ×B V ) −→ A2 \ {0} denote the bundle projection. As a topological space,

q∗(P ×B U0) = {(a, ξ) ∈ (A2 \ {0}) × (P ×B V ) | q(a) = π0(ξ)},

and ϕ̃(a, ξ) = a.
The action of Tn−1 on P ×B V lifts to an action on q∗(P ×B V ) by fibre-preserving 

morphisms:

t′.(a, [(p, v)]) := (a, [(p, t′.v)]), t′ ∈ Tn−1, (a, [(p, v)]) ∈ q∗(P ×B V ).

Combining this action with the standard action of T 1, we obtain an action of Tn =
T 1 × Tn−1 given by

(t, t′).(a, [(p, v)]) := (t.a, [(p, t′.v)]), (t, t′) ∈ T 1 × Tn−1, (a, [(p, v)]) ∈ q∗(P ×B V ),

and X is the geometric quotient of the open subset q∗(P ×B U0) ⊆ q∗(P ×B V ) by this 
action;

X = q∗(P ×B U0)//Tn.

Let π : q∗(P ×B U0) −→ X denote the quotient morphism. In the above discussion, we 
have now proved the following lemma.

Lemma 4.1. Let X be the Bott–Samelson variety X := P ×B Y with projection

ϕ : P ×B Y −→ P/B ∼= P1

Then, there exist a commuting diagram

q∗(P ×B U0)

π

ϕ̃
A2 \ {0}

q

X
ϕ

P1,

where ϕ̃ defines a locally trivial fibre bundle, and q is the quotient morphism with respect 
to the standard action of the one-dimensional torus on A2 \ {0}.
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Although the quotient description above does not coincide with the standard one, 
giving X as a GIT quotient of Spec(Cox(X)), the following lemma shows that the variety 
q∗(P ×B V ) shares an important property with Spec(Cox(X)).

Lemma 4.2. The variety q∗(P ×B V ) has torsion Picard group, and the Q-vector space 
PicT

n

(q∗(P ×B V )) ⊗Z Q is isomorphic to the vector space T̂n ⊗Z Q of Q-characters of 
Tn.

Proof. First of all, for a Tn−1-character χ′, the χ′-linearized trivial line bundle Lχ′ over 
V carries a B-action, and P ×B Lχ′ is then a χ′-linearization of the trivial line bundle
over P ×B V whose descent to each fibre of P ×B Y coincides with the descent of Lχ′

to Y . The pullback q∗(P ×B Lχ′) is then a Tn−1-linearization of the trivial line bundle 
over q∗(P ×B V ) by the character χ′. We have thus embedded the character group of 
Tn−1 into the Tn-Picard group of q∗(P ×B V ) in such a way that the descents to X
of these line bundles yield an embedding of Pic(Y ) into Pic(X). Moreover, the identity 
character of T 1 gives a T 1-linearization of the trivial line bundle on q∗(P ×B V ), and 
this Tn-line bundle descends to a line bundle on X generating the subgroup Pic(P/B)
of Pic(X). Thus we have embedded the character group of Tn into PicT

n

(q∗(P ×B V )).
On the other hand, since the open subset q∗(P ×B U0) has a complement of codimen-

sion at least two, we have PicT
n

(q∗(P ×B V )) = PicT
n

(q∗(P ×B U0)). Since the quotient 
π is a geometric one, there exists an N ∈ N such that the N -th power of every Tn-line 
bundle descends to X, and hence the latter Tn-Picard group is a finite extension of the 
group Pic(X), which in turn is isomorphic to the character group of Tn. This proves the 
claim about the rational Tn-Picard group.

For the first claim, since Tn has trivial Picard group, every line bundle L on q∗(P×BV )
admits a Tn-linearization. Hence, by the above, LN is isomorphic to the trivial line bundle 
with the a linearization given by a character of TN . This shows that the Picard group 
of q∗(P ×B V ) is torsion. �
Theorem 4.3. The Cox ring of X is a quotient of Cox(P/B) ⊗ Cox(Y ). More precisely, 
Cox(X) is generated by homogeneous elements of Cox(P/B) and homogeneous elements 
of Cox(Y ), with respect to the gradings defined by the character groups of the tori T 1

and Tn−1.

