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Let K be a finite extension of the field Qp of p-adic numbers. 
Let χ be an irreducible character of a finite group whose values 
are in K. Associated with χ and K is an element of the Brauer 
group of K, and therefore by standard results a local invariant 
in Q/Z. The paper defines some classes of finite groups, that 
the paper calls p-basic groups, and gives formulas to calculate 
the local invariant of their characters. It also shows how one 
can calculate the local invariant of any irreducible character of 
any finite group that has values in K by reducing the problem 
to the case where the groups are p-basic and using the explicit 
formulas given in the paper.
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1. Introduction

Let K be a finite extension of the field R of real numbers, or of a field Qp of p-adic 
numbers, for some prime p. Let G be a finite group, and let χ ∈ Irr(G) be an irreducible 
character of G, and assume that the values of χ are all in K (we write χ ∈ IrrK(G) to 
indicate this). An element [χ]K of the Brauer group Br(K) of K is naturally associated 
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with χ (Definition 2.1). It is a standard result that given K, there exists a unique 
corresponding injective group homomorphism

inv: Br(K) → Q/Z.

In the present paper, we discuss a method to calculate explicitly the local invariant 
inv ([χ]K) of the Brauer element [χ]K . This method is described in Section 9.

Before we discuss a little the details of the paper, we look briefly at the role of 
this invariant in the representation theory of finite groups generally. Let G be a finite 
group, and let χ ∈ Irr(G) be an irreducible character of G. It is known that important 
information can be obtained from the study of representations associated to χ over 
arbitrary fields of characteristic 0. Let F be a field of characteristic 0 and assume that 
the values of χ are in F . It is natural to consider the Brauer element [χ]F ∈ Br(F ), the 
element of the Brauer group over F corresponding to the character χ. (See Definition 2.1
below for the definition of this Brauer invariant). This invariant works well with respect 
to field extensions. Furthermore, the Schur index mF (χ) with respect to F can be found 
from [χ]F . It follows that [χ]F gives the Schur index of χ over every field extension of F . 
As a result the invariant [χ]Q(χ) ∈ Br (Q(χ)) over the smallest field Q(χ) yields basic 
information about the representations over fields of characteristic zero.

Hence, the element [χ]Q(χ) plays an important role in the representation theory as-
sociated to χ. It follows that Br(Q(χ)) is of particular importance for our purposes, or 
more generally Br(F ) for F a finite extension of Q. Important results tell us how to 
describe in detail these Brauer groups. Details about this can be found, for example, in 
Pierce [5]. When F is a finite extension of Q, the Brauer group Br(F ) is best understood 

in terms of the Brauer groups Br
(
F̂v

)
where v runs through the non-trivial normalized 

valuations of F , and F̂v is the completion of F under v. Now the fields F̂v are isomorphic 
to finite extensions of R or of Qp the field of p-adic numbers, for some prime p, and for 
such fields K we have an injective group homomorphism

inv: Br(K) → Q/Z.

We note here that this group homomorphism is uniquely defined by the field K, and has 
excellent compatibility properties with respect to field extensions.

It follows from the details of what we describe above that [χ]Q(χ) can effectively be 
calculated from the knowledge of [χ]F̂v

, where v runs through the non-trivial normalized 
valuations of F . The present article describes a method to calculate explicitly these [χ]F̂v

and their invariant inv
(
[χ]F̂v

)
once an identification of F̂v with a finite extensions of R

or Qp for some prime p has been chosen.
A theorem of Benard–Schacher (see for example Theorem 6.1 in Yamada’s book [15]) 

tells us that the invariant varies in predictable ways as we take different valuations v
above the same prime p. However, we argue in [13] that, as soon as we fix a prime p and 
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p-Brauer characters are defined, then a natural single value of inv
(
[χ]F̂v

)
is associated 

to each χ.
In addition to their intrinsic interest, and their use in calculating the whole family of 

invariants, as described above, the invariants [χ]K , where K is a finite extension of the 
field Qp of p-adic numbers, for some prime p, have recently been shown to be closely 
related to some of the fundamental conjectures in representation theory of finite groups. 
In particular, the celebrated McKay Conjecture has been strengthened by Turull [10] to 
incorporate these invariants in a natural way. Although this conjecture remains open in 
general (as is the original weaker McKay Conjecture open in general) the strengthened 
version was proved by Turull [11] in 2013 in a very strong form including the Alperin 
strengthening and others for p-solvable groups. In addition, a refinement of Dade’s Pro-
jective Conjecture that incorporates these invariants was proposed and proved for all 
p-solvable groups by Turull in 2017 [12].

It is well known that the knowledge of these invariants implies the knowledge of the 
Schur indices. In particular, these conjectures have a corresponding weaker version that 
replaces the element of the Brauer group by the corresponding Schur index. Furthermore, 
our calculation of the invariants implies a calculation of the Schur indices.

The author is not aware of any earlier attempt to find an algorithm to calculate these 
invariants for arbitrary finite groups. The calculation of the Schur indices, however, has 
been the subject of substantial research. The ‘wedderga’-package [1] for the computer 
algebra system GAP has functionality to calculate Schur indices over Q or Qp. Similarly, 
a general practical algorithm for the calculation of the Schur indices for arbitrary finite 
groups has also recently been proposed by Unger [14] and implemented within MAGMA. 
We refer the interested reader to [14] for more information on the work to date on the 
techniques to calculate Schur indices.

We now turn to describing the content of this paper. Let K be a finite extension of 
the field R of real numbers, or of a field Qp of p-adic numbers, for some prime p. Let G
be a finite group, and let χ ∈ IrrK(G). We describe a method to explicitly calculate the 
local invariant inv ([χ]K).

While our method calculates the invariant in every case, its practical implementation 
requires control over certain subgroups of the group in question, and, in particular, the 
use of the Brauer-Witt reduction. Hence, the practical implementation of this method 
is mostly suitable for groups that are not too large. We believe that it has theoretical 
interest for all finite groups.

In Section 4 we define some classes of finite groups, which we name p-basic groups. 
They come in various types, namely, type 0, 1, 2, 3 and 4. (For convenience, we allow 
these various types to have some overlap, and some finite groups can be p-basic of more 
than one type.) Their definition is related to some ideas of Schmid [8] and Riese and 
Schmid [6]. However, our goals here are different than those in these papers and the 
classes of groups we obtain are different from theirs. Our goal is to define classes of finite 
groups which are broad enough to include all groups obtained as terminal cases of our 
reductions but narrow enough that the local invariants of their irreducible characters 
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can be explicitly given by a formula. After a section on uniformizers and a section on 
crossed products, these invariants are calculated in Section 8.

It follows from well known results (Yamada [15]) that the p-local Schur indices for 
p = ∞ or p = 2 are always at most 2. In this case, the knowledge of the Schur index 
over K is enough to give the invariant inv ([χ]K). See Theorem 2.7 below. Hence, we set 
ourselves in the case when K is a finite extension of Qp, for some odd prime p. Then 
again, from work of Yamada [15], we know that the order of inv ([χ]K) divides p − 1. See 
also Theorem 2.7 below. It follows that it is enough to calculate inv ([χ]K)q, the q-part 
of inv ([χ]K), for each prime q dividing p − 1.

So we consider the case when p and q are distinct primes and we describe how to 
calculate inv ([χ]K)q. Using ideas from the Brauer-Witt Theorem, we can reduce to the 
case where G is q-quasi-elementary. We can then apply the reductions from Theorem 3.1
repeatedly to the resulting situation until they no longer produce a smaller group. At this 
point, the group we have is a p-basic group, and the invariant of its irreducible character 
is given explicitly in Section 8. This process is described in more detail in Section 9.

When K is a finite extension of Qp for some odd prime p, our algorithm does not rely 
on the prior calculation of the p-local Schur index. Hence, in this case it can be viewed 
as giving in addition an alternative calculation of the p-local Schur index. On the other 
hand, when K is a finite extension of R or of Q2, the algorithm simply uses the known 
local Schur index to calculate the invariant.

Our proof relies on a limited number of properties of the Schur indices. Namely, it 
relies only on the fact that the real Schur index is at most two and the fact that the 
p-part of the p-local Schur index is always 1 except possibly when p = 2, when it could 
be 2. These facts follow from the more precise facts proved by Yamada [15] about p-local 
Schur indices.

Finally, we note that a careful reading of our proofs shows that they give an inde-
pendent proof of the fact proved by Yamada [15] that the p′-part of the p-local Schur 
index always divides p − 1 for every (finite) prime p (including p = 2, where, of course, 
we recover the fact that it is 1).

2. Notation and basic results

If F is any field, we denote by Br(F ) the Brauer group of F . In the present paper, 
Qp means the field of p-adic numbers, where p is a prime. We will often be working over 
a particular field F of characteristic zero, and in this case we will take the irreducible 
characters of every finite group to have values in some fixed algebraic closure of F , so 
that for every finite group G the elements of Irr(G) have values in the algebraic closure 
of F . We denote by IrrF (G) the set of all elements of Irr(G) whose values are all in F . 
If χ ∈ IrrF (G), we denote by mF (χ) the Schur index of χ with respect to F .

Definition 2.1. Let F be a field of characteristic 0, let G be a finite group, and let 
χ ∈ IrrF (G). Then the Brauer element of χ with respect to F is [χ]F the class in 
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Br(F ) of the central simple algebra EndFG(M) where is M is any non-zero FG-module 
affording as character a multiple of χ. (The Brauer element does not depend on our 
choice of M .)

Some authors find more natural to assign to χ the element of the Brauer group 
coming from the simple ideal of FG associated to χ. The following lemma shows that 
both definitions give closely related results.

Lemma 2.2. Let F be a field of characteristic 0, G be a finite group, and let χ ∈ IrrF (G). 
Let e ∈ Z(FG) be the central idempotent associated with χ. Let [eFG] be the class of 
eFG in Br(F ). Then [χ]F is the inverse of [eFG] in Br(F ).

Proof. Let M = eFG viewed as a left FG-module. Then M affords the character χ(1)χ. 
Now EndF (M) is a full matrix algebra over F of dimension χ(1)4. EndFG(M) is a 
central simple subalgebra of EndF (M) of dimension χ(1)2. Likewise, eFG is a central 
simple algebra of dimension χ(1)2, and the action of eFG on M by left multiplication 
provides an isomorphic copy of itself in EndF (M) that commutes with EndFG(M). By 
a dimension argument, it follows that, as an algebra over F , EndF (M) is isomorphic to 
EndFG(M) ⊗F eFG. The lemma follows. �

For some fields, the Brauer group can be described in terms of the group Q/Z. Let 
K be isomorphic to a finite extension of either R or some Qp for some prime p. Then 
there is a standard uniquely defined injective group homomorphism

inv: Br(K) → Q/Z.

This is well known, and can be found for example in Serre [9] or Pierce [5]. When K
is isomorphic to a finite extension of R, then | Br(K)| ≤ 2, and this determines inv
uniquely in this case. We use crossed products to describe inv for the case when K is 
a finite extension of Qp for some prime p. We use the notation of Pierce [5] for crossed 
products.

