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Abstract

Let cn(A), n = 1,2, . . . , be the sequence of codimensions of an algebraA over a fieldF of char-
acteristic zero. We classify the algebrasA (up to PI-equivalence) in case this sequence is boun
by a linear function. We also show that this property is closely related to the following: ifln(A),
n = 1,2, . . . , denotes the sequence of colengths ofA, counting the number ofSn-irreducibles ap-
pearing in thenth cocharacter ofA, then limn→∞ ln(A) exists and is bounded by 2.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given an algebraA over a fieldF one can associate toA a numerical sequencecn(A),
n = 1,2, . . . , called the sequence of codimensions ofA, giving a measure of the poly
nomial identities satisfied byA. In generalcn(A) is bounded from above byn!, but in
caseA is a PI-algebra, i.e., satisfies a non-trivial polynomial identity, a celebrated theore
of Regev asserts thatcn(A) is exponentially bounded [17]. When the fieldF is of char-
acteristic zero, it turns out that the sequence of codimensions of any PI-algebra is
polynomially bounded or grows exponentially (see [11]). For general PI-algebras th
ponential rate of growth was computed in [5] and [6] and it turns out to be a non-ne
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integer. In case the codimensions are polynomially bounded, Kemer in [12] gave th
lowing characterization. LetG be the infinite dimensional Grassmann algebra and letUT2

be the algebra of 2× 2 upper triangular matrices. Thencn(A), n = 1,2, . . . , is polynomi-
ally bounded if and only ifG,UT2 /∈ var(A), where var(A) denotes the variety of algebra
generated byA.

The aim of this paper is to try to refine Kemer’s result through the knowledge o
polynomial rate of growth ofcn(A). In general, given an integert � 0 can one find a (finite
number of algebrasM1, . . . ,Md depending ont , such that lim supn→∞ logn cn(A) � t if
and only if M1, . . . ,Md /∈ var(A)? This question seems out of reach in this genera
but we shall give a complete answer for some values oft . We first need to formulate a
apparently different problem about representations of the symmetric groupSn.

An equivalent formulation of Kemer’s result can be given as follows. LetF 〈X〉 be the
free algebra on a countable setX = {x1, x2, . . .} and let Id(A) be the T-ideal of polynomia
identities of the algebraA. The permutation action ofSn on the spaceVn of multilinear
polynomials in the firstn variables induces a structure ofSn-module on Vn

Vn∩Id(A)
and let

χn(A) be its character. By complete reducibility we can writeχn(A) = ∑
λ�n mλχλ where

χλ is the irreducibleSn-character associated to the partitionλ of n and mλ � 0 is the
corresponding multiplicity. Thenln(A) = ∑

λ�n mλ is thenth colength ofA. Now Kemer’s
result can be stated as follows [15]:cn(A) is polynomially bounded if and only if th
sequence of colengths is bounded by a constant, i.e.,ln(A) � k, for somek � 0 and for all
n � 1 (see [3]).

In this setting one can ask if it is possible to give a finer classification depending o
value of the constantk. In particular, givenk � 0, can one find a finite number of algebr
M1, . . . ,Md , depending onk, such that lim supn→∞ ln(A) � k if and only if M1, . . . ,Md /∈
var(A)? In this paper we are able to answer this question in the positive in casek � 2.
We shall also show that this is strictly related to the codimensions ofA being linearly
bounded. As a consequence we are able to classify up to PI-equivalence the algebrasA

such thatln(A) � 2 or cn(A) � kn. It turns out that forn large enough the only sequenc
of codimensions allowed arecn(A) = 0,1, n andcn(A) = 2n − 1.

2. Generalities

Throughout this paper, we shall denote byF a field of characteristic zero and byA an
associative algebra overF . We refer the reader to [4] and [18] for the basic definitions
properties of PI-algebras.

Let F 〈X〉 be the free associative algebra on the countable setX = {x1, x2, . . .} and
let Id(A) = {f ∈ F 〈X〉 | f ≡ 0 on A} be the set of polynomial identities ofA. Clearly
Id(A) is a T-ideal ofF 〈X〉, i.e., an ideal invariant under all endomorphisms ofF 〈X〉. It
is well known that in characteristic zero Id(A) is completely determined by its multilinea
polynomials and we denote by

Vn = spanF {xσ(1) · · ·xσ(n) | σ ∈ Sn}



A. Giambruno, D. La Mattina / Journal of Algebra 284 (2005) 371–391 373

tween

di-
the space of multilinear polynomials in the indeterminatesx1, . . . , xn. The symmetric
groupSn acts on the left onVn: if σ ∈ Sn andf (x1, . . . , xn) ∈ Vn, then

σf (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

Since the subspaceVn ∩ Id(A) is invariant under this action,

Vn(A) = Vn

Vn ∩ Id(A)

has a structure ofSn-module. TheSn-character ofVn(A), denotedχn(A), is called thenth
cocharacter ofA andcn(A) = dimF Vn(A) is thenth codimension ofA.

It is well known that in characteristic zero there is a one-to-one correspondence be
irreducibleSn-characters and partitionsλ � n. If χλ denotes the irreducibleSn-character
corresponding toλ then, since charF = 0, by complete reducibility we can write

χn(A) =
∑
λ�n

mλχλ, (1)

wheremλ � 0 is the multiplicity ofχλ in the given decomposition. Also

ln(A) =
∑
λ�n

mλ

is called thenth colength ofA.
The following remark lists some basic properties of the sequence of cocharacters, co

mensions and colengths.

Remark 1. Let A andB be F -algebras and letA ⊕ B be their direct sum. Ifχn(A) =∑
λ�n mλχλ, χn(B) = ∑

λ�n m′
λχλ, and χn(A ⊕ B) = ∑

λ�n m′′
λχλ are thenth cocharac-

ters ofA, B andA ⊕ B, respectively, thenm′′
λ � mλ + m′

λ,

ln(A ⊕ B) � ln(A) + ln(B) and cn(A ⊕ B) � cn(A) + cn(B).

In caseB is a nilpotent algebra andBk = 0, then for alln � k we havem′′
λ = mλ. Hence

ln(A ⊕ B) = ln(A) andcn(A ⊕ B) = cn(A) in this case.

Proof. Consider the map ofSn-modules

α :Vn → Vn

Vn ∩ Id(A)
⊕ Vn

Vn ∩ Id(B)

such thatα(f ) = (f + (Vn ∩ Id(A)), f + (Vn ∩ Id(B))). Since ker(α) = Vn ∩ Id(A) ∩
Id(B) = Vn ∩ Id(A ⊕ B), we have an embedding ofSn-modules

Vn
↪→ Vn ⊕ Vn

.