Proof. By the above lemma, and the fact that the open subset q∗(P×BU0) of q∗(P×BV )
has a complement of codimension at least two, Hartog’s theorem implies that Cox(X)
with its grading by the effective basis for Pic(X) is isomorphic as a graded ring to the 
ring of regular functions on q∗(P ×B V ) with the grading defined by the characters of 
Tn.

Now, if χ ⊗ χ′ is a character of T 1 × Tn−1, a regular Tn-equivariant function, with 
respect to the character χ ⊗χ′, on the bundle q∗(P×BV ) over A2\{0} is a T 1-equivariant 
function f on A2 \ {0}, with respect to the character χ, such that for each a ∈ A2 \ {0}, 
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f(a) defines a regular Tn−1-equivariant function on the fibre ϕ̃−1(a) with respect to 
the character χ′. In other words, f corresponds to a section s of the vector bundle 
q∗(P ×B H0(V, Lχ′)Tn−1). Moreover, s(t.a) = χ(t)s(a), for t ∈ T 1 and a ∈ A2 \ {0}.

In order to express Cox(X) as a quotient ring, we first consider a Tn−1-equivariant 
closed embedding V ↪→ Am = Spec(C[s1, . . . , sm]), where the si form a set of homoge-
neous generators of Cox(Y ) with respect to Tn−1-characters. By collecting the generators 
si into groups according to their Tn−1-characters, the underlying vector space, Cm, of 
Am decomposes further into a sum of subspaces which are B-invariant and on which 
Tn−1 acts by a fixed character:

Cm = E1 ⊕ · · · ⊕Er.

Due to the B-invariance of the Ej , we can for each j define the vector bundle P ×B Ej , 
which then, by a theorem of Grothendieck, splits as a direct sum of line bundles:

P ×B Ej
∼= OP1(m1) ⊕ · · · ⊕ OP1(m�),

for some m1, . . . , m� ∈ Z, so that

q∗(P ×B Ej) ∼= q∗OP1(m1) ⊕ · · · ⊕ q∗OP1(m�).

Since A2 \ {0} has a trivial Picard group, the vector bundle q∗(P ×B Ej) is isomorphic 
to the trivial vector bundle of rank � (= �(j)). Moreover, since Tn−1 acts by a fixed 
character, χj , on the fibres of P ×B Ej , both the above isomorphisms of vector bundles 
respect this action, so that the sections of q∗(P ×B Ej) correspond in the trivialized 
model to Tn−1-equivariant functions, with respect to the character χj, with values in 
C�.

It follows that the ring of regular functions on q∗(P ×B Cm) is isomorphic as a 
Tn-graded ring to the ring C[x1, x2] ⊗C C[s1, . . . , sm], where T 1 acts naturally on the 
first tensor factor, and Tn−1 acts on the second tensor factor by the grading described 
above.

It now suffices to show that the restriction of regular functions from q∗(P ×B Cm) to 
q∗(P ×B V ) defines a surjective and Tn-equivariant homomorphism

C[x1, x2] ⊗C C[s1, . . . , sm] −→ Cox(X),

where the Tn-equivariance is a consequence of the Tn−1-equivariance of the embedding 
V ↪→ Am. For the surjectivity, we again return to the identification of a Tn-equivariant 
regular function f on q∗(P ×B V ) with character χ1 × χ′ with a section s of the bun-
dle q∗(P ×B H0(V, Lχ′)Tn−1), and consider the (finite dimensional) subspace W ⊆
C[s1, . . . , sm] of all polynomials of homogeneous degree χ′ with respect to the grad-
ing by characters of Tn−1. The restriction of such polynomials to V defines a surjection 
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W −→ H0(V, Lχ′)Tn−1 , and if F denotes the kernel of this restriction map, we have a 
short exact sequence of vector spaces

