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Abstract

Letc,(A),n=1,2,..., be the sequence of codimensions of an algebexer a fieldF of char-
acteristic zero. We classify the algebragup to Pl-equivalence) in case this sequence is bounded
by a linear function. We also show that this property is closely related to the followirg(Af,
n=12,..., denotes the sequence of colengthsApfcounting the number aof,,-irreducibles ap-
pearing in thexth cocharacter ofi, then lim,—, ~ I, (A) exists and is bounded by 2.
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1. Introduction

Given an algebra over a fieldF one can associate # a numerical sequeneg(A),
n=1,2, ..., called the sequence of codimensionsAgfgiving a measure of the poly-
nomial identities satisfied byA. In generalc,(A) is bounded from above by!, but in
caseA is a Pl-algebra, i.e., satisfies a non-triygalynomial identity, a celebrated theorem
of Regev asserts that, (A) is exponentially bounded [17]. When the fieltlis of char-
acteristic zero, it turns out that the sequence of codimensions of any Pl-algebra is either
polynomially bounded or grows exponentially (see [11]). For general Pl-algebras the ex-
ponential rate of growth was computed in [5] and [6] and it turns out to be a non-negative
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integer. In case the codimensions are polynomially bounded, Kemer in [12] gave the fol-
lowing characterization. Laf be the infinite dimensional Grassmann algebra andTet

be the algebra of 2 2 upper triangular matrices. Thep(A),n =1, 2, ..., is polynomi-

ally bounded if and only if5, UT> ¢ var(A), where va¢A) denotes the variety of algebras
generated by.

The aim of this paper is to try to refine Kemer’s result through the knowledge of the
polynomial rate of growth of, (A). In general, given an integeg= 0 can one find a (finite)
number of algebrag/y, ..., My depending on, such that limsup, . log, c,(A) <t if
and only if M1, ..., My ¢ var(A)? This question seems out of reach in this generality
but we shall give a complete answer for some values @¥e first need to formulate an
apparently different problem about representations of the symmetric group

An equivalent formulation of Kemer's result can be given as follows.EEX) be the
free algebra on a countable sét= {x1, x2, ...} and let Id A) be the T-ideal of polynomial
identities of the algebra. The permutation action of,, on the spacé/,, of multilinear
polynomials in the firsk variables induces a structure §f-module onvn+g,(A) and let
xn(A) be its character. By complete reducibility we can wifigA) =), , , ma x» Where
X, is the irreducibleS, -character associated to the partitiorof n andm; > 0 is the
corresponding multiplicity. Theh (A) = Y, , m;. is thenth colength ofA. Now Kemer's
result can be stated as follows [1%};(A) is polynomially bounded if and only if the
sequence of colengths is bounded by a constantl,j(@) < k, for somek > 0 and for all
n > 1 (see [3]).

In this setting one can ask if it is possible to give a finer classification depending on the
value of the constarit. In particular, giverk > 0, can one find a finite number of algebras
Mi, ..., My, depending o, such thatlimsup, ., I, (A) <kifandonlyif M1,..., M, ¢
var(A)? In this paper we are able to answer this question in the positive inkcase.

We shall also show that this is strictly related to the codimensions bking linearly
bounded. As a consequence we are able tssiflaup to Pl-equivalence the algebras
such that, (A) < 2 orc,(A) < kn. It turns out that for large enough the only sequences
of codimensions allowed atg (4) =0, 1, n andc, (A) =2n — 1.

2. Generalities

Throughout this paper, we shall denote Bya field of characteristic zero and byan
associative algebra ovétr. We refer the reader to [4] and [18] for the basic definitions and
properties of Pl-algebras.

Let F(X) be the free associative algebra on the countableXset{x1, x2, ...} and
let Id(A) = {f € F(X) | f =0 on A} be the set of polynoial identities of A. Clearly
Id(A) is a T-ideal of F(X), i.e., an ideal invariant under all endomorphism&gi). It
is well known that in characteristic zero(i4l) is completely determined by its multilinear
polynomials and we denote by

Vi = span:{xs) - Xom) | 0 € Su}
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the space of multiliear polynomials in the indeterminates, ..., x,. The symmetric
groups, acts on the lefto,: if o € S, and f (x1, ..., x,) € V,, then

of (X1, ..., Xn) = f(Xa@)s -+ -5 Xo(m))-

Since the subspadé, N Id(A) is invariant under this action,

V,(A) = L
T v, N 1d(A)

has a structure of,,-module. TheS,,-character o, (A), denotedy, (A), is called the:th
cocharacter oA andc,(A) =dimg V,(A) is thenth codimension ofd.

Itis well known that in characteristic zero there is a one-to-one correspondence between
irreducible S, -characters and partitionis- n. If x, denotes the irreduciblg,-character
corresponding ta then, since chafF = 0, by complete reducibility we can write

Xn(A) =Y "mix., (1)
Abn
wherem;_ > 0 is the multiplicity of x, in the given decomposition. Also
h(A) =) " m;
An

is called thexth colength ofA.
The following remark lists some basic profies of the sequence of cocharacters, codi-
mensions and colengths.

Remark 1. Let A and B be F-algebras and led & B be their direct sum. Iy, (A) =

Y oaen M X Xn(B) =3 5, m; xo., and x,(A® B)=)_,, , m} x, are thenth cocharac-
ters ofA, B andA @ B, respectively, them} <mj +m},

Ih(A® B) <I(A)+1,(B) and c,(A® B) <cu(A)+cn(B).

In caseB is a nilpotent algebra ans* = 0, then for alln > k we havem) =m,. Hence
I,(A® B)=1,(A) andc, (A ® B) = ¢, (A) in this case.