Vn ∩ Id(A ⊕ B) Vn ∩ Id(A) Vn ∩ Id(B)
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Thusm′′
λ � mλ + m′

λ andln(A ⊕ B) � ln(A) + ln(B), cn(A ⊕ B) � cn(A) + cn(B).
If Bk = 0 then, for alln � k, Vn

Vn∩Id(B)
is the zero module. It follows that Vn

Vn∩Id(A⊕B)
=

Vn

Vn∩Id(A)
for all n � k. �

Given an algebraA, let var(A) denote the variety of algebras generated byA. Another
fact that we shall use throughout the paper is that ifA andB areF -algebras andB ∈ var(A)

then

ln(B) � ln(A) and cn(B) � cn(A).

This is clear since in this case, Id(A) ⊆ Id(B) and so,Vn(B) can be embedded inVn(A).
In the next sections we prefer to work with the representation theory of the

eral linear group which is well related to that of the symmetric group. To this en
need to introduce the space of homogeneous polynomials in a given set of var
Let Fm〈X〉 = F 〈x1, . . . , xm〉 denote the free associative algebra inm variables and le
U = spanF {x1, . . . , xm}. The groupGL(U) ∼= GLm acts naturally on the left on the spa
U and we can extend this action diagonally to get an action onFm〈X〉.

The spaceFm〈X〉 ∩ Id(A) is invariant under this action, hence

Fm(A) = Fm〈X〉
Fm〈X〉 ∩ Id(A)

inherits a structure of leftGLm-module. LetFn
m be the space of homogeneous polynom

of degreen in the variablesx1, . . . , xm. Then

Fn
m(A) = Fn

m

Fn
m ∩ Id(A)

is aGLm-submodule ofFm(A) and we denote its character byψn(A). Write

ψn(A) =
∑
λ�n

m̄λψλ

whereψλ is the irreducibleGLm-character associated to the partitionλ and m̄λ is the
corresponding multiplicity. It was proved in [1] and [2] that if thenth cocharacter ofA has
the decomposition given in (1) thenmλ = m̄λ, for all λ � n whose corresponding diagra
has height at mostm.

It is also well known (see for instance [4, Theorem 12.4.12]) that any irreducible
module ofFn

m(A) corresponding toλ is generated by a non-zero polynomialfλ, called
highest weight vector, of the form

fλ =
λ1∏

Sthi (λ)(x1, . . . , xhi(λ))
∑

ασ σ, (2)

i=1 σ∈Sn
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whereασ ∈ F , the right action ofSn on Fn
m(A) is defined by place permutation,hi(λ) is

the height of theith column of the diagram ofλ and

Str (x1, . . . , xr) =
∑
τ∈Sr

(sgnτ )xτ(1) · · ·xτ(r)

is the standard polynomial of degreer. Recall thatfλ is unique up to a multiplicative
constant.

For a Young tableauTλ, denote byfTλ the highest weight vector obtained from (2)
considering the only permutationσ ∈ Sn such that the integersσ(1), . . . , σ (h1(λ)), in this
order, fill in from top to bottom the first column ofTλ, σ(h1(λ)+1), . . . , σ (h1(λ)+h2(λ))

the second column ofTλ, etc.
We also have the following (see for instance [4, Proposition 12.4.14]).

Remark 2. If

ψn(A) =
∑
λ�n

m̄λψλ

is theGLm-character ofFn
m(A), thenm̄λ �= 0 if and only if there exists a tableauTλ such that

the corresponding highest weight vectorfTλ is not a polynomial identity forA. Moreover
m̄λ is equal to the maximal number of linearly independent highest weight vectorsfTλ in
Fn

m(A).

3. Computing the identities of some PI-algebras

The purpose of this section is to compute the cocharacters, the codimensio
T-ideals, etc. of some PI-algebras that will play a basic role in the next section.

Given polynomialsf1, . . . , fn ∈ F 〈X〉 let us denote by〈f1, . . . , fn〉T the T-ideal gen-
erated byf1, . . . , fn. We shall also denote byy, z, t,w the variables ofX. Also, given an
algebraA let J (A) denote its Jacobson radical.

In order to shorten the proof of next lemma and of Lemma 6 we use a result of Gut
and Regev [9] even though a direct proof can be easily found.

Lemma 3. Let M1 = ( 0 F
0 F

)
and M2 = (

F F
0 0

)
. Then for all n > 1,

1. χn(M1) = χn(M2) = χ(n) + χ(n−1,1).
2. ln(M1) = ln(M2) = 2.
3. {xi1 · · ·xin , i2 < · · · < in} is a basis of Vn (mod Vn ∩ Id(M1)) and {xi1 · · ·xin , i1 <

· · · < in−1} is a basis of Vn (mod Vn ∩ Id(M2)).
4. cn(M1) = cn(M2) = n.
5. Id(M1) = 〈z[x, y]〉T and Id(M2) = 〈[x, y]z〉T.
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Proof. The conclusion clearly holds forn = 2, hence we may assume thatn � 3. By [9,
Theorem 1], Id(M1) = 〈z[x, y]〉T, Id(M2) = 〈[x, y]z〉T andcn(M1) = cn(M2) = n. Hence
the elements

xi1 · · ·xin, i2 < · · · < in

spanVn (mod Vn ∩ Id(M1)). Since their number equalsn = cn(M1) = dimVn/(Vn ∩
Id(M1)) we have that{xi1 · · ·xin | i2 < · · · < in} is a basis ofVn (mod Vn ∩ Id(M1)).

We now determine the decomposition of thenth cocharacter ofM1. Let eij be the
usual matrix units. Sincecn(M1) = n is polynomially bounded andJ (M1) = Fe12 sat-
isfiesJ (M1)

2 = 0, by [7, Theorem 3] we have that

χn(M1) =
∑
λ�n|λ|−λ1<2

mλχλ = m(n)χ(n) + m(n−1,1)χ(n−1,1).

If λ = (n), the corresponding highest weight vectorfλ = xn is not an identity ofM1 since
fλ(e22) = e22 �= 0. Then, beingxn the only highest weight vector corresponding toλ = (n),
it follows thatm(n) = 1.

Since cn(M1) = m(n) degχ(n) + m(n−1) degχ(n−1) and by the hook formula [10]
degχ(n) = 1, degχ(n−1,1) = n− 1, it follows thatn = 1+m(n−1)(n− 1) and, so,m(n−1) =
1. Therefore

χn(M1) = χ(n) + χ(n−1,1)

and

ln(M1) =
∑
λ�n

mλ = 2.

A similar proof gives the desired results aboutM2. �
In what follows we use the left normed notation for Lie commutators. Hence we

[. . . [[x1, x2], x3], . . . , xn] = [x1, x2, . . . , xn].

