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2-cocycle
Rigid algebra

1. Introduction

Leibniz algebras are characterized as algebras whose right multiplication operators are 
derivations; it is a generalization of Lie algebra, while for a Leibniz algebra to be a Lie 
algebra it suffices to add the condition that the operators of right and left multiplications 
alternate. Leibniz algebras have been introduced by Loday in [23] as algebras satisfying 
the (right) Leibniz identity:

[x, [y, z]] = [[x, y], z] − [[x, z], y].

During the last decades the theory of Leibniz algebras has actively been studied. Some 
(co)homological and deformation properties; results on various types of decompositions; 
structure of solvable and nilpotent Leibniz algebras; classifications of some classes of 
graded nilpotent Leibniz algebras were obtained in numerous papers devoted to Leibniz 
algebras, see, for example, [4,7,8,11–13,15,16,18,20,22,24] and references therein.

In fact, many results on Lie algebras have been extended to Leibniz algebras. For 
instance, an analogue of Levi’s theorem for the case of Leibniz algebras asserts that 
Leibniz algebra can be decomposed into a semidirect sum of its solvable radical and a 
semisimple Lie subalgebra [7]. Therefore, the description of finite-dimensional Leibniz 
algebras shifts to the study of solvable Leibniz algebras. Since the method of the recon-
struction of solvable Lie algebras from their nilpotent radicals (see [25]) was extended 
to the Leibniz algebras [10], the main problem of the description of finite-dimensional 
Leibniz algebras consists of the study of nilpotent Leibniz algebras. Numerous works are 
devoted to the description of solvable Lie and Leibniz algebras with a given nilpotent 
radical (see [1,5,6,9,19,26] and references therein).

It is known that any Leibniz algebra law can be considered as a point of an affine 
algebraic variety defined by the polynomial equations coming from the Leibniz identity 
for a given basis. This way provides a description of the difficulties in classification 
problems referring to the classes of nilpotent and solvable Leibniz algebras. The orbits 
under the base change action of the general linear group correspond to the isomorphism 
classes of Leibniz algebras therefore, the classification problems (up to isomorphism) can 
be reduced to the classification of these orbits. An affine algebraic variety is a union of a 
finite number of irreducible components and the Zariski open orbits provide interesting 
classes of Leibniz algebras to be classified. The Leibniz algebras of this class are called 
rigid.

A very powerful tool in studying nilpotent algebras is the characteristic equation, 
which a priori gives the multiplication on one basis element. Recently, in the paper [2] it 
was considered a finite-dimensional solvable Lie algebra rc whose nilpotent radical nc has 
the simplest structure with a given characteristic sequence c = (n1, n2, . . . , nk, 1). Using 
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Hochschild – Serre factorization theorem the authors established that for the algebra rc
low order cohomology groups with coefficients in the adjoint representation are trivial.

In this paper, we study a family of nilpotent Leibniz algebras whose corresponding Lie 
algebra is nc. Further, solvable Leibniz algebras with such nilpotent radicals and (k+1)-
dimensional complementary subspaces to the nilpotent radicals are described. Namely, 
we prove that such solvable Leibniz algebra is unique and centerless. For this Leibniz 
algebra the triviality of the first and the second cohomology groups with coefficients in 
the adjoint representation is established as well.

2. Preliminaries

Throughout the paper, all vector spaces and algebras considered are finite-dimensional 
over the field of complex numbers C. Moreover, in the multiplication table of an algebra 
the omitted products are assumed to be zero.

In this section we give necessary definitions and results on solvable Leibniz algebras 
and its construction with a given nilpotent radical.

Definition 1. An algebra (L, [·, ·]) is called a Leibniz algebra if it satisfies the property

[x, [y, z]] = [[x, y], z] − [[x, z], y] for all x, y ∈ L,

which is called Leibniz identity.

The Leibniz identity is a generalization of the Jacobi identity since under the condition 
of anti-symmetricity of the product “[· , ·]” this identity changes into the Jacobi identity. 
In fact, Leibniz algebras is characterized by the property that any right multiplication 
operator is a derivation.

For a Leibniz algebra L, a subspace generated by squares of its elements I =
span {[x, x] : x ∈ L} is a two-sided ideal, and the quotient GL = L/I is a Lie algebra 
called the corresponding Lie algebra (sometimes also called by liezation) of L.

For a given Leibniz algebra L we can define the following two-sided ideals

Annr(L) = {x ∈ L | [y, x] = 0, for all y ∈ L},

Center(L) = {x ∈ L | [x, y] = [y, x] = 0, for all y ∈ L}

called the right annihilator and the center of L, respectively.
Applying the Leibniz identity we obtain that for any two elements x, y ∈ L of an 

algebra the elements [x, x], [x, y] + [y, x] are in Annr(L).
The notion of a derivation for Leibniz algebras is defined in a usual way and the 

set of all derivations of L (denoted by DerL) forms a Lie algebra with respect to the 
commutator. Moreover, the operator of right multiplication by an element x ∈ L (further 
denoted by Rx) is a derivation, which is called inner derivation.
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Definition 2. A Leibniz algebra L is called complete if Center(L) = 0 and all derivations 
of L are called an inner derivation.

For a Leibniz algebra L we define the lower central and the derived series as follows:

L1 = L, Lk+1 = [Lk, L], k ≥ 1, L[1] = L, L[s+1] = [L[s], L[s]], s ≥ 1,

respectively.

Definition 3. A Leibniz algebra L is called nilpotent (respectively, solvable), if there exists 
n ∈ N (resp. m ∈ N) such that Ln = 0 (respectively, L[m] = 0).

The maximal nilpotent ideal of a Leibniz algebra is called the nilpotent radical of the 
algebra.

Further we shall need the following result from [3]. It is a generalization of the similar 
result for Lie algebras.