Proof. Consider the map aof,,-modules

Va Va
— @
Vo, NId(A) ~ V,NId(B)

oV,
such thate(f) = (f + (V, N1d(A)), f + (V, N 1d(B))). Since kefx) = V, N1d(A) N
Id(B) =V, NId(A & B), we have an embedding 6f-modules

Vi Vi Vi
V,NId(A & B) V., NIld(A) ~ V,NId(B)
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Thusm} < mj +m’ andl, (A @ B) <L(A) +1,(B), ch(A® B) <cu(A) + c,,(B)
If B¥ =0 then, for alln > k is the zero module. It follows th

'V, ﬂld(B)
foralln > k. O

% mld(AeaB
n
V,nld(A)

Given an algebra, let vartA) denote the variety of algebras generateddbyAnother
fact that we shall use throughoutthe paper is thataind B are F-algebras an® < var(A)
then

I,(B) <I,(A) and cn(B) < cp(A).

This is clear since in this case,(4)) < Id(B) and so,V,(B) can be embedded iV, (A).

In the next sections we prefer to work with the representation theory of the gen-
eral linear group which is well related to that of the symmetric group. To this end we
need to introduce the space of homogeneous polynomials in a given set of variables.
Let F,,(X) = F(x1,...,x;) denote the free associative algebraninvariables and let
U = span:{x1, ..., xn}. The groupGL(U) = GL,, acts naturally on the left on the space
U and we can extend this action diagonally to get an actioh,p{¥).

The space, (X) NId(A) is invariant under this action, hence

Fn (X)
Fin(A) = —————
Fn(X)N1d(A)
inherits a structure of lefSL,,-module. LetF; be the space of homogeneous polynomials
of degree: in the variablesy, ..., x,,. Then

Froa) = — b
T FrRNId(A)

is aGL,,-submodule off;, (A) and we denote its character iy (A). Write

Ya(A) =) i

An

where y, is the irreducibleGL,,-character associated to the partitiorand iz, is the
corresponding multiplicity. It was pred in [1] and [2] that if the:th cocharacter oft has
the decomposition given in (1) them, =m,, for all A - n whose corresponding diagram
has height at mosi:.

It is also well known (see for instance [4, Theorem 12.4.12]) that any irreducible sub-
module of F} (A) corresponding to. is generated by a non-zero polynomjél, called
highest we|ght vector, of the form

Al
fi= l_[Sh;(A)(xl, e X)) Z A0, (2)

i=1 o€eS,
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wherea, € F, the right action of§, on F.(A) is defined by place permutatioh; (1) is
the height of theth column of the diagram of and

S (x1, ..., %) = Z(Sgnf)xr(l) CXr(r)

TES,

is the standard polynomial of degreeRecall thatf; is unique up to a multiplicative
constant.

For a Young tablead;, denote byfr, the highest weight vector obtained from (2) by
considering the only permutatiene S, such that the integees(l), ..., o (h1(1)), in this
order, fill in from top to bottom the first column @, o (h1(X)+ 1), ..., 0 (h1 (1) +h2(X))
the second column dff;, etc.

We also have the following (see for instance [4, Proposition 12.4.14]).

Remark 2. If

Ya(A) = i

An

is theGL,,-character of]: (A), thenm;, # O if and only if there exists a tabledy such that
the corresponding highest weight vecir is not a polynomial identity ford. Moreover
m; is equal to the maximal number of lindaindependent highest weight vectofg_ in
F'(A).

3. Computing theidentities of some Pl -algebras

The purpose of this section is to compute the cocharacters, the codimensions, the
T-ideals, etc. of some Pl-algebras that will play a basic role in the next section.

Given polynomialsfi, ..., f, € F(X) let us denote by f1, ..., f,)T the T-ideal gen-
erated byfi, ..., f,. We shall also denote by, z, 7, w the variables ofX. Also, given an
algebraA let J(A) denote its Jacobson radical.

In order to shorten the proof of next lemma and of Lemma 6 we use a result of Guterman
and Regev [9] even though a direct proof can be easily found.

Lemma3. Let My = (8?) and M2 = (§ ©). Thenfor all n > 1,

1. xn(M1) = 2 (M2) = X(n) + X(n-1,1)-

2. ln (Ml) = ln(MZ) =2.

3. {xiy---xy,, i2<--- <iy}isabassof V, (mod V, Nld(M1)) and {x;, - - - x;,, i1 <
... <liy_1}isabasisof V,, (mod V, NIld(M>2)).

4. ¢,(M1) =c,(M2) =n.

5. 1d(M1) = (z[x, y])t and Id(M2) = ([x, ylz)T.
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Proof. The conclusion clearly holds far= 2, hence we may assume that 3. By [9,
Theorem 1], ldM1) = (z[x, y])T, [d(M>2) = ([x, y]z)T andc, (M1) = ¢,,(M2) = n. Hence
the elements

Xig© o Xiy, d2<---<ly

spanV, (mod V, Nnld(M1)). Since their number equals= c¢,(M1) = dimV, /(V, N
ld(M1)) we have thatx;, - - - x;,| i2 < --- < i,} is a basis oW, (mod V,, N ld(M2)).

We now determine the decomposition of thth cocharacter of/;. Let ¢;; be the
usual matrix units. Since,(M1) = n is polynomially bounded and (M1) = Fe12 sat-
isfiesJ (M1)? =0, by [7, Theorem 3] we have that

Xn(M1) = Z M) X, =M@y X(n) + Mn-1,1) X(n—1,1)-

A=n
|A|—A1<2

If A = (n), the corresponding highest weight vecjfar= x" is not an identity ofM; since
fr.(e22) = e22 # 0. Then, being” the only highest weight vector correspondingte (n),
it follows thatm ) = 1.

Since ¢, (M1) = m) degxm) + mu—1)degxx—1) and by the hook formula [10],
degx) = 1, degx(,—1,1) =n — 1, it follows thatn = 14 m,—1y(n — 1) and, som,—1) =
1. Therefore

Xn(M1) = X@n) + X(n—1,2)

and

I, (M) = ka =2.