Lemma 4. Let M3 =
{( a b c

0 a d
0 0 a

) ∣∣a, b, c, d ∈ F
}

. Then for all n > 3,

1. χn(M3) = χ(n) + χ(n−1,1) + χ(n−2,1,1).
2. ln(M3) = 3.
3. {x1 · · ·xn, xi1 · · ·xin−2[xi, xj ], i1 < · · · < in−2, i > j } is a basis of Vn (mod Vn ∩

Id(M3)).
4. cn(M3) = n(n−1)+2

2 .
5. Id(M3) = 〈[x, y, z], [x, y][z,w]〉T.

Proof. Let Q = 〈[x, y, z], [x, y][z,w]〉T. Since [M3,M3] ⊆ span{e13} it is clear that
[x, y, z] and [x, y][z,w] are identities ofM3 andQ ⊆ Id(M3). Before proving the oppo
site inclusion, we find a generating set ofVn moduloVn ∩ Q.
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It is well known (see for instance [4, Theorem 5.2.1]) that any multilinearpolynomial
of degreen can be written, modulo〈[x, y][z,w]〉T, as a linear combination of polynomia
of the type

xi1 · · ·xim[xk, xj1, . . . , xjn−m−1]

wherei1 < · · · < im, j1 < · · · < jn−m−1, k > j1, m �= n − 1. Thus, because of the identi
[x, y, z], the elements

x1 · · ·xn, xi1 · · ·xin−2[xi, xj ], i1 < · · · < in−2, i > j (3)

spanVn moduloVn ∩ Q. We next prove that these elements are linearly independent
ulo Id(M3).

Suppose that

f =
n∑

i,j=1
i>j

αij xi1 · · ·xin−2[xi, xj ] + βx1 · · ·xn ≡ 0
(
mod Vn ∩ Id(M3)

)
.

By making the evaluationxk = e11 + e22 + e33, for all k = 1, . . . , n, we getβ = 0. Also,
for fixed i andj , the evaluationxi = e12, xj = e23 andxk = e11 + e22 + e33 for k /∈ {i, j }
givesαij = 0. Thus the elements in (3) are linearly independent moduloVn ∩ Id(M3). Since
Vn ∩ Q ⊆ Vn ∩ Id(M3), this proves that Id(M3) = Q and the elements in (3) are a basis
Vn moduloVn ∩ Id(M3). By counting we obtain

cn(M3) = dim
Vn

Vn ∩ Id(M3)
= n(n − 1) + 2

2
.

Since degχ(n) + degχ(n−1,1) + degχ(n−2,1,1) = 1 + (n − 1) + (n−1)(n−2)
2 = n(n−1)+2

2 , if
we find for eachλ ∈ {(n), (n − 1,1), (n − 2,1,1)} a highest weight vector which is not a
identity of M3, we may conclude thatχn(M3) = χ(n) + χ(n−1,1) + χ(n−2,1,1) and thenth
cocharacter has the wished decomposition.

Clearlyxn, the highest weight vector corresponding toλ = (n), is not an identity ofM3.
Let f(n−1,1) = [x1, x2]xn−2

1 be a highest weight vector corresponding toλ = (n − 1,1).
Takinga1 = (e11 + e22 + e33) + e12 anda2 = e23, we get that

f(n−1,1)(a1, a2) = e13 �= 0.

Thusf(n−1,1) is not an identity ofM3.
Finally fλ = St3(x1, x2, x3)x

n−3
1 is a highest weight vector corresponding toλ = (n−2,

1,1), whereSt3 is the standard polynomial of degree 3. By choosinga1 = e11 + e22 + e33,
a2 = e12 anda3 = e23, we obtain

fλ(a1, a2, a3) = e13 �= 0.
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Thus, since these polynomials are not identities ofM3, it follows that

χn(M3) = χ(n) + χ(n−1,1) + χ(n−2,1,1)

and

ln(M3) = 3.

The proof of the lemma is complete.�
Lemma 5. Let B = M1 ⊕ M2. Then for all n � 3,

1. χn(B) = χ(n) + 2χ(n−1,1).
2. ln(B) = 3.
3. {[x1, xi]xj1 · · · x̂i · · ·xjn−2, xj1 · · · x̂i · · ·xjn−2[x1, xi], x1 · · ·xn, j1 < · · · < jn−2} is a

basis of Vn (mod Vn ∩ Id(B)), where the symbol x̂i means that the variable xi is
omitted.

4. cn(B) = 2n − 1.
5. Id(B) = 〈St3(x, y, z), z[x, y]w, [x, y][z,w]〉T.

Proof. Let Q = 〈St3(x, y, z), z[x, y]w, [x, y][z,w]〉T. It is easy to check thatQ ⊆ Id(B).
Next we claim that the set of polynomials

{[x1, xi]xj1 · · · x̂i · · ·xjn−2, xj1 · · · x̂i · · ·xjn−2[x1, xi], x1 · · ·xn, j1 < · · · < jn−2
}

(4)

spanVn moduloVn ∩ Q.
Since forn = 3 this is clear, we assume thatn > 3. Now, as in the proof of the previou

lemma, any multilinear polynomial of degreen can be written, modulo〈[x, y][z,w]〉T, as
a linear combination of polynomials of the type

xi1 · · ·xim[xk, xj1, . . . , xjn−m−1]

wherei1 < · · · < im, j1 < · · ·jn−m−1, k > j1, m �= n − 1.
Since

[xk, xj1, . . . , xjn−m−1] ≡ [xk, xj1]xj2 · · ·xjn−m−1

± xjn−m−1 · · ·xj2[xk, xj1]
(
mod

〈
z[x, y]w〉

T

)
and

xi1 · · ·xim[xk, xj1]xj2 · · ·xjn−m−1 ≡ 0
(
mod

〈
z[x, y]w〉

T

)
,

we have that form � 1,

xi1 · · ·xim[xk, xj1, . . . , xjn−m−1] ≡ xk1 · · ·xkn−2[xk, xj1] (mod Q).
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Also, since[x, y][z,w] ∈ Q, we may assume thatk1 < · · · < kn−2. Now, sincen � 4, if
j1 �= 1 we have that

xk1 · · ·xkn−2[xk, xj1] ≡ wx1xkxj1 − wx1xj1xk ≡ wxkx1xj1 − wxj1x1xk

≡ wxk[x1, xj1] − wxj1[x1, xk] (mod Q)

wherew = xk2 · · ·xkn−2. Thus

xk1 · · ·xkn−2[xk, xj1] ≡ xh1 · · ·xhn−2[x1, xj1] − xl1 · · ·xln−2[x1, xk] (mod Q)

whereh1 < · · · < hn−2 andl1 < · · · < ln−2. Similarly

[xk, xj1]xk1 · · ·xkn−2 ≡ [x1, xj1]xh1 · · ·xhn−2 − [x1, xk]xl1 · · ·xln−2 (mod Q).

