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morphisms between Soergel bimodules in characteristic zero 
(double leaves) disappear.
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1. Introduction

Let (W, S) be a Coxeter system. To any pair of elements (x, y) of W , Kazhdan and 
Lusztig [5] associated a polynomial

hx,y ∈ Z[v].

These polynomials are ubiquitous in representation theory; they appear in character 
formulas for simple representations of complex semi-simple Lie algebras, real Lie groups, 
quantum groups, finite reductive groups . . . On the other hand, they are still far from 
being well understood. For example, in several applications the coefficient of v (the so-
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called μ-coefficient) plays a crucial role, however even describing when it is non-zero 
appears extremely subtle.

In their original paper Kazhdan and Lusztig conjectured that the polynomials hx,y

have non-negative coefficients. This conjecture was proved in [6] if the underlying Coxeter 
group is a Weyl or affine Weyl group. The proof proceeds by interpreting hx,y as the 
Poincaré polynomial of the local intersection cohomology of a Schubert variety.

Kazhdan and Lusztig’s positivity conjecture was proved in general in [3]. The proof 
is via a study of Soergel bimodules associated to the underlying Coxeter system. Using 
Soergel bimodules one can produce a space Dx,y which behaves as though it were the 
local intersection cohomology of a Schubert variety. The Kazhdan–Lusztig polynomial 
hx,y gives the graded dimension of Dx,y. This implies immediately that hx,y has non-
negative coefficients. The theory also goes quite some way towards explaining what 
Kazhdan–Lusztig polynomials “are” for arbitrary Coxeter groups.

The aim of this paper is to explain a strategy to use Soergel bimodues to further our 
combinatorial understanding of Kazhdan–Lusztig polynomials. Our goal (not achieved in 
this paper) is a “counting formula” for Kazhdan–Lusztig polynomials. Ideally we would 
like to produce a canonical basis for the space Dx,y. That is, we would like to find a set 
Xx,y and a degree statistic d : Xx,y → Z�0 such that if we use Xx,y and d to build a 
positively graded vector space, we have a canonical isomorphism:

⊕
e∈Xx,y

Re
∼→ Dx,y.

Taking graded dimensions we would deduce a counting formula:

hx,y =
∑

e∈Xx,y

vd(e).

We expect the sets Xx,y to reflect in a subtle way the combinatorics of Kazhdan–Lusztig 
polynomials. If shown to exist, they would open the door to a deeper combinatorial study 
of Kazhan-Lusztig polynomials.

A proposal for such a counting formula was made by Deodhar in [1]. He considers the 
set X̃x,y of all subexpressions for x of a fixed reduced expression y of y (see Section 2.1
for more details on our notation). On this set he defines a statistic (“Deodhar’s defect”)

df : X̃x,y → Z.

Assuming that Kazhdan–Lusztig polynomials have non-negative coefficients (now known 
unconditionally), Deodhar proves the existence of a subset XD

x,y ⊂ X̃x,y such that

hx,y =
∑

e∈XD

vd(e). (1.1)

x,y
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Although initially appealing, Deodhar’s proposal suffers from serious drawbacks, the 
principal one being that the set XD

x,y is not canonical.
There are two sources of non-canonicity. The first is that X̃x,y depends on a reduced 

expression of y. We do not regard this dependence as particularly worrisome. Indeed, 
there are many objects in Lie theory which depend on a choice of reduced expression, and 
(if canonical up to this point) relating them for different reduced expressions is potentially 
a fascinating question. The second source of non-canonicity is more concerning: even for 
a fixed reduced expression y there are in general many possible choices of subsets XD

x,y ⊂
X̃x,y satisfying (1.1). In Deodhar’s framework there is no way to make a distinguished 
choice.

Let x, y be as above. Using Soergel bimodules one can produce a space Dx,y containing 
Dx,y as a canonical direct summand. In other words, we have a canonical map π : Dx,y �
Dx,y. The following is the main result of this paper.

Theorem 1.1. There is a canonical isomorphism of graded vector spaces

CLL :
⊕

e∈X̃x,y

Re
∼−→ Dx,y,

where the left hand side is graded by Deodhar’s defect, i.e. the generator e ∈ X̃x,y has 
degree df(e). (CLL stands for “Canonical light leaves”.)

This theorem leads to a natural refinement of Deodhar’s proposal:

Problem 1.2. Find a subset XL
x,y ⊂ X̃x,y such that the composition of the inclusion, 

canonical light leaves and the canonical surjection⊕
e∈XL

x,y

Re ↪→
⊕

e∈X̃x,y

Re
CLL→ Dx,y � Dx,y

is an isomorphism of graded vector spaces.