An

A similar proof gives the desired results abagi. O

In what follows we use the left normed notation for Lie commutators. Hence we write
[...[[x1,x2], x3], ..., xp] = [x1, x2, ..., xu].

b
Lemma4. Let M3 = [(?mfz) |a.b,c,de F}.Thenfor aln >3,
00a

L xn(M3) = x(n) + X(n-1.1) + X(n—-2,1,1)-

2. 1,(M3) = 3.

3o {xre X, Xig X, Llx, x5], i1 < - <ip—2, i > j}isabasisof V, (mod V, N
Id(M3)).

4. cy(Mg) = 2042,

Nd(M3) = ([x, y, z], [x, y][z, w])T.

o1

Proof. Let Q = ([x, y, zl, [x, yllz, w])T. Since [M3, M3] C sparfe13} it is clear that
[x,y,z] and [x, y][z, w] are identities of\l3 and Q0 C Id(M3). Before proving the oppo-
site inclusion, we find a generating setl¢f moduloV, N Q.
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It is well known (see for instance [4, Thesm 5.2.1]) that ayp multilinear polynomial
of degree: can be written, modul@x, y][z, w])T, as a linear combination of polynomials
of the type

Xig * Xiyy [Xhs Xjgs o v os Xjpu_ns]

whereiq < -+ <ip, j1 <+ < ju—m—1, k > j1, m #n — 1. Thus, because of the identity
[x,V, z], the elements

X1 Xn, Xig oo Xiy_olXi, X1, i1<---<ip_2, i>] (3)

spanV, moduloV, N Q. We next prove that these elements are linearly independent mod-
ulo Id(M3).
Suppose that

n
f= Z oijXig - Xiy_plXi, Xj14+ Bxr---x, =0 (mod VN Id(Mg)).
=)
lij>j

By making the evaluation; = e11 + e22 + e33, forallk =1,..., n, we getg = 0. Also,
for fixedi andj, the evaluation; = e1, x; = ep3 andx; = e11+ epp + esz for k ¢ {i, j}
givesw;; = 0. Thus the elements in (3) are linearly independent modiold(M3). Since

V., N Q CV, NId(M3), this proves that IV/3) = Q and the elements in (3) are a basis of
V, moduloV,, N ld(M3). By counting we obtain

Va _ nn—1+2
V,NIld(M3) 2 '

cn(M3) =dim

Since deg () + degxu-1,1) + degxm—211) = 1+ (n — 1) + @=1Ur=2d — n=DA2 g
we find for eachh € {(n), n — 1, 1), (n — 2, 1, 1)} a highest weight vector which is not an
identity of M3, we may conclude that,(M3) = xu) + xn—1,1) + X(n-2.1,1) and thenth
cocharacter has the wished decomposition.
Clearlyx", the highest weight vector corresponding.te: (n), is not an identity of\/s.
Let f—1,1) = [x1, xz];ci“2 be a highest weight vector correspondingte (n — 1, 1).
Takingai = (e11+ e22 + e33) + e12 andaz = e23, we get that

f-11(a1,a2) =e13#0.

Thus f(,—1,1) is not an identity of}3.

Finally f, = S3(x1, x2, x3)x1’*3 is a highest weight vector corresponding.te: (n — 2,
1,1), whereStz is the standard polynomial of degree 3. By choosifng: e11 + e22 + €33,
az = e12 andasz = ep3, we obtain

fila, a2, a3) = e13#0.
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Thus, since these polynomials are not identitiea/af it follows that
Xn(M3) = X(n) + X(n-1.1) + X(n-2,1.1)
and
ln(M3) =3.
The proof of the lemma is complete

Lemmab. Let B = M1 ® M. Thenfor all n > 3,

L xn(B)=xm) +2X(0-1,1-

2. 1,(B)=3.

3o [y, xilxjy - XXy, X Xi X L[X1, X ], X1 cXn, J1 <o < Ju—2)}iSa
basis of V,, (mod V,, N Id(B)), where the symbol x; means that the variable x; is
omitted.

4. cy,(B)=2n-—1.

. 1d(B) = (S3(x, y, 2), zlx, y]w, [x, y][z, w])T.

)]

Proof. Let Q = (S3(x, y, 2), zlx, ylw, [x, y][z, w])T. It is easy to check tha® C Id(B).
Next we claim that the set of polynomials

{[x1, xilxjy o K e Xy Xy Ki e X o[X1, Xi ], X1 Xn, j1 <00 < a2} (4)
spanV, moduloV,, N Q.
Since forn = 3 this is clear, we assume that- 3. Now, as in the proof of the previous

lemma, any mitilinear polynomial of degree can be written, modul¢{x, y][z, w])T, as
a linear combination of polynomials of the type

Xig v+ X [Xks Xy ooy Xy ]

wherei1 < -+ <iy, 1< Ju—m-1, k> j1,m#n—1.
Since

(ks Xjpseees Xyl = [k Xy x5 - X, q
X, Xjplxk, X1 (mod(z[x, y]w)T)
and
Xig Xy Xk X 1 X,y =0 (mod(zlx, ylw)y),
we have that fom > 1,

Xig o Xi [Xies X ooy X, g = Xky o X, Xk, x ] (Mod Q).
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Also, since[x, y][z, w] € Q, we may assume that < --- < k,—2. Now, sincen > 4, if
j1# 1 we have that