Definition 2.3. Let F/K be a finite cyclic field extension of degree n, let σ be a generator 
for Gal(F/K), and let a ∈ K×. Then the crossed product (F, σ, a) is a central simple 
algebra over K that is generated by a subalgebra identified with F , and an invertible 
element u such that un = a, and, for all d ∈ F , we have du = u−1du = σ(d), and, we 
set, by convention, dτ = τ(d) for all τ ∈ Gal(F/K).

Theorem 2.4. Let p be a prime, and let K be a finite extension of Qp. Then the map

inv : Br(K) → Q/Z
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is a group isomorphism. Furthermore, let π ∈ K be a uniformizer, let k ∈ Z, let F/K
be an unramified finite extension of degree n, and let σ be the Frobenius automorphism 
of F/K. Then

inv
(
[(F, σ, πk)]

)
= k

n
.

Proof. See Section 17.10 in [5]. �
Let K be a finite extension of Qp for some prime p. From Serre [9] we know that we 

have the valuation vK of K

vK : K → Z ∪ {+∞}.

vK is such that vK(0) = +∞, and, the restriction of vK yields a surjective homomorphism 
K× → Z. We note that this definition is slightly different than the one used in Pierce 
[5] where all valuations take values in the multiplicative semigroup of real numbers.

Using vK we can describe the invariant of many crossed products.

Corollary 2.5. Assume the hypotheses of Theorem 2.4. Let a ∈ K×. Then

inv ([(F, σ, a)]) = vK(a)
n

.

Proof. Let k = vK(a). We can write a = πkb where b ∈ K× with vK(b) = 0. By for 
example Section 17.9 of [5], we know that b is a norm from F×. It then follows from 
Section 15.1 of [5], for example, that

inv ([(F, σ, a)]) = inv
(
[(F, σ, πk)]

)
.

Hence, the corollary follows from the theorem. �
Using inv, for appropriate fields, we can define the local invariant to be an element of 

Q/Z.

Definition 2.6. Let K be isomorphic to a finite extension of either R or Qp for some 
prime p. Let G be a finite group, and let χ ∈ IrrK(G). Then the local invariant of χ

with respect to K is inv ([χ]K) the invariant in Q/Z corresponding to [χ]K ∈ Br(K).

Theorem 2.7. Let K be isomorphic to a finite extension of either R or Qp for some 
prime p. Let G be a finite group, and let χ ∈ IrrK(G). Then the following hold.

(1) If e ∈ Z(KG) is the central idempotent associated to χ, then

inv ([χ]K) = − inv ([eKG]) .
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(2) If F is a finite extension of K, then

inv ([χ]F ) = [F : K] inv ([χ]K) .

(3) Suppose a, b ∈ Z, where b > 0, a and b are relatively prime, and ab is a representative 
of inv ([χ]K). Then b = mK(χ).

(4) Assume that mK(χ) ≤ 2. Then

inv ([χ]K) = 1
mK(χ) + Z ∈ Q/Z.

(5) If K is isomorphic to a finite extension of R then mK(χ) ≤ 2.
(6) If K is isomorphic to a finite extension of Qp, for some prime p, and p � |G| then 

mK(χ) = 1.
(7) (Yamada) If K is isomorphic to a finite extension of Q2 then mK(χ) ≤ 2.
(8) (Yamada) If K is isomorphic to a finite extension of Qp where p is an odd prime, 

then mK(χ) | p − 1.

Proof. (1) follows from Lemma 2.2, the fact that inv is a group homomorphism, and the 
fact that Q/Z is an additive group.

(2) Of course, χ ∈ IrrF (G). Let M be any non-zero KG-module affording as character 
a multiple of χ. Then F⊗KM is a non-zero FG-module affording as character a multiple 
of χ. The central simple algebra EndFG(F ⊗K M) is isomorphic to F ⊗K EndKG(M), 
and so the equation follows from the corresponding property of inv as given, for example, 
in Section 17.10 of Pierce [5].

(3) From Section 17.10 of Pierce [5], for example, we obtain that the order of inv ([χ]K)
is mK(χ), and the result follows.

(4) Follows directly from (3).
(5) It is well known that the Schur indices over R are at most 2.
(6) See, for example, Corollary 9.4, page 186 in [2].
(7) and (8) See Yamada [15] Theorem 5.14 for (7), and Theorem 4.4 for (8). �
Since there are methods to calculate the Schur indices, the previous theorem tells us 

how to calculate inv ([χ]K) when K is a finite extension of R or of Q2, a fact that was 
noted in [15].

In the rest of the paper, we focus on the calculation of this invariant when K is a 
finite extension of Qp for some odd prime p.

3. Reductions for the local invariant of a character

Let K be a field of characteristic 0, and let characters take values in K, an algebraic 
closure of K. Let G be a finite group, and let χ be a character of G. Then we say that χ
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is K-quasi-homogeneous if χ �= 0, χ takes its values in K, and there exists a ψ ∈ Irr(G)
such that χ is a sum of characters of the form σψ for σ ∈ Gal(K/K).

Theorem 3.1. Let K be a field of characteristic 0, and let characters take values in K, 
an algebraic closure of K. Then there is an algorithm that works as follows. Let G and 
χ ∈ IrrK(G), and assume any of the following:

(1) ker(χ) �= 1.
(2) H �= G is a subgroup of G such that ResGH(χ) ∈ Irr(H).
(3) N is a normal subgroup of G and ResGN (χ) is not K-quasi-homogeneous.

Then the algorithm produces a group H and some ψ ∈ IrrK(H) with all the following 
properties.

(1) |H| < |G|.
(2) H is a section of G.
(3) [χ]K = [ψ]K .

Proof. Suppose first that ker(χ) �= 1. Then we set H = G/ ker(χ) and set ψ ∈ Irr(G)
to be the character corresponding to χ, and, of course, we then have all the stated 
properties. Suppose next that H �= G is a subgroup of G such that ResGH(χ) ∈ Irr(H). 
Now set ψ = ResGH(χ). Let M be any non-zero KG-module affording as character a 
multiple rχ of χ. Then dimK (EndFG(M)) = r2, and setting N = ResGH(M), we have that 
EndKG(M) = EndKH(N) because they have the same dimension, and so [χ]K = [ψ]K .

Suppose now that N is a normal subgroup of G and ResGN (χ) is not K-quasi-
homogeneous. Let θ ∈ Irr(N) be contained in ResGN (χ). Using the notation of [11], 
we set H = ĨG(θ, K), so that H is the set of all elements of G that conjugate θ to a 
Galois conjugate of θ. Now since ResGN (χ) is not K-quasi-homogeneous but χ ∈ IrrK(G), 
we know that H �= G. It then follows from [11, Proposition 2.1] that there exists a cor-
responding ψ ∈ IrrK(H) to χ, and that we also have [χ]K = [ψ]K . Hence, the theorem 
holds. �

Let q be a prime. Recall that a finite group is q-quasi-elementary if it has cyclic normal 
q′-complement. See Definition 8.8 in [4].

The following result is well known.

Theorem 3.2. Let K be a field of characteristic zero, assume that characters take values 
in some algebraic closure K of K, and let q be a prime. Let G be a finite group, and 
let χ ∈ IrrK(G). Then there exists some q-quasi-elementary subgroup H of G and some 
ψ ∈ Irr(H) such that

[K(ψ) : K][ψ,ResGH(χ)] �≡ 0 (mod q).
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Proof. By Solomon’s Theorem [4, Theorem 8.10], there exist n > 0, m, ni ∈ Z and Hi

q-quasi-elementary subgroups of G for i ∈ {1, . . . , n} such that q � m and

m1G =
n∑

i=1
ni IndG

Hi
(1Hi

) .

This implies, using Frobenius reciprocity, that

m = [mχ,χ] =
n∑

i=1
ni[ResGHi

(χ),ResGHi
(χ)].

Since q � m, this, in turn, implies that there exists some i ∈ {1, . . . , n} such that

q � ni[ResGHi
(χ),ResGHi

(χ)].

Since χ ∈ IrrK(G), it follows that there exists some ψ ∈ Irr(Hi) such that

q � ni[K(ψ) : K][ψ,ResGHi
(χ)],

and the theorem follows. �
Proposition 3.3. Let K be a finite extension of R or Qp for some p prime. Assume 
that characters take values in an algebraic closure K of K. Let G be a finite group, let 
χ ∈ Irr(G), let H be a subgroup of G, and let ψ ∈ Irr(H). Then

[ResGH(χ), ψ][K(χ, ψ) : K(χ)] inv
(
[χ]K(χ)

)
=

[ResGH(χ), ψ][K(χ, ψ) : K(ψ)] inv
(
[ψ]K(ψ)

)
∈ Q/Z.

Proof. Set L = K(χ, ψ), and set d = [ResGH(χ), ψ]. If d = 0, the result holds, so we 
assume d �= 0. By Theorem 2.7, we know that

inv ([χ]L) = [L : K(χ)] inv
(
[χ]K(χ)

)

and

inv ([ψ]L) = [L : K(ψ)] inv
(
[ψ]K(ψ)

)
.

Let M be a LG-module affording as character mL(χ)χ. Set D = EndLG(M). Then D is 
a central division algebra over L, and

inv ([χ]L) = inv ([D]) .
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Let N be the ψ-homogeneous component of ResGH(M). Then N can be viewed as a LH-
module affording the character mL(χ)dψ. In particular, N �= 0. Set E = EndLH(N). 
Then

inv ([ψ]L) = inv ([E]) .

Now D acts naturally on N , and this identifies D with a subalgebra of E. Set C = CE(D). 
Since D is a central simple algebra over L, it follows that C is a central simple algebra 
over L and

E = D ⊗L C.

We know that

dimL(E) = mL(χ)2d2 = dimL(D)d2.

It follows that inv ([C]) has a representative that is a fraction whose denominator is d. 
Since inv ([E]) = inv ([D]) + inv ([C]), it follows that d inv ([E]) = d inv ([D]) ∈ Q/Z. 
This proves our proposition. �
Proposition 3.4. Let K be a finite extension of R or Qp for some p prime. Assume that 
characters take values in an algebraic closure K of K. Let G be a finite group, and let 
χ ∈ IrrK(G). Let q be a prime, and let H, and ψ ∈ Irr(H) be as in Theorem 3.2, so that 
H is a q-quasi-elementary subgroup of G, and

[K(ψ) : K][ψ,ResGH(χ)] �≡ 0 (mod q).

Then all the following hold.

(1) mK(ψ) is a power of q;
(2) There is some a ∈ Z such that a is the inverse of [K(ψ) : K] modulo mK(ψ);
(3) The q-part of inv ([χ]K) is

inv ([χ]K)q = a inv
(
[ψ]K(ψ)

)
,

where a is any integer as in (2).

Proof. Since H is a q-quasi-elementary group, we know that ψ(1) is a power of q, and 
this implies that mK(ψ) is also a power of q, so that (1) holds. Now, by our hypotheses, 
[K(ψ) : K] is prime to q, and (2) follows. Now by Proposition 3.3, we know that

[ResGH(χ), ψ][K(ψ) : K] inv ([χ]K) = [ResGH(χ), ψ] inv
(
[ψ]K(ψ)

)
∈ Q/Z.
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Since the right hand side is a q-element, we may replace the left hand side by its own 
q-part. Now the order of inv ([χ]K)q and the order of inv

(
[ψ]K(ψ)

)
are both mK(ψ). 