Theorem 4. Let L be a finite-dimensional Leibniz algebra over a field of characteristic 
zero. Then L is solvable if and only if L2 is nilpotent algebra.

An analogue of Mubarakzjanov’s methods has been applied for solvable Leibniz alge-
bras which shows the importance of the consideration of nilpotent Leibniz algebras and 
its nil-independent derivations [10].

Definition 5. Let d1, d2, . . . , dn be derivations of a Leibniz algebra L. The derivations 
d1, d2, . . . , dn are said to be nil-independent if α1d1 +α2d2 + . . .+αndn is not nilpotent 
for any scalars α1, α2, . . . , αn ∈ C, which are not all zero.

In [21], it is proved the following theorem.

Theorem 6. Let R = N ⊕Q be a solvable Lie algebra such that dimQ = dimN/N2 = k. 
Then R admits a basis {e1, e2, . . . , en, x1, x2, . . . , xk} such that the multiplication table 
in R has the following form:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[ei, ej ] =

n∑
t=k+1

γt
i,jet, 1 ≤ i, j ≤ n,

[ei, xi] = ei, 1 ≤ i ≤ k,

[ei, xj ] = αi,jei, k + 1 ≤ i ≤ n, 1 ≤ j ≤ k,

where αi,j is the number of entries of a generator basis element ej involved in forming 
non generator basis element ei.
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For a nilpotent Leibniz algebra L and x ∈ L \L2 we consider the decreasing sequence 
C(x) = (n1, n2, . . . , nk) with respect to the lexicographical order of the dimensions Jor-
dan’s blocks of the operator Rx.

Definition 7. The sequence C(L) = max
x∈L\L2

C(x) is called the characteristic sequence of 

the Leibniz algebra L.

In the paper [2] it is considered the cohomological properties (Chevalley cohomology) 
of a solvable Lie algebra whose nilpotent radical has a given characteristic sequence 
(n1, n2, . . . , nk, 1) and complementary subspace to nilpotent radical has dimension equal 
to k + 1.

For characteristic sequence (n1, n2, . . . , nk, 1) we consider the model nilpotent Lie 
algebra nc given by its non-zero brackets:

[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[en1+...+nj+i, e1] = −[e1, en1+...+nj+i] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1.

Due to Theorem 6 a solvable Lie algebra with nilpotent radical nc and (k + 1)-
dimensional complementary subspace to nc is unique. For our convenience we present its 
multiplication table in the following way:

rc :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[en1+...+nj+i, e1] = −[e1, en1+...+nj+i] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1,

[e1, x1] = −[x1, e1] = e1,

[ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,
[en1+...+nj+i, x1] = −[x1, en1+...+nj+i] = (i− 2)en1+...+nj+i 2 ≤ i ≤ nj+1,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,
[en1+...+nj+i, xj+2] = −[xj+2, en1+...+nj+i] = en1+...+nj+i, 2 ≤ i ≤ nj+1,

where 1 ≤ j ≤ k − 1.
Here we present the main result of the paper [2].

Theorem 8. For any characteristic sequence (n1, . . . , nk, 1), the model nilpotent Lie al-
gebra nc arises as the nilpotent radical of a solvable Lie algebra rc such that

Ha(rc, rc) = 0, 0 ≤ a ≤ 3.

2.1. Cohomology of Leibniz algebras

We call a vector space M a module over a Leibniz algebra L if there are two bilinear 
maps:
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[−,−] : L×M → M and [−,−] : M × L → M

satisfying the following three axioms

[m, [x, y]] = [[m,x], y] − [[m, y], x],

[x, [m, y]] = [[x,m], y] − [[x, y],m],

[x, [y,m]] = [[x, y],m] − [[x,m], y],

for any m ∈ M , x, y ∈ L.
For a Leibniz algebra L and module M over L we consider the spaces

CL0(L,M) = M, CLn(L,M) = Hom(L⊗n,M), n > 0.

Let dn : CLn(L, M) → CLn+1(L, M) be an C-homomorphism defined by

(dnϕ)(x1, . . . , xn+1) := [x1, ϕ(x2, . . . , xn+1)] +
n+1∑
i=2

(−1)i[ϕ(x1, . . . , x̂i, . . . , xn+1), xi]

+
∑

1≤i<j≤n+1
(−1)j+1ϕ(x1, . . . , xi−1, [xi, xj ], xi+1, . . . , x̂j , . . . , xn+1),

where ϕ ∈ CLn(L, M) and xi ∈ L. The property dn+1 ◦ dn = 0 leads that the derivative 
operator d =

∑
i≥0

di satisfies the property d ◦d = 0. Therefore, the n-th cohomology group 

is well defined by

HLn(L,M) := ZLn(L,M)/BLn(L,M),

where the elements ZLn(L, M) := Ker dn+1 and BLn(L, M) := Im dn are called n-
cocycles and n-coboundaries, respectively.

In the case of n = 2 we give explicit expressions for elements ZL2(L, L) and BL2(L, L). 
Namely, elements ψ ∈ BL2(L, L) and ϕ ∈ ZL2(L, L) are defined by:

ψ(x, y) = [d(x), y] + [x, d(y)] − d([x, y]) for some linear map d ∈ Hom(L,L), (1)

[x, ϕ(y, z)] − [ϕ(x, y), z] + [ϕ(x, z), y] + ϕ(x, [y, z]) − ϕ([x, y], z) + ϕ([x, z], y) = 0. (2)

In terms of cohomology groups the notion of completeness of a Leibniz algebra L
means that it is centerless and HL1(L, L) = 0.

Definition 9. A Leibniz algebra L is called cohomologically rigid if HL2(L, L) = 0.

Remark 10. For a centerless Lie algebra G it is known that H2(G, G) = HL2(G, G) (see 
Corollary 2 of [14]).