Xiey ** Xy _o[Xks X j1 ] = WXLXEX j; — WXLX jy X = WXEX1X j; — WX j; X1Xk
= wxg[x1, xj;] — wxj;[x1, x¢] (mod Q)

wherew = x, - - - x¢,_,. Thus

Xky * " Xk o[k Xjy 1= Xy -, X1, Xy ] = xiy -+ xp, o1, 1] (mod Q)

wherehy < --- < hy,—2 andly < --- < [,_2. Similarly
L, X jy 1xkg =+ Xk _p = [X2, Xy 1Xpg - Xy _p — (X0, XpJxy - x,_, (MO Q).
It follows that the polynomials
[x1, Xi]le'“fi X oy Xy ce X X olx L Xl XL X, J1 <t < jp—2

generate/,, (mod V,, N Q) forn > 3.
We next show that the elements in (4) are linearly independent modw#9.1d
Let f €1d(B) be a linear combinationfehe elements in (4):

n

f= Z oi[xy, xilxj - K- xj,_,
. i:1.
J1<-<Jn-2

n
+ Z Bjxjy o Xiwo-xj, olx1, x4+ yx1-xu.
j=1

By making the evaluation; = (e22,0), for all i = 1,...,n, we gety = 0. Also for a
fixed k, the evaluationc; = (e12, 0) andx; = (e22, 0) for i # k, givesay = 0. Similarly
xr = (0, e12) andx; = (0, e11) for i #£ k, gives By = 0. Therefore the elements in (4) are
linearly independent moduldg, N 1d(B). Since

V,NIid(B)2V,NQ

it follows that Id(B) = Q and the elements in (4) are a basishfmoduloV,, N Id(B) for
n > 3. Thus

cn(B) =dim 2n—1, forn>3.

n —
V,NId(B)
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We now determine the decomposition of thiéh cocharacter of this algebra. For an
algebraA write x,(A) =) ,,.,, mr(A)x.. Then, sinceB = M1 & M>, by Remark 1,
m; (B) < my(M1) + m) (M>) for all L - n. Hence by Lemma 3, it follows that

Xn(B) =mu)yX(n) + Mu-1,1X(n—1,2)
andm(,,), Mp—1,1) < 2.

Since deg,) = 1 andx” is not an identity ofB, clearlym = 1. Moreover, since
cp(By=2n-1 and deg((n,]_’l) =n —1, it follows thatm(,,,l’l) =2.Thus

Xn(B) = X(n) + 2X(n-1,1)
and

1,(B) =ka =3 0O

An

FFF OFF OFF
Lemma6. LetM4:(o 0F>,M5:(00F) andMez(OFF).Thenforalln>3,
000 00F 000

=

- Xn(Ma) = xn(M5) = xn(M6) = X(n) + 2X(n—1.1) + X(n—2.2) + X(n—2.1,1)-

Ay (Myg) =1,(Ms) =1,,(Mg) = 5.

3. {xiy - X, _pXixj, i1 < --- <ip_p} is abassof V, (mod V, NI1d(Ma)), {xixjxi
S Xj, o, 11 < -+ <iy_p}isabasisof V, (mod V, Nld(Ms)) and {x;x;; - - - xi,_,X;,
i1<---<ip_2}isabassof V, (mod V, Nld(Ms)).

4. cp(My) = cy(Ms) = cy,(Meg) =n(n — 1).

- 1d(Mg) = ([x, ylzw)T, 1d(Ms) = (zw[x, y])T and Id(Me) = (z[x, y]w)T.

N

()]

Proof. By [9] we have that IdMa) = ([x, y]lzw)T, |d(Ms) = (zw[x, y])T, |d(Ms) =
(zlx, ylw)T andc,(M4) = ¢;,(Ms) = ¢,,(Mg) = n(n — 1). As in the proof of the previous
lemmas, it is easy to see that the elements

Xig+ o Xjy o XiXj, I1<-+-<lIp-2

form a basis ot,, (mod V,, N1d(M3)). A similar remark holds foMs and M.

We next determine the decomposition of thil cocharacter oM. A similar proof
will give the decomposition of theth cocharacter oMs and Mg. SinceJ (Ma) = Fe12+
Fe13+ Feps, andJ (M) =0, by [7, Theorem 3] we have that

Xn(Ma) =muy X)) +Mu—1 )X (-1, + Mu-22X(1n-2,2) + Mu-211)X(n-2,1,1)-

SinceM4 is not nilpotent, clearlyn,) = 1.
LetA = (m —1,1) and denote b)TA(’) the standard tableau containing the integer
2,...,nin the only box of the second row. Then

i—2 n—i i—2 n—i
fT)L(i)Z)Cl)Cl Xoxy | —Xx2xy “x1x]
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is the highest weight vector corresponding"}f@. By making the evaluation; = e11+e23
andxz = e12, we get that

fT;'” =e12 and fT)fn_l) = €13.

This says thaff,.» and f,.»-1 are not identities of/4. Moreover these polynomials are
A A
linearly independenimod Id(My)). In fact if

f= alfT)f;1) + asz)f;1—1) =0 (mod |(XM4)),

make the evaluation; = e11 andxz = e12 to getas = 0. Similarly, chooser; = e11 + e23
andxz = e1» to obtainaz = 0. Thusm,_1,1) > 2. Sincec, (M4) =n(n — 1) and

degx ) + 2degxn—1.1) + degxn—2.2) + d€gx(n—2.1.1)
(n—3)+ (n=2)n—-1)

n
=14+2n—-1
+2(n—-1)+ > >

nn-—1),

in order to prove the given decomposition of thtl cocharacter, it is enough to find for
eachh € {(n — 2,2), (n — 2,1, 1)} a highest weight vector which is not an identitydf,.
ForA = (n — 2, 2), consider the following standard tableau

1 2 |

n—1 n

and the corresponding highest weight vector

fr,= ) (SN0 D)X X (mX] Ko @Xr(2)-
o,TESY

Evaluatingr1 = e11 andxo = e12 + e23, we getfr, = e13# 0 andfr, is not an identity
of M.

Finally considerfr, = >, 4. (sgn a)xo(l)xf*3xo(2)xo(3), the highest weight vector
corresponding to the standard tableau

n—1
n

Since

fr,(e11, €12, €23) = €13#0

we have thatfr, is not an identity ofM4. Hencey,(Ma) = xu) + 2X(n-1,1) + X(n—2,2) +
X(n-2,1,1 andl,(Ms) =5. O
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4. When codimensions are bounded by a constant

A main tool in this and the next section is the following result on the decomposition of
the Jacobson radical of a finite dimensional algebra.