It follows that the polynomials

[x1, xi]xj1 · · · x̂i · · ·xjn−2, xj1 · · · x̂i · · ·xjn−2[x1, xi], x1 · · ·xn, j1 < · · · < jn−2

generateVn (mod Vn ∩ Q) for n � 3.
We next show that the elements in (4) are linearly independent modulo Id(B).
Let f ∈ Id(B) be a linear combination of the elements in (4):

f =
n∑

i=1
j1<···<jn−2

αi[x1, xi]xj1 · · · x̂i · · ·xjn−2

+
n∑

j=1
j1<···<jn−2

βjxj1 · · · x̂i · · ·xjn−2[x1, xj ] + γ x1 · · ·xn.

By making the evaluationxi = (e22,0), for all i = 1, . . . , n, we getγ = 0. Also for a
fixed k, the evaluationxk = (e12,0) andxi = (e22,0) for i �= k, givesαk = 0. Similarly
xk = (0, e12) andxi = (0, e11) for i �= k, givesβk = 0. Therefore the elements in (4) a
linearly independent moduloVn ∩ Id(B). Since

Vn ∩ Id(B) ⊇ Vn ∩ Q

it follows that Id(B) = Q and the elements in (4) are a basis ofVn moduloVn ∩ Id(B) for
n � 3. Thus

cn(B) = dim
Vn = 2n − 1, for n � 3.
Vn ∩ Id(B)
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We now determine the decomposition of thenth cocharacter of this algebra. For
algebraA write χn(A) = ∑

λ�n mλ(A)χλ. Then, sinceB = M1 ⊕ M2, by Remark 1,
mλ(B) � mλ(M1) + mλ(M2) for all λ � n. Hence by Lemma 3, it follows that

χn(B) = m(n)χ(n) + m(n−1,1)χ(n−1,1)

andm(n),m(n−1,1) � 2.
Since degχ(n) = 1 andxn is not an identity ofB, clearly m(n) = 1. Moreover, since

cn(B) = 2n − 1 and degχ(n−1,1) = n − 1, it follows thatm(n−1,1) = 2. Thus

χn(B) = χ(n) + 2χ(n−1,1)

and

ln(B) =
∑
λ�n

mλ = 3. �

Lemma 6. Let M4 =
(

F F F
0 0 F
0 0 0

)
, M5 =

(
0 F F
0 0 F
0 0 F

)
and M6 =

(
0 F F
0 F F
0 0 0

)
. Then for all n > 3,

1. χn(M4) = χn(M5) = χn(M6) = χ(n) + 2χ(n−1,1) + χ(n−2,2) + χ(n−2,1,1).
2. ln(M4) = ln(M5) = ln(M6) = 5.
3. {xi1 · · ·xin−2xixj , i1 < · · · < in−2} is a basis of Vn (mod Vn ∩ Id(M4)), {xixjxi1· · ·xin−2, i1 < · · · < in−2} is a basis of Vn (mod Vn ∩ Id(M5)) and {xixi1 · · ·xin−2xj ,

i1 < · · · < in−2} is a basis of Vn (mod Vn ∩ Id(M6)).
4. cn(M4) = cn(M5) = cn(M6) = n(n − 1).
5. Id(M4) = 〈[x, y]zw〉T, Id(M5) = 〈zw[x, y]〉T and Id(M6) = 〈z[x, y]w〉T.

Proof. By [9] we have that Id(M4) = 〈[x, y]zw〉T, Id(M5) = 〈zw[x, y]〉T, Id(M6) =
〈z[x, y]w〉T andcn(M4) = cn(M5) = cn(M6) = n(n − 1). As in the proof of the previou
lemmas, it is easy to see that the elements

xi1 · · ·xin−2xixj , i1 < · · · < in−2

form a basis ofVn (mod Vn ∩ Id(M4)). A similar remark holds forM5 andM6.
We next determine the decomposition of thenth cocharacter ofM4. A similar proof

will give the decomposition of thenth cocharacter ofM5 andM6. SinceJ (M4) = Fe12 +
Fe13 + Fe23, andJ (M4)

3 = 0, by [7, Theorem 3] we have that

χn(M4) = m(n)χ(n) + m(n−1,1)χ(n−1,1) + m(n−2,2)χ(n−2,2) + m(n−2,1,1)χ(n−2,1,1).

SinceM4 is not nilpotent, clearlym(n) = 1.

Let λ = (n − 1,1) and denote byT (i)
λ the standard tableau containing the integeri =

2, . . . , n in the only box of the second row. Then

f (i) = x1x
i−2
1 x2x

n−i
1 − x2x

i−2
1 x1x

n−i
1
Tλ
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is the highest weight vector corresponding toT
(i)
λ . By making the evaluationx1 = e11+e23

andx2 = e12, we get that

f
T

(n)
λ

= e12 and f
T

(n−1)
λ

= e13.

This says thatf
T

(n)
λ

andf
T

(n−1)
λ

are not identities ofM4. Moreover these polynomials a

linearly independent(mod Id(M4)). In fact if

f = α1fT
(n)
λ

+ α2fT
(n−1)
λ

≡ 0
(
mod Id(M4)

)
,

make the evaluationx1 = e11 andx2 = e12 to getα1 = 0. Similarly, choosex1 = e11 + e23
andx2 = e12 to obtainα2 = 0. Thusm(n−1,1) � 2. Sincecn(M4) = n(n − 1) and

degχ(n) + 2 degχ(n−1,1) + degχ(n−2,2) + degχ(n−2,1,1)

= 1+ 2(n − 1) + n(n − 3)

2
+ (n − 2)(n − 1)

2
= n(n − 1),

in order to prove the given decomposition of thenth cocharacter, it is enough to find f
eachλ ∈ {(n − 2,2), (n − 2,1,1)} a highest weight vector which is not an identity ofM4.

Forλ = (n − 2,2), consider the following standard tableau

1 2 · · ·
n − 1 n

and the corresponding highest weight vector

fTλ =
∑

σ,τ∈S2

(sgnστ)xσ(1)xτ(1)x
n−4
1 xσ(2)xτ(2).

Evaluatingx1 = e11 andx2 = e12 + e23, we getfTλ = e13 �= 0 andfTλ is not an identity
of M4.