508 L.M. Camacho et al. / Journal of Algebra 560 (2020) 502–520
3. Main results

Let us consider the following family of nilpotent Leibniz algebras L(αi, βj) with 1 ≤
i ≤ k + 1, 1 ≤ j ≤ k with a given the multiplication table:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 ≤ i ≤ n1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n1,

[en1+...+nj+i, e1] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,
[e1, en1+...+nj+i] = −en1+...+nj+1+i, 3 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,
[e1, e1] = α1h,

[e2, e2] = α2h,

[en1+...+ni+2, en1+...+ni+2] = αi+2h, 1 ≤ i ≤ k − 1.
[e1, e2] = −e3 + β1h,

[e1, en1+...+ni+2] = −en1+...+ni+3 + βi+1h, 1 ≤ i ≤ k − 1,

where n1 ≥ n2 ≥ . . . nk ≥ 1 and at least one of the parameters αi, βj is non-zero.
One can assume that α1 �= 0. Indeed, if α1 = 0, then taking the following change of 

the basis

e′1 = A1e1 + A2e2 +
k−1∑
i=1

Bien1+...+ni+2, e′2 = e2, e′i+1 = [e′i, e′1],

2 ≤ i ≤ n1, h′ = h,

e′n1+...+nj+2 = en1+...+nj+2, e′n1+...+nj+1+i = [e′n1+...+nj+i, e
′
1],

2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,

we have

[e′1, e′1] = (A2
2α2 +

k−1∑
i=1

B2
i αi+2 + A1A2β1 + A1

k−1∑
i=1

B2
i αi+2βi+1)h′.

Taking into account that at least one of the parameters αi, βj is non-zero, we always 
can chose values A1, A2, Bi such that

A2
2α2 +

k−1∑
i=1

B2
i αi+2 + A1A2β1 + A1

k−1∑
i=1

B2
i αi+2βi+1 �= 0.

Therefore, we can conclude that parameter α1 is non-zero. Now, scaling the basis 
element h we can assume that α1 = 1, i.e., [e1, e1] = h.
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Thus, we consider the family of nilpotent Leibniz algebras L(αi, βi) with 1 ≤ i ≤ k:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 ≤ i ≤ n1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n1,

[en1+...+nj+i, e1] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,
[e1, en1+...+nj+i] = −en1+...+nj+1+i, 3 ≤ i ≤ nj+1, 1 ≤ j ≤ k − 1,
[e1, e1] = h,

[e2, e2] = α1h,

[en1+...+ni+2, en1+...+ni+2] = αi+1h, 1 ≤ i ≤ k − 1.
[e1, e2] = −e3 + β1h,

[e1, en1+...+ni+2] = −en1+...+ni+3 + βi+1h, 1 ≤ i ≤ k − 1,

where n1 ≥ n2 ≥ . . . nk ≥ 1.

3.1. Particular case

In order to avoid routine calculations which involve many indexes we limit ourselves 
to the family L(α1, α2, β1, β2) with the following multiplication table:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 ≤ i ≤ n1,

[e1, ei] = −ei+1, 3 ≤ i ≤ n1,

[fi, e1] = fi+1, 1 ≤ i ≤ n2 − 1,
[e1, fi] = −fi+1, 2 ≤ i ≤ n2 − 1,
[e1, e1] = h, [e2, e2] = α2h, [f1, f1] = α3h,

[e1, e2] = −e3 + β1h, [e1, f1] = −f2 + β2h.

Proposition 11. Any derivation on the algebra L(α1, α2, β1, β2) has the following matrix 
form:

D =
(
A B
C D

)
, where

A =
n1+1∑
j=1

λjE1,j +
n1+1∑
i=2

((i− 2)λ1 + γ2)Ei,i +
n1∑
i=2

n1+1∑
j=i+1

γj−i+2Ei,j ,

C =
n2∑
i=1

n1+1∑
j=i+1

θj−i+1Ei,j ,

B =
n2∑

μjE1,j + c1e1,n2+1 + c2E2,n2+1 + (λ2α1)E3,n2+1 +
n2∑ n2∑

δj−i+2Ei,j ,

j=1 i=2 j=i−1
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D =
n2∑
i=1

((i− 1)λ1 + ν1)Ei,i + c3E1,n2+1 +
n2∑
i=2

n2∑
j=i+1

νj−i+1Ei,j + (μ1α2)E2,n2+1

+ mEn2+1,n2+1

m = (2λ1 + λ2β1 + μ1β2), A ∈ Mn1+1,n1+1, B ∈ Mn1+1,n2+1, C ∈ Mn2+1,n1+1, D ∈
Mn2+1,n2+1 and matrix units Ei,j and with the restrictions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α1θ2 + α2δ1 = 0,
−2λ2α1 + λ1β1 + λ2β

2
1 + μ1β1β2 − γ2β1 − δ1β2 = 0,

−2μ1α2 + λ1β2 + λ2β1β2 + μ1β
2
2 − θ2β1 − ν1β2 = 0,

α1(2λ1 + λ2β1 + μ1β2 − 2γ2) = 0,
α2(2λ1 + λ2β1 + μ1β2 − 2ν1) = 0,

where Mm,n is the set of all m × n matrices. Moreover, if n1 > n2, then θj = 0 with 
2 ≤ j ≤ n1 − n2 + 1.

Proof. The proof is carried out by straightforward computation the derivation property 
and using the table of multiplications of the algebras L(α1, α2, β1, β2). �
Lemma 12. Let d be a derivation on the algebra L(α1, α2, β1, β2). Then we have that 
coefficient d(h)|h is ε1 + ε2, where εk ∈ {ν1, λ1, γ2}.

Proof. Let us consider the following cases:

(1) α2 �= 0. In this case, by applying the derivation conditions we have 2λ1 + λ2β1 +
μ1β2 − 2ν1 = 0 then d(h) = 2ν1h.