Lemma 7 [8, Lemma 2] Let A be a finite dimensional algebra over F and suppose that
A = B+ J,where B is a semisimple subalgebra and J = J(A) is its Jacobson radical.
Then J can be decomposed into the direct sum of B-bimodules

J =Joo® Jo1® J10® J11,

where, for i € {0, 1}, J;; is a left faithful module or a O-left module according asi = 1 or
i =0, respectively. Smilarly, Ji; isaright faithful module or a O-right module according
ask =1or k=0, respectively. Moreover, for i, k, I, m € {0, 1}, Jix Jim < Sk1Jim Where §y;
is the Kronecker delta and J11 = BN for some nilpotent subalgebra N of A commuting
with B.

An obvious remark is that it = B + J is an algebra satisfying the hypothesis of the
previous lemma andglis the unit element oB, we have that

lgalg=a, 1lgb=>b and clg=c

forall a € J11, b € J10, ¢ € Jo1.
In the sequel we shall also use the following notation.

Definition 8. Let A and B be algebras. We say thatis Pl-equivalent taB and we write
A ~p B, ifId(A) =Id(B).

In the following lemmas we shall assume thiis a finite dimensional algebra of the
typeA = F + J whereJ = J(A) is the Jacobson radical df. Also we shall tacitly assume
thatJ has the decomposition given in Lemma 7. We start with the following.

Lemma9.Let A= F + J. If [J11, J11] # 0, then M3 € var(A).

Proof. Notice thatd’ = F + J11 is a subalgebra od. We shall prove thatfz € var(A’) C
var(A). Hence without lost of generality we may assume that F + J andJ = J11.

Since by hypothesig is not commutative/? 0 and letk be the least integer such
thatJ* =0 andJ*~1 £ 0. We proceed by induction dn

If kK =3 we shall prove that itself is Pl-equivalent td/3. In fact, in this case, sincerl
commutes with/, [A, A] € J2; hence[A, A, A] =0 and[A4, A][A, A] =0. By Lemma 4
this says that IgM3) C 1d(A).

Conversely, letf € 1d(A) be a multilineapolynomial of degree. By Lemma 4, one
can write f as

f=oaxi---x, + E Xy e Xi_plXis X1+ g
i>j
i1<-<ip—2
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whereg € Id(M3). Choosingy; =1 foralli =1,...,n we getae =0. Since[J, J] # 0,
there exist two elements b € J such thatla, b] # 0. Letig, jo € {1,...,n} be such that
Wigjo 7 0. Takecy, ..., ¢, € A, With ¢;; = a, cj, = b andc, = 15 for all k ¢ {io, jo}. Itis
easy to check that

fler, ..., cn) =ajgjola, b] #0,

a contradiction. Henc¢ = g € Id(M3) and Id A) = Id(M3). This settles the case= 3.

Let nowk > 3 and suppose first thg*—2, J1# 0. Leta € J¥~2 andb € J be such
that[a, b] # 0 and letB be the subalgebra of generated by 4, a, b. ThenB is the linear
span of the elementd.r, a, b, ab, ba, b, ..., b1}, and an easy computation shows that
[B, B] € J¥~1: hence[B, B, B] = 0 and[B, B][B, B] = 0. By Lemma 4 this says that
Id(M3) C Id(B). The other inclusion is proved as above. TiRIs-p; M3, M3 € var(A)
and we are done in this case too.

Therefore we may assume that—2, J] = 0. Suppose first thdt/, J] < J¥=2. Then,
sinceJ¥ = 0 we have that

[J,J,J]=0, [J,JI[J,J]1=0 (5)

and sinceA = F + J, J = J11 we also have thdtr, y, z], [x, y][z, w] are identities ofA.
Then by Lemma 4, 1gW3) C Id(A). Notice that, by hypothesis, there existb € J such
that[a, b] # 0. Let

f=oaxix+ E i jXig = Xi, o[xi, xj1+ g
i>j
i1<-<ip—2

be an identity ofA with g € Id(M3). The same procedure as above proves fhat g €
Id(M3), and Id A) = Id(M3) and we are done.

In order to finish the proof of the lemma we have only to study the fasé] ¢ J*—2.
This says that ifA = A/J%=2, A is not commutative. Then, from Lemma 7(A) =
J11(A) = J/J*2 is still non-commutative and (A)*—2 = 0 with k > 4. By the induc-
tive hypothesisifz € var(A) and sinced e var(A), we have thai\/z € var(A) C var(A).
The proof of the lemma is now complete

Lemma 10. Let A = F + J with Jo1 # O (respectively Jio # 0). Then B = F + Jp1 Or
B = F + Jo1 + J11, in case Ji1 is commutative, is a subalgebra Pl-equivalent to M1
(respectively B = F + Jipor B=F + J10+ J11isPl-equivalent to M5).

Proof. Itis clear thatB = F + Jo1 0r B = F + Jo1+ J11 is a subalgebra of. In any case
by the hypotheses we have thi8t B] C Jo1 and so,B[B, B] = 0. This says, by Lemma 3,
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that ldM1) C 1d(B). Let f € Id(B) be a multilineapolynomial of degree. By Lemma 3,
f can be written as

n
f = z ailxil o 'xin + g
i1=1
ip<-+-<ip

whereg € Id(M1). Suppose that there exist& {1, ..., n} such thaty, # 0. Choose:; =
1p, fori #£¢andc; = b € Jo1, b # 0. Sinceg is an identity ofB, we have

flet,...,cn) =a;blp =o;b #0,

a contradiction. Hencg = g € Id(M1) and IdB) = Id(M1) follows. ThusB is a sub-
algebra ofA which is Pl-equivalent ta\/1. Similarly it is proved thatB = F + J10 and
B = F + J10+ J11, in caseJy1 is commutative, are Pl-equivalentid,. O

Let G denotes the Grassmann algebra of countable rank®vEilenceG is generated
by the set{es, ez, ...} over F satisfying the relations;e; = —eje;, i, j =1,2,.... Let
alsoUT; denote the algebra of 2 2 upper triangular matrices ovér. We have

Remark 11. M3 € var(UT>2) Nvar(G).