If the choice of the subset XL
x,y could be made canonically we would regard it as a 

solution to the counting problem above. Moreover, the map CLL has the potential to 
explain why a canonical choice is difficult in general, by recasting the problem as one of 
linear algebra.

The easiest situation is when the subset of non-zero elements in

{π ◦ CLL(e) | e ∈ X̃x,y},

already constitutes a basis of Dx,y. Here we have no choice: we must define XL
x,y to 

be those e in X̃x,y whose image is non-zero under π ◦ CLL. This situation does occur 
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“in nature”. Namely it is the case for dihedral groups, universal Coxeter groups, and 
whenever hx,y = v�(y)−�(x) (“rationally smooth case”). It is interesting to note that in 
these cases there already exist closed and combinatorial formulas for Kazhdan–Lusztig 
polynomials. We feel our result gives a satisfying explanation as to “why” there exist 
relatively straightforward formulas in these cases.

Remark 1.3. The basic observation in this paper is that certain morphisms (“light 
leaves”) may be made canonical in the presence of Soergel’s conjecture. The non-
canonicity of light leaves has been a basic difficulty in the theory since their introduction 
in 2007. The basic canonicity observation was made during a visit of GW to NL at 
the Universidad de Chile in 2015, and has been shared with the community since. Sub-
sequently, this idea has been pushed much further: in [11] Patimo studies the case of 
Grassmannians in detail; and in [10] the first author and Patimo study the case of affine 
type A2. In both settings the authors find that the “canonical light leaves”1 associated 
to different reduced expressions yield many different bases for intersection cohomology, 
and the question of relating them in interesting ways remains open. In particular, the 
easy case considered in the previous paragraph is certainly not indicative of the general 
setting, and the “potentially fascinating question” raised a few paragraphs ago is very 
much alive. We wrote this paper in order to record the basic observation in the hope 
that we and others may take it up in the future.

Acknowledgements. The first author was supported by FONDECYT No 1160152.

2. Background

In the following, we recall some standard background in Kazhdan–Lusztig theory and 
Soergel bimodules. References include [5,13,12,14,4,8]. There is also a book [2] on the 
way.

2.1. Coxeter group combinatorics

Let (W, S) be a Coxeter group with length function � and Bruhat order �. An expres-
sion x = (s1, s2, . . . , sm) is a word in the alphabet S (i.e. si ∈ S for all i). Its length is 
�(x) = m.

If x = (s1, s2, . . . , sm) is an expression, we let x := s1s2 . . . sm denote the product 
in W . Given an expression x = (s1, s2, . . . , sm), a subexpression of x is a word e =
e1e2 . . . em of length m in the alphabet {0, 1}. We will write e ⊂ x to indicate that e is 
a subexpression of x. We set

xe := se11 se22 . . . semm ∈ W

1 In the setting of the Grassmannian considered in [11] these are singular variants (in the sense of singular 
Soergel bimodules) of the maps considered in the present work.
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and say that e ⊂ x expresses xe.
For 1 � i � m, we define wi := se11 se22 . . . seii . We also define di ∈ {U, D} (where U

stands for Up and D for Down) in the following way:

di :=
{
U if wi−1si > wi−1,

D if wi−1si < wi−1.

We write the decorated sequence (d1e1, . . . , dmem). Deodhar’s defect df is defined by

df(e) := |{ i | diei = U0}| − |{ i | diei = D0}|

2.2. Hecke algebras

For the basic definitions of Hecke algebras and Kazhdan–Lusztig polynomials we follow 
[13]. Let (W, S) be a Coxeter system. Recall that the Hecke algebra H of (W, S) is the 
algebra with free Z[v, v−1]-basis given by symbols {hx}x∈W and multiplication given by

hxhs :=
{
hxs if xs > x,

(v−1 − v)hx + hxs if xs < x.

We can define a Z-module morphism (−) : H → H by the formula v = v−1 and 
hx = (hx−1)−1. It is a ring morphism, and we call it the duality in the Hecke algebra. 
The Kazhdan–Lusztig basis of H is denoted by {bx}x∈W . It is a Z[v, v−1]-basis of H and 
it is characterised by the two conditions

bx = bx and bx ∈ hx +
∑
y∈W

vZ[v]hy

for all x ∈ W . If we write bx = hx+
∑

y∈W hy,xhy then the Kazhdan–Lusztig polynomials
(as defined in [5]) py,x are defined by the formula py,x = vl(x)−l(y)hy,x, and C ′

x = bx
(their q−1/2 is our v).