(2) α2 = 0 and α1 �= 0. Similar to the above case we have d(h) = 2γ2h.
(3) α2 = 0 and α1 = 0. We consider the following:

(a) β2 �= 0. Making the following change of basis: e′1 = e1, e′i = β2ei − β1fi−1, 2 ≤
i ≤ n2+1, ei = β2ei, n2+2 ≤ i ≤ n1+1 and f ′

i = fi, 1 ≤ i ≤ n2, we can suppose 
β′

1 = 0 and by restrictions we have that μ1β2 = ν1−λ1. Hence, d(h) = (λ1+ν1)h.
(b) β2 = β1 = 0. Then d(h) = 2λ1h.
(c) β2 = 0, β1 �= 0. By restrictions we have that λ2β1 = γ2 − λ1. Therefore, d(h) =

(λ1 + γ2)h. �
Lemma 13. The number of nil-independent derivations of the algebra L(α1, α2, β1, β2) is 
equal to 4.

Proof. We are going to prove that the matrix D is a nilpotent matrix if and only if 
λ1 = γ2 = ν1 = δ1θ2 = 0. By Lemma 12, we have that d(h) = (a1λ1 + a2γ2 + α3ν1)h.
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According Proposition 11 we have

D =
(

A B

C D

)
=

(
A1 + A2 B

C D1 + D2

)
, where

A1 = diag{λ1, γ2, λ1 + γ2, . . . , (n1 − 1)λ1 + γ2},
D1 = diag{ν1, λ1 + ν1, 2λ1 + ν1, . . . , (n2 − 1)λ1 + ν1, a1λ1 + a2γ2 + α3ν1}

are diagonal matrices, while A2, D2, C are strictly upper triangular matrices and the 
matrix B is upper triangular matrix with non-zero diagonal under the main diagonal.

Note that matrices A1A2, A2
2, D1D2, D2

1 are nilpotent, the matrices C(A1 +A2) and 
(D1 +D2)C have the same type pattern as C (that is if any entry of C is 0, the entry of 
C(A1 +A2) and the entry of (D1 +D2)C at the same position is zero, as well). Likewise, 
the matrix (A1 + A2)B and B(D1 + D2) has the same pattern as B.

It is easy to see that BC = K1 + K2 with diagonal matrix

K1 = diag{0, δ1θ2, δ1θ2, . . . , δ1θ2︸ ︷︷ ︸
n2

, 0, . . . , 0}

and strictly upper triangular matrix K2. Similarly, CB = Z1 +Z2 with diagonal matrix 
Z1 = diag{δ1θ2, δ1θ2, . . . , δ1θ2, 0} and strictly upper triangular matrix Z2.

According to the above arguments we have the following formula:

D2 =
(
Ã1 + Ã2 B̃

C̃ D̃1 + D̃2

)
,

where Ã2, D̃2− nilpotent matrices and the matrices B̃ and C̃ are the same type as B
and C, respectively and Ã1 and D̃1 are the following diagonal matrices:

Ã1 = diag{λ2
1, γ

2
2 + δ1θ2, (λ1 + γ2)2 + δ1θ2, . . . , ((n2 − 2)λ1 + γ2)2 + δ1θ2,

((n2 − 1)λ1 + γ2)2, . . . , ((n1 − 1)λ1 + γ2)2},

D̃1 = diag{ν2
1 + δ1θ2, (λ1 + ν1)2 + δ1θ2, (2λ1 + ν1)2 + δ1θ2, . . . ,

. . . , ((n2 − 1)λ1 + ν1)2 + δ1θ2, (a1λ1 + a2γ2 + α3ν1)2}.

To continue iteration we conclude that in the main diagonal of the matrix Dk will be 
equal to zero if and only if λ1 = γ2 = ν1 = δ1θ2 = 0. Thus, the nilpotency of the matrix 
D implies λ1 = γ2 = ν1 = δ1θ2 = 0.

Let us assume now that λ1 = γ2 = ν1 = δ1θ2 = 0. Then we obtain that matrices 
Ã1 + Ã2, D̃1 + D̃2, C̃ are strictly upper triangular and the matrix B̃ is upper triangular. 
Therefore, the matrix D2 is nilpotent and hence, D is nilpotent. �

Let R be a solvable Leibniz algebra whose nilpotent radical is the algebras from 
L(α1, α2, β1, β2). We denote by Q the complementary subspace to a nilpotent radical of 
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R. Due to work [10] we have that dimension of Q is bounded by number of nil-independent 
derivations of L(α1, α2, β1, β2).

Let us introduce the notations

d1 ∈ DerL(α1, α2, β1, β2) with λ1 �= 0, γ2 = ν1 = δ1θ2 = 0,

d2 ∈ DerL(α1, α2, β1, β2) with γ2 �= 0, λ1 = ν1 = δ1θ2 = 0,

d3 ∈ DerL(α1, α2, β1, β2) with ν1 �= 0, λ1 = γ2 = δ1θ2 = 0,

d4 ∈ DerL(α1, α2, β1, β2) with δ1θ2 �= 0, λ1 = γ2 = ν1 = 0.

Proposition 14. dimQ ≤ 3.

Proof. Due to Lemma 13 we have that the number of nil-independent derivations of 
L(α1, α2, β1, β2) is equal to 4 and they are dependent on parameters λ1, γ2, ν1, θ2, δ1. Let 
us assume that dimQ = 4, that is, Q = {x1, x2, x3, x4}. Then

Rxi |L(α1,α2,β1,β2) = di, i = 1, . . . , 4.

Rescaling the basis elements xi, 1 ≤ i ≤ 4 one can assume that λ1 = 1 in d1, γ2 = 1
in d2, ν1 = 1 in d3, respectively.