Proof. By [14], Id(UT>2) = ([x, y][z, w])T and by [13], IdG) = ([x, y, z])T. Hence, since
[x, yllz, w], [x, v, z] € ld(M3) it follows that IdUT2) U Id(G) < Id(M3) and, so,M3 €
varlUTy) NvarG). O

We next state a result that will be used throughout the paper.

Theorem 12[7, Theorem 2]Let A bean F-algebra whose codimensionsare polynomially
bounded. Then there existsan algebra B suchthat A ~py Band B = B1® - - - ® B, where
B1, ..., B, arefinite dimensional algebras such that dimB;/J(B;) < 1 with J(B;) the
Jacobsonradical of B;, 1 <i < m.

We are now in a position to prove the main result of this section.

Theorem 13. Let A be an F-algebra. Then M1, M>, M3 ¢ var(A) if and only if
lim,— o0 [ (A) exists and is bounded by 1.

Proof. Suppose first that lipy,. o 1, (A) < 1. Then if M; € var(A) for somei € {1, 2, 3},
it would follow that/, (M;) <[,(A). But by Lemmas 3 and 4 we have that for @l 3,
I,(M;) > 1 and this contradicts the assumption that,lim, 7, (A) < 1.

Conversely, suppose thaff1, M2, M3 ¢ var(A). By Remark 11,UT,, G ¢ var(A),
hence by [12] the codimensions df are polynomially bounded, i.ec,,(A) < dn’, for
some constantd, r. Since the codimensions and the cocharacters of an algebra do not
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change upon extension of the base field (see for instance [5]) we assume, as we may, that
F is algebraically closed. Also by Theorem 12 we may assume that

A=A1@ - @ Ap

whereAs, ..., A, arefinite dimensional algebras such that, dimJ (A;) <1,1<i <m.
Notice that this says that eithdr, = F + J(A;) or A; = J(A;) is a nilpotent algebra.

If A; = J(A;) is nilpotent for alli, thenA is a nilpotent algebra and farlarge enough
I, (A) = 0. Hence we are done in this case.

Therefore we may assume that there exists{1, ..., m} such thatA; = F + J(4;)
and letJ (A;) = Joo + J11 + J10 + Jo1 WhereJoo, J11, J10, Jo1 are the bimodules defined
inLemma 7. IfJ11 is non-commutative, by Lemma 8{3 € var(A;) € var(A), a contradic-
tion. Therefore/11 must be commutative. Sindey, M> ¢ var(A), by Lemma 10 we have
thatJ10 = Jo1 = 0. ThusA; = (F + J11) & Joo is a direct sum of algebras afd+ J11 is
a commutative subalgebra 4f.

We have proved that if for some A; is not nilpotent, them; is the direct sum of a
commutative algebra and a nilpotent algebra. RecallingAhatd1 & - - - @ A,, and putting
together all pieces, it turns out that we can write

A=CON

whereC is a commutative non-nilpotent algebra aNdis a nilpotent algebra. Since for
alln,1,(C) =1 and forn large enough, (N) = 0, by Remark 1 we obtaih) (A) =[,(C) =
1 for n large enough, and the conclusion of the theorem follows.

Notice that the proof of the previous theorem actually shows¥hatM», M3 ¢ var(A)
if and only if there existso > 3 such that,,(A) < 1. Also in this casel is Pl-equivalent
to either a nilpotent algebra or to the direct sum of a nilpotent algebra and a commuta-
tive algebra. Thug,(A) has constant value (equal to O or 1) fofarge. Reading these
conclusions in terms of codimensions we get the following corollary.

Corollary 14. For an F-algebra A, the following conditions are equivalent.

. M1, M3, M3 ¢ var(A).

. Thereexists ng > 3 such that /,,(A) < 1.

. im0 1, (A) existsand is bounded by 1.

. Either A ~p N or A ~p; C @ N where N isanilpotent algebraand C isa commuta-
tive algebra.

. cn(A) < k for some constant k > 0, for all n > 1.

A OWNPF

()]

We remark that as a consequence, if the codimensions of an algedra bounded,
then they are eventually bounded by 1. This result and essentially property 4 of the above
corollary were proved by Olsson and Regev in [16].
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5. Characterizing varieties of colength < 2
In this section we shall deal with the cagéA) < 2. We start with the following.
Lemmal5. Let A= F + J bean F-algebra.

1. If J10Joo # O, then M4 € var(A).
2. If JooJo1# 0, then M5 € var(A).

Proof. Suppose thaf10Joo0 # 0 and letk > 1 be the largest integer such thabJé‘O #0.
Then there existi € J1p andb € Jclfo such thatab # 0. Let B be the subalgebra ot
generated by 4, a, b. Sinceab? = ba = a? = aly = 1pb = b1y = 0, it is easily seen
that [x, y]zw € Id(B). Hence by Lemma 6, @74) C Id(B). Let now f € Id(B) be a
multilinearpolynomial of degree. By Lemma 6 we can write

n
f= Z QjXip X, _,XiXj (mod |(XM4))
ij=1

i1<-<iy_2

and suppose that there exist jo € {1,...,n} such thaly;,;, # 0. Takecy,...,c, € B,
such that;, =a, ¢j, = b andc; = 1p, for all k ¢ {ig, jo}. It is easy to check that

fle1, ... en) = aigjoab # 0,

a contradiction. Thug € 1d(M4) and Id B) = Id(M4) implies M4 € var(A).
Property 2 is proved similarly. O

Lemmal6. Let A= F + J besuchthat J19# 0, Jo1 # 0 and J10Jo1 = Jo1J10=0. If J11
iscommutative, B = F + J1o+ Jo1+ J11 isa subalgebra Pl-equivalent to M1 & M.