0 −→ F −→ W −→ H0(V,Lχ′)T
n−1 −→ 0,

which is equivariant with respect to both Tn−1 and B. By forming the corresponding 
vector bundles over P/B and pulling back to A2 \ {0}, we get the short exact sequence

0 −→ q∗(P ×B F ) −→ q∗(P ×B W ) −→ q∗(P ×B H0(V,Lχ′)T
n−1

) −→ 0

of vector bundles over A2 \ {0}. By the same argument as earlier in the proof, these 
vector bundles are all trivial, and hence they can be identified with vector bundles over 
A2. Moreover, by Hartog’s theorem, the restriction map of sections

H0(A2 \ {0}, q∗(P ×B W )) −→ H0(A2 \ {0}, q∗(P ×B H0(V,Lχ′)T
n−1

))

can be identified with the restriction of sections

H0(A2, q∗(P ×B W )) −→ H0(A2, q∗(P ×B H0(V,Lχ′)T
n−1

))

of the corresponding vector bundles over A2. The surjectivity of the latter restriction 
now follows from the fact that H1(A2, q∗(P ×B F )) = 0. This finishes the proof. �

The fibre bundle ϕ : X = P ×B Y −→ P/B defines an embedding Cox(P/B) ↪→
Cox(X) of Cox rings, and the image of this embedding is precisely the subring of 
Tn−1-invariants. The induced morphism

p : Spec(Cox(X)) −→ Spec(Cox(P/B)) = Spec(Cox(X)T
n−1

) (11)

then defines a quotient with respect to the Tn−1-action on Spec(Cox(X)). The mor-
phism p is clearly T 1-equivariant. In particular, since T 1 fixes the point 0 ∈ A2 =
Spec(Cox(P/B)), T 1 acts on the fibre p−1(0).

Lemma 4.4. The torus T 1 acts trivially on p−1(0).

Proof. Let s1, s2, . . . , sN be a set of homogeneous generators of Cox(X) according to 
Theorem 4.3, where s1, s2 are generators of Cox(P/B), and s3, . . . , sN are generators of 
Cox(Y ). Let AN be the affine space with coordinates corresponding to the generators 
s1, . . . , sN , so that we have a closed Tn-equivariant embedding Spec(Cox(X)) ↪→ AN . On 
AN , the torus Tn acts on each coordinate function si by the character associated to si. 
In particular, T 1 fixes s3, . . . , sN , and Tn−1 fixes s1, s2, and s1, s2 generate the subring of 
Tn−1-invariants in the polynomial ring C[s1, . . . , sN ]. The projection of AN onto the A2

defined by the first two coordinates defines the Hilbert quotient AN −→ AN//Tn−1 ∼= A2

of AN by Tn−1. Hence,
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p−1(0) = Spec(Cox(X)) ∩ ({0}2 × AN−2),

and the claim thus follows. �
Let W := Spec(Cox(X)). Then, X is the GIT-quotient by Tn of the semistable locus 

W ss(χ) ⊆ W with respect to a character χ of Tn. We also have the following analogon 
of Lemma 4.1.

Lemma 4.5. Let X be the Bott–Samelson variety X := P ×B Y with projection

ϕ : P ×B Y −→ P/B ∼= P1

Then, there exists a commuting diagram

W ss(χ)

πχ

p
A2 \ {0}

q

X
ϕ

P1.

Proof. Since p is induced by the projection ϕ : X −→ P/B, we only need to show 
that W ss(χ) does not intersect the zero fibre p−1(0). But this is clear from Lemma 4.4
since the semistable locus W ss(χ) in fact equals the stable locus W s(χ) so that Tn acts 
W ss(χ) with finite stabilizers. �

The following lemma is the main result of this section. It will be used in the next 
section to show that images of X under SQM’s are also fibre bundles over P1 (cf. Propo-
sition 4.8).