Finally considerfTλ = ∑
σ∈S3

(sgn σ)xσ(1)x
n−3
1 xσ(2)xσ(3), the highest weight vecto

corresponding to the standard tableau

1 · · ·
n − 1

n .

Since

fTλ(e11, e12, e23) = e13 �= 0

we have thatfTλ is not an identity ofM4. Henceχn(M4) = χ(n) + 2χ(n−1,1) + χ(n−2,2) +
χ(n−2,1,1) andln(M4) = 5. �
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4. When codimensions are bounded by a constant

A main tool in this and the next section is the following result on the decompositio
the Jacobson radical of a finite dimensional algebra.

Lemma 7 [8, Lemma 2]. Let A be a finite dimensional algebra over F and suppose that
A = B + J , where B is a semisimple subalgebra and J = J (A) is its Jacobson radical.
Then J can be decomposed into the direct sum of B-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,

where, for i ∈ {0,1}, Jik is a left faithful module or a 0-left module according as i = 1 or
i = 0, respectively. Similarly, Jik is a right faithful module or a 0-right module according
as k = 1 or k = 0, respectively. Moreover, for i, k, l,m ∈ {0,1}, JikJlm ⊆ δklJim where δkl

is the Kronecker delta and J11 = BN for some nilpotent subalgebra N of A commuting
with B .

An obvious remark is that ifA = B + J is an algebra satisfying the hypothesis of
previous lemma and 1B is the unit element ofB, we have that

1Ba1B = a, 1Bb = b and c1B = c

for all a ∈ J11, b ∈ J10, c ∈ J01.
In the sequel we shall also use the following notation.

Definition 8. Let A andB be algebras. We say thatA is PI-equivalent toB and we write
A ∼PI B, if Id(A) = Id(B).

In the following lemmas we shall assume thatA is a finite dimensional algebra of th
typeA = F +J whereJ = J (A) is the Jacobson radical ofA. Also we shall tacitly assum
thatJ has the decomposition given in Lemma 7. We start with the following.

Lemma 9. Let A = F + J . If [J11, J11] �= 0, then M3 ∈ var(A).

Proof. Notice thatA′ = F + J11 is a subalgebra ofA. We shall prove thatM3 ∈ var(A′) ⊆
var(A). Hence without lost of generality we may assume thatA = F + J andJ = J11.

Since by hypothesisJ is not commutative,J 2 �= 0 and letk be the least integer suc
thatJ k = 0 andJ k−1 �= 0. We proceed by induction onk.

If k = 3 we shall prove thatA itself is PI-equivalent toM3. In fact, in this case, since 1F

commutes withJ , [A,A] ⊆ J 2; hence[A,A,A] = 0 and[A,A][A,A] = 0. By Lemma 4
this says that Id(M3) ⊆ Id(A).

Conversely, letf ∈ Id(A) be a multilinearpolynomial of degreen. By Lemma 4, one
can writef as

f = αx1 · · ·xn +
∑
i>j

αij xi1 · · ·xin−2[xi, xj ] + g
i1<···<in−2
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whereg ∈ Id(M3). Choosingxi = 1F for all i = 1, . . . , n we getα = 0. Since[J,J ] �= 0,
there exist two elementsa, b ∈ J such that[a, b] �= 0. Let i0, j0 ∈ {1, . . . , n} be such tha
αi0j0 �= 0. Takec1, . . . , cn ∈ A, with ci0 = a, cj0 = b andck = 1F for all k /∈ {i0, j0}. It is
easy to check that

f (c1, . . . , cn) = αi0j0[a, b] �= 0,

a contradiction. Hencef = g ∈ Id(M3) and Id(A) = Id(M3). This settles the casek = 3.
Let now k > 3 and suppose first that[J k−2, J ] �= 0. Let a ∈ J k−2 andb ∈ J be such

that[a, b] �= 0 and letB be the subalgebra ofA generated by 1F , a, b. ThenB is the linear
span of the elements{1F , a, b, ab, ba, b2, . . . , bk−1}, and an easy computation shows t
[B,B] ⊆ J k−1; hence[B,B,B] = 0 and[B,B][B,B] = 0. By Lemma 4 this says tha
Id(M3) ⊆ Id(B). The other inclusion is proved as above. ThusB ∼PI M3, M3 ∈ var(A)

and we are done in this case too.
Therefore we may assume that[J k−2, J ] = 0. Suppose first that[J,J ] ⊆ J k−2. Then,

sinceJ k = 0 we have that

[J,J, J ] = 0, [J,J ][J,J ] = 0 (5)

and sinceA = F + J , J = J11 we also have that[x, y, z], [x, y][z,w] are identities ofA.
Then by Lemma 4, Id(M3) ⊆ Id(A). Notice that, by hypothesis, there exista, b ∈ J such
that[a, b] �= 0. Let

f = αx1 · · ·xn +
∑
i>j

i1<···<in−2

αi>j xi1 · · ·xin−2[xi, xj ] + g

be an identity ofA with g ∈ Id(M3). The same procedure as above proves thatf = g ∈
Id(M3), and Id(A) = Id(M3) and we are done.

In order to finish the proof of the lemma we have only to study the case[J,J ] � J k−2.
This says that ifĀ = A/J k−2, Ā is not commutative. Then, from Lemma 7,J (Ā) =
J11(Ā) = J/J k−2 is still non-commutative andJ (Ā)k−2 = 0 with k > 4. By the induc-
tive hypothesisM3 ∈ var(Ā) and sinceĀ ∈ var(A), we have thatM3 ∈ var(Ā) ⊆ var(A).
The proof of the lemma is now complete.�
Lemma 10. Let A = F + J with J01 �= 0 (respectively J10 �= 0). Then B = F + J01 or
B = F + J01 + J11, in case J11 is commutative, is a subalgebra PI-equivalent to M1

(respectively B = F + J10 or B = F + J10 + J11 is PI-equivalent to M2).

Proof. It is clear thatB = F + J01 or B = F + J01+ J11 is a subalgebra ofA. In any case
by the hypotheses we have that[B,B] ⊆ J01 and so,B[B,B] = 0. This says, by Lemma 3
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that Id(M1) ⊆ Id(B). Letf ∈ Id(B) be a multilinearpolynomial of degreen. By Lemma 3,
f can be written as

f =
n∑

i1=1
i2<···<in

αi1xi1 · · ·xin + g

whereg ∈ Id(M1). Suppose that there existst ∈ {1, . . . , n} such thatαt �= 0. Chooseci =
1F , for i �= t andct = b ∈ J01, b �= 0. Sinceg is an identity ofB, we have

f (c1, . . . , cn) = αtb1F = αtb �= 0,

a contradiction. Hencef = g ∈ Id(M1) and Id(B) = Id(M1) follows. ThusB is a sub-
algebra ofA which is PI-equivalent toM1. Similarly it is proved thatB = F + J10 and
B = F + J10 + J11, in caseJ11 is commutative, are PI-equivalent toM2. �

Let G denotes the Grassmann algebra of countable rank overF . HenceG is generated
by the set{e1, e2, . . .} over F satisfying the relationseiej = −ej ei , i, j = 1,2, . . . . Let
alsoUT2 denote the algebra of 2× 2 upper triangular matrices overF . We have

Remark 11. M3 ∈ var(UT2) ∩ var(G).