Proof. Under the hypotheses of the lemniais a subalgebra od. Since[B, B] C Jo1 +
J1o, it is immediate that[x, y]w, [x, y][z, w] are identities ofB. Also it can be checked
thatS3 vanishes inB. By Lemma 5 this implies that ([d/1 & M2) C 1d(B). Now, Id(B) C
Id(F + Jio+ J11) NIA(F + Jo1+ J11). Since by Lemma 10, (d" + Ji0+ J11) = Id(M?2)
and IdF + Jo1 + J11) = ld(M71) we obtain IdB) C ld(M1) N Id(M2) = ld(M1 & M>).
Thus IdB) = Id(M1 & M>) and we are done.O

Lemmal7. Let A= A1 @ Az, where A1 = F + J (A1) with J(A1)10#£0and A = F +
J(A2) with J(A2)01 # 0. Then M1 @ M € var(A).

Proof. Itis clear thatB = (F + J(A1)10) ® (F + J(A2)01) is a subalgebra of. Hence
ld(B) = Id(F + J(A1)10) N Id(F + J (A2)01)

and by Lemma 10, IdB) = Id(M1) NId(M>2) = ld(M1® M2) ThusM1® M> € var(A). O
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Theorem 18. Let A bean F-algebra. Then My @ M2, M3, M4, Ms ¢ var(A) if and only if
lim,— o0 4 (A) exists and is bounded by 2.

Proof. Suppose first that there exists an integgr- 3 such that,,(A) < 2. Then, since
forn > 4, M1 & M2, M3, My, M5 have colength sequence bounded from below by 3, itis
clear thatM1 @ M>, M; ¢ var(A), for everyi = 3,4, 5.

Conversely, suppose thaf; & M2, M; ¢ var(A), fori = 3,4, 5. Since, by Remark 11,
UT2, G ¢ var(A), as in the proof of Theorem 13, we may assume thad algebraically
closed andthatt = A1 @ - - - ® A,,, with A; either a nilpotent algebra of; isomorphic to
F+JA),i=1,...,m.

By eventually reordering the algebrag, we may write

A=A10 - DA P A+1D - D An,

whereA; = F + J(A;) fori =1,...,k, andAx41, ..., A, are nilpotent algebras. Since
Aky1 D - - D Ay is still a nilpotent algebra, by Remark 1

[h(A)=1,(A1® - ® Ap)

for n large enough. Hence, without lost of generality we may assumeiteafl,1 @ - - - ®
Apandforeach=1,...,m, A; =F + J(4)).
SinceM1 & M ¢ var(A), by Lemma 17 A can be only of one of the following types:

(1) foreveryi=1,...,m,A; =F + J(A;) with J(A;)o1=0;

(2) foreveryi=1,...,m,A; =F + J(A;) with J(A;)10=0;

(3) there exist$ such thatd; = F + J(A;) with J(A;)10# 0, J(A;)o1 # 0 and for every
j#i,Aj=F+J(A;) with J(Aj)10=J(A;)o1=0.

Notice that sinceMs ¢ var(A;) C var(A), by Lemma 9, we have that(A;)11 is com-
mutative, foralli =1, ..., m.

We start by considering the first case, i.8(A;)o1 =0, for alli. Write A; = F + J
with J = J(A;). If J10Joo # O then, by Lemma 15 we would g&f, € var(A;) C var(A),
a contradiction. Thudi0Jo0 = 0 and this says that

A; = (F + Jio+ J11) @ Joo,
a direct sum of algebras. But then by Lemma 10 we have that either

Ai~p M@ Joo or A; ~p C @ Joo,

for some commutative algeb@, according ag1p # 0 or J1o = 0, respectively.
Summing up over all algebras, recalling thatC € var(My), it turns out that either

A~pMoy® - OMyDOCDN~pMaDCON ~p Mo DN
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or
A~pM2®--- @ Ma®N ~pM2® N
or
A~pCHN
whereN is a nilpotent algebra and is a commutative non-nilpotent algebra. Thus#ior
large, the sequence of colengthsAfs constant and, (A) equals either 1 or 2 as wished.
Itis clear that in case the second possibility occurs, the same proof with the due changes
shows that either
A~p M1 ®N
or
A~pCHN
andl, (A) takes constant value equal to 1 or 2, #darge.
Next we show that the third possibility cannot occur. Sirde, Ms ¢ var(A;), by

Lemma 15_,.]1()]00 = JooJo1 = 0. This implies that/10Jo1 + Jo1J10 iS a two-sided ideal
of A;. Let A; be the algebra

A; = Ai/(J10do1 + Jo1J10)-
It is easy to check that; = F + J(A;) and the Jacobson radica(A;) satisfies
J(Ai)mj(“ii)lo: 0 and J(Ai)loj (Ai)m: 0.

Obviously J1o, Jo1 are not contained itl10Jo1 + Jo1J10, therefore/ (A;)10, J (Ai)o1 # 0.
Hence by Lemma 1641 & M> € var(A;) C var(A;) C var(A), a contradiction. This com-
pletes the proof of the theoremO

From the proof of Theorem 18 it follows thaf1 & M», M3, M4, Ms ¢ var(A) if and
only if there existsig > 3 such that,,(A4) < 2. Also in this cased is Pl-equivalent to
either one of the algebras of Corollary 14 orMa & N or to M> @ N with N a nilpotent
algebra. Thug, (A) has constant value (equal to 0 or 1 or 2)/darge. Reading also these
conclusions in terms of codimensions we have.

Corollary 19. For an F-algebra A, the following conditions are equivalent.
1. My ® M, M3, Ma, Ms ¢ var(A).