Multiplying both sides by an integer that is the inverse of [ResGH(χ), ψ] modulo mK(ψ), 
we obtain

[K(ψ) : K] inv ([χ]K)q = inv
(
[ψ]K(ψ)

)
∈ Q/Z.

Then the result follows. �
The reductions that we have described allow us to reduce the calculation of the invari-

ant of a character to the case when the group is q-quasi-elementary and the irreducible 
character satisfies some extra conditions.

Theorem 3.5. Let K be a finite extension of R or Qp for some p prime. Assume that 
characters take values in an algebraic closure K of K. Let q be a prime. Then there 
exists an algorithm that, given any finite group G and any χ ∈ Irr(G), produces a field 
F , a section H of G, and some ψ ∈ IrrF (H) such that all of the following conditions are 
satisfied:

(1) K ⊆ K(χ) ⊆ F ⊆ K;
(2) q � [F : K(χ)];
(3) H is q-quasi-elementary;
(4) ψ is faithful;
(5) ResHP (ψ) is not irreducible for every proper subgroup P of H;
(6) ResHN (ψ) is F -quasi-homogeneous for every normal subgroup N of H;
(7) [F : K(χ)] is invertible modulo the order of inv ([ψ]F );
(8) The q-part of inv

(
[χ]K(χ)

)
is

inv
(
[χ]K(χ)

)
q

= a inv ([ψ]F ) ,

where a ∈ Z is any such that a[F : K(χ)] ≡ 1 modulo the order of inv ([ψ]F ).

Proof. By Theorem 3.2, we may find some subgroup H1 of G and some irreducible 
character ψ1 ∈ Irr(H1) such that H1 is q-quasi-elementary, and

[K(ψ1, χ) : K(χ)][ψ1,ResGH1
(χ)] �≡ 0 (mod q).

We then set F = K(ψ1, χ). Then (1) and (2) hold, and ψ1 ∈ IrrF (H1). Now while 
the hypotheses of Theorem 3.1 (with F instead of K) apply to H1 and ψ1, we keep 
replacing them by those given by the theorem. Since the size of H1 decreases each time 
we apply the theorem, after a finite number of steps, we will get H1 and ψ1 for which 
the hypotheses of Theorem 3.1 no longer hold. We then set H = H1 and ψ = ψ1. It 
follows that (3–6) hold. In addition, from Theorem 3.1, we know [ψ]F = [ψ1]F . Since H
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is q-quasi-elementary, the order of inv ([ψ]F ) is a power of q, so that (7) also holds. Now 
the theorem follows from Theorem 3.4 and the construction of H and ψ. �
4. p-basic groups

Let p be a prime number. In this section, we define the following types of finite groups 
which we call p-basic groups. We find it convenient to allow certain finite groups to have 
more than one type.

Definition 4.1. We say that G is a p-basic group of type 0 if G is a finite group and p � |G|.

Definition 4.2. We say that G is a p-basic group of type 1 if G is a finite group, G has a 
unique Sylow p-subgroup P , |P | = p, and G/P is cyclic.

Definition 4.3. We say that G is a p-basic group of type 2 − 3 if G is a finite group, and 
there exist two different primes r and q both different from p such that G has a unique 
Sylow p-subgroup P , |P | = p, G has a unique Sylow r-subgroup R, |R| = r, CG(PR) is 
cyclic, and there is some Q ∈ Sylq(G) such that G = PRQ, and CQ(R) ⊆ CQ (CQ(PR)).

Lemma 4.4. Suppose G is a p-basic group of type 2 − 3, and assume the notation of 
Definition 4.3. Let C = CQ(PR). Then, at least one of the following holds:

(1) There exists a cyclic subgroup X of Q such that CX(P ) ⊆ Z(G), and G = X CG(P ) =
X CG(R); or

(2) There exists a cyclic subgroup Y of Q such that CY (R) ⊆ C, and Y CG(R) = G.

Proof. Assume that G is a counterexample. Set Q1 = Q/ CQ(P ) and Q2 = Q/ CQ(R), 
and notice that they both are cyclic q-groups. Let x ∈ Q be such that x CQ(P ) generates 
Q1, and let y ∈ Q be such that yCQ(R) generates Q2.

Suppose that y can be chosen so that y|Q2| ∈ CQ(P ). Then we set Y = 〈y〉. We 
have CY (R) =

〈
y|Q2|

〉
⊆ C. By our choice of y, Y CQ(R) = Q, and it follows that 

Y CG(R) = G, so that Y satisfies (2), against our hypothesis. Hence, for any choice of y
we have y|Q2| /∈ CQ(P ). In particular, |Q1| > |Q2|.

Suppose that x CQ(R) is a generator for Q2. Set X = 〈x〉. Then CX(P ) =
〈
x|Q1|

〉
⊆ C, 

and CG(CX(P )) ⊇ X CQ(R)PR = G. Since this implies that X satisfies the conditions 
of (1), it follows that x CQ(R) is not a generator for Q2.

There is some integer n such that yCQ(P ) = xn CQ(P ). Since x CQ(R) is not a 
generator for Q2, x−ny ∈ Q is such that x−nyCQ(R) is a generator for Q2, and x−ny ∈
CQ(P ). By replacing y by x−ny, if necessary, we may choose y ∈ CQ(P ). This contradicts 
the second paragraph, and completes the proof of the lemma. �
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Definition 4.5. We say that G is a p-basic group of type 2 if G is a p-basic group of type 
2-3, and, in the notation of Definition 4.3, there exists a cyclic subgroup X of Q such 
that CX(P ) ⊆ Z(G), and G = X CG(P ) = X CG(R).

Definition 4.6. We say that G is a p-basic group of type 3 if G is a p-basic group of type 
2 − 3, and, in the notation of Definition 4.3, and setting C = CQ(PR), there exists a 
cyclic subgroup Y of Q such that CY (R) ⊆ C, and Y CG(R) = G.

Of course, in the terminology we just introduced, Lemma 4.4 tells us that every p-
basic group of type 2 − 3 is either a p-basic group of type 2 or a p-basic group of type 
3. Note that there exist non-abelian finite groups that are both of type 2 and of type 3. 
Even more strikingly, if we take two distinct primes p and r, any cyclic group of order 
pr is p-basic of types 1, 2, and 3, as well as r-basic of types 1, 2, and 3. (We believe that 
it would unnecessarily complicate the definitions to set up our terminology to exclude 
these possibilities.)

The last type of p-basic groups only occurs when p ≡ 3 (mod 4).

Definition 4.7. We say that G is a p-basic group of type 4 if p ≡ 3 (mod 4), G is a finite 
group, G has a unique Sylow p-subgroup P , |P | = p, G/P is a 2-group, G �= CG(P ), 
and, letting D ∈ Syl2(CG(P )) and, setting 2n to be the 2-part of p2 − 1, D is isomorphic 
to a non-abelian subgroup of a semidihedral group of order 2n+1, and D has a cyclic 
maximal subgroup M such that G = DCG(M).

Note that in Definition 4.7, CG(P ) is a normal subgroup of index 2 in G, and that D
is the unique Sylow 2-subgroup of CG(P ).

Definition 4.8. We say that G is a p-basic group, if it is a p-basic group of type 0, 1, 2, 
3, or 4.

5. From quasi-elementary to basic

In this section, we prove that whenever p and q are primes, p �= q, we are working 
over a finite extension of Qp, and we start with a q-quasi-elementary group and one of 
its irreducible characters, and we repeatedly apply the algorithm of Theorem 3.1, we will 
reach a p-basic group and one of its irreducible characters.

Lemma 5.1. Let p be a prime, let K be a finite extension of Qp, and assume all characters 
take values in some algebraic closure K of K. Let G be a finite group. Let ψ ∈ IrrK(G)
be faithful. Let N be a normal abelian p′-subgroup of G, and assume that the restriction 
of ψ to N is K-quasi-homogeneous. Then G/ CG(N) is cyclic.

Proof. Let λ ∈ Irr(N) be contained in the restriction of ψ to N . Since ψ is K-quasi-
homogeneous, and ψ is faithful, we know that λ is faithful. It follows that N is cyclic. 
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Let F = K(λ). Now the action of G on N by conjugation yields a faithful action of 
G/ CG(N) by conjugation on N , and this in turn yields through λ a group isomorphism 
from G/ CG(N) to Gal(F/K). Since N is a p′-group, F is an extension of K by a p′-th 
root of unity. By, for example, Proposition 16 Chapter IV in [9], we obtain the well 
known facts that the extension F/K is unramified and that Gal(F/K) is cyclic. The 
lemma follows. �
Lemma 5.2. Let p be a prime, let K be a finite extension of Qp, and assume all characters 
take values in some algebraic closure K of K, and let G be a finite group and let ψ ∈
IrrK(G) be faithful. Let q be a prime number. Assume that G has a normal cyclic subgroup 
C such that q � |C| and G/C is a q-group. Suppose that the restriction of ψ to every 
normal subgroup of G is K-quasi-homogeneous. Let Q ∈ Sylq(G). Then there exists 
some subgroup C0 of C such that, setting H = QC0, we have that |C0| | pr for some 
prime r /∈ {p, q}, and ResGH(ψ) ∈ Irr(H).

Proof. Let P ∈ Sylp(C), and set P0 = P if |P | = 1, and P0 to be the unique subgroup 
of C of order p of P otherwise. Then CQ(P ) = CQ (P0). Let C1 be the Hall p′-subgroup 
of C. Let θ ∈ Irr (C1) be contained in the restriction of ψ to C1. Since this restriction is 
K-quasi-homogeneous, it follows from Lemma 5.1 that Q/ CQ (C1) is a cyclic q-group. 
If Q/ CQ (C1) �= 1, then there exists some subgroup R of prime order (r say) of C1
such that CQ (C1) = CQ(R), and we set C0 = P0R. If Q/ CQ (C1) = 1, then we set 
C0 = P0, and we let r be any prime different from p and different from q. In either 
case, we have r /∈ {p, q}, |C0| | pr, and CQ(C) = CQ (C0). We set H = QC0. Let 
ζ1 ∈ Irr(C) be contained in the restriction of ψ to C. Then the inertia subgroup of ζ1 in 
G is CQ(C)C, a nilpotent subgroup of G. There exists some ν ∈ Irr (CQ(C)) such that 
ν ⊗ ζ1 is contained in the restriction of ψ to CQ(C)C. By Clifford’s Theorem, it follows 
that ψ = IndG

CQ(C)C (ν ⊗ ζ1). In particular,

ψ(1) = [Q : CQ(C)]ν(1).

Let ζ2 ∈ Irr (C0) be the restriction of ζ1 to C0. Then the inertia group of ζ2 in H is 
CQ(C)C0, and the character ν ⊗ ζ2 is contained in the restriction of ψ to CQ(C)C0. It 
follows that IndH

CQ(C)C0
(ν ⊗ ζ2) ∈ Irr(H) and it is contained in the restriction of ψ to 

H. It follows that ResGH(ψ) ∈ Irr(H). Hence, the lemma holds. �
The following lemma follows from P. Hall’s classification of the q-groups all of whose 

abelian characteristic subgroups are cyclic [3, Satz III.13.10]. It is very close to [7, Lemma 
4], and follows easily from it. We offer a full proof of our version for completeness.