Proof. By [14], Id(UT2) = 〈[x, y][z,w]〉T and by [13], Id(G) = 〈[x, y, z]〉T. Hence, since
[x, y][z,w], [x, y, z] ∈ Id(M3) it follows that Id(UT2) ∪ Id(G) ⊆ Id(M3) and, so,M3 ∈
var(UT2) ∩ var(G). �

We next state a result that will be used throughout the paper.

Theorem 12 [7, Theorem 2]. Let A be an F -algebra whose codimensions are polynomially
bounded. Then there exists an algebra B such that A ∼PI B and B = B1 ⊕· · ·⊕Bm, where
B1, . . . ,Bm are finite dimensional algebras such that dimBi/J (Bi) � 1 with J (Bi) the
Jacobson radical of Bi , 1 � i � m.

We are now in a position to prove the main result of this section.

Theorem 13. Let A be an F -algebra. Then M1,M2,M3 /∈ var(A) if and only if
limn→∞ ln(A) exists and is bounded by 1.

Proof. Suppose first that limn→∞ ln(A) � 1. Then ifMi ∈ var(A) for somei ∈ {1,2,3},
it would follow that ln(Mi) � ln(A). But by Lemmas 3 and 4 we have that for alln > 3,
ln(Mi) > 1 and this contradicts the assumption that limn→∞ ln(A) � 1.

Conversely, suppose thatM1,M2,M3 /∈ var(A). By Remark 11,UT2, G /∈ var(A),
hence by [12] the codimensions ofA are polynomially bounded, i.e.,cn(A) � dnt , for
some constantsd, t . Since the codimensions and the cocharacters of an algebra d
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change upon extension of the base field (see for instance [5]) we assume, as we m
F is algebraically closed. Also by Theorem 12 we may assume that

A = A1 ⊕ · · · ⊕ Am

whereA1, . . . ,Am are finite dimensional algebras such that, dimAi/J (Ai) � 1, 1� i � m.
Notice that this says that eitherAi

∼= F + J (Ai) or Ai = J (Ai) is a nilpotent algebra.
If Ai = J (Ai) is nilpotent for alli, thenA is a nilpotent algebra and forn large enough

ln(A) = 0. Hence we are done in this case.
Therefore we may assume that there existsi ∈ {1, . . . ,m} such thatAi = F + J (Ai)

and letJ (Ai) = J00 + J11 + J10 + J01 whereJ00, J11, J10, J01 are the bimodules define
in Lemma 7. IfJ11 is non-commutative, by Lemma 9,M3 ∈ var(Ai) ⊆ var(A), a contradic-
tion. ThereforeJ11 must be commutative. SinceM1,M2 /∈ var(A), by Lemma 10 we hav
thatJ10 = J01 = 0. ThusAi = (F + J11) ⊕ J00 is a direct sum of algebras andF + J11 is
a commutative subalgebra ofAi .

We have proved that if for somei, Ai is not nilpotent, thenAi is the direct sum of a
commutative algebra and a nilpotent algebra. Recalling thatA = A1⊕· · ·⊕Am and putting
together all pieces, it turns out that we can write

A = C ⊕ N

whereC is a commutative non-nilpotent algebra andN is a nilpotent algebra. Since fo
all n, ln(C) = 1 and forn large enoughln(N) = 0, by Remark 1 we obtainln(A) = ln(C) =
1 for n large enough, and the conclusion of the theorem follows.�

Notice that the proof of the previous theorem actually shows thatM1,M2, M3 /∈ var(A)

if and only if there existsn0 > 3 such thatln0(A) � 1. Also in this caseA is PI-equivalent
to either a nilpotent algebra or to the direct sum of a nilpotent algebra and a com
tive algebra. Thusln(A) has constant value (equal to 0 or 1) forn large. Reading thes
conclusions in terms of codimensions we get the following corollary.

Corollary 14. For an F -algebra A, the following conditions are equivalent.

1. M1,M2,M3 /∈ var(A).
2. There exists n0 > 3 such that ln0(A) � 1.
3. limn→∞ ln(A) exists and is bounded by 1.
4. Either A ∼PI N or A ∼PI C ⊕ N where N is a nilpotent algebra and C is a commuta-

tive algebra.
5. cn(A) � k for some constant k � 0, for all n � 1.

We remark that as a consequence, if the codimensions of an algebraA are bounded
then they are eventually bounded by 1. This result and essentially property 4 of the
corollary were proved by Olsson and Regev in [16].
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5. Characterizing varieties of colength ��� 2

In this section we shall deal with the caseln(A) � 2. We start with the following.

Lemma 15. Let A = F + J be an F -algebra.

1. If J10J00 �= 0, then M4 ∈ var(A).
2. If J00J01 �= 0, then M5 ∈ var(A).

Proof. Suppose thatJ10J00 �= 0 and letk � 1 be the largest integer such thatJ10J
k
00 �= 0.

Then there exista ∈ J10 and b ∈ J k
00 such thatab �= 0. Let B be the subalgebra ofA

generated by 1F , a, b. Sinceab2 = ba = a2 = a1F = 1F b = b1F = 0, it is easily seen
that [x, y]zw ∈ Id(B). Hence by Lemma 6, Id(M4) ⊆ Id(B). Let now f ∈ Id(B) be a
multilinearpolynomial of degreen. By Lemma 6 we can write

f ≡
n∑

i,j=1
i1<···<in−2

αij xi1 · · ·xin−2xixj

(
mod Id(M4)

)

and suppose that there existi0, j0 ∈ {1, . . . , n} such thatαi0j0 �= 0. Takec1, . . . , cn ∈ B,
such thatci0 = a, cj0 = b andck = 1F , for all k /∈ {i0, j0}. It is easy to check that

f (c1, . . . , cn) = αi0j0ab �= 0,

a contradiction. Thusf ∈ Id(M4) and Id(B) = Id(M4) impliesM4 ∈ var(A).
Property 2 is proved similarly. �

Lemma 16. Let A = F + J be such that J10 �= 0, J01 �= 0 and J10J01 = J01J10 = 0. If J11
is commutative, B = F + J10 + J01 + J11 is a subalgebra PI-equivalent to M1 ⊕ M2.