Lemma 4.6. Let X = P ×B Y , with projection

ϕ : P ×B Y −→ P/B ∼= P1,

be a Bott–Samelson variety, and let f : X ��� X ′ be an SQM. If ξ is a section of the line 
bundle L := ϕ∗OP1(1) on X, and ξ′ is the corresponding section of the corresponding 
line bundle L ′ := (f−1)∗L , then the restrictions of L and L ′ to Z(ξ) and Z(ξ′), 
respectively, are trivial.

Proof. The zero locus of any section of L is the ϕ-fibre over some point in P1, which 
proves the claim for X.

Now, if the zero loci Z(ξx) and Z(ξy) of sections ξx and ξy of L are ϕ-fibres of points 
x and y in P1, then we have ξx = ϕ∗sx and ξy = ϕ∗sy, where sx, sy ∈ H0(P1, OP1(1))
are the defining sections of the divisors {x} and {y}. Using the commuting diagram 
of Lemma 4.5, and the fact that q∗OP1(1) is the trivial line bundle, T 1-linearized by 
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the identity character, we see that the pullbacks f := π∗
χξx and g := π∗

χ′ξy are regular 
Tn-eigenfunctions on W ss(χ) with respect to the character defined by pulling back the 
identity character of T 1 by the projection Tn = T 1 × Tn−1 −→ T 1. Now, the zero loci 
Z(f) and Z(g) are disjoint since their images–the intersections with p(W ss(χ)) of q−1(x)
and q−1(y), respectively–under p in A2\{0} are disjoint. Since W ss(χ) has a complement 
of codimension at least two in W , using the normality of W , we can extend f and g to 
functions on W by Hartog’s theorem. Viewed as functions on W , the common zero set 
of f and g is precisely the zero fibre p−1(0) ⊆ W .

The variety X ′ can be written as a quotient

X ′ = W ss(χ′)//Tn = W s(χ′)//Tn,

with quotient morphism πχ′ : W s(χ′) −→ X ′, for a character χ′. We can now argue as 
in the proof of Lemma 4.5: since the points in W s(χ′) have finite stabilizers, and the 
stabilizer of any point in p−1(0) contains the one-dimensional subgroup T 1×{(1, . . . , 1)}
the zero sets of f and g have no common point in W s(χ′). The sections ξ′x and ξ′y of L ′

with f = (πχ′)∗ξ′x and g = (πχ′)∗ξ′y on W s(χ′) therefore have no common zero set. This 
proves the claim for X ′. �
4.2. Global Okounkov bodies

On a Bott–Samelson variety X := Zw defined by a reduced sequence w let Y• be the 
natural vertical flag described in section 2.1. In order to apply Theorem 3.5 we will show 
that Y• is in fact a good flag. The fact that each Yi is a Mori dream space follows from 
Theorem 2.2, and the second condition is a consequence of the following proposition 
together with the fact that the exceptional locus of an SQM equals the stable base locus 
of the defining movable divisor.

Proposition 4.7. Let D be a Cartier divisor on X := Zω, and F a base component of the 
complete linear series |D|. Then F intersects Y := Y1 properly, i.e.,

codimY (F |Y ) = codimX(F )

Proof. We first prove that the base locus of |D| is invariant under the group P1. Let 
therefore s ∈ H0(X, OX(D)) be a section, and let p ∈ P1. Then for any x ∈ Zω

s(px) = pp−1s(px) = p(p−1s(px)).

By (4), the right hand side is exactly p((p−1s)(x)) and (p−1s ∈ H0X, OX(D)) vanishes 
in x if x is in the base locus B(D). Therefore,

s(px) = p0Lx
= 0Lpx

,
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and the claim follows. Then, every irreducible component of B(D) is also P1-invariant. 
In particular, F is invariant under P1.

� P1
p0

�
π

Zω

Y

F

Now, the P1-action on P1 has only one orbit, so P1 operates transitively on the fibres 
of π. Hence, the base component F is given by the union of orbits of elements in the 
restriction F |Y . Therefore, the generic fibre dimension holds for all fibres of π, so that

dimF = dimF |Y + 1,

which implies the statement. �
In order to construct a good flag on a Bott–Samelson variety, we next prove that the 

above result generalizes to the birational images under a small Q-factorial modification.