Let us assume that θ2 �= 0 (recall that this case is impossible when n1 > n2). Thanks 
to Theorem 4 we have R2 ⊆ L(α1, α2, β1, β2). Applying this embedding in the following 
equalities:

(∗)f2 = [f1, [x2, x4]] = [[f1, x2], x4] − [[f1, x4], x2] = −e2 + L(αi, βj)2

we get a contradiction with the assumption that θ2 �= 0. Thus, we obtain dimQ ≤ 3. �
The following theorem describes solvable Leibniz algebras with nilpotent radical 

L(α1, α2, β1, β2) and maximal possible dimension of Q.

Theorem 15. Solvable Leibniz algebra with nilpotent radical L(α1, α2, β1, β2) and three-
dimensional complementary subspace is isomorphic to the algebra:

R :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = h, [ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[h, x1] = 2h, [fi, e1] = −[e1, fi] = fi+1, 1 ≤ i ≤ n2 − 1,
[e1, x1] = −[x1, e1] = e1, [ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,
[fi, x1] = −[x1, fi] = (i− 1)fi, 2 ≤ i ≤ n2,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,
[fi, x3] = −[x3, fi] = fi, 1 ≤ i ≤ n2.
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Proof. Let R = L(α1, α2, β1, β2) ⊕Q with {e1, e2, . . . , en1+1, f1 . . . , fn2 , x1, x2, x3} such 
that

Rxi |L(α1,α2,β1,β2) = di, i = 1, 2, 3.

Due to Proposition 11 we have the products [L(α1, α2, β1, β2), xj ], 1 ≤ j ≤ 3.
From the multiplication table of the algebra L(α1, α2, β1, β2) we derive that

ei /∈ Annr(R) with 1 ≤ i ≤ n1, fj /∈ Annr(R) with 1 ≤ j ≤ n2 − 1.

Taking into account that for any x, y ∈ R we have [x, y] + [y, x] ∈ Annr(R) we conclude 
that

[x1, ei] + [ei, x1] = (∗)en1+1 + (∗)fn2 + (∗)h, 1 ≤ i ≤ n1,

[x1, fi] + [fi, x1] = (∗)en1+1 + (∗)fn2 + (∗)h, 1 ≤ i ≤ n2 − 1.

Consider

[x1, en1+1] = [x1, [en1 , e1]] = [[x1, en1 ], e1] − [[x1, e1], en1 ] =
= [−[en1 , x1], e1] − [−[e1, x1], en1 ] = −(n1 − 1)en1+1,

[x1, fn2 ] = [x1, [fn2−1, e1]] = [[x1, fn2−1], e1] − [[x1, e1], fn2−1] =
= [−[fn2−1, x1], e1] − [−[e1, x1], fn2−1] =

−
n1+1∑

k=n2+2

θk−n2+1,1ek − (n2 − 1)fn2 .

This implies that en1+1, fn2 /∈ Annr(R)
We claim that span〈ei, fj |1 ≤ i ≤ n1 + 1, 1 ≤ j ≤ n2〉 ∩ Annr(R) = {0}. Indeed, let

z = a1e1 +a2e2 + . . .+an1+1en1+1 + b1f1 + . . .+ bn2fn2 + c1x1 + c2x2 + c3x3 ∈ Annr(R).

Then considering the products

0 = [x1, z] = [x2, z] = [x3, z] = [e1, z] = [e2, z] = [f1, z]

we derive z = 0.
Thus, we obtain Annr(R) = 〈h〉 and

[xj , ei] = −[ei, xj ] + (∗)h, 1 ≤ i ≤ n1 + 1, 1 ≤ j ≤ 3,
[xj , fi] = −[fi, xj ] + (∗)h, 1 ≤ i ≤ n2, 1 ≤ j ≤ 3,
[x , x ] = −[x , x ] + (∗)h, 1 ≤ i, j ≤ 3.
i j j i
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It is easy to see that the quotient algebra R/Annr(R) is a particular case of the Lie 
algebra rc. Namely, the quotient Lie algebra has nilpotent radical nc with characteristic 
sequence (n1, n2, 1) and its multiplication table has the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[fi, e1] = −[e1, fi] = fi+1, 1 ≤ i ≤ n2 − 1,
[e1, x1] = −[x1, e1] = e1,

[ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,
[fi, x1] = −[x1, fi] = (i− 1)fi, 2 ≤ i ≤ n2,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,
[fi, x3] = −[x3, fi] = fi, 1 ≤ i ≤ n2.

If we now rise up to the initial algebra R, then we get the following multiplication 
table (we omit the bracket of the family L(α1, α2, β1, β2)):

[e1, xj ] = δ1je1 + ajh, [xj , e1] = −δ1je1 + ãjh, 1 ≤ j ≤ 3
[e2, xj ] = δ2je2 + bjh, [xj , e2] = −δ2je2 + b̃jh, 1 ≤ j ≤ 3
[e3, xj ] = (1 − δ3,j)e3 + cjh, 1 ≤ j ≤ 3
[ei, x1] = (i− 2)ei, 4 ≤ i ≤ n1 + 1,
[ei, x2] = ei, 4 ≤ i ≤ n1 + 1,
[f1, xj ] = λf1 + djh, [xj , f1] = −λf1 + d̃1h,

[f2, xj ] = (1 − δ2j)f2 + gjh,

[fi, x1] = (i− 1)fi, 3 ≤ i ≤ n2,

[fi, x3] = fi, 3 ≤ i ≤ n2,

[h, xj ] = mjh, 1 ≤ j ≤ 3
[xi, xj ] = ϕi,jh, 1 ≤ i, j ≤ 3,

with δij the Kronecker symbol, λ = 0 if j = 1, 2 and λ = 1 if j = 3.
The Leibniz identity on the following triples imposes further constraints on the above 

family.