Proof. Under the hypotheses of the lemma,B is a subalgebra ofA. Since[B,B] ⊆ J01 +
J10, it is immediate thatz[x, y]w, [x, y][z,w] are identities ofB. Also it can be checke
thatSt3 vanishes inB. By Lemma 5 this implies that Id(M1 ⊕M2) ⊆ Id(B). Now, Id(B) ⊆
Id(F + J10 + J11) ∩ Id(F + J01 + J11). Since by Lemma 10, Id(F + J10 + J11) = Id(M2)

and Id(F + J01 + J11) = Id(M1) we obtain Id(B) ⊆ Id(M1) ∩ Id(M2) = Id(M1 ⊕ M2).
Thus Id(B) = Id(M1 ⊕ M2) and we are done.�
Lemma 17. Let A = A1 ⊕ A2, where A1 = F + J (A1) with J (A1)10 �= 0 and A2 = F +
J (A2) with J (A2)01 �= 0. Then M1 ⊕ M2 ∈ var(A).

Proof. It is clear thatB = (F + J (A1)10) ⊕ (F + J (A2)01) is a subalgebra ofA. Hence

Id(B) = Id
(
F + J (A1)10

) ∩ Id
(
F + J (A2)01

)
and by Lemma 10, Id(B) = Id(M1)∩Id(M2) = Id(M1⊕M2) ThusM1⊕M2 ∈ var(A). �
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Theorem 18. Let A be an F -algebra. Then M1 ⊕ M2,M3,M4,M5 /∈ var(A) if and only if
limn→∞ ln(A) exists and is bounded by 2.

Proof. Suppose first that there exists an integern0 > 3 such thatln0(A) � 2. Then, since
for n � 4, M1 ⊕ M2,M3,M4,M5 have colength sequence bounded from below by 3,
clear thatM1 ⊕ M2,Mi /∈ var(A), for everyi = 3,4,5.

Conversely, suppose thatM1 ⊕ M2,Mi /∈ var(A), for i = 3,4,5. Since, by Remark 11
UT2,G /∈ var(A), as in the proof of Theorem 13, we may assume thatF is algebraically
closed and thatA = A1 ⊕ · · · ⊕ Am with Ai either a nilpotent algebra orAi isomorphic to
F + J (Ai), i = 1, . . . ,m.

By eventually reordering the algebrasAi , we may write

A = A1 ⊕ · · · ⊕ Ak ⊕ Ak+1 ⊕ · · · ⊕ Am,

whereAi = F + J (Ai) for i = 1, . . . , k, andAk+1, . . . ,Am are nilpotent algebras. Sinc
Ak+1 ⊕ · · · ⊕ Am is still a nilpotent algebra, by Remark 1

ln(A) = ln(A1 ⊕ · · · ⊕ Ak)

for n large enough. Hence, without lost of generality we may assume thatA = A1 ⊕ · · · ⊕
Am and for eachi = 1, . . . ,m, Ai = F + J (Ai).

SinceM1 ⊕ M2 /∈ var(A), by Lemma 17,A can be only of one of the following types

(1) for everyi = 1, . . . ,m, Ai = F + J (Ai) with J (Ai)01 = 0;
(2) for everyi = 1, . . . ,m, Ai = F + J (Ai) with J (Ai)10 = 0;
(3) there existsi such thatAi = F + J (Ai) with J (Ai)10 �= 0, J (Ai)01 �= 0 and for every

j �= i, Aj = F + J (Aj ) with J (Aj )10 = J (Aj )01 = 0.

Notice that sinceM3 /∈ var(Ai) ⊆ var(A), by Lemma 9, we have thatJ (Ai)11 is com-
mutative, for alli = 1, . . . ,m.

We start by considering the first case, i.e.,J (Ai)01 = 0, for all i. Write Ai = F + J

with J = J (Ai). If J10J00 �= 0 then, by Lemma 15 we would getM4 ∈ var(Ai) ⊆ var(A),
a contradiction. ThusJ10J00 = 0 and this says that

Ai = (F + J10 + J11) ⊕ J00,

a direct sum of algebras. But then by Lemma 10 we have that either

Ai ∼PI M2 ⊕ J00 or Ai ∼PI C ⊕ J00,

for some commutative algebraC, according asJ10 �= 0 orJ10 = 0, respectively.
Summing up over all algebrasAi , recalling thatC ∈ var(M2), it turns out that either

A ∼PI M2 ⊕ · · · ⊕ M2 ⊕ C ⊕ N ∼PI M2 ⊕ C ⊕ N ∼PI M2 ⊕ N
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or

A ∼PI M2 ⊕ · · · ⊕ M2 ⊕ N ∼PI M2 ⊕ N

or

A ∼PI C ⊕ N

whereN is a nilpotent algebra andC is a commutative non-nilpotent algebra. Thus fon
large, the sequence of colengths ofA is constant andln(A) equals either 1 or 2 as wishe

It is clear that in case the second possibility occurs, the same proof with the due ch
shows that either

A ∼PI M1 ⊕ N

or

A ∼PI C ⊕ N

andln(A) takes constant value equal to 1 or 2, forn large.
Next we show that the third possibility cannot occur. SinceM4,M5 /∈ var(Ai), by

Lemma 15,J10J00 = J00J01 = 0. This implies thatJ10J01 + J01J10 is a two-sided idea
of Ai . Let Āi be the algebra

Āi = Ai/(J10J01 + J01J10).

It is easy to check that̄Ai = F + J (Āi) and the Jacobson radicalJ (Āi) satisfies

J
(
Āi

)
01J

(
Āi

)
10 = 0 and J

(
Āi

)
10J

(
Āi

)
01 = 0.

ObviouslyJ10, J01 are not contained inJ10J01 + J01J10, thereforeJ (Āi)10, J (Āi)01 �= 0.
Hence by Lemma 16,M1 ⊕ M2 ∈ var(Āi) ⊆ var(Ai) ⊆ var(A), a contradiction. This com
pletes the proof of the theorem.�

From the proof of Theorem 18 it follows thatM1 ⊕ M2,M3,M4,M5 /∈ var(A) if and
only if there existsn0 > 3 such thatln0(A) � 2. Also in this caseA is PI-equivalent to
either one of the algebras of Corollary 14 or toM1 ⊕ N or to M2 ⊕ N with N a nilpotent
algebra. Thusln(A) has constant value (equal to 0 or 1 or 2) forn large. Reading also thes
conclusions in terms of codimensions we have.

Corollary 19. For an F -algebra A, the following conditions are equivalent.