2. Thereexists ng > 3 such that /,,(A) < 2.
3. lim,— [, (A) exists and is bounded by 2.
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4. AisPl-equivalent to one of thealgebras N, C & N, M1 & N or M> @ N, where N is
a nilpotent algebra and C is a commutative algebra.
5. ¢,(A) < n for n large enough.

In conclusion we have the following classification whafelenotes a nilpotent algebra
andC is a commutative non-nilpotent algebra: for any algebr@ndn large enough,

1. ,(A)=0ifandonlyifA ~p/ N.
2. l,(A)=1ifandonlyifA ~pC ® N.
3. I,(A) =2 if and only if eitherA ~py M1 & N or A ~py M2 @ N.

6. Algebraswith linear codimension growth

In this section we introduce a new algebra dendediefined as follows:

a b ¢
M7={<0 0 d) ‘a,b,c,deF}.
0 0 «a

We claim that the sequence of codimensionafefis bounded from below by2. In fact, in

order to show this, it is enough to find &p-character appeargwith non-zero multiplicity

in x,(M7) , whose degree is n2. Consider the partitioh = (n — 2, 1, 1) and letfr, bethe
highest weight vector corresponding to the standard Young tableau containing the integers
1, 2, 3 into the first column. Choosingy = e11 + e33, a2 = e12 andas = e23 we get that

fr, = 2e13# 0. This says thaj,—2,1,1) appears with non-zero multiplicity g, (M7).
Therefore, since by the hook formula, dgg-21,1) = (n — 1)(n — 2)/2, c,(M7) grows
asymptotically at least ag/2.

Lemma20.Let A = F + J bean F-algebra. If J10Jo0= JooJo1 =0 and Jo1J10 # O, then
Mg € var(A).

Proof. From the_ hypotheses it follows thdioJo1 is a two-sided ideal ofA. Then the
guotient algebrat = ﬁ still satisfies the hypotheses and moreover

J(“i)mj(“i)lo;"é 0 and J(A)loj (A)m =0.

We shall prove thadls € var(A), hence we may assume thafitself satisfies/o1./10 # 0
andJ10Jo1 = 0.

Let a € Jo1,b € J1o be such thatub # 0 and let B be the algebra generated by
1g,a and b. Since ba = aba = 0 and Ira = blp = 0,alr = a, 1pb = b, then
B = spar{lf,a, b,ab} and [B, B] C spara, b, ab}. Thus B[B, B] C sparb, ab} and
B[B, B]B =0.By Lemma 6, |dMs) C Id(B).
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Conversely, letf € Id(B) be a multilineapolynomial of degree. By Lemma 6, one
can write
n
f= Z QjjXiXjg Xy oXj (mod |CKM6)).
i,j=1

i1<-<ip_2

Suppose that there exigf, jo € {1, ..., n} such thaty;,;, # 0. Takecy, ..., c, € B, with
¢y =a, cjo =b andc, = 1y for all k ¢ {ig, jo} it is easy to check that

fler, ..., cn) =ajgjoab #0,

a contradiction. Thereforg € Id(Meg) and Id B) = Id(Meg). HenceMg € var(A). O
Lemma2l.If A= F + J with J10Jo1 # 0 and Jo1J10= 0. Then M7 € var(A).

Proof. Leta € Ji0, b € Jp1 be such thatb £ 0. We claim that the subalgebRgener-
ated by J,a andb over F is isomorphic toM7. This is easily seen sincé; = J2, =
Jo1J10= 0 implies thatu? = b2 = ba = 0. HenceB = sparlr, a, b, ab} is isomorphic to
M7 through the mag such that

¢(1lp) = e11+e3s, p(a) = e12, @(b) = e23, p(ab) = e13. O

Theorem 22. Let A be an F-algebra. Then the following conditions are equivalent.

1. ¢,(A) <kn for all n > 1, for some constant k.

2. M3, My, Ms, Mg, M7 ¢ var(A).

3. AisPl-equivalent to either N or C® N or My & N or Mo @ N or M1 &® M> d N
where N isa nilpotent algebra and C is a commutative algebra.

Proof. First suppose that the sequence of codimensiodsistinearly bounded. By Lem-
mas 4 and 6 and by the claim proved at the beginning of the sedtiqm\4, Ms, Mg, M7 ¢
var(A). Suppose now that property 2 holds. Then, singg¢ var(A), by Remark 11,
UT2, G ¢ var(A) and, as in the proof of the previous theorems, we may assumé tisat
algebraically closed and

AZAl@"'@Am
where forevery =1, ..., m, eitherA; = F + J(A;) or A; = J(A;) is a nilpotent algebra.
Suppose that for somie A; is not a nilpotent algebra. Sindés ¢ var(A), by Lemma 9,

J11 is commutative. Also, sincéfs, Ms, Mg, M7 ¢ var(A), by Lemmas 15, 20 and 21 we
have that

J10Joo = JooJor = Jo1J10= J10Jo1=0.

Under these conditionfyg is a two-sided nilpotent ideal of; andA; = F + Jo1 + J1i0+
J11 ® Joo. By Lemmas 10 and 16 we obtain that ~p; B whereB is eitherM1 & N, or
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M>@® N orM1@® Ma® N or C & N. The four cases appear according/gs# 0, J1o=0
or Jo1 =0, J10 # 0 or Jo1 # 0, J10 # 0 or Jo1 = J10 = 0, J11 # 0 respectively. Since
A=A1&®---® A, we obtain that property 3 holds.

Itis clear that since each of the algebMsC &N, M1 SN, Mo®d N, M1® M2 P N has
codimensions linearly bounded then prog&timplies property 1 and we are doneQ

It is worth noticing that the previous theorem allows us to classify all possible linearly
bounded codimension sequences.

Corollary 23. Let A bean F-algebra suchthat ¢, (A) < kn for all n > 0. Then there exists
no such that for all n > ng we must have either ¢,,(A) =0or ¢,(A)=1o0r ¢,(A) =n or
cn(A)=2n—1.
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