Leibniz identity Constraint
{e1, e1, x1}, ⇒ m1 = 2,
{e1, e1, xi}, 2 ≤ i ≤ 3 ⇒ mi = 0,
{e2, e2, x1}, ⇒ α1 = 0,
{f1, f1, x1}, ⇒ α2 = 0,

Leibniz identity Constraint
{e1, e2, x1}, ⇒ β1 = 0,
{e1, f1, x1}, ⇒ β2 = 0,
{e2, e1, xi}, 1 ≤ i ≤ 3 ⇒ ci = 0,
{f1, e1, xi}, 1 ≤ i ≤ 3 ⇒ gi = 0.

At that time, the following change of basis

e′1 = e1 − a1h, e′2 = e2 −
b1
h, f ′

1 = f1 −
d1

h, x′
i = xi −

ϕi,1
h, 1 ≤ i ≤ 3
2 2 2
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allows to assume that a1 = b1 = d1 = ϕi,1 = 0 for 1 ≤ i ≤ 3.
We again apply the Leibniz identity and we have the following:

Leibniz identity Constraint
{xi, e1, x1}, 1 ≤ i ≤ 3 ⇒ ãi = 0, 1 ≤ i ≤ 3,
{xi, e2, x1}, 1 ≤ i ≤ 3 ⇒ b̃i = 0, 1 ≤ i ≤ 3,
{f1, xi, x1}, 2 ≤ i ≤ 3 ⇒ di = 0, 2 ≤ i ≤ 3,
{xi, f1, x1}, 2 ≤ i ≤ 3 ⇒ d̃i = 0, 1 ≤ i ≤ 3,
{e1, xi, x1}, 2 ≤ i ≤ 3 ⇒ ai = 0, 2 ≤ i ≤ 3,
{e2, xi, x1}, 2 ≤ i ≤ 3 ⇒ bi = 0, 2 ≤ i ≤ 3,
{xi, xj , x1}, 1 ≤ i ≤ 3, 2 ≤ j ≤ 3 ⇒ ϕi,j = 0, 1 ≤ i ≤ 3, 2 ≤ j ≤ 3.

Finally, if we consider the equalities [xj , ei] = [xj , [ei−1, e1]] with 3 ≤ i ≤ n1 + 1 and 
[xj , fi] = [xj , [fi−1, e1]] with 2 ≤ i ≤ n2, 1 ≤ j ≤ 3 we obtain the multiplication table of 
the algebra given in Theorem 15. �

The next result establishes the completeness of the algebra R.

Theorem 16. The solvable Leibniz algebra R is complete.

Proof. Centerless of the algebra R follows immediately from the multiplication table in 
Theorem 15. Note that 〈h〉 forms an ideal of R.

The quotient algebra R/〈h〉 is the algebra rc, which is complete due to Theorem 8. 
Applying this result in the following equalities by modulo of an ideal 〈h〉:

d(e1) = d([e1, x1]) = [d(e1), x1] + [e1, d(x1)] �≡ 0 ⇒ d(e1) ≡ Rαe1(e1) = αh, α ∈ C,

0 = d([e2, x1]) = [d(e2), x1] + [e2, d(x1)] ≡ [d(e2), x1] ⇒ d(e2) ≡ 0,
d(ei+1) = d([ei, e1]) = [d(ei), e1] + [ei, d(e1)] ≡ 0 ⇒ d(ei+1) ≡ 0, 2 ≤ i ≤ n1,

0 = d([f1, x1]) = [d(f1), x1] + [f1, d(x1)] ≡ [d(f1), x1] ⇒ d(f1) ≡ 0,
d(fi+1) = d([fi, e1]) = [d(fi), e1] + [fi, d(e1)] ≡ 0 ⇒ d(fi+1) ≡ 0, 1 ≤ i ≤ n2 − 1,

0 = d([xi, x1]) = [d(xi), x1] + [xi, d(x1)] ≡ [d(xi), x1] ⇒ d(xi) ≡ 0, 1 ≤ i ≤ 3,

and in the chain of equalities

2[d(e1), e1] + 2[e1, d(e1)] = 2d([e1, e1]) = 2d(h) = d([h, x1]) = [d(h), x1] + [h, d(x1)]
⇒ d(h) = Rβx1(h) = 2βh, β ∈ C

we conclude that any derivation on R is inner. �
Now we prove the triviality of the second group of cohomology for the algebra R

with coefficients in the adjoint representation (that is HL2(R, R) = 0). Since J := 〈h〉
is an ideal of R and quotient algebra R/J is the Lie algebra rc, we get a decomposition 
R = rc ⊕ J as the direct sum of the vector spaces (here we identify the space of the 
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quotient space rc and its preimage under the natural homomorphism). Hence, for any 
x, y ∈ R and ϕ(x, y) ∈ ZL2(R, R) one has

[x, y] = [x, y]rc + [x, y]J , ϕ(x, y) = ϕ(x, y)rc + ϕ(x, y)J ,

with [x, y]rc ∈ rc, [x, y]J ∈ J and ϕ(x, y)rc ∈ rc, ϕ(x, y)J ∈ J .
For arbitrary elements x, y, z ∈ rc and ϕ ∈ ZL2(R, R) using (2) we consider the chain 

of equalities:

0 = [x, ϕ(y, z)] − [ϕ(x, y), z] + [ϕ(x, z), y] + ϕ(x, [y, z]) − ϕ([x, y], z) + ϕ([x, z], y) =
= [x, ϕ(y, z)rc ]rc − [ϕ(x, y)rc , z]rc + [ϕ(x, z)rc , y]rc + ϕ(x, [y, z]rc)rc − ϕ([x, y]rc , z)rc+
+ϕ([x, z]rc , y)rc + [x, ϕ(y, z)rc ]J + [x, ϕ(y, z)J ]J − [ϕ(x, y)rc , z]J − [ϕ(x, y)J , z]J+
+[ϕ(x, z)rc , y]J + [ϕ(x, z)J , y]J + ϕ(x, [y, z]rc)J + ϕ(x, [y, z]J )rc + ϕ(x, [y, z]J )J−
−ϕ([x, y]rc , z)J − ϕ([x, y]J , z)rc − ϕ([x, y]J , z)J + ϕ([x, z]rc , y)J + ϕ([x, z]J , y)rc+
+ϕ([x, z]J , y)J .