Proposition 4.8. Let X = P1 ×B · · · ×B Pn/B be a Bott–Samelson variety, and let f :
X ��� X ′ be an SQM. Then there exists a P1-equivariant locally trivial fibre bundle 
q : X ′ −→ P1.

Consequently, for every P1-invariant subvariety W ⊆ X ′ of codimension at least two, 
and every point y ∈ P1, the subvariety W ∩ q−1(y) of the fibre q−1(y) is of codimension 
at least two in q−1(y).

Proof. Consider the fibre bundle ϕ : X = P1 ×B · · · ×B Pn/B −→ P1/B ∼= P1, and let 
L := ϕ∗OP1(1). Putting L ′ := (f−1)∗L , we have the commuting diagram

X

ϕ

f
X ′

ϕ′

P1 P1,
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where ϕ is the morphism defined by the globally generated line bundle L , ϕ′ is the 
rational map defined by the line bundle L ′, and the bottom horizontal morphism 
P(H0(X, L )) ∼= P1 −→ P1 ∼= P(H0(X ′, L ′)) is the isomorphism induced by the iso-
morphism of section spaces H0(X, L ) ∼= H0(X ′, L ′).

If X ′ = Proj(R(X, OX(D))), for the movable divisor D, the stable base locus B(D)
of D intersects each fibre of ϕ along a subvariety of codimension at least two. Since ϕ′

can be identified with ϕ on an open subset V ⊆ X ′ isomorphic to X \B(D), this means 
that ϕ′ : V −→ P1 is surjective.

Since the fibres of the bundle ϕ : X −→ P1 are precisely the zero loci of the sections 
of L , X is naturally isomorphic to the incidence variety

{(x, [ξ]) ∈ X × P(H0(X,L )) | ξ(x) = 0}. (12)

In order to describe X ′ as a fibre bundle over P1, we therefore first consider the analogous 
incidence variety

Z := {(x, [ξ]) ∈ X ′ × P(H0(X ′,L ′)) | ξ(x) = 0},

and let

p : Z −→ X ′, q : Z −→ P1

be the morphism given as the restrictions to Z of the projections onto the respective 
factors.

The group P1 operates naturally on X ′ := Proj(R(X, OXD)) and on P(H0(X ′, L ′))
by the actions induced from those on OX(D) and L , and hence the restriction to Z
of the product action of P1 on X ′ × P(H0(X ′, L ′)) makes the morphism q : Z −→ P1

P1-equivariant. By generic smoothness, the generic fibre of q is smooth. On the other 
hand, the transitivity of the P1-action on P1 implies that any two q-fibres are isomorphic 
via an element from P1. It thus follows that Z has the structure of a smooth, and locally 
trivial, fibre bundle over P1. In fact, for any point [ξ] ∈ P1, q is trivial over the open set 
P1 \ {[ξ]} ∼= A1. Indeed, if y0 ∈ A1 is a fixed point, for every y ∈ A1 there is a canonical 
gy ∈ P1 such that gy(y0) = y in such a way that the map y �→ gy defines a morphism 
A1 −→ P1. (This morphism is essentially given by embedding A1 into SL2 as the group 
of upper triangular matrices with ones on the diagonal.) A local trivialization over A1 is 
then given by the isomorphism

A1 × q−1(y0) −→ q−1(A1), (y, z) �→ gy(z) ∈ q−1(y) ⊆ q−1(A1).