Let us define the Z[v, v−1]-bilinear form

(−,−) : H×H → Z[v, v−1],

given by (hx, hy) := δx,y. A useful property of this pairing is that (bx, by) ∈ vZ[v] if 
x �= y and (bx, bx) ∈ 1 + vZ[v].

2.3. Soergel bimodules

We fix a realisation h of our Coxeter system (W, S) over the real numbers R. That is, 
h is a real vector space and we have fixed roots {αs}s∈S ⊂ h∗ and coroots {α∨

s }s∈S ⊂ h
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such that the familiar formulas from Lie theory define a representation of W of h and 
h∗.

Throughout, we assume that this is a realisation for which Soergel’s conjecture holds 
(i.e. Conjecture 1.13 in [14]. This conjecture is also recalled in Section 2.4). For example, 
as it is proved in [3], we could take h to be the realisation from [14,3]. We could also take 
h to be the geometric representation [7] so that h =

⊕
Rα∨

s and for t ∈ S, the element 
αt ∈ h∗ is defined by 〈αt, α∨

s 〉 = −2 cos(π/mst), where mst denotes the order (possibly 
∞) of st ∈ W .

Having fixed h we define R = S(h∗) = O(h) to be the symmetric algebra on h∗ (alias 
the polynomials functions on h), graded so that h∗ has degree 2. We denote by BimR the 
category of Z-graded R-bimodules which are finitely generated both as left and right R-
modules. Given an object M =

⊕
M i ∈ BimR we denote by M(k) the shifted bimodule, 

with M(k)i := Mk+i. Given objects M, N ∈ BimR we denote their tensor product by 
juxtaposition: MN := M ⊗R N . This operation gives BimR the structure of a monoidal 
category. The Krull-Schmidt theorem holds in BimR. For any s ∈ S we denote by Rs ⊂ R

the s-invariants in R. We consider the bimodule

Bs := R⊗Rs R(1).

Given an expression w = (s1, . . . , sm) we consider the Bott-Samelson bimodule

Bw := Bs1Bs2 . . . Bsm .

The category B of Soergel bimodules is defined to be the strictly full (i.e. closed under 
isomorphism), additive (i.e. M, N ∈ B ⇒ M ⊕ N ∈ B), monoidal (i.e. M, N ∈ B ⇒
MN ∈ B) category of BimR which contains Bs for all s ∈ S and is closed under shifts 
(m) and direct summands.

Notation 2.1. For Soergel bimodules M and N , we denote by Homi(M, N) the degree i
morphisms in Hom(M, N), where the latter is the set of all R-bimodule morphisms.

2.4. Soergel’s theorems and Soergel’s conjecture

Soergel proved the following facts (usually known as Soergel’s categorification theo-
rem). For all w ∈ W there exists a unique (up to isomorphism) bimodule Bw which 
occurs as a direct summand of Bw for any reduced expression w of w, and is not a sum-
mand of (some shift of) By for any shorter sequence y. The set {Bw | w ∈ W} constitutes 
a complete set of non-isomorphic indecomposable Soergel bimodules, up to isomorphism 
and grading shift. There is a unique isomorphism of Z[v, v−1]-algebras between the split 
Grothendieck group of B and the Hecke algebra

ch : [B] → H,
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satisfying ch([Bs]) = bs and ch([R(1)]) = v.
Soergel gave a formula to calculate the graded dimensions of the Hom spaces in B

in the Hecke algebra. We need some notation to explain it. Given a finite dimensional 
graded R-vector space V = ⊕V i, we define

gdim(V ) =
∑

dim(V i)vi ∈ Z�0[v, v−1].

Given a finitely-generated and free graded right R-module M , we define

grk(M) := gdim(M ⊗R R).

The following is Soergel’s hom formula. Let M, N ∈ B, then Hom(M, N) is finitely-
generated and free as a right R-module, and

grkHom(M,N) = (ch(M), ch(N)).

Soergel’s conjecture is the following statement:

ch([Bx]) = bx for all x ∈ W .

We remark that when Soergel’s conjecture is satisfied (the case considered in this paper), 
by Soergel’s hom formula and by the useful property at the end of Section 2.2, we obtain 
a complete description of the degree zero morphisms between indecomposable objects:

Hom0(Bx, By) ∼= δx,yR. (2.1)

2.5. Double leaves

An important result in the theory of Soergel bimodules is a theorem of the first 
author giving a “double leaves” basis of morphisms between Soergel bimodules. Let 
w = (s1, . . . , sm) denote an expression. For any subexpression e of w the first author 
associates a morphism

LLw,e : Bw → Bx(df(e)).