Lemma 5.3. Let q be a prime number, let G be a finite q-group, and suppose that Q is a 
normal non-cyclic subgroup of G. Assume that every G-invariant abelian subgroup of Q
is cyclic. Then q = 2, Q contains a G-invariant subgroup of order 4 not in the center of 
Q, and Q is dihedral, semidihedral or generalized quaternion.
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Proof. Assume the lemma is false, and consider a counterexample with |Q| as small 
as possible. By Hall’s classification of the q-groups all of whose abelian characteristic 
subgroups are cyclic [3, Satz III.13.10], we know that Q is a central product of a group 
Q1 that is either extraspecial or cyclic of order q, and a group Q2 �= 1 that is either cyclic 
or else q = 2, |Q2| ≥ 16, and Q2 is dihedral, semidihedral or generalized quaternion, and 
where the central subgroups of order q of Q1 and of Q2 are identified. Suppose that Q1
is cyclic of order q, so that Q = Q2. Since we have a counterexample, it must be that 
Q2 is not cyclic, and it follows that q = 2, and Q is dihedral, semidihedral or generalized 
quaternion and |Q| ≥ 16. This in turn implies that Q has a non-central characteristic 
subgroup of order 4, a contradiction. So |Q1| ≥ q3. Looking at the possibilities, we see 
that |Q| ≥ q4.

Suppose that Q2 is cyclic of order at least q2. Then, the subgroup of Q generated by all 
elements of order q and q2 has exponent q2 and contains a G-invariant subgroup S such 
that |S| = q3 and |S ∩ Z(Q)| = q2. But then S is abelian but not cyclic, contradicting 
our hypotheses. So Q2 is not cyclic of order at least q2.

Let |Q| = qn. If |Q2| = q, then |Q1| ≥ q5 and the exponent of Q is at most q2. If 
|Q2| �= q, then, since Q2 is not cyclic, the exponent of Q is at most qn−3. Hence, in any 
case, the exponent of Q is at most qn−3.

There is a maximal G-invariant subgroup M of Q. Since G is a q-group, we have 
[Q : M ] = q, so that |M | = qn−1. By the previous paragraph, M is not cyclic. It 
follows that, by our choice of counterexample, we know that q = 2, and M is dihedral, 
semidihedral or generalized quaternion. Again, by the previous paragraph, it follows that 
|M | ≤ qn−2. This final contradiction completes the proof of the lemma. �
Theorem 5.4. Let p be a prime, let K be a finite extension of Qp, and assume all char-
acters take values in some algebraic closure K of K. Let G be a finite group, let q be a 
prime with q �= p, and suppose that C � G is cyclic of q′-order and G/C is a q-group. 
Let ψ ∈ IrrK(G) be faithful. Suppose that the restriction of ψ to every normal subgroup 
of G is K-quasi-homogeneous, and the restriction of ψ to every proper subgroup of G is 
not irreducible. Then G is a p-basic group.

Proof. Assume we have a counterexample. If p � |C|, then G is a p-basic group of type 0 
(Definition 4.1). Hence, p | |C|. It follows from Lemma 5.2 that there exists some prime 
r /∈ {p, q} such that |C| ∈ {p, pr}. Let P ∈ Sylp(G), R ∈ Sylr(G), Q ∈ Sylq(G), and 
D = CQ(C). Now |P | = p, |R| | r, both P and R are normal subgroups of G, and 
C = PR.

Suppose that D is cyclic. Then ψ is induced from an irreducible linear character 
of CD. It follows that ψ(1) = [Q : D]. Suppose that Q/D is cyclic. Let x ∈ Q be 
such that xD generates the cyclic group Q/D. Then ψ restricts irreducibly to 〈x〉C, 
so that G = 〈x〉C and Q = 〈x〉. Suppose that Q/D acts faithfully on R. Then ψ
restricts irreducibly to 〈x〉R, against our hypothesis. Now, since Q/D is a cyclic q-
group, this implies that it acts faithfully on P , and this in turn implies that R = 1. 
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It follows that G is p-basic of type 1 (Definition 4.2). Hence Q/D is not cyclic. This 
implies that R �= 1, so that |R| = r. By Lemma 5.1, Q/ CQ(RD) is cyclic. Suppose that 
CQ(R) � CQ(D). Then CQ(RD) = CQ(D), and it follows that ψ restricts irreducibly to 
PQ, against our hypothesis. Hence, CQ(R) ⊆ CQ(D). Now G is a p-basic group of type 
2-3 (Definition 4.3). Lemma 4.4 then tells us that G is p-basic of type 2 (Definition 4.5) 
or p-basic of type 3 (Definition 4.6). This contradiction shows that D is not cyclic.

Let A be any Q-invariant abelian subgroup of D. Then A is normal in G, and it 
follows that ResGA(χ) is K-quasi-homogeneous, by hypothesis, so that A is cyclic, and, 
if further K contains a primitive |A|-th root of unity, then A ⊆ Z(G). By Lemma 5.3, it 
follows that q = 2, D is a non-abelian dihedral, semidihedral, or generalized quaternion 
group, |D| ≥ 8, D contains a cyclic maximal subgroup M that is normal in G, and K
does not contain a primitive 4-th root of unity. In particular, p ≡ 3 (mod 4), and we set 
2n = (p2 − 1)2. Let k be the residue field of K. Then, since k does not have a primitive 
4-th root of unity, |k| is an odd power of p, and (|k|2 − 1)2 = 2n. Then |M | | 2n, and 
D is isomorphic to a subgroup of a semidihedral group of order 2n+1. Since ψ does not 
restrict irreducibly to Q, we know that Q �= CQ(C).

Now CM is a self centralizing normal cyclic subgroup of G. There exists a linear 
character λ ∈ Irr(CM) such that IndG

CM (λ) = ψ. Since D acts non-trivially on M , 
CG(R) is not contained in CG(M). By Lemma 5.1, G/ CG(RM) is a cyclic 2-group. It 
follows that CG(M) ⊆ CG(R). Hence, the restriction of ψ to PQ is irreducible. It follows 
that R = 1.

Since Q is a 2-group, and Q/ CQ(C) acts faithfully on a group of order p, it follows 
that |Q/ CQ(C)| = 2. Consider the homomorphism φ : G → Aut(M), such that, for each 
g ∈ G and m ∈ M , φ(g)(m) = mg−1 . Since M is a normal p′-subgroup of G, Aut(M)
is canonically isomorphic to (Z/|M |Z)×, and the image of φ corresponds exactly to the 
cyclic subgroup of (Z/|M |Z)× generated by the class of |k|. If x ∈ Q, then x2 ∈ D and 
x2 centralizes the two elements of order 4 of M . It follows that x2 ∈ M . This implies 
that the image of φ is cyclic of order 2, and φ(G) = φ(D). It follows from this that 
G = DCG(M), and that D is isomorphic to a subgroup of a semidihedral group of order 
2n+1. This tell us that G is a p-basic group of type 4 (Definition 4.7). This contradiction 
completes the proof of the theorem. �

Combining this theorem with Theorem 3.5 we obtain the following corollary.

Corollary 5.5. Let p be a prime, let K be a finite extension of Qp, and assume all char-
acters take values in some algebraic closure K of K. Let q be a prime with q �= p. Then 
there exists an algorithm that, given any finite group G and any χ ∈ Irr(G), produces a 
field F , a section H of G, and some ψ ∈ IrrF (H) such that all of the following conditions 
are satisfied:

(1) K ⊆ K(χ) ⊆ F ⊆ K;
(2) q � [F : K(χ)];
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(3) H is a p-basic group;
(4) ψ is faithful;
(5) ResHP (ψ) is not irreducible for every proper subgroup P of H;
(6) ResHN (ψ) is F -quasi-homogeneous for every normal subgroup N of H;
(7) [F : K(χ)] is invertible modulo the order of inv ([ψ]F );
(8) The q-part of inv

(
[χ]K(χ)

)
is

inv
(
[χ]K(χ)

)
q

= a inv ([ψ]F ) ,

where a ∈ Z is any such that a[F : K(χ)] ≡ 1 modulo the order of inv ([ψ]F ).

Proof. The algorithm is the same as that of Theorem 3.5. By Theorem 5.4, the section 
H it produces is a p-basic group. Hence the corollary holds. �
6. Roots of unity and uniformizers

In this section, we set up notation for the relevant roots of unity in local fields, and 
we establish the existence of suitable uniformizers for our purposes.

Definition 6.1. Let p be a prime, and let t ∈ Z be relatively prime to p. Then there exists 
a unique p′-th root of unity ρ ∈ Qp such that ρ ≡ t (mod pZp). When p is clear from 
the context, we denote εt = ρ.

The facts about Qp used in the above definition are well known and can be found, for 
example, in Serre’s book [9, II §4 Proposition 8]. We note that εt depends only on the 
class of t modulo p, and that if t, s ∈ Z are both relatively prime to p then εts = εtεs.

Lemma 6.2. Let p be a prime, let F and K be finite extensions of Qp, with K ⊆ F , let 
e′ be the ramification index of F/K and let e be the ramification index of K/Qp, let vF
be the valuation on F , and let ζp ∈ F be a primitive p-th root of 1. Then Qp (ζp) /Qp is 
totally ramified of degree p − 1, and

vF (ζp − 1) = ee′

p− 1 .

Proof. We know, for example, from [9, IV §4 Proposition 17] that ζp−1 is a uniformizer 
for Qp (ζp), and Qp (ζp) /Qp is totally ramified of degree p − 1. It follows for example 
from Corollary b in Section 17.7 of [5] that the ramification indices are multiplicative, 
so that, in particular, ee′ is the ramification index of F/Qp, and ee′

p−1 the ramification 
index of F/Qp (ζp). Hence the lemma holds. �
Lemma 6.3. Let p be a prime, let F be a finite extension of Qp, let vF be the valuation 
on F , let ζp ∈ F be a primitive p-th root of 1, and we set π0 = ζp − 1. For each 
σ ∈ Gal (F/Qp), we set λ (σ) = εt where t ∈ Z is such that σ (ζp) = ζtp.
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Then, vF (π0) > 0,

λ : Gal (F/Qp) → Qp

is a well defined linear character, and for all σ ∈ Gal (F/Qp),

vF (σ (π0) − λ (σ)π0) > vF (π0) .

Proof. It follows from Lemma 6.2 that vF (π0) > 0. For each σ ∈ Gal (F/Qp) there 
exists some t ∈ Z such that σ (ζp) = ζtp, and this t is relatively prime to p and uniquely 
defined modulo p. Hence, λ is well defined, and it follows that λ is a linear character.

Let σ ∈ Gal (F/Qp). There exists some t ∈ Z such that σ (ζp) = ζtp and t > 0. Then 
λ(σ) = εt. It follows, using the binomial expansion of σ (1 + π0) = (1 + π0)t, that

vF (σ (π0) − λ(σ)π0) = vF (σ (1 + π0) − (1 + εtπ0)) > vF (π0) .