Moreover, for each [ξ] ∈ P1, the fibre

q−1([ξ]) = {x ∈ X ′ | (x, [ξ]) ∈ Z}
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is a Weil divisor for the line bundle q∗OP1(1), and we have the short exact sequence of 
Picard groups

0 −→ Z −→ Pic(Z) −→ Pic(q−1(A1)) −→ 0, (13)

where k ∈ Z is identified with the line bundle q∗OP1(k). By the local triviality of q, we 
further have

Pic(q−1(A1)) ∼= Pic(A1 × q−1(y0)) ∼= Pic(q−1(y0)). (14)

In order to prove the claim by the same argument as for X, we now show that X ′ is 
in fact isomorphic to Z. First of all, we have an isomorphism

q∗OP1(k) ∼= p∗L ′ (15)

of line bundles on X ′, for some k ∈ N. Indeed, as shown above, a Weil divisor of q∗OP1(1)
is given by any q-fibre. On the other hand, the zero set of p∗ξ ∈ H0(Z, p∗L ′) is given by

Z(p∗ξ) = {(x, [η]) ∈ X ′ × P(H0(X ′,L ′)) | η(x) = 0, ξ(x) = 0}.

Now, if we restrict p∗ξ to the q-fibre q−1([η]), for some [η] ∈ P1 \ {[ξ]} ∼= A1, we obtain 
the divisor

Z(p∗ξ) ∩ q−1([η]) = {x ∈ X ′ | (x, [η]) ∈ Z, ξ(x) = 0} ∼= Z(ξ) ∩ Z(η) ⊆ X ′

of q−1([η]) ∼= Z(η). Now, by Lemma 4.6, this divisor represents the trivial line bundle 
on the fibre q−1([η]), i.e., the restriction of the line bundle p∗L ′ to the fibre q−1(η)
is trivial. By the isomorphism (14), the restriction of p∗L ′ is then trivial on the open 
subset q−1(A1) ⊆ Z as well. Since this also holds for the line bundle q∗OP1(1), the exact 
sequence (13) now yields that

p∗L ′ = q∗OP1(k),

for some integer k. Since p∗L ′ is effective with a space of sections of dimension at least 
two, k is in fact positive.

The identity (15) now shows that p∗L ′ is nef, and hence L ′ is itself also nef, and there-
fore even semi-ample since X ′ is a Mori dream space. Since the section ring R(X ′, L ′) is 
generated in degree one, L ′ is even globally generated. It follows that ϕ′ in fact defines 
a morphism ϕ′ : X ′ −→ P1.

We now show that X ′ is naturally isomorphic to Z. For a point y ∈ P1, let 
sy ∈ H0(P1, OP1(1)) be the defining section of the Weil divisor {y}, and let ξy ∈
H0(X ′, (ϕ′)∗OP1(1)) be its pullback to X ′. Now, let

j : X ′ −→ Z, j(x) := (x, [ξϕ′(x)]), x ∈ X ′.
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Then, j defines an isomorphism j : V −→ j(V ), from which we see that the image of j
is of full dimension in Z, so that j is indeed surjective. The injectivity is clear from the 
identity

p ◦ j = idX′ .

Moreover, the identity

j ◦ p = idZ

holds on the open subset j(V ) ⊆ Z since every point in V corresponds to a point x ∈ X

which lies in a unique zero locus of a section of L (cf. (12)). By the separability of 
Z (over C), the identity then holds on all of Z, and hence p is an inverse to j. Thus, 
j : X ′ −→ Z defines an isomorphism. This finishes the proof. �
Theorem 4.9. Let Zw be a Bott–Samelson variety defined by a reduced sequence w. Then 
the global Okounkov body ΔY• is rational polyhedral.

Proof. By Theorem 2.2, the variety Zw is a Mori dream space. The same is true for each 
Yi. Moreover, by construction, Yi defines a Cartier divisor on Yi−1 and is cut out by a 
global section si which is just the pullback of a section ti ∈ H0(P1, OP1(1)) vanishing in 
the B-fixed point p0. Inductive application of Proposition 4.7 and Proposition 4.8 then 
shows that Y• is a good flag, and the result follows from Theorem 3.5. �
Example 3. As a basic example consider for any n the n-dimensional Bott–Samelson 
variety P1 × · · · × P1. Its big cone and ample cone agree and are spanned by the fibres
D1, . . . , Dn under the various projections. In other words, there is one Mori chamber 
spanned by the divisors Di. The vertical flag Y• here is just the flag of complete inter-
sections of the Di. Thus the Okounkov bodies of the generators are

ΔY•(Di) = {0} × · · · × {0} × [0, 1] × {0} × · · · × {0}

It follows from the main theorem that the global Okounkov body is spanned by the 
vectors ((0, . . . , 0, 1, 0, . . . , 0), [Di]), for i = 1, . . . , n.