1. M1 ⊕ M2,M3,M4,M5 /∈ var(A).
2. There exists n0 > 3 such that ln0(A) � 2.
3. limn→∞ ln(A) exists and is bounded by 2.
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4. A is PI-equivalent to one of the algebras N , C ⊕ N , M1 ⊕ N or M2 ⊕ N , where N is
a nilpotent algebra and C is a commutative algebra.

5. cn(A) � n for n large enough.

In conclusion we have the following classification whereN denotes a nilpotent algeb
andC is a commutative non-nilpotent algebra: for any algebraA andn large enough,

1. ln(A) = 0 if and only ifA ∼PI N .
2. ln(A) = 1 if and only ifA ∼PI C ⊕ N .
3. ln(A) = 2 if and only if eitherA ∼PI M1 ⊕ N or A ∼PI M2 ⊕ N .

6. Algebras with linear codimension growth

In this section we introduce a new algebra denotedM7 defined as follows:

M7 =
{(

a b c

0 0 d

0 0 a

) ∣∣∣a, b, c, d ∈ F

}
.

We claim that the sequence of codimensions ofM7 is bounded from below byn2. In fact, in
order to show this, it is enough to find anSn-character appearing with non-zero multiplicity
in χn(M7) , whose degree is� n2. Consider the partitionλ = (n−2,1,1) and letfTλ be the
highest weight vector corresponding to the standard Young tableau containing the in
1,2,3 into the first column. Choosinga1 = e11 + e33, a2 = e12 anda3 = e23 we get that
fTλ = 2e13 �= 0. This says thatχ(n−2,1,1) appears with non-zero multiplicity inχn(M7).
Therefore, since by the hook formula, degχ(n−2,1,1) = (n − 1)(n − 2)/2, cn(M7) grows
asymptotically at least asn2/2.

Lemma 20. Let A = F +J be an F -algebra. If J10J00 = J00J01 = 0 and J01J10 �= 0, then
M6 ∈ var(A).

Proof. From the hypotheses it follows thatJ10J01 is a two-sided ideal ofA. Then the
quotient algebrāA = A

J10J01
still satisfies the hypotheses and moreover

J
(
Ā

)
01J

(
Ā

)
10 �= 0 and J

(
Ā

)
10J

(
Ā

)
01 = 0.

We shall prove thatM6 ∈ var(Ā), hence we may assume thatA itself satisfiesJ01J10 �= 0
andJ10J01 = 0.

Let a ∈ J01, b ∈ J10 be such thatab �= 0 and letB be the algebra generated
1F , a and b. Since ba = aba = 0 and 1F a = b1F = 0, a1F = a, 1F b = b, then
B = span{1F , a, b, ab} and [B,B] ⊆ span{a, b, ab}. Thus B[B,B] ⊆ span{b, ab} and
B[B,B]B = 0. By Lemma 6, Id(M6) ⊆ Id(B).
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Conversely, letf ∈ Id(B) be a multilinearpolynomial of degreen. By Lemma 6, one
can write

f ≡
n∑

i,j=1
i1<···<in−2

αij xixi1 · · ·xin−2xj

(
mod Id(M6)

)
.

Suppose that there existi0, j0 ∈ {1, . . . , n} such thatαi0j0 �= 0. Takec1, . . . , cn ∈ B, with
ci0 = a, cj0 = b andck = 1F for all k /∈ {i0, j0} it is easy to check that

f (c1, . . . , cn) = αi0j0ab �= 0,

a contradiction. Thereforef ∈ Id(M6) and Id(B) = Id(M6). HenceM6 ∈ var(A). �
Lemma 21. If A = F + J with J10J01 �= 0 and J01J10 = 0. Then M7 ∈ var(A).

Proof. Let a ∈ J10, b ∈ J01 be such thatab �= 0. We claim that the subalgebraB gener-
ated by 1F , a andb over F is isomorphic toM7. This is easily seen sinceJ 2

01 = J 2
10 =

J01J10 = 0 implies thata2 = b2 = ba = 0. HenceB = span{1F , a, b, ab} is isomorphic to
M7 through the mapϕ such that

ϕ(1F ) = e11 + e33, ϕ(a) = e12, ϕ(b) = e23, ϕ(ab) = e13. �
Theorem 22. Let A be an F -algebra. Then the following conditions are equivalent.

1. cn(A) � kn for all n � 1, for some constant k.
2. M3,M4,M5,M6,M7 /∈ var(A).
3. A is PI-equivalent to either N or C ⊕ N or M1 ⊕ N or M2 ⊕ N or M1 ⊕ M2 ⊕ N

where N is a nilpotent algebra and C is a commutative algebra.

Proof. First suppose that the sequence of codimensions ofA is linearly bounded. By Lem
mas 4 and 6 and by the claim proved at the beginning of the section,M3,M4,M5,M6,M7 /∈
var(A). Suppose now that property 2 holds. Then, sinceM3 /∈ var(A), by Remark 11,
UT2,G /∈ var(A) and, as in the proof of the previous theorems, we may assume thaF is
algebraically closed and

A = A1 ⊕ · · · ⊕ Am

where for everyi = 1, . . . ,m, eitherAi
∼= F + J (Ai) or Ai = J (Ai) is a nilpotent algebra

Suppose that for somei, Ai is not a nilpotent algebra. SinceM3 /∈ var(A), by Lemma 9,
J11 is commutative. Also, sinceM4,M5,M6,M7 /∈ var(A), by Lemmas 15, 20 and 21 w
have that

J10J00 = J00J01 = J01J10 = J10J01 = 0.

Under these conditionsJ00 is a two-sided nilpotent ideal ofAi andAi = F + J01 + J10 +
J11 ⊕ J00. By Lemmas 10 and 16 we obtain thatAi ∼PI B whereB is eitherM1 ⊕ N , or
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M2 ⊕ N or M1 ⊕ M2 ⊕ N or C ⊕ N . The four cases appear according asJ01 �= 0, J10 = 0
or J01 = 0, J10 �= 0 or J01 �= 0, J10 �= 0 or J01 = J10 = 0, J11 �= 0 respectively. Since
A = A1 ⊕ · · · ⊕ Am we obtain that property 3 holds.

It is clear that since each of the algebrasN , C⊕N , M1⊕N , M2⊕N , M1⊕M2 ⊕N has
codimensions linearly bounded then property 3 implies property 1 and we are done.�

It is worth noticing that the previous theorem allows us to classify all possible lin
bounded codimension sequences.

Corollary 23. Let A be an F -algebra such that cn(A) � kn for all n � 0. Then there exists
n0 such that for all n > n0 we must have either cn(A) = 0 or cn(A) = 1 or cn(A) = n or
cn(A) = 2n − 1.
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