Hence the lemma holds. �
Lemma 6.4. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a primitive 
p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive r-th root 
of 1, and assume that F ⊇ K and F = K (ζp, ζr). Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that σ1(ζr) = ζr. Let s ∈ Z be such that σ1 (ζp) = ζsp, and let m = | C〈σ2〉 (ζr) |. We 
set L to be the fixed field in F of 〈σ2〉. Let vF be the valuation on F .

Then there exists some π ∈ L such that

vF (π) = mvF (ζp − 1) > 0,

and, for all n ∈ Z,

vF (σn
1 (π) − εmn

s π) > vF (π).

Proof. Let G = 〈σ2〉, let C = CG(ζr), and let G = G/C. Set π0 = ζp − 1. Set G1 =
Gal(F/K). Then, by Lemma 6.3, vF (π0) > 0, and there exists a linear character λ of 
G1 such that for all σ ∈ G1, there exists some t ∈ Z such that σ (ζp) = ζtp, and for any 
such t we have λ(σ) = εt, and

vF (σ (π0) − λ(σ)π0) > vF (π0) .

The restriction of λ to C is faithful. Note that the product of all the values of λ on C is 
exactly (−1)m+1. We set

π1 =
∏

σ (π0) .

σ∈C
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Now vF (π1) = m vF (ζp − 1) > 0, and, for all σ ∈ G1,

vF
(
σ (π1) − (−1)m+1λ (σm)πm

0
)
> vF (π1) .

Now from the case σ = 1, we obtain

vF
(
λ (σm)π1 − (−1)m+1λ (σm)πm

0
)
> vF (π1) .

Combining this with the previous inequality, we obtain that, for all σ ∈ G1,

vF (σ (π1) − λ (σm)π1) > vF (π1) .

Notice that G acts on Qp (ζr) as the Galois group of the extension Qp (ζr) /Qp (ζr)∩L. 
Since r is prime to p, the extension is unramified. Applying the Normal Basis Theorem to 
the corresponding extension of residue fields, it follows that there exists some p′-th root 
of unity ω ∈ Qp (ζr), such that its projection into the residue field of Qp (ζr) generates 
a normal basis for the entension of residue fields of Qp (ζr) /Qp (ζr) ∩ L.

Now both π1 and ω are in the fixed field of C in F . We let

π =
∑

σ∈G

σ (π1ω) ,

so that π is the trace under G of π1ω. In particular π ∈ L.
Notice that C is contained in the kernel of the restriction of the linear character λm

to G, so that we may define μ as the linear character of G corresponding to λm. With 
this notation, we rewrite some special cases of one of our earlier inequalities as, for all 
σ ∈ G,

vF (σ (π1ω) − μ(σ)σ(ω)π1) > vF (π1) .

Set

π′ = π1
∑

σ∈G

μ(σ)σ(ω).

It follows from the above inequalities that

vF (π − π′) > vF (π1) .

Since the values of μ are roots of unity in Qp, the choice of ω implies that π′/π1 projects 
to a non-zero element of the residue field of Qp (ζr). It follows that vF (π) = vF (π′) =
vF (π1). In particular, vF (π) = m vF (ζp − 1) > 0.

By one of our earlier inequalities, we know that for all n ∈ Z,

vF (σn
1 (π1) − εmn

s π1) > vF (π) .
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Note that, by hypothesis, σ1 fixes ω and all its Galois conjugates. It follows that

vF (σn
1 (π) − εmn

s π) > vF (π).

Hence, the lemma holds. �
Lemma 6.5. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a primitive 
p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive r-th root 
of 1, and assume that F ⊇ K and F = K (ζp, ζr). Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that

〈σ1〉 × 〈σ2〉 = Gal(F/K),

C〈σ1〉 (ζp) = 1 and σ2(ζp) = ζp. For i ∈ {1, 2}, we set di = |〈σi〉|. Let s ∈ Z be such that 
σ1 (ζp) = ζsp. We set L to be the fixed field in F of 〈σ2〉. Let vF be the valuation on F .

Then L/K is a finite Galois extension of degree d1 with cyclic Galois group 〈τ〉 =
Gal(L/K), where τ is the restriction to L of σ1. Furthermore, there exists some π ∈ L

such that

vF (π) = vF (ζp − 1) > 0,

and, for all n ∈ Z,

vF (τn(π) − εnsπ) > vF (π).

In addition, εs is a primitive d1-th root of unity, and L = K(π).

Proof. It follows from elementary Galois theory, that L/K is a finite Galois extension 
with cyclic Galois group 〈τ〉 = Gal(L/K), where τ is the restriction to L of σ1, and that 
[L : K] = d1. Since C〈σ1〉 (ζp) = 1, the order of s modulo p is d1. We set π = ζp − 1. 
Then π ∈ L, and by Lemma 6.3, we know that vF (π) > 0 and that, for all n ∈ Z,

vF (τn(π) − εnsπ) > vF (π).

Now if τn(π) = π, we know that vF (1 − εns ) > 0, and this implies that n is a multiple of 
d1. Hence K(π) = L, and the lemma follows. �
Lemma 6.6. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a primitive 
p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive r-th root 
of 1, and assume that F ⊇ K and F = K (ζp, ζr). Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that

〈σ1〉 × 〈σ2〉 = Gal(F/K),
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C〈σ1〉 (ζp) = 1 and σ2(ζp) = ζp. For i ∈ {1, 2}, we set di = |〈σi〉|. Let s ∈ Z be such that 
σ1 (ζp) = ζsp, and let m = | C〈σ1〉 (ζr) |. Suppose that β ∈ Z is such that σβ

1 σ2 (ζr) = ζr. 
We set L to be the fixed field in F of 〈σ1〉. Let vF be the valuation on F .

Then L/K is a finite Galois extension of degree d2 with cyclic Galois group 〈τ〉 =
Gal(L/K), where τ is the restriction to L of σ2. Furthermore, there exists some π ∈ L

such that

vF (π) = mvF (ζp − 1) > 0,

and, for all n ∈ Z,

vF
(
τn(π) − εβmn

s π
)
> vF (π).

In addition, εβms is a primitive d2-th root of unity, and L = K(π).

Proof. It follows from elementary Galois theory, that L/K is a finite Galois extension 
with cyclic Galois group 〈τ〉 = Gal(L/K), where τ is the restriction to L of σ2, and that 
[L : K] = d2. We apply Lemma 6.4, with σβ

1 σ2 and σ1 in the place of σ1 and σ2 in the 
lemma. This tells us that there exists some π ∈ L such that

vF (π) = mvF (ζp − 1) > 0,

and, for all n ∈ Z,

vF
(
τn(π) − εβmn

s π
)
> vF (π).

Since C〈σ1〉 (ζp) = 1, the order of εs is d1. The order of the restriction to Gal(K (ζr) /K)
of σβ

1 is d1/(d1, mβ). Since σ2(ζp) = ζp, it follows that d2 = d1/(d1, mβ). Hence, the 
order of εmβ

s is d2. Now if τn(π) = π, we know that vF
(
1 − εβmn

s

)
> 0, and this implies 

that n is a multiple of d2. Hence K(π) = L, and the lemma follows. �
Lemma 6.7. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a primitive 
p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive r-th root 
of 1, and assume that F ⊇ K and F = K (ζp, ζr). Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that

〈σ1〉 × 〈σ2〉 = Gal(F/K),

σ1 (ζr) = ζr, and let C〈σ2〉 (ζr) = 1. For i ∈ {1, 2}, we set di = |〈σi〉|. Let s ∈ Z be such 
that σ1 (ζp) = ζsp. We set L to be the fixed field in F of 〈σ2〉. Let vF be the valuation on 
F .

Then L/K is a finite Galois extension of degree d1 with cyclic Galois group 〈τ〉 =
Gal(L/K), where τ is the restriction to L of σ1. Furthermore, there exists some π ∈ L

such that
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vF (π) = vF (ζp − 1) > 0,

and, for all n ∈ Z,

vF (τn(π) − εnsπ) > vF (π).

In addition, εs is a primitive d1-th root of unity, and L = K(π).

Proof. It follows from elementary Galois theory, that L/K is a finite Galois extension 
with cyclic Galois group 〈τ〉 = Gal(L/K), where τ is the restriction to L of σ1, and that 
[L : K] = d1. Since C〈σ1〉 (ζp) = 1, the order of s modulo p is d1. We apply Lemma 6.4
and it tells us that there exists some π ∈ L such that

vF (π) = vF (ζp − 1) > 0,

and, for all n ∈ Z,

vF (τn(π) − εnsπ) > vF (π).

Now if τn(π) = π, we know that vF (1 − εns ) > 0, and this implies that n is a multiple of 
d1. Hence K(π) = L, and the lemma follows. �
7. Some cross products

In this section, we study certain cross products that will be useful for our calculations, 
with particular emphasis on their invariants.

Theorem 7.1. Let p be a prime, and let F and K be finite extensions of Qp. Assume that 
the extension F/K is unramified, that Gal(F/K) is generated by σ, and that α ∈ K is 
a p′-th root of unity. Then the crossed product (F, σ, α) is isomorphic to a full matrix 
algebra over K.

Proof. Since α is a root of unity, we know that vK(α) = 0. Hence, the theorem follows 
immediately from Corollary 2.5. �
Lemma 7.2. Let p be a prime, let F , L, K be finite extensions of Qp, with F ⊇ L ⊇ K. 
Let k be the residue field of K. Let vF be the valuation on F , and let e′ be the ramification 
index of F/K. Assume that L/K is a Galois extension with cyclic Galois group of order 
d generated by τ , and that d | p − 1. Let ε ∈ Qp be a primitive d-th root of unity. Let 
π ∈ L and assume that vF (π) > 0, and that, for all n ∈ Z, we have

vF (τn(π) − εnπ) > vF (π).
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Suppose that α ∈ K is such that α(|k|−1)/d = ε−1. Let A be the crossed product (L, τ, α). 
Then A is a central simple algebra over K and its invariant is

inv(A) = vF (π)
e′

+ Z ∈ Q/Z.

Proof. Set G = Gal(L/K). We view L as a subfield of A, and K as the center of A. We 
let u ∈ A be such that ud = α, and, for all a ∈ L, we have au = aτ , where by convention 
we have aτ = τ(a). We know that A is generated by L and u, and that dimK(A) = d2.

〈u〉 is a finite group of order dividing d(|k| − 1), and, in particular, of order relatively 
prime to p. Let K(u) be the subalgebra of A generated by K and u. Since ud ∈ K, it 
is clear that dimK(K(u)) ≤ d. By Maschke’s Theorem, K(u) is a direct sum of fields 
that are isomorphic to field extensions of K by (|k| − 1)-th roots of ε−1. Let K1 be any 
field extension of K by a (|k| − 1)-th root of ε−1. Let k1 be the residue field of K1, and 
let δ be the projection in k1 of a (|k| − 1)-th root of ε−1 in K1. Now δ|k| = δε′, where 
ε′ ∈ k is the projection in k of ε−1 and is a primitive d-th root of unity. It follows that 
[k1 : k] = d. This implies that [K1 : K] = d and K1/K is unramified. It follows that 
K(u) is a field extension of K, that [K(u) : K] = d, and that K(u)/K is unramified.