Here x is a fixed but arbitrary reduced expression of x = we. The definition of LLw,e

is inductive, and will not be given here, as we will not need it. However it is important 
to note that the definition of LLw,e depends on choices (fixed reduced expressions for 
elements and fixed sequences of braid relations between reduced expressions) which seem 
difficult to make canonical.

However, once one has fixed such choices one can produce a basis of homomorphisms 
between any two Bott-Samelson bimodules. Indeed, a theorem of the first author [9, 
Thm. 3.2] (see also [4, Thm 6.11]) asserts that the set
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�
x∈W

{LL∗
w,e ◦LLz,f | e ⊂ w, f ⊂ z such that we = zf = x}

is a free R-basis for Hom(Bz, Bw). Here the superscript ∗ stands for flipping the di-
agram upside-down, when the map is seen diagrammatically. Let us now give a non-
diagrammatic definition. Any light leaf l is constructed using three kind of maps. In the 
language of [9, §3.1.1] they are ms, js and fsr for s, r ∈ S. These maps admit adjoint 
maps m∗

s, j
∗
s and f∗

sr. To obtain the map l∗, one starts with l and then inverse the arrows 
by replacing each appearance of ms (resp. js and fsr) by m∗

s (resp. j∗s and f∗
sr).

2.6. The sets Dx,y and Dx,y

Let M, N ∈ B. For x ∈ W we denote by

Hom<x(M,N) ⊂ Hom(M,N)

the vector space generated by all morphisms f : M → N that factor through By(n) for 
some y < x and n ∈ Z. Let

Hom �<x(M,N) := Hom(M,N)/Hom<x(M,N).

We denote by B�<x the category whose objects coincide with those of B and for any 
M, N ∈ B�<x we have HomB �<x

(M, N) := Hom �<x(M, N).
Consider the sets

D̂x,y := Hom �<x(By, Bx),

Dx,y := Hom �<x(By, Bx) ⊗R R and

Dx,y := Hom �<x(By, Bx) ⊗R R.

The set Dx,y is a canonical direct summand of Dx,y. This is because, when Soergel’s 
conjecture is satisfied, there is one element in End(By) projecting to By called the 
favourite projector (see [9, §4.1]). Let us give the construction of this projector. Let 
us assume (by induction) that projection and inclusion maps have been constructed

By

py

� By

iy
↪→ By

for some reduced expression y of y. Suppose y < ys, then

bybs = bys +
∑
x<ys

mxbx, with mx ∈ Z�0.

By Soergel’s conjecture this implies
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ByBs = Bys ⊕
⊕
x<ys

B⊕mx
x .

By (2.1), there is only one projector in this space projecting to Bys, which we write as

ByBs

py,s� Bys

iy,s

↪→ ByBs.

We now define the inclusion and projection maps of our favourite projector to be the 
compositions

ByBs

py idBs� ByBs

py,s� Bys

iy,s

↪→ ByBs

iy idBs

↪→ ByBs.

3. Canonical light leaves

This section contains the new observations of this paper. We explain that certain 
canonical elements and maps allow one to define canonical light leaves, from which our 
main theorem (Theorem 1.1) follows easily.

Remark 3.1. In this paper we use “canonical” to mean “not depending on any choices”. 
We do not use it in the stronger sense that is typical in Lie theory (i.e. to refer to the 
Kazhdan–Lusztig basis of the Hecke algebra, or the canonical basis of quantum groups).

3.1. Some canonical elements

What do we really mean when we write Bx? In the general setting of Soergel bimod-
ules, we mean a representative of an equivalence class of isomorphic bimodules, where 
each isomorphism is not canonical. In our setting (where Soergel’s conjecture is avail-
able), we mean a representative of an equivalence class of isomorphic bimodules, where 
each isomorphism is canonical up to an invertible scalar (in our case the real numbers 
without zero R�=0). We now explain a somewhat ad hoc way to fix this scalar, so that 
Bx is defined up to unique isomorphism.

Consider an expression x, and the corresponding Bott-Samelson bimodule Bx. It con-
tains a canonical element

cxbot := 1 ⊗ 1 ⊗ · · · ⊗ 1 ∈ Bx.

(Note that Bx is zero below degree −�(x) and is spanned by cbot in degree −�(x); bot
stands for “bottom”.) We denote by cxbot ∈ Bx the image of cxbot under the favourite 
projector, where x is a reduced expression for x.