From this we obtain⎧⎪⎪⎨⎪⎪⎩
[x, ϕ(y, z)rc ]rc − [ϕ(x, y)rc , z]rc + [ϕ(x, z)rc , y]rc+
ϕ(x, [y, z]rc)rc − ϕ([x, y]rc , z)rc + ϕ([x, z]rc , y)rc+
ϕ(x, [y, z]J )rc − ϕ([x, y]J , z)rc + ϕ([x, z]J , y)rc = 0,

(3)

⎧⎪⎨⎪⎩
[ϕ(x, z)rc , y]J + [x, ϕ(y, z)J ]J + [x, ϕ(y, z)rc ]J + [ϕ(x, z)J , y]J+
ϕ(x, [y, z]rc)J − [ϕ(x, y)rc , z]J − [ϕ(x, y)J , z]J + ϕ(x, [y, z]J )J−
ϕ([x, y]rc , z)J − ϕ([x, y]J , z)J + ϕ([x, z]rc , y)J + ϕ([x, z]J , y)J = 0.

(4)

Note that the first six terms of the equality (3) define a Leibniz 2-cocycle for the 
quotient Lie algebra rc. Therefore, Leibniz 2-cocycles of the Lie algebra rc with its trivial 
extensions on domains J ⊗R, R⊗J, J ⊗J are included into ZL2(R, R) (the same is true 
for 2-coboundaries of the algebra rc). Moreover, the last three terms in (3) appear only 
for the triples {e1, e1, a}, {e1, a, e1}, {a, e1, e1} with a ∈ rc.

Proposition 17. The following 2-cochains together with a basis of ZL2(rc, rc):

ϕ1(e1, e1) = h, ϕ2(x1, x1) = h, ϕ3(x3, x1) = h, ϕ4(x2, x1) = h,{
ϕ5(x1, e1) = h,

ϕ5(e1, x1) = h,

{
ϕ6(e2, e1) = −ϕ6(e1, e2) = h,

ϕ6(e3, x1) = ϕ6(e3, x2) = −h,{
ϕ7(f1, x1) = −2h,
ϕ (f , x ) = −ϕ (x , f ) = h,

{
ϕ8(x2, e2) = −ϕ8(e2, x2) = h,

ϕ8(e2, x1) = 2h,
7 1 3 7 3 1
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ9(e1, e1) = 1

2x3,

ϕ9(h, x1) = x3,

ϕ9(h, fi) = −ϕ9(fi, h) = 1
2fi,

1 ≤ i ≤ n2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ10(e1, e1) = 1

2x2,

ϕ10(h, x1) = x2,

ϕ10(h, ei) = −ϕ10(ei, h) = 1
2ei,

2 ≤ i ≤ n1 + 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ11(h, h) = −h,

ϕ11(h, x1) = 2ϕ11(e1, e1) = x1,

ϕ11(h, e1) = −ϕ11(e1, h) = 1
2e1,

ϕ11(h, ei) = −ϕ11(ei, h) = i−2
2 ei,

ϕ11(h, fj) = −ϕ11(fj , h) = i−1
2 fj ,

3 ≤ i ≤ n1 + 1, 2 ≤ j ≤ n2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ12(e1, e1) = e1,

ϕ12(e1, h) = ϕ12(h, e1) = −h,

ϕ12(h, x1) = ϕ12(x1, h) = e1,

ϕ12(h, ei) = −ϕ12(ei, h) = ei+1,

ϕ12(h, fj) = −ϕ12(fj , h) = fj+1,

2 ≤ i ≤ n1, 1 ≤ j ≤ n2 − 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ13
j (e1, e1) = ej ,

ϕ13
j (e1, h) = −ϕ13

j (h, e1) = ej+1,

ϕ13
j (x1, h) = (j − 2)ej ,

ϕ13
j (h, x1) = −(j − 4)ej ,

ϕ13
j (x2, h) = −ϕ13

j (h, x2) = ej ,

2 ≤ j ≤ n1 + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ14
j (e1, e1) = fj ,

ϕ14
j (e1, h) = −ϕ14

j (h, e1) = fj+1,

ϕ14
j (x1, h) = (j − 1)fj ,

ϕ14
j (h, x1) = (3 − j)fj ,

ϕ14
j (x3, h) = −ϕ14

j (h, x3) = fj ,

1 ≤ j ≤ n2,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ15
j (e1, ej) = −ϕ15

j (ej , e1) = h,

ϕ15
j (x1, ej+1) = (j − 1)h,

ϕ15
j (ej+1, x1) = (3 − j)h,

ϕ15
j (x2, ej+1) = −ϕ15

j (ej+1, x2) = h,

3 ≤ j ≤ n1,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ16
j (e1, fj) = −ϕ16

j (fj , e1) = h,

ϕ16
j (x1, fj+1) = jh,

ϕ16
j (fj+1, x1) = (2 − j)h,

ϕ16
j (x3, fj+1) = −ϕ16

j (fj+1, x3) = h,

1 ≤ j ≤ n2 − 1,

form a basis of spaces ZL2(R, R) and BL2(R, R).

Proof. The proof of this proposition is carried out by straightforward calculations of (1)
and (2) by using result of Theorem 8. In fact, due to Remark 10 and centerlessness of the 
Lie algebra rc we conclude that H2(rc, rc) = HL2(rc, rc), that is, ZL2(rc, rc) = BL2(rc, rc). 
Taking into account that ZL2(rc, rc) is isomorphically embedded into ZL2(R, R) (respec-
tively, BL2(rc, rc) is isomorphically embedded into BL2(R, R)) we need to find a basis of 
complementary subspaces to ZL2(rc, rc) (respectively, to BL2(rc, rc)).