Since ε is a primitive d-th root of unity in K, there exists a unique faithful character 
μ ∈ Irr(G) with values in K such that μ(τ) = ε−1. It follows from our hypotheses that, 
for g ∈ G, we have

vF (μ(g)πg − π) > vF (π).

We set

β :=
∑
g∈G

μ(g)πg.

Hence

vF (β − |G|π) > vF (π).

Since p � |G|, it follows that vF (β) = vF (π), and, in particular, β �= 0. Note that β ∈ L

and therefore β is invertible in A. Now, it follows from the definition of β that

βu =
∑
g∈G

μ(g)πgτ = εβ.

It then follows that

(
u−1)β = εu−1,

and, therefore, uβ = ε−1u = u|k| using that ε−1 = u|k|−1.
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Since |k| ≡ 1 (mod d), d divides (|k|d − 1)/(|k| − 1). It follows that the order of u
divides |k|d − 1, so that βd commutes with u. As β commutes with every element of L, 
it then follows that βd ∈ K. Let φ ∈ Gal(K(u)/K) be the Frobenius automorphism. 
Then A is isomorphic to the crossed product (K(u), φ, βd). Since K(u) is an unramified 
extension of K of degree d, by Corollary 2.5, it follows that A is a central simple algebra 
over K whose invariant is

inv(A) =
vK

(
βd

)
d

+ Z ∈ Q/Z.

Since the ramification index of F/K is e′, we have

vK
(
βd

)
d

=
vF

(
βd

)
e′d

= vF (π)
e′

,

because vF (β) = vF (π), as noted above. The lemma then follows. �
Theorem 7.3. Let p be a prime, let F , L, K be finite extensions of Qp, with F ⊇ L ⊇ K. 
Let k be the residue field of K. Let vF be the valuation on F , and let e′ be the ramification 
index of F/K. Assume that L/K is a Galois extension with cyclic Galois group of order 
d generated by τ , and that d | p − 1. Let ε ∈ Qp be a primitive d-th root of unity. Let 
π ∈ L and assume that vF (π) > 0, and that, for all n ∈ Z, we have

vF (τn(π) − εnπ) > vF (π).

Suppose that α ∈ K is a p′-th root of unity in K. Let A be the crossed product (L, τ, α).
Then there exists some integer a such that α(|k|−1)/d = εa, and, for any such a, we 

have that A is a central simple algebra over K and

inv(A) = −avF (π)
e′

+ Z ∈ Q/Z.

Proof. Note that d | |k| −1. Since ε is a primitive d-th root of unity and α is a (|k| −1)-th 
root of unity, we know that a exists. A is a central simple algebra over K.

Note that K contains a primitive (|k| − 1)-th root of unity, and that its (|k| − 1)/d-th 
power is a primitive d-th root of unity. Taking an appropriate power of it, it follows that 
there exists β ∈ K a primitive (|k| − 1)-th root of unity such that β(|k|−1)/d = ε−1. By 
Lemma 7.2, it follows that the cross product (L, τ, β) is a central simple division algebra 
over K and that its invariant is vF (π)

e′ + Z ∈ Q/Z.
Since α is a (|k| − 1)-th root of unity, there exists some integer b such that α = βb. It 

follows that α(|k|−1)/d = ε−b
r , so that

−b ≡ a (mod d).
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Furthermore, A = (L, τ, βb) is a central simple algebra over K and its invariant is 
bvF (π)

e′ +Z ∈ Q/Z. Since the denominator of vF (π)
e′ in lowest terms divides d, the invariant 

of A is also −avF (π)
e′ + Z ∈ Q/Z, as desired. �

Recall that Definition 6.1 gives special meaning to εs when p � s. We continue to use 
this notation in what follows.

Theorem 7.4. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a 
primitive p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive 
r-th root of 1, and assume that F ⊇ K and F = K (ζp, ζr). Let e be the ramification 
index of K/Qp, and let k be the residue field of K. Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that

〈σ1〉 × 〈σ2〉 = Gal(F/K),

and C〈σ1〉 (ζp) = 1, and σ2 (ζp) = ζp. Let s ∈ Z be such that σ1 (ζp) = ζsp. We set L
to be the fixed field in F of 〈σ2〉, and let τ ∈ Gal(L/K) be the restriction of σ1 to L. 
Set d1 = |〈σ1〉|. Suppose that α ∈ K is a p′-th root of unity in K. Let A be the crossed 
product (L, τ, α).

Then there exists some integer a such that α(|k|−1)/d1 = εas , and, for any such a, we 
have that A is a central simple algebra over K of dimension d2

1 and

inv(A) = −ae

p− 1 + Z ∈ Q/Z.

Proof. Let vF be the valuation on F , and let e′ be the ramification index of F/K. 
By Lemma 6.5, L/K is a finite Galois extension of degree d1 with cyclic Galois group 
〈τ〉 = Gal(L/K), and, there exists some π ∈ L such that

vF (π) = vF (ζp − 1) > 0,

and, for all n ∈ Z,

vF (τn(π) − εnsπ) > vF (π).

In addition, εs is a primitive [L : K]-th root of unity, and L = K(π). It follows that by 
Theorem 7.3 there exists some integer a such that α(|k|−1)/d1 = εas , and, for any such a, 
we have that A is a central simple algebra over K and

inv(A) = −avF (π)
e′

+ Z = −avF (ζp − 1)
e′

+ Z ∈ Q/Z.

By Lemma 6.2, vF (ζp − 1) = ee′ . Hence the theorem holds. �
p−1



154 A. Turull / Journal of Algebra 557 (2020) 129–164
Of particular interest is the case when r = 1 in the previous theorem.

Corollary 7.5. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a 
primitive p-th root of 1, and assume that F ⊇ K and F = K (ζp). Let e be the ramification 
index of K/Qp, and let k be the residue field of K. Suppose that σ ∈ Gal(F/K) is such 
that 〈σ〉 = Gal(F/K). Let s ∈ Z be such that σ (ζp) = ζsp. Set d = |〈σ〉|. Suppose that 
α ∈ K is a p′-th root of unity in K. Let A be the crossed product (F, σ, α).

Then there exists some integer a such that α(|k|−1)/d = εas , and, for any such a, we 
have that A is a central simple algebra over K and

inv(A) = −ae

p− 1 + Z ∈ Q/Z.

Proof. This follows immediately from Theorem 7.4 by setting r = 1, ζr = 1, and L =
F . �
Theorem 7.6. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a 
primitive p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive 
r-th root of 1, and assume that F ⊇ K and F = K (ζp, ζr). Let e be the ramification 
index of K/Qp, and let k be the residue field of K. Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that

〈σ1〉 × 〈σ2〉 = Gal(F/K),

C〈σ1〉 (ζp) = 1, and σ2 (ζp) = ζp. Let s ∈ Z be such that σ1 (ζp) = ζsp, and let m =
| C〈σ1〉 (ζr) |. Suppose that β ∈ Z is such that σβ

1 σ2 (ζr) = ζr. We set L to be the fixed 
field in F of 〈σ1〉, and let τ ∈ Gal(L/K) be the restriction of σ2 to L. Set d2 = |〈σ2〉|. 
Suppose that α ∈ K is a p′-th root of unity in K. Let A be the crossed product (L, τ, α).

Then there exists some integer a such that α(|k|−1)/d2 = εβma
s , and, for any such a, 

we have that A is a central simple algebra over K of dimension d2
2 and

inv(A) = −aem

p− 1 + Z ∈ Q/Z.

Proof. Let vF be the valuation on F , and let e′ be the ramification index of F/K. 
By Lemma 6.6, L/K is a finite Galois extension of degree d2 with cyclic Galois group 
〈τ〉 = Gal(L/K), and, there exists some π ∈ L such that

vF (π) = m vF (ζp − 1) > 0,

and, for all n ∈ Z,

vF
(
τn(π) − εβmn

s π
)
> vF (π).
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In addition, εβmn
s is a primitive d2-th root of unity, and L = K(π). It follows that by 

Theorem 7.3 there exists some integer a such that α(|k|−1)/d2 = εβma
s , and, for any such 

a, we have that A is a central simple algebra of dimension d2
2 over K and

inv(A) = −a vF (π)
e′

+ Z = −amvF (ζp − 1)
e′

+ Z ∈ Q/Z.

By Lemma 6.2, vF (ζp − 1) = ee′

p−1 . Hence the theorem holds. �
Theorem 7.7. Let p be a prime, let F , K be finite extensions of Qp, let ζp ∈ F be a 
primitive p-th root of 1, let r be a positive integer prime to p, let ζr ∈ F be a primitive 
r-th root of 1, and assume that F ⊇ K and F = K (ζp, ζr). Let e be the ramification 
index of K/Qp, and let k be the residue field of K. Suppose that σ1, σ2 ∈ Gal(F/K) are 
such that

〈σ1〉 × 〈σ2〉 = Gal(F/K),

σ1 (ζr) = ζr and C〈σ2〉 (ζr) = 1. Let s ∈ Z be such that σ1 (ζp) = ζsp. We set L to be 
the fixed field in F of 〈σ2〉, and let τ ∈ Gal(L/K) be the restriction of σ1 to L. Set 
d1 = |〈σ1〉|. Suppose that α ∈ K is a p′-th root of unity in K. Let A be the crossed 
product (L, τ, α).

Then there exists some integer a such that α(|k|−1)/d1 = εas , and, for any such a, we 
have that A is a central simple algebra over K of dimension d2

1 and

inv(A) = −ae

p− 1 + Z ∈ Q/Z.

Proof. Let vF be the valuation on F , and let e′ be the ramification index of F/K. 
By Lemma 6.7, L/K is a finite Galois extension of degree d1 with cyclic Galois group 
〈τ〉 = Gal(L/K), and, there exists some π ∈ L such that

vF (π) = vF (ζp − 1) > 0,

and, for all n ∈ Z,

vF (τn(π) − εnsπ) > vF (π).

In addition, εs is a primitive d1-th root of unity, and L = K(π). It follows that by 
Theorem 7.3 there exists some integer a such that α(|k|−1)/d1 = εas , and, for any such a, 
we have that A is a central simple algebra of dimension d2

1 over K and

inv(A) = −a vF (π)
e′

+ Z = −a vF (ζp − 1)
e′

+ Z ∈ Q/Z.

By Lemma 6.2, vF (ζp − 1) = ee′ . Hence the theorem holds. �
p−1
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8. The invariants of p-basic groups

In this section, we explicitly calculate the invariants for all the relevant irreducible 
characters of the p-basic groups. These characters include all of the characters of p-basic 
groups that are needed to calculate the invariant of an arbitrary irreducible character of 
any finite group, and many other irreducible characters of the p-basic groups.

While it would be sufficient for our purposes here to assume that all these characters 
are faithful, in view of making applications easier, we relax this condition a little. We use 
the following convention. Let G be a group, H be a subgroup of G, and χ be a character 
of G. We say that χ is faithful for H if the restriction of χ to H is faithful.