Example 4. Let X be the Bott–Samelson surface studied in Example 1.
We determine the global Okounkov body of X with respect to the vertical flag Y•

given by a divisor C in |H − E| with C ∼= P1, and a point x ∈ C such that x /∈ E (cf. 
Example 1).

Since H − E has trivial restriction to C, and E |C∈ |divOC(1)|, the nef divisor H
restricts to C as H |C= (H − E) |C +E |C= E |C .

Theorem 3 in [22] now shows that the global Okounkov body of X with respect to Y•
is given by
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ΔY•(X) = cone{((0, 0), [H]), ((0, 0), [H −E]), ((1, 0), [H −E]), ((0, 1), [H]),

((0, 0), [E])}.

Moreover, since H is a big divisor on X, the Okounkov body ΔY•(H) equals the fibre 
over [H] in ΔY•(H) with respect to the projection onto the first factor. We thus consider 
all linear combinations

α((0, 0), [H]) + β((0, 0), [H −E]) + γ((1, 0), [H − E]) + δ((0, 1), [H])

+ ε((0, 0), [E]),

with α, . . . , ε ≥ 0 and

α + β + γ + δ = 1, β + γ = ε.

Thus, ΔY•(H) is given as the convex hull of {(0, 0), (1, 0), (0, 1)}.

Example 5. Consider the three-dimensional incidence variety X from Example 2.
We now compute a subcone, ΔY•(E1, E2 +E3), of the global Okounkov body ΔY•(X), 

namely the part that lies above the cone C(E1, E2+E3) in Eff(X) spanned by the classes 
of the two divisors E1 and E2 +E3. Note that, for an effective divisor kE1 + �(E1 +E2)
in C(E1, E2 + E3), the subtraction of a multiple (the order of vanishing of a section) of 
E1 results in a divisor still lying in this cone. Moreover, kE1 + �(E1 +E2) = kD1 + �D3
is nef, and it restricts to the nef and big divisor H on Y . By Proposition 3.1, the volume 
of the restricted linear series R(X, kD1 + �D2) |Y equals the volume of the full linear 
series R(Y, H) on H. Moreover, if two divisors on X have the same restriction to Y , they 
differ by a multiple of E1. By the expression for the Okounkov body of the divisor H on 
Y in Example 4 above, and Corollary 3.2 (applied to the subcone C(E1, E2 +E3) of the 
nef cone), the cone ΔY•(E1, E2 + E3) is spanned by the vectors

((0, 0, 0), [E2 + E3]), ((0, 1, 0), [E2 + E3]), ((0, 0, 1), [E2 + E3]), ((0, 0, 0), [E1]),

((1, 0, 0), [E1]).

We can now also show that the Okounkov bodies of effective line bundles over Schu-
bert varieties, with respect to a natural valuation-like function, are rational polyhedral. 
Indeed, Schubert varieties have rational singularities, so that the projection morphism 
pw : Zw −→ Yw satisfies the property (pw)∗OZw

= OYw
(cf. [4, Section 2.2]). Hence, for 

any effective line bundle L on Yw, we have

H0(Yw, L) ∼= H0(Zw, p
∗
wL). (16)

Let now

ν : Cox(Zw)h \ {0} −→ Nn
0 ,
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where Cox(Zw)h denotes the set of homogeneous elements in the Cox ring of Zw with 
respect to the effective basis, be the valuation-like function defined by the flag Y•, and 
let

νL :	
k≥0

H0(Yw, L
k) \ {0} −→ Nn

0

be the valuation-like function naturally defined by the isomorphisms (16) (for all powers 
Lk) and restriction of ν. Then, the Okounkov body ΔνL

(L) coincides with the slice 
p−1
2 (p∗wL) ∩ΔY•(X) of ΔY•(X), and hence is rational polyhedral. Thus, we have proved 

the following corollary.