From now on we will always understand Bx to mean Bx together with the element 
cbot ∈ Bx. Given two representatives (Bx, cxbot) and (B̃x, ̃cxbot), there is a unique isomor-
phism Bx → B̃x which sends cxbot to c̃xbot.
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Remark 3.2. Consider the following commutative diagram

Bx Bx′

Bx Bx

ϕ

px px′

∼
ζ

where: ϕ is a braid move (see [4, §4.2], where they are called rex moves); px (resp. px′) 
are the projections in the favourite projector associated to x and x′; and ζ is the induced 
isomorphism. One may check that ζ(cxbot) = cxbot. (We will not need this fact below.) 
This gives another sense to which cbot is canonical.

3.2. Some canonical maps

In this section we introduce the canonical maps which will be our building blocks for 
the definition of canonical light leaves, in the next section.

Lemma 3.3. Let x ∈ W and s ∈ S and suppose that x < xs. The spaces

Hom0(BxBs, Bxs), Hom−1(BxsBs, Bxs) and Hom1(Bxs, Bx)

are all one-dimensional.

Proof. We consider the spaces one at a time. As in last section, we have

BxBs = Bxs ⊕
⊕
y<xs

B⊕my
y

and (2.1) allows us to conclude that Hom0(BxBs, Bxs) is one dimensional.
We now consider the second space. By Soergel’s hom formula and Soergel’s conjecture, 

the dimension of

Hom−1(BxsBs, Bxs)

is the coefficient of v−1 in the Laurent polynomial (bxsbs, bxs). But

bxsbs = (v + v−1)bxs.

As (bxs, bxs) ∈ 1 + vZ[v], we conclude that Hom−1(BxsBs, Bxs) ∼= R.
For the last case, we need to calculate the coefficient of v in (bxs, bx), i.e. in

(hxs + vhx +
∑
y<xs

Pyhy , hx +
∑
z<x

Qzhz)
y �=x
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where Py, Qz ∈ vZ[v]. By definition of the pairing, it is clear that the coefficient of v is 
1. �

Let x ∈ W and s ∈ S be as in the lemma above (i.e. x < xs). Both BxBs and Bxs

are one-dimensional in degree −�(x) − 1, where they are spanned by cxbotc
s
bot and cxsbot

respectively. (We write cxbotc
s
bot instead of cxbot ⊗ csbot.) Hence there exists a unique map

αx,s : BxBs → Bxs (3.1)

which maps cxbotc
s
bot to cxsbot. Similar considerations show that there exists a unique map

βx,s : BxsBs → Bxs(1) (3.2)

resp.

γx,s : Bxs → Bx(1) (3.3)

mapping cxsbotc
s
bot to cxsbot (resp. cxsbot to cxbot).

3.3. The construction

We will use the maps αx,s, βx,s and γx,s constructed above. We will also use the 
multiplication map

ms : Bs → R(1) : f ⊗ g �→ fg.

Remark 3.4. The reader may easily check that in fact ms = γid,s.

Consider the following data:

(1) an expression (not necessarily reduced) y = (s1, . . . , sn);
(2) elements x ∈ W , s ∈ S; and
(3) f : By → Bx.

To this data, we will associate two new maps:

f0 : ByBs → Bx and f1 : ByBs → Bxs.

These maps are constructed as follows: If x < xs, define

f0 := f ⊗ms and f1 := αx,s ◦ (f ⊗ id).

If xs < x, define

f0 := βxs,s ◦ (f ⊗ id) and f1 := γxs,s ◦ βxs,s ◦ (f ⊗ id).
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Given an expression w and a subexpression e define the canonical light leaf

CLLw,e := ide,

where id means id ∈ End(R) and for example id(0, 1, 0) means (((id0)1)0).

Example 3.5. If x = (s1, . . . , sm) is reduced, and e = (1, 1, . . . , 1) then CLLw,e agrees 
with the projection in the favourite projector. If e = (0, 0, . . . , 0) then CLLw,e = ms1 ⊗
· · · ⊗msm .

The proof of the following theorem is essentially the same as in [9, Thm. 3.2] and [4, 
Thm 6.11].

Theorem 3.6. The set

�
x∈W

{CLL∗
w,e ◦CLLz,f | e ⊂ w, f ⊂ z such that we = zf = x}

is a free R-basis for Hom(Bz, Bw).

Now we can explain why this theorem proves Theorem 1.1. By Theorem 3.6, the 
graded set {CLLy,e | with e expressing x} is naturally an R-basis of D̂x,y, thus it gives an 
R-basis of Dx,y. So, in summary, the canonical map CLL in Theorem 1.1 is the R-linear 
map defined on the generators e ∈ X̃x,y by e �→ CLLy,e ⊗R idR.
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