Theorem 8.1. Let p be a prime, let K be a finite extension of Qp. Let G be a p-basic 
group of type 0, and let χ ∈ IrrK(G). Then

inv ([χ]K) = 0 + Z ∈ Q/Z.

Proof. By definition, p � |G|. Then, by Theorem 2.7, the Schur index mK(χ) = 1, and 
the invariant is as described. �
Theorem 8.2. Let p be a prime, and let K be a finite extension of Qp. Let G be a p-basic 
group of type 1, assume the notation of Definition 4.2, and let χ ∈ IrrK(G). Assume that 
the restriction of χ to P is faithful and K-quasi-homogeneous. Let e be the ramification 
index of K/Qp, and let k be the residue field of K. Let 1 �= u ∈ P , and let x ∈ G be 
a p′-element such that xP is a generator for G/P . Let r ∈ Z be such that ux = ur, let 
d = χ(1), and let α = χ 

(
x|k|−1) /d.

Then, there exists some a ∈ Z such that α = εar , and for any such a we have

inv ([χ]K) = ae

p− 1 + Z ∈ Q/Z.

Proof. G = P 〈x〉, the normal subgroup CG(P ) is abelian, χ is induced from a linear 
character of CG(P ), and d = χ(1) = |G/ CG(P )|. Notice that xd ∈ Z(G), and we set 
β = χ 

(
xd

)
/d. Then β ∈ K is a p′-th root of unity. Since d is the order of r modulo 

p, we know that d | |k| − 1, and α = β(|k|−1)/d. Let A be the simple ideal of the group 
algebra KG associated with χ. Then dimK(A) = d2. For each a ∈ KG, we denote by a
its projection in A. A has a central subalgebra isomorphic to K, and we denote it also 
by K. Similarly, if γ ∈ K, we may denote γ also by γ. We set F = KP , the projection 
in A of the group algebra of the normal cyclic subgroup P of G. Since the restriction of 
χ to P is K-quasi-homogeneous, F is a finite field extension of K. F is a field extension 
of K by u, a primitive p-th root of unity. Furthermore xd = β. G acts by conjugation 
on F as Galois automorphisms over K. Furthermore, the kernel of this action is CG(P ), 
and the image of this action is exactly Gal(F/K). In addition, this action provides an 
isomorphism 〈x〉/ C〈x〉(P ) � Gal(F/K).
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We let σ ∈ Gal(F/K) be the action of x on F . (To be precise, we define σ(f) = fx

for all f ∈ F .) We notice that

Gal(F/K) = 〈σ〉,

and that | Gal(F/K)| = d. Now A is the crossed product of (F, σ, β). By Corollary 7.5
and Theorem 2.7 the result follows. �
Corollary 8.3. In the notation of Theorem 8.2, assume furthermore that K is contained 
in an extension of Qp by a primitive p-th root of unity. Then, there exists some integer 
a such that α = εar , and for any such a we have

inv ([χ]K) = a

d
+ Z ∈ Q/Z.

Proof. By Lemma 6.2, F/Qp is a totally ramified extension of degree p − 1. Therefore, 
the ramification index e of K/Qp is exactly p−1

d , so the corollary follows immediately 
from Theorem 8.2. �
Lemma 8.4. Let p be an odd prime, and let G be a p-basic group of type 2, assume the 
notation of Definition 4.5, and C = CQ(PR). Let m = | CX(R)/X ∩ C|, x ∈ X be a 
generator for X, and let 1 �= u ∈ P . Then there exist s ∈ Z such that ux = us, there 
exists y ∈ CQ(P ) such that yC is a generator for the cyclic group CQ(P )/C, and there 
exists β ∈ Z such that xβy ∈ CQ(R).

Proof. The group CQ(P )/C is cyclic because it is isomorphic to a subgroup of the 
automorphism group of R, and we pick some y ∈ CQ(P ) such that yC is a generator for 
CQ(P )/C. Since G = X CG(R), there exists β ∈ Z such that xβy ∈ CQ(R). �

Recall the meaning of faithful for described in the second paragraph of this section.

Theorem 8.5. Let p be an odd prime, and let K be a finite extension of Qp. Let G be a 
p-basic group of type 2, assume the notation of Lemma 8.4. Let χ ∈ IrrK(G) be faithful 
for PR. Assume that the restriction of χ to PRC is K-quasi-homogeneous. Let e be the 
ramification index of K/Qp, and let k be the residue field of K. Let eχ be the central 
idempotent associated with χ. We set

α1 = χ
(
x|k|−1

)
/χ(1).

Then, eχKR is a field, there exists some p′-root of unity γ ∈ eχKR such that yγ
commutes with x, and we set

α2 = χ
(
(yγ)|k|−1

)
/χ(1).
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Furthermore, there exists some integer a1 such that α1 = εa1
s , there exists some integer 

a2 such that α2 = εβma2
s , and for any such a1 and a2 we have

inv ([χ]K) = (a1 + ma2)e
p− 1 + Z ∈ Q/Z.

Proof. Notice that χ is induced from a linear character of PRC, and that χ(1) = |Q/C|. 
Let A = eχKG be the simple ideal of the group algebra KG associated with χ. Then 
dimK(A) = χ(1)2. For each a ∈ KG, we denote a its projection eχa in A. A has a central 
subalgebra eχK isomorphic to K, and we denote it also by K. Similarly, if γ ∈ K, we 
may denote γ also by γ. We set F = KPRC, the projection in A of the group algebra 
of the normal cyclic subgroup PRC of G. Since the restriction of χ to PRC is K-quasi-
homogeneous, F is a finite field extension of K. G acts by conjugation on F as Galois 
automorphisms over K. Furthermore, the kernel of this action is PRC, and the image 
of this action is exactly Gal(F/K). In addition, this action provides an isomorphism 
Q/C � Gal(F/K).

We let σ1, σ2 ∈ Gal(F/K) be the action respectively of x and of y on F . (To be 
precise, we define σ1(f) = fx for all f ∈ F , and similarly for σ2.) We notice that

Gal(F/K) = 〈σ1〉 × 〈σ2〉.

We set di = |〈σi〉| for i ∈ {1, 2}. We have χ(1) = |Q/C| = d1d2. Let z = [y, x]. Since 
Q/C is abelian, z ∈ C and z is a p′-th root of unity in F . For i ∈ {1, 2}, we let Li be 
the fixed field of 〈σ3−i〉 in F , and we let τi ∈ Gal(Li/K) be the restriction to Li of σi.

Set U = eχKR. Therefore U = KR ⊆ F . Then U is the extension field of K by 
R, so that U is an unramified extension of K contained in F . It follows that U is K
extended by a primitive r-th root of unity. We let σ3, σ4 ∈ Gal(U/K) be the restrictions 
of respectively σ1 and σ2 to U . From the definition of p-basic group of type 2, it follows 
that 〈σ3〉 = Gal(U/K), and, in particular σ4 ∈ 〈σ3〉. Again from the definition of p-basic 
group of type 2, it follows that C ⊆ U . Furthermore σ4 has order d2.

Let L be the fixed field in U of 〈σ4〉. The extension U/L is unramified. Now yd2 is a 
p′-th root of unity in L. It follows that yd2 is the norm under 〈σ4〉 of some p′-th root of 
unity in U . Therefore, there exists some z1 ∈ U , a p′-th root of unity, such that, setting 
y1 = yz1 ∈ A×, we have that yd2

1 = 1. Notice that, for all f ∈ F , we have fy1 = σ2(f). 
Now yx1 = y1z2 where z2 ∈ U is a p′-th root of unity. Since yd2

1 = 1, it follows that the 
norm under 〈σ4〉 of z2 is also 1. This implies that the norm under 〈σ3〉 of z2 is also 1. It 
then follows that there exists a p′-th root of unity z3 ∈ U such that (y1z3)x = y1z3. It 
follows that z1z3 is a p′-th root of unity in U such that x centralizes yz1z3. Hence a γ
as described in the theorem exists. We set γ to be any one of them.

We set δ1 = xd1 . Now δ1 ∈ C ⊆ U . Since δ1 is fixed by σ1, it follows that δ1 ∈ K. Note 
that α1 = δ

(|k|−1)/d1
1 . We let B be the subalgebra of A generated by L1 and x. Then 

B is isomorphic to the cross product (L1, τ1, δ1). By Theorem 7.4, B is a central simple 
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algebra over K, with dimK(B) = d2
1, there exists some a1 ∈ Z such that δ(|k|−1)/d1

1 = εa1
s , 

and, for any such a1,

inv(B) = −a1e

p− 1 + Z ∈ Q/Z.

We set δ2 = (yγ)d2 . Now δ2 ∈ F is fixed both by x and by σ2, so that δ2 is a p′-th 
root of unity in K. Note that α2 = δ

(|k|−1)/d2
2 . Let D be the subalgebra of A generated 

by L2 and yγ. Now, D is isomorphic to the crossed product (L2, τ2, δ2). By Theorem 7.6, 
D is a central simple algebra over K, with dimK(D) = d2

2, there exists some a2 ∈ Z such 
that δ(|k|−1)/d2

2 = εβma2
s , and, for any such a,

inv(D) = −a2em

p− 1 + Z ∈ Q/Z.

Since B and D centralize each other, it follows that

inv(A) = −a1e

p− 1 + −a2em

p− 1 + Z ∈ Q/Z.

Theorem 2.7 then completes the proof of the theorem. �
Lemma 8.6. Let p be a prime, and let K be a finite extension of Qp. Let G be a finite 
group, and let R be a normal subgroup of G, with |R| = r where r is a prime r �= p. 
Assume Y is a subgroup of G such that G = Y CG(R). Let χ ∈ IrrK(G), and assume that 
the restriction of χ to R is faithful and K-quasi-homogeneous. Let k be the residue field 
of K. Let 1 �= v ∈ R. Then there exists some y ∈ Y such that vy = v|k|. Furthermore, 
for any such y, yCG(R) is a generator for G/ CG(R).

Proof. Let e = eχ be the central idempotent associated with χ. Since the restriction of 
χ is faithful and K-quasi-homogeneous, it follows that eKR is a field extension of eK
by a primitive r-th root of unity. Therefore eKR is an unramified extension of eK. The 
Galois group Gal(eKR/eK) is cyclic and generated by its unique element σ such that, 
for all p′-th roots of unity ρ in eKR, we have σ(ρ) = ρ|k|. Now G acts by conjugation on 
eKR by Galois automorphisms over eK. So we get a natural homomorphism from G to 
Gal(eKR/eK). Since the values of χ are all in K, we know that this homomorphism is 
surjective. Its kernel is CG(R). Since G = Y CG(R), it follows that the lemma holds. �
Theorem 8.7. Let p be an odd prime, and let K be a finite extension of Qp. Let G be 
a p-basic group of type 3, assume the notation of Definition 4.6. Let χ ∈ IrrK(G) be 
faithful for PR. Assume that the restriction of χ to PRC is K-quasi-homogeneous. Let 
e be the ramification index of K/Qp, and let k be the residue field of K. Let 1 �= u ∈ P , 
let 1 �= v ∈ R, let y ∈ Y be such that vy = v|k|, let x ∈ CQ(R) be such that 〈x, y, C〉 = Q, 
let s ∈ Z be such that ux = us, and let z = [x, y]. We set
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α = χ
(
x|k|−1z−1

)
/χ(1).