Corollary 4.10. Let L be an effective line bundle over the Schubert variety Yw of G/B. 
Then, the Okounkov body ΔY•(L) defined by the natural valuation-like function vL defined 
by the flag Y• in Zw is a rational polytope.

If Yw = G/B is a flag variety, the Picard group Pic(G/B) has an effective basis, namely 
the line bundles Li = G ×ωi C defined by the fundamental weights ωi, i = 1, . . . , r, with 
respect to a choice of simple roots for the root system of G. Let Σ ⊆ Eff(Zw) be the 
closed convex cone generated by the divisors of the line bundles p∗wLi, i = 1, . . . , r. By 
the isomorphisms (16) we now have

ΔY•(G/B) ∼= p−1
2 (Σ) ∩ ΔY•(Zw).

Since the cone Σ is finitely generated, the cone on the right hand side is rational poly-
hedral, so that we have proved the following corollary.

Corollary 4.11. The global Okounkov body ΔY•(G/B) of the flag variety G/B, with respect 
to the valuation defined by the flag Y• of subvarieties of Zw, is a rational polyhedral cone.

4.3. Weight multiplicities

We now turn our attention to the action of a torus H ⊆ B, contained in a max-
imal torus of G lying in B, on the section ring R(D) :=

⊕
k≥0 H

0(Zw, OZw
(kD)) of 

an effective divisor D on Zw. Recall that each section space H0(Zw, OZw
(kD)) carries 

a representation of B given by the action of B as automorphisms of the line bundle 
OZw

(kD) (cf. [14]). Moreover, the flag Y• consists of B-invariant subvarieties of Zw, so 
that the valuation-like function

νD :	
k≥0

H0(Zw,OZw
(kD)) \ {0} −→ Nn

0

is B-invariant, i.e., the identity ν(b.s) = ν(s) holds for any non-zero section s ∈
H0(Zw, OZw

(kD)), and b ∈ B. Hence, there is a well-defined projection
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q : ΔY•(D) −→ ΠD

onto the weight polytope (cf. [3]) of the section ring R(D) for the action of the torus H
(cf. [20] [10]). If h = Lie(H) is the Lie algebra of H, and the μ ∈ ΠD ⊆ h is a rational 
point in the interior of the weight polytope, we then have that the asymptotics of the 
weight spaces Wkμ ⊆ H0(Zw, OZw

(kD)) are given by

lim
k→∞

dimWkμ

kd−r
= vold−r(q−1(μ) ∩ ΔY•(D)),

where r is the dimension of the moment polytope ΠD, d is the dimension of the Okounkov 
body ΔY•(D) (and which equals the Iitaka dimension of the line bundle OZw

(D)), and the 
right hand side denotes the (d − r)-dimensional Lebesgue measure of the slice q−1(λ) ∩
ΔY•(D) of the Okounkov body ΔY•(D). We thus get the following result, saying the
asymptotics of weight spaces are given by polyhedral expressions.

Corollary 4.12. For any effective divisor D on Zw, and rational point μ ∈ ΠD in the 
interior of ΠD, the asymptotic multiplicity

lim
k→∞

dimWkμ

kd−r

is the volume of a rational polytope. As a consequence, the same holds for the weight 
spaces

Wkμ ⊆ H0(Yw, L
k)

for an effective line bundle L over a Schubert variety Yw.

Proof. We only need to prove the second claim about Schubert varieties. Here we notice 
that the projection morphism pw : Zw −→ Yw is B-equivariant, and so in particular 
H-invariant. Hence, the isomorphisms (16) for the powers Lk are H-equivariant, so that 
the claim thus follows from the first part about Bott–Samelson varieties. �
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