Further, we consider the equalities (d2ϕ)(x, y, z) = 0 for the following cases:

x, y, z ∈ J, x ∈ rc, y, z ∈ J, x, z ∈ J, y ∈ rc, x, y ∈ J, z ∈ rc,

x, y ∈ rc, z ∈ J, x, z ∈ rc, y ∈ J x ∈ J, y, z ∈ rc,

from where we get the relations similar to the equations (3) and (4). In addition, cal-
culations of (3) for the triples {e1, e1, a}, {e1, a, e1}, {a, e1, e1} with a ∈ rc and (4) for 
x, y, z ∈ rc give us some additional relations for complementary subspace to ZL2(rc, rc).

Finally, combining all restrictions on 2-cocycles and identifying the basis of comple-
mentary subspace to ZL2(rc, rc) in ZL2(R, R) we get the required basis of ZL2(R, R).
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Applying the same arguments for 2-coboundaries we complete the proof of theo-
rem. �
Remark 18. In the above proposition we simplified the calculations using the results 
for the quotient Lie algebra rc. In fact, we exclude calculation of equalities (4) for the 
triples x, y, z ∈ rc except {e1, e1, a}, {e1, a, e1}, {a, e1, e1} with a ∈ rc. Thus, instead of 
(dim rc)3 triples we calculated just 3 dim rc triples in (4).

As a consequence of Proposition 17 we get the following main result.

Theorem 19. The solvable Leibniz algebra R is a cohomologically rigid algebra.

4. General case

In this section we present results similar to that obtained in particular case for solvable 
Leibniz algebras with nilpotent radical L(αi, βi), 1 ≤ i ≤ k and (k + 1)-dimensional 
complementary subspace.

Taking into account that the general case is analogous to a special case we omit routine 
calculations using indexes ni and induction in the proofs of results below, we just give 
short sketch their proofs.

The sketch consists of the following steps:

(1) Firstly, we compute the space Der(L(αi, βi)) with 1 ≤ i ≤ k. Further, we indicate 
(k + 1)-pieces nil-independent derivations, which are dependent on only non-zero 
parameters in the diagonal of the general matrix form of derivations.

(2) Secondly, we construct the solvable Leibniz algebra R = L(αi, βi) ⊕ Q with 
Q = 〈x1, . . . , xk+1〉 such that Rxs |L(αi,βi)

= ds, where ds, 1 ≤ s ≤ k + 1 are the 

nil-independent derivations indicated in the first step. Next, applying the Leibniz 
identity, the appropriate basis transformations and the mathematical induction we 
obtain the statement of Theorem 20.

(3) In order to prove the completeness of the solvable Leibniz algebra R (the first asser-
tion of Theorem 21) we just need to verify the multiplication table of R obtained in 
the second step and using the fact that any derivation on the quotient Lie algebra 
rc = R/〈h〉 is inner together with arguments applied in the proof of the particular 
case (see Theorem 16) allow us to prove the completeness of the algebra R.

(4) Finally, in the study of the second cohomology group of the algebra R we also 
use the triviality of the second group of cohomologies for the quotient algebra rc, 
that is, we use the equality Z2(rc, rc) = B2(rc, rc). By arguments applied in before 
Proposition 17 and due to Remark 10 we conclude

Z2(rc, rc) = ZL2(rc, rc) ⊆ ZL2(R,R), B2(rc, rc) = BL2(rc, rc) ⊆ BL2(R,R)
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we only need to compute the dimensions of complementary subspaces to ZL2(rc, rc)
(respectively, to BL2(rc, rc)) in ZL2(R, R) (respectively, in BL2(R, R)). Thus, the 
proof of triviality of the second cohomology group for the algebra R with coefficients 
in the adjoint representation is completed by computations of dimensions of the 
mentioned complementary subspaces.

Theorem 20. Solvable Leibniz algebra with nilpotent radical L(αi, βi), 1 ≤ i ≤ k and 
(k + 1)-dimensional complementary subspace is isomorphic to the algebra:

R :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = h, [h, x1] = 2h,
[ei, e1] = −[e1, ei] = ei+1, 2 ≤ i ≤ n1,

[en1+...+nj+i, e1] = −[e1, en1+...+nj+i] = en1+...+nj+1+i, 2 ≤ i ≤ nj+1,

[e1, x1] = −[x1, e1] = e1,

[ei, x1] = −[x1, ei] = (i− 2)ei, 3 ≤ i ≤ n1 + 1,
[en1+...+nj+i, x1] = −[x1, en1+...+nj+i] = (i− 2)en1+...+nj+i 2 ≤ i ≤ nj+1,

[ei, x2] = −[x2, ei] = ei, 2 ≤ i ≤ n1 + 1,
[en1+...+nj+i, xj+2] = −[xj+2, en1+...+nj+i] = en1+...+nj+i, 2 ≤ i ≤ nj+1,

where 1 ≤ j ≤ k − 1.

Theorem 21. The solvable Leibniz algebra R is complete and its second group of coho-
mologies in coefficient itself is trivial.

From the results of the paper [4] we obtain rigidity of the algebra R.

Corollary 22. The solvable Leibniz algebra R is rigid.

Remark 23. Note that the structure of the rigid algebra R depends on the given de-
creasing sequence (n1, n2, . . . , nk). Set p(n) the number of such sequences, that is, 
p(x) is the number of integer solutions of the equation n1 + n2 + . . . + nk = n with 
n1 ≥ n2 ≥ . . . ≥ nk ≥ 0. The asymptotic value of p(n), given in [17] by the expression 
p(n) ≈ 1

4n
√

3e
π
√

2n/3, (where a(n) ≈ b(n) means that lim
n→∞

a(n)
b(n) = 1) get the existence 

of at least p(n) irreducible components of the variety of Leibniz algebras of dimension 
n + k + 3.
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