Then, there exists some integer a such that α = εas , and for any such a we have

inv ([χ]K) = ae

p− 1 + Z ∈ Q/Z.

Proof. For completeness, we first check that the notation can indeed be set up as de-
scribed in the theorem. It follows from Lemma 8.6 and our hypotheses that y can be 
chosen as described, and that yCQ(R) is a generator of Q/ CQ(R). Now CQ(R)/C acts 
faithfully on P so that it is a cyclic group, and so the x can be chosen as described. The 
existence of s, z, and α requires no comment.

Notice that χ is induced from a linear character of PRC, and that χ(1) = |Q/C|. Let A
be the simple ideal of the group algebra KG associated with χ. Then dimK(A) = χ(1)2. 
For each a ∈ KG, we denote a its projection in A. A has a central subalgebra isomorphic 
to K, and we denote it also by K. For γ ∈ K, we may also denote γ by γ. We set 
F = KPRC, the projection in A of the group algebra of the normal cyclic subgroup 
PRC of G. Since the restriction of χ to PRC is K-quasi-homogeneous, F is a finite 
field extension of K. G acts by conjugation on F as Galois automorphisms over K. 
Furthermore, the kernel of this action is PRC, and the image of this action is exactly 
Gal(F/K). In addition, this action provides an isomorphism Q/C � Gal(F/K).

We let σ1, σ2 ∈ Gal(F/K) be the action respectively of x and of y on F . (To be 
precise, we define σ1(f) = fx for all f ∈ F , and similarly for σ2.) We notice that

Gal(F/K) = 〈σ1〉 × 〈σ2〉.

We set di = |〈σi〉| for i ∈ {1, 2}. We have χ(1) = |Q/C| = d1d2. Since Q/C is abelian, 
z ∈ C and z is a p′-th root of unity in F .

Let U be the extension of K by R, so that U is an unramified extension of K contained 
in F . Then U is K extended by a primitive r-th root of unity. We let σ3, σ4 ∈ Gal(U/K)
be the restrictions of respectively σ1 and σ2 to U . Since x ∈ CQ(R), σ3 is the identity. It 
follows that 〈σ4〉 = Gal(U/K). From the definition of p-basic group of type 3, we know 
that σ4 has order d2. From the definition of p-basic group of type 3, we also know that 
C ⊆ U . In particular, yd2 ∈ C is a p′-th root of unity in K.

Now yd2 = (yx)d2 , and since yx = yz−1, this implies that the 〈σ4〉-norm of z−1 is 1. 
Hence, there exists z1 ∈ U such that z1 is a p′-th root of unity and z−1 = z−1

1 zy1 = z
|k|−1
1 . 

We set x1 = xz1. Then xy
1 = xzzy1 = xz1 = x1. We notice that x1 centralizes U and y.

We let D be the subalgebra of A generated by U and y. D is isomorphic to the crossed 
product 

(
U, σ4, y

d2
)
, and dimK(D) = d2

2. By Theorem 7.1, since U/K is unramified and 
yd2 is a p′-th root of unity, D is isomorphic to a full matrix algebra over K.

Let L be the fixed field in F of 〈σ2〉. Let B be the subalgebra of A generated by L
and x1. Let τ be the restriction of σ1 to L. Then, for all l ∈ L, we have τ(l) = lx1 , 
and |〈τ〉| = d1. Since y centralizes x1, xd1

1 ∈ K, and xd1
1 is a p′-th root of unity. We 
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set δ = xd1
1 . B is isomorphic to the crossed product (L, τ, δ), and dimK(B) = d2

1. By 
Theorem 7.7, there exists some integer a such that δ(|k|−1)/d1 = εas , and, for any such a, 
we have that B is a central simple algebra over K of dimension d2

1 and

inv(B) = −ae

p− 1 + Z ∈ Q/Z.

Notice that

δ(|k|−1)/d1 = x
|k|−1
1 = χ

(
x|k|−1z−1

)
/χ(1) = α.

Since B and D centralize each other, it follows that

inv(A) = −ae

p− 1 + Z ∈ Q/Z.

Theorem 2.7 then completes the proof of the theorem. �
Theorem 8.8. Let p be a prime with p ≡ 3 (mod 4), and let K be a finite extension 
of Qp. Let G be a p-basic group of type 4, assume the notation of Definition 4.7. Let 
χ ∈ IrrK(G) be faithful for PM . Assume that the restriction of χ to PM is K-quasi-
homogeneous. Let e be the ramification index of K/Qp, and let k be the residue field of 
K. Let Q ∈ Syl2(G), let x ∈ CQ(M) with x /∈ M , and let y ∈ D with y /∈ M , and let 
z = [x, y]. We set

α = χ
(
x|k|−1z−1

)
/χ(1).

Then, if e is odd and α = −1, then

inv ([χ]K) = 1
2 + Z ∈ Q/Z,

and otherwise

inv ([χ]K) = 0 + Z ∈ Q/Z.

Proof. For completeness, we first check that the notation can indeed be set up as de-
scribed in the theorem. Note first that D � G, D ⊆ Q, and PM is a cyclic normal 
subgroup of G. Since p ≡ 3 (mod 4), [G : CG(P )] = 2, so that [Q : D] = 2, G = PQ, 
CQ(M) ∈ Syl2(CG(M)), and [CQ(M) : M ] = 2. Since we also know that [D : M ] = 2, 
it follows x and y can be chosen as described. The existence of z, and α requires no 
comment. We also note that x inverts by conjugation every element of P , and that 
Q = 〈x, y〉M .

Notice that χ is induced from a linear character of PM , and that χ(1) = 4. Let A be 
the simple ideal of the group algebra KG associated with χ. Then dimK(A) = 16. For 
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each a ∈ KG, we denote a its projection in A. A has a central subalgebra isomorphic 
to K, and we denote it also by K. We set F = KPM , the projection in A of the 
group algebra of the normal cyclic subgroup PM of G. Since the restriction of χ to 
PM is K-quasi-homogeneous, F is a finite field extension of K. G acts by conjugation 
on F as Galois automorphisms over K. Furthermore, the kernel of this action is PM , 
and the image of this action is exactly Gal(F/K). In addition, this action provides an 
isomorphism Q/M � Gal(F/K).

We let σ1, σ2 ∈ Gal(F/K) be the action respectively of x and of y on F . We notice 
that

Gal(F/K) = 〈σ1〉 × 〈σ2〉.

We have 2 = |〈σi〉| for i ∈ {1, 2}. Since Q/M is abelian, z ∈ M and z is a p′-th root of 
unity in F .

Let U be the extension of K by M , so that U is an unramified extension of K contained 
in F . Then U is K extended by a primitive 2α-th root of unity, where 2 ≤ α ≤ n. We let 
σ3, σ4 ∈ Gal(U/K) be the restrictions of respectively σ1 and σ2 to U . Since x ∈ CQ(M), 
σ3 is the identity. It follows that 〈σ4〉 = Gal(U/K). From the definition of p-basic group 
of type 4, we know that σ4 has order 2. It follows that |k| is not a square, and that, for 
every p′-th root of unity ρ ∈ U , we have σ4(ρ) = ρ|k|. Now, y2 ∈ M is a p′-th root of 
unity in K.

Now y2 = (yx)2, and since yx = yz−1, this implies that the 〈σ4〉-norm of z−1 is 1. 
Hence, there exists z1 ∈ U such that z1 is a p′-th root of unity and z−1 = z−1

1 zy1 = z
|k|−1
1 . 

We set x1 = xz1. Then xy
1 = xzzy1 = xz1 = x1. We notice that x1 centralizes U and y.

We let D be the subalgebra of A generated by U and y. D is isomorphic to the crossed 
product 

(
U, σ4, y

2), and dimK(D) = 4. By Theorem 7.1, since U/K is unramified and 
y2 is a p′-th root of unity, D is isomorphic to a full matrix algebra over K.

Let L be the fixed field in F of 〈σ2〉. Let B be the subalgebra of A generated by L
and x1. Let τ be the restriction of σ1 to L. Then, for all l ∈ L, we have τ(l) = lx1 , and 
|〈τ〉| = 2. Since y centralizes x1, x2

1 ∈ K, and it is a p′-th root of unity. We set δ = x2
1. B

is isomorphic to the crossed product (L, τ, δ), and dimK(B) = 4. By Theorem 7.7, there 
exists some integer a such that δ(|k|−1)/2 = (−1)a, and, for any such a, we have that B
is a central simple algebra over K of dimension 4 and

inv(B) = −ae

p− 1 + Z ∈ Q/Z.

Notice that

δ(|k|−1)/2 = x
|k|−1
1 = χ

(
x|k|−1z−1

)
/χ(1) = α.

Since B and D centralize each other, it follows that

inv(A) = −ae + Z ∈ Q/Z.

p− 1
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By Lemma 6.2, we know that p − 1 divides the ramification index of F/Qp. Since 
Gal(F/K) is a 2-group, it follows that (p − 1)/2 divides e. Hence inv(A) = Z if e is 
even or α �= −1, and inv(A) = 1

2 + Z otherwise. Theorem 2.7 then completes the proof 
of the theorem. �
9. Calculating the local invariant for an arbitrary character

In this section, we describe how one can find the local invariant for an arbitrary 
irreducible character of a finite group. We let K be a finite extension of either R or Qp

for some prime p. We let G be an arbitrary finite group, and let χ ∈ IrrK(G).
Suppose first that K is a finite extension of R, the field of real numbers. It is well 

know that the local Schur index mK(χ) ∈ {1, 2}, and there exists a formula to calculate 
it. Then we know from Theorem 2.7 that

inv ([χ]K) = 1
mK(χ) + Z ∈ Q/Z.

Suppose next that K is a finite extension of Q2, the field of dyadic numbers. Then we 
know from Theorem 2.7 that the local Schur index mK(χ) ∈ {1, 2} (Yamada’s Theorem), 
and that

inv ([χ]K) = 1
mK(χ) + Z ∈ Q/Z.

We also note that there exist methods to calculate the Schur index mK(χ).
Finally, suppose that K is a finite extension of Qp, the field of p-adic numbers, where 

p is any odd prime. By Yamada’s Theorem (Theorem 2.7) we know that the order of 
inv ([χ]K), which is the local Schur index mK(χ), divides p − 1. Hence to calculate 
inv ([χ]K) it is enough to calculate the q-part inv ([χ]K)q of inv ([χ]K) for all primes 
q | p − 1.

Let us then fix some prime q | p − 1. By Corollary 5.5, there exists an algorithm that 
produces a field F , a section H of G, some ψ ∈ IrrF (H), and some integer a satisfying 
all the conditions of the corollary, and, in particular, such that F is a finite extension of 
K, H is p-basic and the q-part of inv ([χ]K) is

inv ([χ]K)q = a inv ([ψ]F ) .

The conditions given in the corollary also imply that inv ([ψ]F ) is given by a formula in 
Section 8.

Hence, this method calculates the local invariant for an arbitrary character of a finite 
group.
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